scsi_lib.c revision bb1d1073a10fdc8547e3eb821ee2488260094b39
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19
20#include <scsi/scsi.h>
21#include <scsi/scsi_dbg.h>
22#include <scsi/scsi_device.h>
23#include <scsi/scsi_driver.h>
24#include <scsi/scsi_eh.h>
25#include <scsi/scsi_host.h>
26#include <scsi/scsi_request.h>
27
28#include "scsi_priv.h"
29#include "scsi_logging.h"
30
31
32#define SG_MEMPOOL_NR		(sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33#define SG_MEMPOOL_SIZE		32
34
35struct scsi_host_sg_pool {
36	size_t		size;
37	char		*name;
38	kmem_cache_t	*slab;
39	mempool_t	*pool;
40};
41
42#if (SCSI_MAX_PHYS_SEGMENTS < 32)
43#error SCSI_MAX_PHYS_SEGMENTS is too small
44#endif
45
46#define SP(x) { x, "sgpool-" #x }
47static struct scsi_host_sg_pool scsi_sg_pools[] = {
48	SP(8),
49	SP(16),
50	SP(32),
51#if (SCSI_MAX_PHYS_SEGMENTS > 32)
52	SP(64),
53#if (SCSI_MAX_PHYS_SEGMENTS > 64)
54	SP(128),
55#if (SCSI_MAX_PHYS_SEGMENTS > 128)
56	SP(256),
57#if (SCSI_MAX_PHYS_SEGMENTS > 256)
58#error SCSI_MAX_PHYS_SEGMENTS is too large
59#endif
60#endif
61#endif
62#endif
63};
64#undef SP
65
66static void scsi_run_queue(struct request_queue *q);
67
68/*
69 * Function:	scsi_unprep_request()
70 *
71 * Purpose:	Remove all preparation done for a request, including its
72 *		associated scsi_cmnd, so that it can be requeued.
73 *
74 * Arguments:	req	- request to unprepare
75 *
76 * Lock status:	Assumed that no locks are held upon entry.
77 *
78 * Returns:	Nothing.
79 */
80static void scsi_unprep_request(struct request *req)
81{
82	struct scsi_cmnd *cmd = req->special;
83
84	req->flags &= ~REQ_DONTPREP;
85	req->special = (req->flags & REQ_SPECIAL) ? cmd->sc_request : NULL;
86
87	scsi_put_command(cmd);
88}
89
90/*
91 * Function:    scsi_queue_insert()
92 *
93 * Purpose:     Insert a command in the midlevel queue.
94 *
95 * Arguments:   cmd    - command that we are adding to queue.
96 *              reason - why we are inserting command to queue.
97 *
98 * Lock status: Assumed that lock is not held upon entry.
99 *
100 * Returns:     Nothing.
101 *
102 * Notes:       We do this for one of two cases.  Either the host is busy
103 *              and it cannot accept any more commands for the time being,
104 *              or the device returned QUEUE_FULL and can accept no more
105 *              commands.
106 * Notes:       This could be called either from an interrupt context or a
107 *              normal process context.
108 */
109int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
110{
111	struct Scsi_Host *host = cmd->device->host;
112	struct scsi_device *device = cmd->device;
113	struct request_queue *q = device->request_queue;
114	unsigned long flags;
115
116	SCSI_LOG_MLQUEUE(1,
117		 printk("Inserting command %p into mlqueue\n", cmd));
118
119	/*
120	 * Set the appropriate busy bit for the device/host.
121	 *
122	 * If the host/device isn't busy, assume that something actually
123	 * completed, and that we should be able to queue a command now.
124	 *
125	 * Note that the prior mid-layer assumption that any host could
126	 * always queue at least one command is now broken.  The mid-layer
127	 * will implement a user specifiable stall (see
128	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
129	 * if a command is requeued with no other commands outstanding
130	 * either for the device or for the host.
131	 */
132	if (reason == SCSI_MLQUEUE_HOST_BUSY)
133		host->host_blocked = host->max_host_blocked;
134	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
135		device->device_blocked = device->max_device_blocked;
136
137	/*
138	 * Decrement the counters, since these commands are no longer
139	 * active on the host/device.
140	 */
141	scsi_device_unbusy(device);
142
143	/*
144	 * Requeue this command.  It will go before all other commands
145	 * that are already in the queue.
146	 *
147	 * NOTE: there is magic here about the way the queue is plugged if
148	 * we have no outstanding commands.
149	 *
150	 * Although we *don't* plug the queue, we call the request
151	 * function.  The SCSI request function detects the blocked condition
152	 * and plugs the queue appropriately.
153         */
154	spin_lock_irqsave(q->queue_lock, flags);
155	blk_requeue_request(q, cmd->request);
156	spin_unlock_irqrestore(q->queue_lock, flags);
157
158	scsi_run_queue(q);
159
160	return 0;
161}
162
163/*
164 * Function:    scsi_do_req
165 *
166 * Purpose:     Queue a SCSI request
167 *
168 * Arguments:   sreq	  - command descriptor.
169 *              cmnd      - actual SCSI command to be performed.
170 *              buffer    - data buffer.
171 *              bufflen   - size of data buffer.
172 *              done      - completion function to be run.
173 *              timeout   - how long to let it run before timeout.
174 *              retries   - number of retries we allow.
175 *
176 * Lock status: No locks held upon entry.
177 *
178 * Returns:     Nothing.
179 *
180 * Notes:	This function is only used for queueing requests for things
181 *		like ioctls and character device requests - this is because
182 *		we essentially just inject a request into the queue for the
183 *		device.
184 *
185 *		In order to support the scsi_device_quiesce function, we
186 *		now inject requests on the *head* of the device queue
187 *		rather than the tail.
188 */
189void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
190		 void *buffer, unsigned bufflen,
191		 void (*done)(struct scsi_cmnd *),
192		 int timeout, int retries)
193{
194	/*
195	 * If the upper level driver is reusing these things, then
196	 * we should release the low-level block now.  Another one will
197	 * be allocated later when this request is getting queued.
198	 */
199	__scsi_release_request(sreq);
200
201	/*
202	 * Our own function scsi_done (which marks the host as not busy,
203	 * disables the timeout counter, etc) will be called by us or by the
204	 * scsi_hosts[host].queuecommand() function needs to also call
205	 * the completion function for the high level driver.
206	 */
207	memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
208	sreq->sr_bufflen = bufflen;
209	sreq->sr_buffer = buffer;
210	sreq->sr_allowed = retries;
211	sreq->sr_done = done;
212	sreq->sr_timeout_per_command = timeout;
213
214	if (sreq->sr_cmd_len == 0)
215		sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
216
217	/*
218	 * head injection *required* here otherwise quiesce won't work
219	 *
220	 * Because users of this function are apt to reuse requests with no
221	 * modification, we have to sanitise the request flags here
222	 */
223	sreq->sr_request->flags &= ~REQ_DONTPREP;
224	blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
225		       	   1, sreq);
226}
227EXPORT_SYMBOL(scsi_do_req);
228
229/**
230 * scsi_execute - insert request and wait for the result
231 * @sdev:	scsi device
232 * @cmd:	scsi command
233 * @data_direction: data direction
234 * @buffer:	data buffer
235 * @bufflen:	len of buffer
236 * @sense:	optional sense buffer
237 * @timeout:	request timeout in seconds
238 * @retries:	number of times to retry request
239 * @flags:	or into request flags;
240 *
241 * returns the req->errors value which is the the scsi_cmnd result
242 * field.
243 **/
244int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
245		 int data_direction, void *buffer, unsigned bufflen,
246		 unsigned char *sense, int timeout, int retries, int flags)
247{
248	struct request *req;
249	int write = (data_direction == DMA_TO_DEVICE);
250	int ret = DRIVER_ERROR << 24;
251
252	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
253
254	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
255					buffer, bufflen, __GFP_WAIT))
256		goto out;
257
258	req->cmd_len = COMMAND_SIZE(cmd[0]);
259	memcpy(req->cmd, cmd, req->cmd_len);
260	req->sense = sense;
261	req->sense_len = 0;
262	req->retries = retries;
263	req->timeout = timeout;
264	req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
265
266	/*
267	 * head injection *required* here otherwise quiesce won't work
268	 */
269	blk_execute_rq(req->q, NULL, req, 1);
270
271	ret = req->errors;
272 out:
273	blk_put_request(req);
274
275	return ret;
276}
277EXPORT_SYMBOL(scsi_execute);
278
279
280int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
281		     int data_direction, void *buffer, unsigned bufflen,
282		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
283{
284	char *sense = NULL;
285	int result;
286
287	if (sshdr) {
288		sense = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
289		if (!sense)
290			return DRIVER_ERROR << 24;
291		memset(sense, 0, SCSI_SENSE_BUFFERSIZE);
292	}
293	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
294				  sense, timeout, retries, 0);
295	if (sshdr)
296		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
297
298	kfree(sense);
299	return result;
300}
301EXPORT_SYMBOL(scsi_execute_req);
302
303struct scsi_io_context {
304	void *data;
305	void (*done)(void *data, char *sense, int result, int resid);
306	char sense[SCSI_SENSE_BUFFERSIZE];
307};
308
309static kmem_cache_t *scsi_io_context_cache;
310
311static void scsi_end_async(struct request *req, int uptodate)
312{
313	struct scsi_io_context *sioc = req->end_io_data;
314
315	if (sioc->done)
316		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
317
318	kmem_cache_free(scsi_io_context_cache, sioc);
319	__blk_put_request(req->q, req);
320}
321
322static int scsi_merge_bio(struct request *rq, struct bio *bio)
323{
324	struct request_queue *q = rq->q;
325
326	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
327	if (rq_data_dir(rq) == WRITE)
328		bio->bi_rw |= (1 << BIO_RW);
329	blk_queue_bounce(q, &bio);
330
331	if (!rq->bio)
332		blk_rq_bio_prep(q, rq, bio);
333	else if (!q->back_merge_fn(q, rq, bio))
334		return -EINVAL;
335	else {
336		rq->biotail->bi_next = bio;
337		rq->biotail = bio;
338		rq->hard_nr_sectors += bio_sectors(bio);
339		rq->nr_sectors = rq->hard_nr_sectors;
340	}
341
342	return 0;
343}
344
345static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
346{
347	if (bio->bi_size)
348		return 1;
349
350	bio_put(bio);
351	return 0;
352}
353
354/**
355 * scsi_req_map_sg - map a scatterlist into a request
356 * @rq:		request to fill
357 * @sg:		scatterlist
358 * @nsegs:	number of elements
359 * @bufflen:	len of buffer
360 * @gfp:	memory allocation flags
361 *
362 * scsi_req_map_sg maps a scatterlist into a request so that the
363 * request can be sent to the block layer. We do not trust the scatterlist
364 * sent to use, as some ULDs use that struct to only organize the pages.
365 */
366static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
367			   int nsegs, unsigned bufflen, gfp_t gfp)
368{
369	struct request_queue *q = rq->q;
370	int nr_pages = (bufflen + PAGE_SIZE - 1) >> PAGE_SHIFT;
371	unsigned int data_len = 0, len, bytes, off;
372	struct page *page;
373	struct bio *bio = NULL;
374	int i, err, nr_vecs = 0;
375
376	for (i = 0; i < nsegs; i++) {
377		page = sgl[i].page;
378		off = sgl[i].offset;
379		len = sgl[i].length;
380		data_len += len;
381
382		while (len > 0) {
383			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
384
385			if (!bio) {
386				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
387				nr_pages -= nr_vecs;
388
389				bio = bio_alloc(gfp, nr_vecs);
390				if (!bio) {
391					err = -ENOMEM;
392					goto free_bios;
393				}
394				bio->bi_end_io = scsi_bi_endio;
395			}
396
397			if (bio_add_pc_page(q, bio, page, bytes, off) !=
398			    bytes) {
399				bio_put(bio);
400				err = -EINVAL;
401				goto free_bios;
402			}
403
404			if (bio->bi_vcnt >= nr_vecs) {
405				err = scsi_merge_bio(rq, bio);
406				if (err) {
407					bio_endio(bio, bio->bi_size, 0);
408					goto free_bios;
409				}
410				bio = NULL;
411			}
412
413			page++;
414			len -= bytes;
415			off = 0;
416		}
417	}
418
419	rq->buffer = rq->data = NULL;
420	rq->data_len = data_len;
421	return 0;
422
423free_bios:
424	while ((bio = rq->bio) != NULL) {
425		rq->bio = bio->bi_next;
426		/*
427		 * call endio instead of bio_put incase it was bounced
428		 */
429		bio_endio(bio, bio->bi_size, 0);
430	}
431
432	return err;
433}
434
435/**
436 * scsi_execute_async - insert request
437 * @sdev:	scsi device
438 * @cmd:	scsi command
439 * @cmd_len:	length of scsi cdb
440 * @data_direction: data direction
441 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
442 * @bufflen:	len of buffer
443 * @use_sg:	if buffer is a scatterlist this is the number of elements
444 * @timeout:	request timeout in seconds
445 * @retries:	number of times to retry request
446 * @flags:	or into request flags
447 **/
448int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
449		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
450		       int use_sg, int timeout, int retries, void *privdata,
451		       void (*done)(void *, char *, int, int), gfp_t gfp)
452{
453	struct request *req;
454	struct scsi_io_context *sioc;
455	int err = 0;
456	int write = (data_direction == DMA_TO_DEVICE);
457
458	sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
459	if (!sioc)
460		return DRIVER_ERROR << 24;
461	memset(sioc, 0, sizeof(*sioc));
462
463	req = blk_get_request(sdev->request_queue, write, gfp);
464	if (!req)
465		goto free_sense;
466	req->flags |= REQ_BLOCK_PC | REQ_QUIET;
467
468	if (use_sg)
469		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
470	else if (bufflen)
471		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
472
473	if (err)
474		goto free_req;
475
476	req->cmd_len = cmd_len;
477	memcpy(req->cmd, cmd, req->cmd_len);
478	req->sense = sioc->sense;
479	req->sense_len = 0;
480	req->timeout = timeout;
481	req->retries = retries;
482	req->end_io_data = sioc;
483
484	sioc->data = privdata;
485	sioc->done = done;
486
487	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
488	return 0;
489
490free_req:
491	blk_put_request(req);
492free_sense:
493	kfree(sioc);
494	return DRIVER_ERROR << 24;
495}
496EXPORT_SYMBOL_GPL(scsi_execute_async);
497
498/*
499 * Function:    scsi_init_cmd_errh()
500 *
501 * Purpose:     Initialize cmd fields related to error handling.
502 *
503 * Arguments:   cmd	- command that is ready to be queued.
504 *
505 * Returns:     Nothing
506 *
507 * Notes:       This function has the job of initializing a number of
508 *              fields related to error handling.   Typically this will
509 *              be called once for each command, as required.
510 */
511static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
512{
513	cmd->serial_number = 0;
514
515	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
516
517	if (cmd->cmd_len == 0)
518		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
519
520	/*
521	 * We need saved copies of a number of fields - this is because
522	 * error handling may need to overwrite these with different values
523	 * to run different commands, and once error handling is complete,
524	 * we will need to restore these values prior to running the actual
525	 * command.
526	 */
527	cmd->old_use_sg = cmd->use_sg;
528	cmd->old_cmd_len = cmd->cmd_len;
529	cmd->sc_old_data_direction = cmd->sc_data_direction;
530	cmd->old_underflow = cmd->underflow;
531	memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
532	cmd->buffer = cmd->request_buffer;
533	cmd->bufflen = cmd->request_bufflen;
534
535	return 1;
536}
537
538/*
539 * Function:   scsi_setup_cmd_retry()
540 *
541 * Purpose:    Restore the command state for a retry
542 *
543 * Arguments:  cmd	- command to be restored
544 *
545 * Returns:    Nothing
546 *
547 * Notes:      Immediately prior to retrying a command, we need
548 *             to restore certain fields that we saved above.
549 */
550void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
551{
552	memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
553	cmd->request_buffer = cmd->buffer;
554	cmd->request_bufflen = cmd->bufflen;
555	cmd->use_sg = cmd->old_use_sg;
556	cmd->cmd_len = cmd->old_cmd_len;
557	cmd->sc_data_direction = cmd->sc_old_data_direction;
558	cmd->underflow = cmd->old_underflow;
559}
560
561void scsi_device_unbusy(struct scsi_device *sdev)
562{
563	struct Scsi_Host *shost = sdev->host;
564	unsigned long flags;
565
566	spin_lock_irqsave(shost->host_lock, flags);
567	shost->host_busy--;
568	if (unlikely(scsi_host_in_recovery(shost) &&
569		     shost->host_failed))
570		scsi_eh_wakeup(shost);
571	spin_unlock(shost->host_lock);
572	spin_lock(sdev->request_queue->queue_lock);
573	sdev->device_busy--;
574	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
575}
576
577/*
578 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
579 * and call blk_run_queue for all the scsi_devices on the target -
580 * including current_sdev first.
581 *
582 * Called with *no* scsi locks held.
583 */
584static void scsi_single_lun_run(struct scsi_device *current_sdev)
585{
586	struct Scsi_Host *shost = current_sdev->host;
587	struct scsi_device *sdev, *tmp;
588	struct scsi_target *starget = scsi_target(current_sdev);
589	unsigned long flags;
590
591	spin_lock_irqsave(shost->host_lock, flags);
592	starget->starget_sdev_user = NULL;
593	spin_unlock_irqrestore(shost->host_lock, flags);
594
595	/*
596	 * Call blk_run_queue for all LUNs on the target, starting with
597	 * current_sdev. We race with others (to set starget_sdev_user),
598	 * but in most cases, we will be first. Ideally, each LU on the
599	 * target would get some limited time or requests on the target.
600	 */
601	blk_run_queue(current_sdev->request_queue);
602
603	spin_lock_irqsave(shost->host_lock, flags);
604	if (starget->starget_sdev_user)
605		goto out;
606	list_for_each_entry_safe(sdev, tmp, &starget->devices,
607			same_target_siblings) {
608		if (sdev == current_sdev)
609			continue;
610		if (scsi_device_get(sdev))
611			continue;
612
613		spin_unlock_irqrestore(shost->host_lock, flags);
614		blk_run_queue(sdev->request_queue);
615		spin_lock_irqsave(shost->host_lock, flags);
616
617		scsi_device_put(sdev);
618	}
619 out:
620	spin_unlock_irqrestore(shost->host_lock, flags);
621}
622
623/*
624 * Function:	scsi_run_queue()
625 *
626 * Purpose:	Select a proper request queue to serve next
627 *
628 * Arguments:	q	- last request's queue
629 *
630 * Returns:     Nothing
631 *
632 * Notes:	The previous command was completely finished, start
633 *		a new one if possible.
634 */
635static void scsi_run_queue(struct request_queue *q)
636{
637	struct scsi_device *sdev = q->queuedata;
638	struct Scsi_Host *shost = sdev->host;
639	unsigned long flags;
640
641	if (sdev->single_lun)
642		scsi_single_lun_run(sdev);
643
644	spin_lock_irqsave(shost->host_lock, flags);
645	while (!list_empty(&shost->starved_list) &&
646	       !shost->host_blocked && !shost->host_self_blocked &&
647		!((shost->can_queue > 0) &&
648		  (shost->host_busy >= shost->can_queue))) {
649		/*
650		 * As long as shost is accepting commands and we have
651		 * starved queues, call blk_run_queue. scsi_request_fn
652		 * drops the queue_lock and can add us back to the
653		 * starved_list.
654		 *
655		 * host_lock protects the starved_list and starved_entry.
656		 * scsi_request_fn must get the host_lock before checking
657		 * or modifying starved_list or starved_entry.
658		 */
659		sdev = list_entry(shost->starved_list.next,
660					  struct scsi_device, starved_entry);
661		list_del_init(&sdev->starved_entry);
662		spin_unlock_irqrestore(shost->host_lock, flags);
663
664		blk_run_queue(sdev->request_queue);
665
666		spin_lock_irqsave(shost->host_lock, flags);
667		if (unlikely(!list_empty(&sdev->starved_entry)))
668			/*
669			 * sdev lost a race, and was put back on the
670			 * starved list. This is unlikely but without this
671			 * in theory we could loop forever.
672			 */
673			break;
674	}
675	spin_unlock_irqrestore(shost->host_lock, flags);
676
677	blk_run_queue(q);
678}
679
680/*
681 * Function:	scsi_requeue_command()
682 *
683 * Purpose:	Handle post-processing of completed commands.
684 *
685 * Arguments:	q	- queue to operate on
686 *		cmd	- command that may need to be requeued.
687 *
688 * Returns:	Nothing
689 *
690 * Notes:	After command completion, there may be blocks left
691 *		over which weren't finished by the previous command
692 *		this can be for a number of reasons - the main one is
693 *		I/O errors in the middle of the request, in which case
694 *		we need to request the blocks that come after the bad
695 *		sector.
696 * Notes:	Upon return, cmd is a stale pointer.
697 */
698static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
699{
700	struct request *req = cmd->request;
701	unsigned long flags;
702
703	scsi_unprep_request(req);
704	spin_lock_irqsave(q->queue_lock, flags);
705	blk_requeue_request(q, req);
706	spin_unlock_irqrestore(q->queue_lock, flags);
707
708	scsi_run_queue(q);
709}
710
711void scsi_next_command(struct scsi_cmnd *cmd)
712{
713	struct scsi_device *sdev = cmd->device;
714	struct request_queue *q = sdev->request_queue;
715
716	/* need to hold a reference on the device before we let go of the cmd */
717	get_device(&sdev->sdev_gendev);
718
719	scsi_put_command(cmd);
720	scsi_run_queue(q);
721
722	/* ok to remove device now */
723	put_device(&sdev->sdev_gendev);
724}
725
726void scsi_run_host_queues(struct Scsi_Host *shost)
727{
728	struct scsi_device *sdev;
729
730	shost_for_each_device(sdev, shost)
731		scsi_run_queue(sdev->request_queue);
732}
733
734/*
735 * Function:    scsi_end_request()
736 *
737 * Purpose:     Post-processing of completed commands (usually invoked at end
738 *		of upper level post-processing and scsi_io_completion).
739 *
740 * Arguments:   cmd	 - command that is complete.
741 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
742 *              bytes    - number of bytes of completed I/O
743 *		requeue  - indicates whether we should requeue leftovers.
744 *
745 * Lock status: Assumed that lock is not held upon entry.
746 *
747 * Returns:     cmd if requeue required, NULL otherwise.
748 *
749 * Notes:       This is called for block device requests in order to
750 *              mark some number of sectors as complete.
751 *
752 *		We are guaranteeing that the request queue will be goosed
753 *		at some point during this call.
754 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
755 */
756static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
757					  int bytes, int requeue)
758{
759	request_queue_t *q = cmd->device->request_queue;
760	struct request *req = cmd->request;
761	unsigned long flags;
762
763	/*
764	 * If there are blocks left over at the end, set up the command
765	 * to queue the remainder of them.
766	 */
767	if (end_that_request_chunk(req, uptodate, bytes)) {
768		int leftover = (req->hard_nr_sectors << 9);
769
770		if (blk_pc_request(req))
771			leftover = req->data_len;
772
773		/* kill remainder if no retrys */
774		if (!uptodate && blk_noretry_request(req))
775			end_that_request_chunk(req, 0, leftover);
776		else {
777			if (requeue) {
778				/*
779				 * Bleah.  Leftovers again.  Stick the
780				 * leftovers in the front of the
781				 * queue, and goose the queue again.
782				 */
783				scsi_requeue_command(q, cmd);
784				cmd = NULL;
785			}
786			return cmd;
787		}
788	}
789
790	add_disk_randomness(req->rq_disk);
791
792	spin_lock_irqsave(q->queue_lock, flags);
793	if (blk_rq_tagged(req))
794		blk_queue_end_tag(q, req);
795	end_that_request_last(req, uptodate);
796	spin_unlock_irqrestore(q->queue_lock, flags);
797
798	/*
799	 * This will goose the queue request function at the end, so we don't
800	 * need to worry about launching another command.
801	 */
802	scsi_next_command(cmd);
803	return NULL;
804}
805
806static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
807{
808	struct scsi_host_sg_pool *sgp;
809	struct scatterlist *sgl;
810
811	BUG_ON(!cmd->use_sg);
812
813	switch (cmd->use_sg) {
814	case 1 ... 8:
815		cmd->sglist_len = 0;
816		break;
817	case 9 ... 16:
818		cmd->sglist_len = 1;
819		break;
820	case 17 ... 32:
821		cmd->sglist_len = 2;
822		break;
823#if (SCSI_MAX_PHYS_SEGMENTS > 32)
824	case 33 ... 64:
825		cmd->sglist_len = 3;
826		break;
827#if (SCSI_MAX_PHYS_SEGMENTS > 64)
828	case 65 ... 128:
829		cmd->sglist_len = 4;
830		break;
831#if (SCSI_MAX_PHYS_SEGMENTS  > 128)
832	case 129 ... 256:
833		cmd->sglist_len = 5;
834		break;
835#endif
836#endif
837#endif
838	default:
839		return NULL;
840	}
841
842	sgp = scsi_sg_pools + cmd->sglist_len;
843	sgl = mempool_alloc(sgp->pool, gfp_mask);
844	return sgl;
845}
846
847static void scsi_free_sgtable(struct scatterlist *sgl, int index)
848{
849	struct scsi_host_sg_pool *sgp;
850
851	BUG_ON(index >= SG_MEMPOOL_NR);
852
853	sgp = scsi_sg_pools + index;
854	mempool_free(sgl, sgp->pool);
855}
856
857/*
858 * Function:    scsi_release_buffers()
859 *
860 * Purpose:     Completion processing for block device I/O requests.
861 *
862 * Arguments:   cmd	- command that we are bailing.
863 *
864 * Lock status: Assumed that no lock is held upon entry.
865 *
866 * Returns:     Nothing
867 *
868 * Notes:       In the event that an upper level driver rejects a
869 *		command, we must release resources allocated during
870 *		the __init_io() function.  Primarily this would involve
871 *		the scatter-gather table, and potentially any bounce
872 *		buffers.
873 */
874static void scsi_release_buffers(struct scsi_cmnd *cmd)
875{
876	struct request *req = cmd->request;
877
878	/*
879	 * Free up any indirection buffers we allocated for DMA purposes.
880	 */
881	if (cmd->use_sg)
882		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
883	else if (cmd->request_buffer != req->buffer)
884		kfree(cmd->request_buffer);
885
886	/*
887	 * Zero these out.  They now point to freed memory, and it is
888	 * dangerous to hang onto the pointers.
889	 */
890	cmd->buffer  = NULL;
891	cmd->bufflen = 0;
892	cmd->request_buffer = NULL;
893	cmd->request_bufflen = 0;
894}
895
896/*
897 * Function:    scsi_io_completion()
898 *
899 * Purpose:     Completion processing for block device I/O requests.
900 *
901 * Arguments:   cmd   - command that is finished.
902 *
903 * Lock status: Assumed that no lock is held upon entry.
904 *
905 * Returns:     Nothing
906 *
907 * Notes:       This function is matched in terms of capabilities to
908 *              the function that created the scatter-gather list.
909 *              In other words, if there are no bounce buffers
910 *              (the normal case for most drivers), we don't need
911 *              the logic to deal with cleaning up afterwards.
912 *
913 *		We must do one of several things here:
914 *
915 *		a) Call scsi_end_request.  This will finish off the
916 *		   specified number of sectors.  If we are done, the
917 *		   command block will be released, and the queue
918 *		   function will be goosed.  If we are not done, then
919 *		   scsi_end_request will directly goose the queue.
920 *
921 *		b) We can just use scsi_requeue_command() here.  This would
922 *		   be used if we just wanted to retry, for example.
923 */
924void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
925			unsigned int block_bytes)
926{
927	int result = cmd->result;
928	int this_count = cmd->bufflen;
929	request_queue_t *q = cmd->device->request_queue;
930	struct request *req = cmd->request;
931	int clear_errors = 1;
932	struct scsi_sense_hdr sshdr;
933	int sense_valid = 0;
934	int sense_deferred = 0;
935
936	/*
937	 * Free up any indirection buffers we allocated for DMA purposes.
938	 * For the case of a READ, we need to copy the data out of the
939	 * bounce buffer and into the real buffer.
940	 */
941	if (cmd->use_sg)
942		scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
943	else if (cmd->buffer != req->buffer) {
944		if (rq_data_dir(req) == READ) {
945			unsigned long flags;
946			char *to = bio_kmap_irq(req->bio, &flags);
947			memcpy(to, cmd->buffer, cmd->bufflen);
948			bio_kunmap_irq(to, &flags);
949		}
950		kfree(cmd->buffer);
951	}
952
953	if (result) {
954		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
955		if (sense_valid)
956			sense_deferred = scsi_sense_is_deferred(&sshdr);
957	}
958	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
959		req->errors = result;
960		if (result) {
961			clear_errors = 0;
962			if (sense_valid && req->sense) {
963				/*
964				 * SG_IO wants current and deferred errors
965				 */
966				int len = 8 + cmd->sense_buffer[7];
967
968				if (len > SCSI_SENSE_BUFFERSIZE)
969					len = SCSI_SENSE_BUFFERSIZE;
970				memcpy(req->sense, cmd->sense_buffer,  len);
971				req->sense_len = len;
972			}
973		} else
974			req->data_len = cmd->resid;
975	}
976
977	/*
978	 * Zero these out.  They now point to freed memory, and it is
979	 * dangerous to hang onto the pointers.
980	 */
981	cmd->buffer  = NULL;
982	cmd->bufflen = 0;
983	cmd->request_buffer = NULL;
984	cmd->request_bufflen = 0;
985
986	/*
987	 * Next deal with any sectors which we were able to correctly
988	 * handle.
989	 */
990	if (good_bytes >= 0) {
991		SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
992					      req->nr_sectors, good_bytes));
993		SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
994
995		if (clear_errors)
996			req->errors = 0;
997		/*
998		 * If multiple sectors are requested in one buffer, then
999		 * they will have been finished off by the first command.
1000		 * If not, then we have a multi-buffer command.
1001		 *
1002		 * If block_bytes != 0, it means we had a medium error
1003		 * of some sort, and that we want to mark some number of
1004		 * sectors as not uptodate.  Thus we want to inhibit
1005		 * requeueing right here - we will requeue down below
1006		 * when we handle the bad sectors.
1007		 */
1008
1009		/*
1010		 * If the command completed without error, then either
1011		 * finish off the rest of the command, or start a new one.
1012		 */
1013		if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
1014			return;
1015	}
1016	/*
1017	 * Now, if we were good little boys and girls, Santa left us a request
1018	 * sense buffer.  We can extract information from this, so we
1019	 * can choose a block to remap, etc.
1020	 */
1021	if (sense_valid && !sense_deferred) {
1022		switch (sshdr.sense_key) {
1023		case UNIT_ATTENTION:
1024			if (cmd->device->removable) {
1025				/* detected disc change.  set a bit
1026				 * and quietly refuse further access.
1027				 */
1028				cmd->device->changed = 1;
1029				scsi_end_request(cmd, 0,
1030						this_count, 1);
1031				return;
1032			} else {
1033				/*
1034				* Must have been a power glitch, or a
1035				* bus reset.  Could not have been a
1036				* media change, so we just retry the
1037				* request and see what happens.
1038				*/
1039				scsi_requeue_command(q, cmd);
1040				return;
1041			}
1042			break;
1043		case ILLEGAL_REQUEST:
1044			/*
1045		 	* If we had an ILLEGAL REQUEST returned, then we may
1046		 	* have performed an unsupported command.  The only
1047		 	* thing this should be would be a ten byte read where
1048			* only a six byte read was supported.  Also, on a
1049			* system where READ CAPACITY failed, we may have read
1050			* past the end of the disk.
1051		 	*/
1052			if ((cmd->device->use_10_for_rw &&
1053			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1054			    (cmd->cmnd[0] == READ_10 ||
1055			     cmd->cmnd[0] == WRITE_10)) {
1056				cmd->device->use_10_for_rw = 0;
1057				/*
1058				 * This will cause a retry with a 6-byte
1059				 * command.
1060				 */
1061				scsi_requeue_command(q, cmd);
1062				result = 0;
1063			} else {
1064				scsi_end_request(cmd, 0, this_count, 1);
1065				return;
1066			}
1067			break;
1068		case NOT_READY:
1069			/*
1070			 * If the device is in the process of becoming ready,
1071			 * retry.
1072			 */
1073			if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
1074				scsi_requeue_command(q, cmd);
1075				return;
1076			}
1077			if (!(req->flags & REQ_QUIET))
1078				scmd_printk(KERN_INFO, cmd,
1079					   "Device not ready.\n");
1080			scsi_end_request(cmd, 0, this_count, 1);
1081			return;
1082		case VOLUME_OVERFLOW:
1083			if (!(req->flags & REQ_QUIET)) {
1084				scmd_printk(KERN_INFO, cmd,
1085					   "Volume overflow, CDB: ");
1086				__scsi_print_command(cmd->data_cmnd);
1087				scsi_print_sense("", cmd);
1088			}
1089			scsi_end_request(cmd, 0, block_bytes, 1);
1090			return;
1091		default:
1092			break;
1093		}
1094	}			/* driver byte != 0 */
1095	if (host_byte(result) == DID_RESET) {
1096		/*
1097		 * Third party bus reset or reset for error
1098		 * recovery reasons.  Just retry the request
1099		 * and see what happens.
1100		 */
1101		scsi_requeue_command(q, cmd);
1102		return;
1103	}
1104	if (result) {
1105		if (!(req->flags & REQ_QUIET)) {
1106			scmd_printk(KERN_INFO, cmd,
1107				   "SCSI error: return code = 0x%x\n", result);
1108
1109			if (driver_byte(result) & DRIVER_SENSE)
1110				scsi_print_sense("", cmd);
1111		}
1112		/*
1113		 * Mark a single buffer as not uptodate.  Queue the remainder.
1114		 * We sometimes get this cruft in the event that a medium error
1115		 * isn't properly reported.
1116		 */
1117		block_bytes = req->hard_cur_sectors << 9;
1118		if (!block_bytes)
1119			block_bytes = req->data_len;
1120		scsi_end_request(cmd, 0, block_bytes, 1);
1121	}
1122}
1123EXPORT_SYMBOL(scsi_io_completion);
1124
1125/*
1126 * Function:    scsi_init_io()
1127 *
1128 * Purpose:     SCSI I/O initialize function.
1129 *
1130 * Arguments:   cmd   - Command descriptor we wish to initialize
1131 *
1132 * Returns:     0 on success
1133 *		BLKPREP_DEFER if the failure is retryable
1134 *		BLKPREP_KILL if the failure is fatal
1135 */
1136static int scsi_init_io(struct scsi_cmnd *cmd)
1137{
1138	struct request     *req = cmd->request;
1139	struct scatterlist *sgpnt;
1140	int		   count;
1141
1142	/*
1143	 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1144	 */
1145	if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1146		cmd->request_bufflen = req->data_len;
1147		cmd->request_buffer = req->data;
1148		req->buffer = req->data;
1149		cmd->use_sg = 0;
1150		return 0;
1151	}
1152
1153	/*
1154	 * we used to not use scatter-gather for single segment request,
1155	 * but now we do (it makes highmem I/O easier to support without
1156	 * kmapping pages)
1157	 */
1158	cmd->use_sg = req->nr_phys_segments;
1159
1160	/*
1161	 * if sg table allocation fails, requeue request later.
1162	 */
1163	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1164	if (unlikely(!sgpnt)) {
1165		scsi_unprep_request(req);
1166		return BLKPREP_DEFER;
1167	}
1168
1169	cmd->request_buffer = (char *) sgpnt;
1170	cmd->request_bufflen = req->nr_sectors << 9;
1171	if (blk_pc_request(req))
1172		cmd->request_bufflen = req->data_len;
1173	req->buffer = NULL;
1174
1175	/*
1176	 * Next, walk the list, and fill in the addresses and sizes of
1177	 * each segment.
1178	 */
1179	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1180
1181	/*
1182	 * mapped well, send it off
1183	 */
1184	if (likely(count <= cmd->use_sg)) {
1185		cmd->use_sg = count;
1186		return 0;
1187	}
1188
1189	printk(KERN_ERR "Incorrect number of segments after building list\n");
1190	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1191	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1192			req->current_nr_sectors);
1193
1194	/* release the command and kill it */
1195	scsi_release_buffers(cmd);
1196	scsi_put_command(cmd);
1197	return BLKPREP_KILL;
1198}
1199
1200static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1201			       sector_t *error_sector)
1202{
1203	struct scsi_device *sdev = q->queuedata;
1204	struct scsi_driver *drv;
1205
1206	if (sdev->sdev_state != SDEV_RUNNING)
1207		return -ENXIO;
1208
1209	drv = *(struct scsi_driver **) disk->private_data;
1210	if (drv->issue_flush)
1211		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1212
1213	return -EOPNOTSUPP;
1214}
1215
1216static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1217{
1218	BUG_ON(!blk_pc_request(cmd->request));
1219	/*
1220	 * This will complete the whole command with uptodate=1 so
1221	 * as far as the block layer is concerned the command completed
1222	 * successfully. Since this is a REQ_BLOCK_PC command the
1223	 * caller should check the request's errors value
1224	 */
1225	scsi_io_completion(cmd, cmd->bufflen, 0);
1226}
1227
1228static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1229{
1230	struct request *req = cmd->request;
1231
1232	BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1233	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1234	cmd->cmd_len = req->cmd_len;
1235	if (!req->data_len)
1236		cmd->sc_data_direction = DMA_NONE;
1237	else if (rq_data_dir(req) == WRITE)
1238		cmd->sc_data_direction = DMA_TO_DEVICE;
1239	else
1240		cmd->sc_data_direction = DMA_FROM_DEVICE;
1241
1242	cmd->transfersize = req->data_len;
1243	cmd->allowed = req->retries;
1244	cmd->timeout_per_command = req->timeout;
1245	cmd->done = scsi_blk_pc_done;
1246}
1247
1248static int scsi_prep_fn(struct request_queue *q, struct request *req)
1249{
1250	struct scsi_device *sdev = q->queuedata;
1251	struct scsi_cmnd *cmd;
1252	int specials_only = 0;
1253
1254	/*
1255	 * Just check to see if the device is online.  If it isn't, we
1256	 * refuse to process any commands.  The device must be brought
1257	 * online before trying any recovery commands
1258	 */
1259	if (unlikely(!scsi_device_online(sdev))) {
1260		sdev_printk(KERN_ERR, sdev,
1261			    "rejecting I/O to offline device\n");
1262		goto kill;
1263	}
1264	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1265		/* OK, we're not in a running state don't prep
1266		 * user commands */
1267		if (sdev->sdev_state == SDEV_DEL) {
1268			/* Device is fully deleted, no commands
1269			 * at all allowed down */
1270			sdev_printk(KERN_ERR, sdev,
1271				    "rejecting I/O to dead device\n");
1272			goto kill;
1273		}
1274		/* OK, we only allow special commands (i.e. not
1275		 * user initiated ones */
1276		specials_only = sdev->sdev_state;
1277	}
1278
1279	/*
1280	 * Find the actual device driver associated with this command.
1281	 * The SPECIAL requests are things like character device or
1282	 * ioctls, which did not originate from ll_rw_blk.  Note that
1283	 * the special field is also used to indicate the cmd for
1284	 * the remainder of a partially fulfilled request that can
1285	 * come up when there is a medium error.  We have to treat
1286	 * these two cases differently.  We differentiate by looking
1287	 * at request->cmd, as this tells us the real story.
1288	 */
1289	if (req->flags & REQ_SPECIAL && req->special) {
1290		struct scsi_request *sreq = req->special;
1291
1292		if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1293			cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1294			if (unlikely(!cmd))
1295				goto defer;
1296			scsi_init_cmd_from_req(cmd, sreq);
1297		} else
1298			cmd = req->special;
1299	} else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1300
1301		if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1302			if(specials_only == SDEV_QUIESCE ||
1303					specials_only == SDEV_BLOCK)
1304				goto defer;
1305
1306			sdev_printk(KERN_ERR, sdev,
1307				    "rejecting I/O to device being removed\n");
1308			goto kill;
1309		}
1310
1311
1312		/*
1313		 * Now try and find a command block that we can use.
1314		 */
1315		if (!req->special) {
1316			cmd = scsi_get_command(sdev, GFP_ATOMIC);
1317			if (unlikely(!cmd))
1318				goto defer;
1319		} else
1320			cmd = req->special;
1321
1322		/* pull a tag out of the request if we have one */
1323		cmd->tag = req->tag;
1324	} else {
1325		blk_dump_rq_flags(req, "SCSI bad req");
1326		goto kill;
1327	}
1328
1329	/* note the overloading of req->special.  When the tag
1330	 * is active it always means cmd.  If the tag goes
1331	 * back for re-queueing, it may be reset */
1332	req->special = cmd;
1333	cmd->request = req;
1334
1335	/*
1336	 * FIXME: drop the lock here because the functions below
1337	 * expect to be called without the queue lock held.  Also,
1338	 * previously, we dequeued the request before dropping the
1339	 * lock.  We hope REQ_STARTED prevents anything untoward from
1340	 * happening now.
1341	 */
1342	if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1343		int ret;
1344
1345		/*
1346		 * This will do a couple of things:
1347		 *  1) Fill in the actual SCSI command.
1348		 *  2) Fill in any other upper-level specific fields
1349		 * (timeout).
1350		 *
1351		 * If this returns 0, it means that the request failed
1352		 * (reading past end of disk, reading offline device,
1353		 * etc).   This won't actually talk to the device, but
1354		 * some kinds of consistency checking may cause the
1355		 * request to be rejected immediately.
1356		 */
1357
1358		/*
1359		 * This sets up the scatter-gather table (allocating if
1360		 * required).
1361		 */
1362		ret = scsi_init_io(cmd);
1363		switch(ret) {
1364			/* For BLKPREP_KILL/DEFER the cmd was released */
1365		case BLKPREP_KILL:
1366			goto kill;
1367		case BLKPREP_DEFER:
1368			goto defer;
1369		}
1370
1371		/*
1372		 * Initialize the actual SCSI command for this request.
1373		 */
1374		if (req->flags & REQ_BLOCK_PC) {
1375			scsi_setup_blk_pc_cmnd(cmd);
1376		} else if (req->rq_disk) {
1377			struct scsi_driver *drv;
1378
1379			drv = *(struct scsi_driver **)req->rq_disk->private_data;
1380			if (unlikely(!drv->init_command(cmd))) {
1381				scsi_release_buffers(cmd);
1382				scsi_put_command(cmd);
1383				goto kill;
1384			}
1385		}
1386	}
1387
1388	/*
1389	 * The request is now prepped, no need to come back here
1390	 */
1391	req->flags |= REQ_DONTPREP;
1392	return BLKPREP_OK;
1393
1394 defer:
1395	/* If we defer, the elv_next_request() returns NULL, but the
1396	 * queue must be restarted, so we plug here if no returning
1397	 * command will automatically do that. */
1398	if (sdev->device_busy == 0)
1399		blk_plug_device(q);
1400	return BLKPREP_DEFER;
1401 kill:
1402	req->errors = DID_NO_CONNECT << 16;
1403	return BLKPREP_KILL;
1404}
1405
1406/*
1407 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1408 * return 0.
1409 *
1410 * Called with the queue_lock held.
1411 */
1412static inline int scsi_dev_queue_ready(struct request_queue *q,
1413				  struct scsi_device *sdev)
1414{
1415	if (sdev->device_busy >= sdev->queue_depth)
1416		return 0;
1417	if (sdev->device_busy == 0 && sdev->device_blocked) {
1418		/*
1419		 * unblock after device_blocked iterates to zero
1420		 */
1421		if (--sdev->device_blocked == 0) {
1422			SCSI_LOG_MLQUEUE(3,
1423				   sdev_printk(KERN_INFO, sdev,
1424				   "unblocking device at zero depth\n"));
1425		} else {
1426			blk_plug_device(q);
1427			return 0;
1428		}
1429	}
1430	if (sdev->device_blocked)
1431		return 0;
1432
1433	return 1;
1434}
1435
1436/*
1437 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1438 * return 0. We must end up running the queue again whenever 0 is
1439 * returned, else IO can hang.
1440 *
1441 * Called with host_lock held.
1442 */
1443static inline int scsi_host_queue_ready(struct request_queue *q,
1444				   struct Scsi_Host *shost,
1445				   struct scsi_device *sdev)
1446{
1447	if (scsi_host_in_recovery(shost))
1448		return 0;
1449	if (shost->host_busy == 0 && shost->host_blocked) {
1450		/*
1451		 * unblock after host_blocked iterates to zero
1452		 */
1453		if (--shost->host_blocked == 0) {
1454			SCSI_LOG_MLQUEUE(3,
1455				printk("scsi%d unblocking host at zero depth\n",
1456					shost->host_no));
1457		} else {
1458			blk_plug_device(q);
1459			return 0;
1460		}
1461	}
1462	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1463	    shost->host_blocked || shost->host_self_blocked) {
1464		if (list_empty(&sdev->starved_entry))
1465			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1466		return 0;
1467	}
1468
1469	/* We're OK to process the command, so we can't be starved */
1470	if (!list_empty(&sdev->starved_entry))
1471		list_del_init(&sdev->starved_entry);
1472
1473	return 1;
1474}
1475
1476/*
1477 * Kill a request for a dead device
1478 */
1479static void scsi_kill_request(struct request *req, request_queue_t *q)
1480{
1481	struct scsi_cmnd *cmd = req->special;
1482
1483	blkdev_dequeue_request(req);
1484
1485	if (unlikely(cmd == NULL)) {
1486		printk(KERN_CRIT "impossible request in %s.\n",
1487				 __FUNCTION__);
1488		BUG();
1489	}
1490
1491	scsi_init_cmd_errh(cmd);
1492	cmd->result = DID_NO_CONNECT << 16;
1493	atomic_inc(&cmd->device->iorequest_cnt);
1494	__scsi_done(cmd);
1495}
1496
1497static void scsi_softirq_done(struct request *rq)
1498{
1499	struct scsi_cmnd *cmd = rq->completion_data;
1500	unsigned long wait_for = cmd->allowed * cmd->timeout_per_command;
1501	int disposition;
1502
1503	INIT_LIST_HEAD(&cmd->eh_entry);
1504
1505	disposition = scsi_decide_disposition(cmd);
1506	if (disposition != SUCCESS &&
1507	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1508		sdev_printk(KERN_ERR, cmd->device,
1509			    "timing out command, waited %lus\n",
1510			    wait_for/HZ);
1511		disposition = SUCCESS;
1512	}
1513
1514	scsi_log_completion(cmd, disposition);
1515
1516	switch (disposition) {
1517		case SUCCESS:
1518			scsi_finish_command(cmd);
1519			break;
1520		case NEEDS_RETRY:
1521			scsi_retry_command(cmd);
1522			break;
1523		case ADD_TO_MLQUEUE:
1524			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1525			break;
1526		default:
1527			if (!scsi_eh_scmd_add(cmd, 0))
1528				scsi_finish_command(cmd);
1529	}
1530}
1531
1532/*
1533 * Function:    scsi_request_fn()
1534 *
1535 * Purpose:     Main strategy routine for SCSI.
1536 *
1537 * Arguments:   q       - Pointer to actual queue.
1538 *
1539 * Returns:     Nothing
1540 *
1541 * Lock status: IO request lock assumed to be held when called.
1542 */
1543static void scsi_request_fn(struct request_queue *q)
1544{
1545	struct scsi_device *sdev = q->queuedata;
1546	struct Scsi_Host *shost;
1547	struct scsi_cmnd *cmd;
1548	struct request *req;
1549
1550	if (!sdev) {
1551		printk("scsi: killing requests for dead queue\n");
1552		while ((req = elv_next_request(q)) != NULL)
1553			scsi_kill_request(req, q);
1554		return;
1555	}
1556
1557	if(!get_device(&sdev->sdev_gendev))
1558		/* We must be tearing the block queue down already */
1559		return;
1560
1561	/*
1562	 * To start with, we keep looping until the queue is empty, or until
1563	 * the host is no longer able to accept any more requests.
1564	 */
1565	shost = sdev->host;
1566	while (!blk_queue_plugged(q)) {
1567		int rtn;
1568		/*
1569		 * get next queueable request.  We do this early to make sure
1570		 * that the request is fully prepared even if we cannot
1571		 * accept it.
1572		 */
1573		req = elv_next_request(q);
1574		if (!req || !scsi_dev_queue_ready(q, sdev))
1575			break;
1576
1577		if (unlikely(!scsi_device_online(sdev))) {
1578			sdev_printk(KERN_ERR, sdev,
1579				    "rejecting I/O to offline device\n");
1580			scsi_kill_request(req, q);
1581			continue;
1582		}
1583
1584
1585		/*
1586		 * Remove the request from the request list.
1587		 */
1588		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1589			blkdev_dequeue_request(req);
1590		sdev->device_busy++;
1591
1592		spin_unlock(q->queue_lock);
1593		cmd = req->special;
1594		if (unlikely(cmd == NULL)) {
1595			printk(KERN_CRIT "impossible request in %s.\n"
1596					 "please mail a stack trace to "
1597					 "linux-scsi@vger.kernel.org",
1598					 __FUNCTION__);
1599			BUG();
1600		}
1601		spin_lock(shost->host_lock);
1602
1603		if (!scsi_host_queue_ready(q, shost, sdev))
1604			goto not_ready;
1605		if (sdev->single_lun) {
1606			if (scsi_target(sdev)->starget_sdev_user &&
1607			    scsi_target(sdev)->starget_sdev_user != sdev)
1608				goto not_ready;
1609			scsi_target(sdev)->starget_sdev_user = sdev;
1610		}
1611		shost->host_busy++;
1612
1613		/*
1614		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1615		 *		take the lock again.
1616		 */
1617		spin_unlock_irq(shost->host_lock);
1618
1619		/*
1620		 * Finally, initialize any error handling parameters, and set up
1621		 * the timers for timeouts.
1622		 */
1623		scsi_init_cmd_errh(cmd);
1624
1625		/*
1626		 * Dispatch the command to the low-level driver.
1627		 */
1628		rtn = scsi_dispatch_cmd(cmd);
1629		spin_lock_irq(q->queue_lock);
1630		if(rtn) {
1631			/* we're refusing the command; because of
1632			 * the way locks get dropped, we need to
1633			 * check here if plugging is required */
1634			if(sdev->device_busy == 0)
1635				blk_plug_device(q);
1636
1637			break;
1638		}
1639	}
1640
1641	goto out;
1642
1643 not_ready:
1644	spin_unlock_irq(shost->host_lock);
1645
1646	/*
1647	 * lock q, handle tag, requeue req, and decrement device_busy. We
1648	 * must return with queue_lock held.
1649	 *
1650	 * Decrementing device_busy without checking it is OK, as all such
1651	 * cases (host limits or settings) should run the queue at some
1652	 * later time.
1653	 */
1654	spin_lock_irq(q->queue_lock);
1655	blk_requeue_request(q, req);
1656	sdev->device_busy--;
1657	if(sdev->device_busy == 0)
1658		blk_plug_device(q);
1659 out:
1660	/* must be careful here...if we trigger the ->remove() function
1661	 * we cannot be holding the q lock */
1662	spin_unlock_irq(q->queue_lock);
1663	put_device(&sdev->sdev_gendev);
1664	spin_lock_irq(q->queue_lock);
1665}
1666
1667u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1668{
1669	struct device *host_dev;
1670	u64 bounce_limit = 0xffffffff;
1671
1672	if (shost->unchecked_isa_dma)
1673		return BLK_BOUNCE_ISA;
1674	/*
1675	 * Platforms with virtual-DMA translation
1676	 * hardware have no practical limit.
1677	 */
1678	if (!PCI_DMA_BUS_IS_PHYS)
1679		return BLK_BOUNCE_ANY;
1680
1681	host_dev = scsi_get_device(shost);
1682	if (host_dev && host_dev->dma_mask)
1683		bounce_limit = *host_dev->dma_mask;
1684
1685	return bounce_limit;
1686}
1687EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1688
1689struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1690{
1691	struct Scsi_Host *shost = sdev->host;
1692	struct request_queue *q;
1693
1694	q = blk_init_queue(scsi_request_fn, NULL);
1695	if (!q)
1696		return NULL;
1697
1698	blk_queue_prep_rq(q, scsi_prep_fn);
1699
1700	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1701	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1702	blk_queue_max_sectors(q, shost->max_sectors);
1703	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1704	blk_queue_segment_boundary(q, shost->dma_boundary);
1705	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1706	blk_queue_softirq_done(q, scsi_softirq_done);
1707
1708	if (!shost->use_clustering)
1709		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1710	return q;
1711}
1712
1713void scsi_free_queue(struct request_queue *q)
1714{
1715	blk_cleanup_queue(q);
1716}
1717
1718/*
1719 * Function:    scsi_block_requests()
1720 *
1721 * Purpose:     Utility function used by low-level drivers to prevent further
1722 *		commands from being queued to the device.
1723 *
1724 * Arguments:   shost       - Host in question
1725 *
1726 * Returns:     Nothing
1727 *
1728 * Lock status: No locks are assumed held.
1729 *
1730 * Notes:       There is no timer nor any other means by which the requests
1731 *		get unblocked other than the low-level driver calling
1732 *		scsi_unblock_requests().
1733 */
1734void scsi_block_requests(struct Scsi_Host *shost)
1735{
1736	shost->host_self_blocked = 1;
1737}
1738EXPORT_SYMBOL(scsi_block_requests);
1739
1740/*
1741 * Function:    scsi_unblock_requests()
1742 *
1743 * Purpose:     Utility function used by low-level drivers to allow further
1744 *		commands from being queued to the device.
1745 *
1746 * Arguments:   shost       - Host in question
1747 *
1748 * Returns:     Nothing
1749 *
1750 * Lock status: No locks are assumed held.
1751 *
1752 * Notes:       There is no timer nor any other means by which the requests
1753 *		get unblocked other than the low-level driver calling
1754 *		scsi_unblock_requests().
1755 *
1756 *		This is done as an API function so that changes to the
1757 *		internals of the scsi mid-layer won't require wholesale
1758 *		changes to drivers that use this feature.
1759 */
1760void scsi_unblock_requests(struct Scsi_Host *shost)
1761{
1762	shost->host_self_blocked = 0;
1763	scsi_run_host_queues(shost);
1764}
1765EXPORT_SYMBOL(scsi_unblock_requests);
1766
1767int __init scsi_init_queue(void)
1768{
1769	int i;
1770
1771	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1772					sizeof(struct scsi_io_context),
1773					0, 0, NULL, NULL);
1774	if (!scsi_io_context_cache) {
1775		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1776		return -ENOMEM;
1777	}
1778
1779	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1780		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1781		int size = sgp->size * sizeof(struct scatterlist);
1782
1783		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1784				SLAB_HWCACHE_ALIGN, NULL, NULL);
1785		if (!sgp->slab) {
1786			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1787					sgp->name);
1788		}
1789
1790		sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1791				mempool_alloc_slab, mempool_free_slab,
1792				sgp->slab);
1793		if (!sgp->pool) {
1794			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1795					sgp->name);
1796		}
1797	}
1798
1799	return 0;
1800}
1801
1802void scsi_exit_queue(void)
1803{
1804	int i;
1805
1806	kmem_cache_destroy(scsi_io_context_cache);
1807
1808	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1809		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1810		mempool_destroy(sgp->pool);
1811		kmem_cache_destroy(sgp->slab);
1812	}
1813}
1814/**
1815 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1816 *		six bytes if necessary.
1817 *	@sdev:	SCSI device to be queried
1818 *	@dbd:	set if mode sense will allow block descriptors to be returned
1819 *	@modepage: mode page being requested
1820 *	@buffer: request buffer (may not be smaller than eight bytes)
1821 *	@len:	length of request buffer.
1822 *	@timeout: command timeout
1823 *	@retries: number of retries before failing
1824 *	@data: returns a structure abstracting the mode header data
1825 *	@sense: place to put sense data (or NULL if no sense to be collected).
1826 *		must be SCSI_SENSE_BUFFERSIZE big.
1827 *
1828 *	Returns zero if unsuccessful, or the header offset (either 4
1829 *	or 8 depending on whether a six or ten byte command was
1830 *	issued) if successful.
1831 **/
1832int
1833scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1834		  unsigned char *buffer, int len, int timeout, int retries,
1835		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) {
1836	unsigned char cmd[12];
1837	int use_10_for_ms;
1838	int header_length;
1839	int result;
1840	struct scsi_sense_hdr my_sshdr;
1841
1842	memset(data, 0, sizeof(*data));
1843	memset(&cmd[0], 0, 12);
1844	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1845	cmd[2] = modepage;
1846
1847	/* caller might not be interested in sense, but we need it */
1848	if (!sshdr)
1849		sshdr = &my_sshdr;
1850
1851 retry:
1852	use_10_for_ms = sdev->use_10_for_ms;
1853
1854	if (use_10_for_ms) {
1855		if (len < 8)
1856			len = 8;
1857
1858		cmd[0] = MODE_SENSE_10;
1859		cmd[8] = len;
1860		header_length = 8;
1861	} else {
1862		if (len < 4)
1863			len = 4;
1864
1865		cmd[0] = MODE_SENSE;
1866		cmd[4] = len;
1867		header_length = 4;
1868	}
1869
1870	memset(buffer, 0, len);
1871
1872	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1873				  sshdr, timeout, retries);
1874
1875	/* This code looks awful: what it's doing is making sure an
1876	 * ILLEGAL REQUEST sense return identifies the actual command
1877	 * byte as the problem.  MODE_SENSE commands can return
1878	 * ILLEGAL REQUEST if the code page isn't supported */
1879
1880	if (use_10_for_ms && !scsi_status_is_good(result) &&
1881	    (driver_byte(result) & DRIVER_SENSE)) {
1882		if (scsi_sense_valid(sshdr)) {
1883			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1884			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1885				/*
1886				 * Invalid command operation code
1887				 */
1888				sdev->use_10_for_ms = 0;
1889				goto retry;
1890			}
1891		}
1892	}
1893
1894	if(scsi_status_is_good(result)) {
1895		data->header_length = header_length;
1896		if(use_10_for_ms) {
1897			data->length = buffer[0]*256 + buffer[1] + 2;
1898			data->medium_type = buffer[2];
1899			data->device_specific = buffer[3];
1900			data->longlba = buffer[4] & 0x01;
1901			data->block_descriptor_length = buffer[6]*256
1902				+ buffer[7];
1903		} else {
1904			data->length = buffer[0] + 1;
1905			data->medium_type = buffer[1];
1906			data->device_specific = buffer[2];
1907			data->block_descriptor_length = buffer[3];
1908		}
1909	}
1910
1911	return result;
1912}
1913EXPORT_SYMBOL(scsi_mode_sense);
1914
1915int
1916scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1917{
1918	char cmd[] = {
1919		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1920	};
1921	struct scsi_sense_hdr sshdr;
1922	int result;
1923
1924	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1925				  timeout, retries);
1926
1927	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1928
1929		if ((scsi_sense_valid(&sshdr)) &&
1930		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1931		     (sshdr.sense_key == NOT_READY))) {
1932			sdev->changed = 1;
1933			result = 0;
1934		}
1935	}
1936	return result;
1937}
1938EXPORT_SYMBOL(scsi_test_unit_ready);
1939
1940/**
1941 *	scsi_device_set_state - Take the given device through the device
1942 *		state model.
1943 *	@sdev:	scsi device to change the state of.
1944 *	@state:	state to change to.
1945 *
1946 *	Returns zero if unsuccessful or an error if the requested
1947 *	transition is illegal.
1948 **/
1949int
1950scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1951{
1952	enum scsi_device_state oldstate = sdev->sdev_state;
1953
1954	if (state == oldstate)
1955		return 0;
1956
1957	switch (state) {
1958	case SDEV_CREATED:
1959		/* There are no legal states that come back to
1960		 * created.  This is the manually initialised start
1961		 * state */
1962		goto illegal;
1963
1964	case SDEV_RUNNING:
1965		switch (oldstate) {
1966		case SDEV_CREATED:
1967		case SDEV_OFFLINE:
1968		case SDEV_QUIESCE:
1969		case SDEV_BLOCK:
1970			break;
1971		default:
1972			goto illegal;
1973		}
1974		break;
1975
1976	case SDEV_QUIESCE:
1977		switch (oldstate) {
1978		case SDEV_RUNNING:
1979		case SDEV_OFFLINE:
1980			break;
1981		default:
1982			goto illegal;
1983		}
1984		break;
1985
1986	case SDEV_OFFLINE:
1987		switch (oldstate) {
1988		case SDEV_CREATED:
1989		case SDEV_RUNNING:
1990		case SDEV_QUIESCE:
1991		case SDEV_BLOCK:
1992			break;
1993		default:
1994			goto illegal;
1995		}
1996		break;
1997
1998	case SDEV_BLOCK:
1999		switch (oldstate) {
2000		case SDEV_CREATED:
2001		case SDEV_RUNNING:
2002			break;
2003		default:
2004			goto illegal;
2005		}
2006		break;
2007
2008	case SDEV_CANCEL:
2009		switch (oldstate) {
2010		case SDEV_CREATED:
2011		case SDEV_RUNNING:
2012		case SDEV_OFFLINE:
2013		case SDEV_BLOCK:
2014			break;
2015		default:
2016			goto illegal;
2017		}
2018		break;
2019
2020	case SDEV_DEL:
2021		switch (oldstate) {
2022		case SDEV_CANCEL:
2023			break;
2024		default:
2025			goto illegal;
2026		}
2027		break;
2028
2029	}
2030	sdev->sdev_state = state;
2031	return 0;
2032
2033 illegal:
2034	SCSI_LOG_ERROR_RECOVERY(1,
2035				sdev_printk(KERN_ERR, sdev,
2036					    "Illegal state transition %s->%s\n",
2037					    scsi_device_state_name(oldstate),
2038					    scsi_device_state_name(state))
2039				);
2040	return -EINVAL;
2041}
2042EXPORT_SYMBOL(scsi_device_set_state);
2043
2044/**
2045 *	scsi_device_quiesce - Block user issued commands.
2046 *	@sdev:	scsi device to quiesce.
2047 *
2048 *	This works by trying to transition to the SDEV_QUIESCE state
2049 *	(which must be a legal transition).  When the device is in this
2050 *	state, only special requests will be accepted, all others will
2051 *	be deferred.  Since special requests may also be requeued requests,
2052 *	a successful return doesn't guarantee the device will be
2053 *	totally quiescent.
2054 *
2055 *	Must be called with user context, may sleep.
2056 *
2057 *	Returns zero if unsuccessful or an error if not.
2058 **/
2059int
2060scsi_device_quiesce(struct scsi_device *sdev)
2061{
2062	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2063	if (err)
2064		return err;
2065
2066	scsi_run_queue(sdev->request_queue);
2067	while (sdev->device_busy) {
2068		msleep_interruptible(200);
2069		scsi_run_queue(sdev->request_queue);
2070	}
2071	return 0;
2072}
2073EXPORT_SYMBOL(scsi_device_quiesce);
2074
2075/**
2076 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2077 *	@sdev:	scsi device to resume.
2078 *
2079 *	Moves the device from quiesced back to running and restarts the
2080 *	queues.
2081 *
2082 *	Must be called with user context, may sleep.
2083 **/
2084void
2085scsi_device_resume(struct scsi_device *sdev)
2086{
2087	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2088		return;
2089	scsi_run_queue(sdev->request_queue);
2090}
2091EXPORT_SYMBOL(scsi_device_resume);
2092
2093static void
2094device_quiesce_fn(struct scsi_device *sdev, void *data)
2095{
2096	scsi_device_quiesce(sdev);
2097}
2098
2099void
2100scsi_target_quiesce(struct scsi_target *starget)
2101{
2102	starget_for_each_device(starget, NULL, device_quiesce_fn);
2103}
2104EXPORT_SYMBOL(scsi_target_quiesce);
2105
2106static void
2107device_resume_fn(struct scsi_device *sdev, void *data)
2108{
2109	scsi_device_resume(sdev);
2110}
2111
2112void
2113scsi_target_resume(struct scsi_target *starget)
2114{
2115	starget_for_each_device(starget, NULL, device_resume_fn);
2116}
2117EXPORT_SYMBOL(scsi_target_resume);
2118
2119/**
2120 * scsi_internal_device_block - internal function to put a device
2121 *				temporarily into the SDEV_BLOCK state
2122 * @sdev:	device to block
2123 *
2124 * Block request made by scsi lld's to temporarily stop all
2125 * scsi commands on the specified device.  Called from interrupt
2126 * or normal process context.
2127 *
2128 * Returns zero if successful or error if not
2129 *
2130 * Notes:
2131 *	This routine transitions the device to the SDEV_BLOCK state
2132 *	(which must be a legal transition).  When the device is in this
2133 *	state, all commands are deferred until the scsi lld reenables
2134 *	the device with scsi_device_unblock or device_block_tmo fires.
2135 *	This routine assumes the host_lock is held on entry.
2136 **/
2137int
2138scsi_internal_device_block(struct scsi_device *sdev)
2139{
2140	request_queue_t *q = sdev->request_queue;
2141	unsigned long flags;
2142	int err = 0;
2143
2144	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2145	if (err)
2146		return err;
2147
2148	/*
2149	 * The device has transitioned to SDEV_BLOCK.  Stop the
2150	 * block layer from calling the midlayer with this device's
2151	 * request queue.
2152	 */
2153	spin_lock_irqsave(q->queue_lock, flags);
2154	blk_stop_queue(q);
2155	spin_unlock_irqrestore(q->queue_lock, flags);
2156
2157	return 0;
2158}
2159EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2160
2161/**
2162 * scsi_internal_device_unblock - resume a device after a block request
2163 * @sdev:	device to resume
2164 *
2165 * Called by scsi lld's or the midlayer to restart the device queue
2166 * for the previously suspended scsi device.  Called from interrupt or
2167 * normal process context.
2168 *
2169 * Returns zero if successful or error if not.
2170 *
2171 * Notes:
2172 *	This routine transitions the device to the SDEV_RUNNING state
2173 *	(which must be a legal transition) allowing the midlayer to
2174 *	goose the queue for this device.  This routine assumes the
2175 *	host_lock is held upon entry.
2176 **/
2177int
2178scsi_internal_device_unblock(struct scsi_device *sdev)
2179{
2180	request_queue_t *q = sdev->request_queue;
2181	int err;
2182	unsigned long flags;
2183
2184	/*
2185	 * Try to transition the scsi device to SDEV_RUNNING
2186	 * and goose the device queue if successful.
2187	 */
2188	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2189	if (err)
2190		return err;
2191
2192	spin_lock_irqsave(q->queue_lock, flags);
2193	blk_start_queue(q);
2194	spin_unlock_irqrestore(q->queue_lock, flags);
2195
2196	return 0;
2197}
2198EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2199
2200static void
2201device_block(struct scsi_device *sdev, void *data)
2202{
2203	scsi_internal_device_block(sdev);
2204}
2205
2206static int
2207target_block(struct device *dev, void *data)
2208{
2209	if (scsi_is_target_device(dev))
2210		starget_for_each_device(to_scsi_target(dev), NULL,
2211					device_block);
2212	return 0;
2213}
2214
2215void
2216scsi_target_block(struct device *dev)
2217{
2218	if (scsi_is_target_device(dev))
2219		starget_for_each_device(to_scsi_target(dev), NULL,
2220					device_block);
2221	else
2222		device_for_each_child(dev, NULL, target_block);
2223}
2224EXPORT_SYMBOL_GPL(scsi_target_block);
2225
2226static void
2227device_unblock(struct scsi_device *sdev, void *data)
2228{
2229	scsi_internal_device_unblock(sdev);
2230}
2231
2232static int
2233target_unblock(struct device *dev, void *data)
2234{
2235	if (scsi_is_target_device(dev))
2236		starget_for_each_device(to_scsi_target(dev), NULL,
2237					device_unblock);
2238	return 0;
2239}
2240
2241void
2242scsi_target_unblock(struct device *dev)
2243{
2244	if (scsi_is_target_device(dev))
2245		starget_for_each_device(to_scsi_target(dev), NULL,
2246					device_unblock);
2247	else
2248		device_for_each_child(dev, NULL, target_unblock);
2249}
2250EXPORT_SYMBOL_GPL(scsi_target_unblock);
2251