scsi_lib.c revision beb6617d994161a6b12c5f69afc6fb154f085447
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19
20#include <scsi/scsi.h>
21#include <scsi/scsi_dbg.h>
22#include <scsi/scsi_device.h>
23#include <scsi/scsi_driver.h>
24#include <scsi/scsi_eh.h>
25#include <scsi/scsi_host.h>
26#include <scsi/scsi_request.h>
27
28#include "scsi_priv.h"
29#include "scsi_logging.h"
30
31
32#define SG_MEMPOOL_NR		(sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33#define SG_MEMPOOL_SIZE		32
34
35struct scsi_host_sg_pool {
36	size_t		size;
37	char		*name;
38	kmem_cache_t	*slab;
39	mempool_t	*pool;
40};
41
42#if (SCSI_MAX_PHYS_SEGMENTS < 32)
43#error SCSI_MAX_PHYS_SEGMENTS is too small
44#endif
45
46#define SP(x) { x, "sgpool-" #x }
47struct scsi_host_sg_pool scsi_sg_pools[] = {
48	SP(8),
49	SP(16),
50	SP(32),
51#if (SCSI_MAX_PHYS_SEGMENTS > 32)
52	SP(64),
53#if (SCSI_MAX_PHYS_SEGMENTS > 64)
54	SP(128),
55#if (SCSI_MAX_PHYS_SEGMENTS > 128)
56	SP(256),
57#if (SCSI_MAX_PHYS_SEGMENTS > 256)
58#error SCSI_MAX_PHYS_SEGMENTS is too large
59#endif
60#endif
61#endif
62#endif
63};
64#undef SP
65
66
67/*
68 * Function:    scsi_insert_special_req()
69 *
70 * Purpose:     Insert pre-formed request into request queue.
71 *
72 * Arguments:   sreq	- request that is ready to be queued.
73 *              at_head	- boolean.  True if we should insert at head
74 *                        of queue, false if we should insert at tail.
75 *
76 * Lock status: Assumed that lock is not held upon entry.
77 *
78 * Returns:     Nothing
79 *
80 * Notes:       This function is called from character device and from
81 *              ioctl types of functions where the caller knows exactly
82 *              what SCSI command needs to be issued.   The idea is that
83 *              we merely inject the command into the queue (at the head
84 *              for now), and then call the queue request function to actually
85 *              process it.
86 */
87int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
88{
89	/*
90	 * Because users of this function are apt to reuse requests with no
91	 * modification, we have to sanitise the request flags here
92	 */
93	sreq->sr_request->flags &= ~REQ_DONTPREP;
94	blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
95		       	   at_head, sreq, 0);
96	return 0;
97}
98
99/*
100 * Function:    scsi_queue_insert()
101 *
102 * Purpose:     Insert a command in the midlevel queue.
103 *
104 * Arguments:   cmd    - command that we are adding to queue.
105 *              reason - why we are inserting command to queue.
106 *
107 * Lock status: Assumed that lock is not held upon entry.
108 *
109 * Returns:     Nothing.
110 *
111 * Notes:       We do this for one of two cases.  Either the host is busy
112 *              and it cannot accept any more commands for the time being,
113 *              or the device returned QUEUE_FULL and can accept no more
114 *              commands.
115 * Notes:       This could be called either from an interrupt context or a
116 *              normal process context.
117 */
118int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
119{
120	struct Scsi_Host *host = cmd->device->host;
121	struct scsi_device *device = cmd->device;
122
123	SCSI_LOG_MLQUEUE(1,
124		 printk("Inserting command %p into mlqueue\n", cmd));
125
126	/*
127	 * We are inserting the command into the ml queue.  First, we
128	 * cancel the timer, so it doesn't time out.
129	 */
130	scsi_delete_timer(cmd);
131
132	/*
133	 * Next, set the appropriate busy bit for the device/host.
134	 *
135	 * If the host/device isn't busy, assume that something actually
136	 * completed, and that we should be able to queue a command now.
137	 *
138	 * Note that the prior mid-layer assumption that any host could
139	 * always queue at least one command is now broken.  The mid-layer
140	 * will implement a user specifiable stall (see
141	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
142	 * if a command is requeued with no other commands outstanding
143	 * either for the device or for the host.
144	 */
145	if (reason == SCSI_MLQUEUE_HOST_BUSY)
146		host->host_blocked = host->max_host_blocked;
147	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
148		device->device_blocked = device->max_device_blocked;
149
150	/*
151	 * Register the fact that we own the thing for now.
152	 */
153	cmd->state = SCSI_STATE_MLQUEUE;
154	cmd->owner = SCSI_OWNER_MIDLEVEL;
155
156	/*
157	 * Decrement the counters, since these commands are no longer
158	 * active on the host/device.
159	 */
160	scsi_device_unbusy(device);
161
162	/*
163	 * Insert this command at the head of the queue for it's device.
164	 * It will go before all other commands that are already in the queue.
165	 *
166	 * NOTE: there is magic here about the way the queue is plugged if
167	 * we have no outstanding commands.
168	 *
169	 * Although this *doesn't* plug the queue, it does call the request
170	 * function.  The SCSI request function detects the blocked condition
171	 * and plugs the queue appropriately.
172	 */
173	blk_insert_request(device->request_queue, cmd->request, 1, cmd, 1);
174	return 0;
175}
176
177/*
178 * Function:    scsi_do_req
179 *
180 * Purpose:     Queue a SCSI request
181 *
182 * Arguments:   sreq	  - command descriptor.
183 *              cmnd      - actual SCSI command to be performed.
184 *              buffer    - data buffer.
185 *              bufflen   - size of data buffer.
186 *              done      - completion function to be run.
187 *              timeout   - how long to let it run before timeout.
188 *              retries   - number of retries we allow.
189 *
190 * Lock status: No locks held upon entry.
191 *
192 * Returns:     Nothing.
193 *
194 * Notes:	This function is only used for queueing requests for things
195 *		like ioctls and character device requests - this is because
196 *		we essentially just inject a request into the queue for the
197 *		device.
198 *
199 *		In order to support the scsi_device_quiesce function, we
200 *		now inject requests on the *head* of the device queue
201 *		rather than the tail.
202 */
203void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
204		 void *buffer, unsigned bufflen,
205		 void (*done)(struct scsi_cmnd *),
206		 int timeout, int retries)
207{
208	/*
209	 * If the upper level driver is reusing these things, then
210	 * we should release the low-level block now.  Another one will
211	 * be allocated later when this request is getting queued.
212	 */
213	__scsi_release_request(sreq);
214
215	/*
216	 * Our own function scsi_done (which marks the host as not busy,
217	 * disables the timeout counter, etc) will be called by us or by the
218	 * scsi_hosts[host].queuecommand() function needs to also call
219	 * the completion function for the high level driver.
220	 */
221	memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
222	sreq->sr_bufflen = bufflen;
223	sreq->sr_buffer = buffer;
224	sreq->sr_allowed = retries;
225	sreq->sr_done = done;
226	sreq->sr_timeout_per_command = timeout;
227
228	if (sreq->sr_cmd_len == 0)
229		sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
230
231	/*
232	 * head injection *required* here otherwise quiesce won't work
233	 */
234	scsi_insert_special_req(sreq, 1);
235}
236EXPORT_SYMBOL(scsi_do_req);
237
238static void scsi_wait_done(struct scsi_cmnd *cmd)
239{
240	struct request *req = cmd->request;
241	struct request_queue *q = cmd->device->request_queue;
242	unsigned long flags;
243
244	req->rq_status = RQ_SCSI_DONE;	/* Busy, but indicate request done */
245
246	spin_lock_irqsave(q->queue_lock, flags);
247	if (blk_rq_tagged(req))
248		blk_queue_end_tag(q, req);
249	spin_unlock_irqrestore(q->queue_lock, flags);
250
251	if (req->waiting)
252		complete(req->waiting);
253}
254
255/* This is the end routine we get to if a command was never attached
256 * to the request.  Simply complete the request without changing
257 * rq_status; this will cause a DRIVER_ERROR. */
258static void scsi_wait_req_end_io(struct request *req)
259{
260	BUG_ON(!req->waiting);
261
262	complete(req->waiting);
263}
264
265void scsi_wait_req(struct scsi_request *sreq, const void *cmnd, void *buffer,
266		   unsigned bufflen, int timeout, int retries)
267{
268	DECLARE_COMPLETION(wait);
269
270	sreq->sr_request->waiting = &wait;
271	sreq->sr_request->rq_status = RQ_SCSI_BUSY;
272	sreq->sr_request->end_io = scsi_wait_req_end_io;
273	scsi_do_req(sreq, cmnd, buffer, bufflen, scsi_wait_done,
274			timeout, retries);
275	wait_for_completion(&wait);
276	sreq->sr_request->waiting = NULL;
277	if (sreq->sr_request->rq_status != RQ_SCSI_DONE)
278		sreq->sr_result |= (DRIVER_ERROR << 24);
279
280	__scsi_release_request(sreq);
281}
282EXPORT_SYMBOL(scsi_wait_req);
283
284/*
285 * Function:    scsi_init_cmd_errh()
286 *
287 * Purpose:     Initialize cmd fields related to error handling.
288 *
289 * Arguments:   cmd	- command that is ready to be queued.
290 *
291 * Returns:     Nothing
292 *
293 * Notes:       This function has the job of initializing a number of
294 *              fields related to error handling.   Typically this will
295 *              be called once for each command, as required.
296 */
297static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
298{
299	cmd->owner = SCSI_OWNER_MIDLEVEL;
300	cmd->serial_number = 0;
301	cmd->abort_reason = 0;
302
303	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
304
305	if (cmd->cmd_len == 0)
306		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
307
308	/*
309	 * We need saved copies of a number of fields - this is because
310	 * error handling may need to overwrite these with different values
311	 * to run different commands, and once error handling is complete,
312	 * we will need to restore these values prior to running the actual
313	 * command.
314	 */
315	cmd->old_use_sg = cmd->use_sg;
316	cmd->old_cmd_len = cmd->cmd_len;
317	cmd->sc_old_data_direction = cmd->sc_data_direction;
318	cmd->old_underflow = cmd->underflow;
319	memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
320	cmd->buffer = cmd->request_buffer;
321	cmd->bufflen = cmd->request_bufflen;
322	cmd->abort_reason = 0;
323
324	return 1;
325}
326
327/*
328 * Function:   scsi_setup_cmd_retry()
329 *
330 * Purpose:    Restore the command state for a retry
331 *
332 * Arguments:  cmd	- command to be restored
333 *
334 * Returns:    Nothing
335 *
336 * Notes:      Immediately prior to retrying a command, we need
337 *             to restore certain fields that we saved above.
338 */
339void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
340{
341	memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
342	cmd->request_buffer = cmd->buffer;
343	cmd->request_bufflen = cmd->bufflen;
344	cmd->use_sg = cmd->old_use_sg;
345	cmd->cmd_len = cmd->old_cmd_len;
346	cmd->sc_data_direction = cmd->sc_old_data_direction;
347	cmd->underflow = cmd->old_underflow;
348}
349
350void scsi_device_unbusy(struct scsi_device *sdev)
351{
352	struct Scsi_Host *shost = sdev->host;
353	unsigned long flags;
354
355	spin_lock_irqsave(shost->host_lock, flags);
356	shost->host_busy--;
357	if (unlikely(test_bit(SHOST_RECOVERY, &shost->shost_state) &&
358		     shost->host_failed))
359		scsi_eh_wakeup(shost);
360	spin_unlock(shost->host_lock);
361	spin_lock(sdev->request_queue->queue_lock);
362	sdev->device_busy--;
363	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
364}
365
366/*
367 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
368 * and call blk_run_queue for all the scsi_devices on the target -
369 * including current_sdev first.
370 *
371 * Called with *no* scsi locks held.
372 */
373static void scsi_single_lun_run(struct scsi_device *current_sdev)
374{
375	struct Scsi_Host *shost = current_sdev->host;
376	struct scsi_device *sdev, *tmp;
377	struct scsi_target *starget = scsi_target(current_sdev);
378	unsigned long flags;
379
380	spin_lock_irqsave(shost->host_lock, flags);
381	starget->starget_sdev_user = NULL;
382	spin_unlock_irqrestore(shost->host_lock, flags);
383
384	/*
385	 * Call blk_run_queue for all LUNs on the target, starting with
386	 * current_sdev. We race with others (to set starget_sdev_user),
387	 * but in most cases, we will be first. Ideally, each LU on the
388	 * target would get some limited time or requests on the target.
389	 */
390	blk_run_queue(current_sdev->request_queue);
391
392	spin_lock_irqsave(shost->host_lock, flags);
393	if (starget->starget_sdev_user)
394		goto out;
395	list_for_each_entry_safe(sdev, tmp, &starget->devices,
396			same_target_siblings) {
397		if (sdev == current_sdev)
398			continue;
399		if (scsi_device_get(sdev))
400			continue;
401
402		spin_unlock_irqrestore(shost->host_lock, flags);
403		blk_run_queue(sdev->request_queue);
404		spin_lock_irqsave(shost->host_lock, flags);
405
406		scsi_device_put(sdev);
407	}
408 out:
409	spin_unlock_irqrestore(shost->host_lock, flags);
410}
411
412/*
413 * Function:	scsi_run_queue()
414 *
415 * Purpose:	Select a proper request queue to serve next
416 *
417 * Arguments:	q	- last request's queue
418 *
419 * Returns:     Nothing
420 *
421 * Notes:	The previous command was completely finished, start
422 *		a new one if possible.
423 */
424static void scsi_run_queue(struct request_queue *q)
425{
426	struct scsi_device *sdev = q->queuedata;
427	struct Scsi_Host *shost = sdev->host;
428	unsigned long flags;
429
430	if (sdev->single_lun)
431		scsi_single_lun_run(sdev);
432
433	spin_lock_irqsave(shost->host_lock, flags);
434	while (!list_empty(&shost->starved_list) &&
435	       !shost->host_blocked && !shost->host_self_blocked &&
436		!((shost->can_queue > 0) &&
437		  (shost->host_busy >= shost->can_queue))) {
438		/*
439		 * As long as shost is accepting commands and we have
440		 * starved queues, call blk_run_queue. scsi_request_fn
441		 * drops the queue_lock and can add us back to the
442		 * starved_list.
443		 *
444		 * host_lock protects the starved_list and starved_entry.
445		 * scsi_request_fn must get the host_lock before checking
446		 * or modifying starved_list or starved_entry.
447		 */
448		sdev = list_entry(shost->starved_list.next,
449					  struct scsi_device, starved_entry);
450		list_del_init(&sdev->starved_entry);
451		spin_unlock_irqrestore(shost->host_lock, flags);
452
453		blk_run_queue(sdev->request_queue);
454
455		spin_lock_irqsave(shost->host_lock, flags);
456		if (unlikely(!list_empty(&sdev->starved_entry)))
457			/*
458			 * sdev lost a race, and was put back on the
459			 * starved list. This is unlikely but without this
460			 * in theory we could loop forever.
461			 */
462			break;
463	}
464	spin_unlock_irqrestore(shost->host_lock, flags);
465
466	blk_run_queue(q);
467}
468
469/*
470 * Function:	scsi_requeue_command()
471 *
472 * Purpose:	Handle post-processing of completed commands.
473 *
474 * Arguments:	q	- queue to operate on
475 *		cmd	- command that may need to be requeued.
476 *
477 * Returns:	Nothing
478 *
479 * Notes:	After command completion, there may be blocks left
480 *		over which weren't finished by the previous command
481 *		this can be for a number of reasons - the main one is
482 *		I/O errors in the middle of the request, in which case
483 *		we need to request the blocks that come after the bad
484 *		sector.
485 */
486static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
487{
488	cmd->request->flags &= ~REQ_DONTPREP;
489	blk_insert_request(q, cmd->request, 1, cmd, 1);
490
491	scsi_run_queue(q);
492}
493
494void scsi_next_command(struct scsi_cmnd *cmd)
495{
496	struct request_queue *q = cmd->device->request_queue;
497
498	scsi_put_command(cmd);
499	scsi_run_queue(q);
500}
501
502void scsi_run_host_queues(struct Scsi_Host *shost)
503{
504	struct scsi_device *sdev;
505
506	shost_for_each_device(sdev, shost)
507		scsi_run_queue(sdev->request_queue);
508}
509
510/*
511 * Function:    scsi_end_request()
512 *
513 * Purpose:     Post-processing of completed commands (usually invoked at end
514 *		of upper level post-processing and scsi_io_completion).
515 *
516 * Arguments:   cmd	 - command that is complete.
517 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
518 *              bytes    - number of bytes of completed I/O
519 *		requeue  - indicates whether we should requeue leftovers.
520 *
521 * Lock status: Assumed that lock is not held upon entry.
522 *
523 * Returns:     cmd if requeue done or required, NULL otherwise
524 *
525 * Notes:       This is called for block device requests in order to
526 *              mark some number of sectors as complete.
527 *
528 *		We are guaranteeing that the request queue will be goosed
529 *		at some point during this call.
530 */
531static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
532					  int bytes, int requeue)
533{
534	request_queue_t *q = cmd->device->request_queue;
535	struct request *req = cmd->request;
536	unsigned long flags;
537
538	/*
539	 * If there are blocks left over at the end, set up the command
540	 * to queue the remainder of them.
541	 */
542	if (end_that_request_chunk(req, uptodate, bytes)) {
543		int leftover = (req->hard_nr_sectors << 9);
544
545		if (blk_pc_request(req))
546			leftover = req->data_len;
547
548		/* kill remainder if no retrys */
549		if (!uptodate && blk_noretry_request(req))
550			end_that_request_chunk(req, 0, leftover);
551		else {
552			if (requeue)
553				/*
554				 * Bleah.  Leftovers again.  Stick the
555				 * leftovers in the front of the
556				 * queue, and goose the queue again.
557				 */
558				scsi_requeue_command(q, cmd);
559
560			return cmd;
561		}
562	}
563
564	add_disk_randomness(req->rq_disk);
565
566	spin_lock_irqsave(q->queue_lock, flags);
567	if (blk_rq_tagged(req))
568		blk_queue_end_tag(q, req);
569	end_that_request_last(req);
570	spin_unlock_irqrestore(q->queue_lock, flags);
571
572	/*
573	 * This will goose the queue request function at the end, so we don't
574	 * need to worry about launching another command.
575	 */
576	scsi_next_command(cmd);
577	return NULL;
578}
579
580static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, int gfp_mask)
581{
582	struct scsi_host_sg_pool *sgp;
583	struct scatterlist *sgl;
584
585	BUG_ON(!cmd->use_sg);
586
587	switch (cmd->use_sg) {
588	case 1 ... 8:
589		cmd->sglist_len = 0;
590		break;
591	case 9 ... 16:
592		cmd->sglist_len = 1;
593		break;
594	case 17 ... 32:
595		cmd->sglist_len = 2;
596		break;
597#if (SCSI_MAX_PHYS_SEGMENTS > 32)
598	case 33 ... 64:
599		cmd->sglist_len = 3;
600		break;
601#if (SCSI_MAX_PHYS_SEGMENTS > 64)
602	case 65 ... 128:
603		cmd->sglist_len = 4;
604		break;
605#if (SCSI_MAX_PHYS_SEGMENTS  > 128)
606	case 129 ... 256:
607		cmd->sglist_len = 5;
608		break;
609#endif
610#endif
611#endif
612	default:
613		return NULL;
614	}
615
616	sgp = scsi_sg_pools + cmd->sglist_len;
617	sgl = mempool_alloc(sgp->pool, gfp_mask);
618	if (sgl)
619		memset(sgl, 0, sgp->size);
620	return sgl;
621}
622
623static void scsi_free_sgtable(struct scatterlist *sgl, int index)
624{
625	struct scsi_host_sg_pool *sgp;
626
627	BUG_ON(index > SG_MEMPOOL_NR);
628
629	sgp = scsi_sg_pools + index;
630	mempool_free(sgl, sgp->pool);
631}
632
633/*
634 * Function:    scsi_release_buffers()
635 *
636 * Purpose:     Completion processing for block device I/O requests.
637 *
638 * Arguments:   cmd	- command that we are bailing.
639 *
640 * Lock status: Assumed that no lock is held upon entry.
641 *
642 * Returns:     Nothing
643 *
644 * Notes:       In the event that an upper level driver rejects a
645 *		command, we must release resources allocated during
646 *		the __init_io() function.  Primarily this would involve
647 *		the scatter-gather table, and potentially any bounce
648 *		buffers.
649 */
650static void scsi_release_buffers(struct scsi_cmnd *cmd)
651{
652	struct request *req = cmd->request;
653
654	/*
655	 * Free up any indirection buffers we allocated for DMA purposes.
656	 */
657	if (cmd->use_sg)
658		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
659	else if (cmd->request_buffer != req->buffer)
660		kfree(cmd->request_buffer);
661
662	/*
663	 * Zero these out.  They now point to freed memory, and it is
664	 * dangerous to hang onto the pointers.
665	 */
666	cmd->buffer  = NULL;
667	cmd->bufflen = 0;
668	cmd->request_buffer = NULL;
669	cmd->request_bufflen = 0;
670}
671
672/*
673 * Function:    scsi_io_completion()
674 *
675 * Purpose:     Completion processing for block device I/O requests.
676 *
677 * Arguments:   cmd   - command that is finished.
678 *
679 * Lock status: Assumed that no lock is held upon entry.
680 *
681 * Returns:     Nothing
682 *
683 * Notes:       This function is matched in terms of capabilities to
684 *              the function that created the scatter-gather list.
685 *              In other words, if there are no bounce buffers
686 *              (the normal case for most drivers), we don't need
687 *              the logic to deal with cleaning up afterwards.
688 *
689 *		We must do one of several things here:
690 *
691 *		a) Call scsi_end_request.  This will finish off the
692 *		   specified number of sectors.  If we are done, the
693 *		   command block will be released, and the queue
694 *		   function will be goosed.  If we are not done, then
695 *		   scsi_end_request will directly goose the queue.
696 *
697 *		b) We can just use scsi_requeue_command() here.  This would
698 *		   be used if we just wanted to retry, for example.
699 */
700void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
701			unsigned int block_bytes)
702{
703	int result = cmd->result;
704	int this_count = cmd->bufflen;
705	request_queue_t *q = cmd->device->request_queue;
706	struct request *req = cmd->request;
707	int clear_errors = 1;
708	struct scsi_sense_hdr sshdr;
709	int sense_valid = 0;
710	int sense_deferred = 0;
711
712	if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
713		return;
714
715	/*
716	 * Free up any indirection buffers we allocated for DMA purposes.
717	 * For the case of a READ, we need to copy the data out of the
718	 * bounce buffer and into the real buffer.
719	 */
720	if (cmd->use_sg)
721		scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
722	else if (cmd->buffer != req->buffer) {
723		if (rq_data_dir(req) == READ) {
724			unsigned long flags;
725			char *to = bio_kmap_irq(req->bio, &flags);
726			memcpy(to, cmd->buffer, cmd->bufflen);
727			bio_kunmap_irq(to, &flags);
728		}
729		kfree(cmd->buffer);
730	}
731
732	if (result) {
733		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
734		if (sense_valid)
735			sense_deferred = scsi_sense_is_deferred(&sshdr);
736	}
737	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
738		req->errors = result;
739		if (result) {
740			clear_errors = 0;
741			if (sense_valid && req->sense) {
742				/*
743				 * SG_IO wants current and deferred errors
744				 */
745				int len = 8 + cmd->sense_buffer[7];
746
747				if (len > SCSI_SENSE_BUFFERSIZE)
748					len = SCSI_SENSE_BUFFERSIZE;
749				memcpy(req->sense, cmd->sense_buffer,  len);
750				req->sense_len = len;
751			}
752		} else
753			req->data_len = cmd->resid;
754	}
755
756	/*
757	 * Zero these out.  They now point to freed memory, and it is
758	 * dangerous to hang onto the pointers.
759	 */
760	cmd->buffer  = NULL;
761	cmd->bufflen = 0;
762	cmd->request_buffer = NULL;
763	cmd->request_bufflen = 0;
764
765	/*
766	 * Next deal with any sectors which we were able to correctly
767	 * handle.
768	 */
769	if (good_bytes >= 0) {
770		SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
771					      req->nr_sectors, good_bytes));
772		SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
773
774		if (clear_errors)
775			req->errors = 0;
776		/*
777		 * If multiple sectors are requested in one buffer, then
778		 * they will have been finished off by the first command.
779		 * If not, then we have a multi-buffer command.
780		 *
781		 * If block_bytes != 0, it means we had a medium error
782		 * of some sort, and that we want to mark some number of
783		 * sectors as not uptodate.  Thus we want to inhibit
784		 * requeueing right here - we will requeue down below
785		 * when we handle the bad sectors.
786		 */
787		cmd = scsi_end_request(cmd, 1, good_bytes, result == 0);
788
789		/*
790		 * If the command completed without error, then either finish off the
791		 * rest of the command, or start a new one.
792		 */
793		if (result == 0 || cmd == NULL ) {
794			return;
795		}
796	}
797	/*
798	 * Now, if we were good little boys and girls, Santa left us a request
799	 * sense buffer.  We can extract information from this, so we
800	 * can choose a block to remap, etc.
801	 */
802	if (sense_valid && !sense_deferred) {
803		switch (sshdr.sense_key) {
804		case UNIT_ATTENTION:
805			if (cmd->device->removable) {
806				/* detected disc change.  set a bit
807				 * and quietly refuse further access.
808				 */
809				cmd->device->changed = 1;
810				cmd = scsi_end_request(cmd, 0,
811						this_count, 1);
812				return;
813			} else {
814				/*
815				* Must have been a power glitch, or a
816				* bus reset.  Could not have been a
817				* media change, so we just retry the
818				* request and see what happens.
819				*/
820				scsi_requeue_command(q, cmd);
821				return;
822			}
823			break;
824		case ILLEGAL_REQUEST:
825			/*
826		 	* If we had an ILLEGAL REQUEST returned, then we may
827		 	* have performed an unsupported command.  The only
828		 	* thing this should be would be a ten byte read where
829			* only a six byte read was supported.  Also, on a
830			* system where READ CAPACITY failed, we may have read
831			* past the end of the disk.
832		 	*/
833			if (cmd->device->use_10_for_rw &&
834			    (cmd->cmnd[0] == READ_10 ||
835			     cmd->cmnd[0] == WRITE_10)) {
836				cmd->device->use_10_for_rw = 0;
837				/*
838				 * This will cause a retry with a 6-byte
839				 * command.
840				 */
841				scsi_requeue_command(q, cmd);
842				result = 0;
843			} else {
844				cmd = scsi_end_request(cmd, 0, this_count, 1);
845				return;
846			}
847			break;
848		case NOT_READY:
849			/*
850			 * If the device is in the process of becoming ready,
851			 * retry.
852			 */
853			if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
854				scsi_requeue_command(q, cmd);
855				return;
856			}
857			printk(KERN_INFO "Device %s not ready.\n",
858			       req->rq_disk ? req->rq_disk->disk_name : "");
859			cmd = scsi_end_request(cmd, 0, this_count, 1);
860			return;
861		case VOLUME_OVERFLOW:
862			printk(KERN_INFO "Volume overflow <%d %d %d %d> CDB: ",
863			       cmd->device->host->host_no,
864			       (int)cmd->device->channel,
865			       (int)cmd->device->id, (int)cmd->device->lun);
866			__scsi_print_command(cmd->data_cmnd);
867			scsi_print_sense("", cmd);
868			cmd = scsi_end_request(cmd, 0, block_bytes, 1);
869			return;
870		default:
871			break;
872		}
873	}			/* driver byte != 0 */
874	if (host_byte(result) == DID_RESET) {
875		/*
876		 * Third party bus reset or reset for error
877		 * recovery reasons.  Just retry the request
878		 * and see what happens.
879		 */
880		scsi_requeue_command(q, cmd);
881		return;
882	}
883	if (result) {
884		printk(KERN_INFO "SCSI error : <%d %d %d %d> return code "
885		       "= 0x%x\n", cmd->device->host->host_no,
886		       cmd->device->channel,
887		       cmd->device->id,
888		       cmd->device->lun, result);
889
890		if (driver_byte(result) & DRIVER_SENSE)
891			scsi_print_sense("", cmd);
892		/*
893		 * Mark a single buffer as not uptodate.  Queue the remainder.
894		 * We sometimes get this cruft in the event that a medium error
895		 * isn't properly reported.
896		 */
897		block_bytes = req->hard_cur_sectors << 9;
898		if (!block_bytes)
899			block_bytes = req->data_len;
900		cmd = scsi_end_request(cmd, 0, block_bytes, 1);
901	}
902}
903EXPORT_SYMBOL(scsi_io_completion);
904
905/*
906 * Function:    scsi_init_io()
907 *
908 * Purpose:     SCSI I/O initialize function.
909 *
910 * Arguments:   cmd   - Command descriptor we wish to initialize
911 *
912 * Returns:     0 on success
913 *		BLKPREP_DEFER if the failure is retryable
914 *		BLKPREP_KILL if the failure is fatal
915 */
916static int scsi_init_io(struct scsi_cmnd *cmd)
917{
918	struct request     *req = cmd->request;
919	struct scatterlist *sgpnt;
920	int		   count;
921
922	/*
923	 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
924	 */
925	if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
926		cmd->request_bufflen = req->data_len;
927		cmd->request_buffer = req->data;
928		req->buffer = req->data;
929		cmd->use_sg = 0;
930		return 0;
931	}
932
933	/*
934	 * we used to not use scatter-gather for single segment request,
935	 * but now we do (it makes highmem I/O easier to support without
936	 * kmapping pages)
937	 */
938	cmd->use_sg = req->nr_phys_segments;
939
940	/*
941	 * if sg table allocation fails, requeue request later.
942	 */
943	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
944	if (unlikely(!sgpnt))
945		return BLKPREP_DEFER;
946
947	cmd->request_buffer = (char *) sgpnt;
948	cmd->request_bufflen = req->nr_sectors << 9;
949	if (blk_pc_request(req))
950		cmd->request_bufflen = req->data_len;
951	req->buffer = NULL;
952
953	/*
954	 * Next, walk the list, and fill in the addresses and sizes of
955	 * each segment.
956	 */
957	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
958
959	/*
960	 * mapped well, send it off
961	 */
962	if (likely(count <= cmd->use_sg)) {
963		cmd->use_sg = count;
964		return 0;
965	}
966
967	printk(KERN_ERR "Incorrect number of segments after building list\n");
968	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
969	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
970			req->current_nr_sectors);
971
972	/* release the command and kill it */
973	scsi_release_buffers(cmd);
974	scsi_put_command(cmd);
975	return BLKPREP_KILL;
976}
977
978static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
979{
980	struct scsi_device *sdev = q->queuedata;
981	struct scsi_driver *drv;
982
983	if (sdev->sdev_state == SDEV_RUNNING) {
984		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
985
986		if (drv->prepare_flush)
987			return drv->prepare_flush(q, rq);
988	}
989
990	return 0;
991}
992
993static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
994{
995	struct scsi_device *sdev = q->queuedata;
996	struct request *flush_rq = rq->end_io_data;
997	struct scsi_driver *drv;
998
999	if (flush_rq->errors) {
1000		printk("scsi: barrier error, disabling flush support\n");
1001		blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1002	}
1003
1004	if (sdev->sdev_state == SDEV_RUNNING) {
1005		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1006		drv->end_flush(q, rq);
1007	}
1008}
1009
1010static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1011			       sector_t *error_sector)
1012{
1013	struct scsi_device *sdev = q->queuedata;
1014	struct scsi_driver *drv;
1015
1016	if (sdev->sdev_state != SDEV_RUNNING)
1017		return -ENXIO;
1018
1019	drv = *(struct scsi_driver **) disk->private_data;
1020	if (drv->issue_flush)
1021		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1022
1023	return -EOPNOTSUPP;
1024}
1025
1026static int scsi_prep_fn(struct request_queue *q, struct request *req)
1027{
1028	struct scsi_device *sdev = q->queuedata;
1029	struct scsi_cmnd *cmd;
1030	int specials_only = 0;
1031
1032	/*
1033	 * Just check to see if the device is online.  If it isn't, we
1034	 * refuse to process any commands.  The device must be brought
1035	 * online before trying any recovery commands
1036	 */
1037	if (unlikely(!scsi_device_online(sdev))) {
1038		printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1039		       sdev->host->host_no, sdev->id, sdev->lun);
1040		return BLKPREP_KILL;
1041	}
1042	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1043		/* OK, we're not in a running state don't prep
1044		 * user commands */
1045		if (sdev->sdev_state == SDEV_DEL) {
1046			/* Device is fully deleted, no commands
1047			 * at all allowed down */
1048			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to dead device\n",
1049			       sdev->host->host_no, sdev->id, sdev->lun);
1050			return BLKPREP_KILL;
1051		}
1052		/* OK, we only allow special commands (i.e. not
1053		 * user initiated ones */
1054		specials_only = sdev->sdev_state;
1055	}
1056
1057	/*
1058	 * Find the actual device driver associated with this command.
1059	 * The SPECIAL requests are things like character device or
1060	 * ioctls, which did not originate from ll_rw_blk.  Note that
1061	 * the special field is also used to indicate the cmd for
1062	 * the remainder of a partially fulfilled request that can
1063	 * come up when there is a medium error.  We have to treat
1064	 * these two cases differently.  We differentiate by looking
1065	 * at request->cmd, as this tells us the real story.
1066	 */
1067	if (req->flags & REQ_SPECIAL) {
1068		struct scsi_request *sreq = req->special;
1069
1070		if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1071			cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1072			if (unlikely(!cmd))
1073				goto defer;
1074			scsi_init_cmd_from_req(cmd, sreq);
1075		} else
1076			cmd = req->special;
1077	} else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1078
1079		if(unlikely(specials_only)) {
1080			if(specials_only == SDEV_QUIESCE ||
1081					specials_only == SDEV_BLOCK)
1082				return BLKPREP_DEFER;
1083
1084			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to device being removed\n",
1085			       sdev->host->host_no, sdev->id, sdev->lun);
1086			return BLKPREP_KILL;
1087		}
1088
1089
1090		/*
1091		 * Now try and find a command block that we can use.
1092		 */
1093		if (!req->special) {
1094			cmd = scsi_get_command(sdev, GFP_ATOMIC);
1095			if (unlikely(!cmd))
1096				goto defer;
1097		} else
1098			cmd = req->special;
1099
1100		/* pull a tag out of the request if we have one */
1101		cmd->tag = req->tag;
1102	} else {
1103		blk_dump_rq_flags(req, "SCSI bad req");
1104		return BLKPREP_KILL;
1105	}
1106
1107	/* note the overloading of req->special.  When the tag
1108	 * is active it always means cmd.  If the tag goes
1109	 * back for re-queueing, it may be reset */
1110	req->special = cmd;
1111	cmd->request = req;
1112
1113	/*
1114	 * FIXME: drop the lock here because the functions below
1115	 * expect to be called without the queue lock held.  Also,
1116	 * previously, we dequeued the request before dropping the
1117	 * lock.  We hope REQ_STARTED prevents anything untoward from
1118	 * happening now.
1119	 */
1120	if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1121		struct scsi_driver *drv;
1122		int ret;
1123
1124		/*
1125		 * This will do a couple of things:
1126		 *  1) Fill in the actual SCSI command.
1127		 *  2) Fill in any other upper-level specific fields
1128		 * (timeout).
1129		 *
1130		 * If this returns 0, it means that the request failed
1131		 * (reading past end of disk, reading offline device,
1132		 * etc).   This won't actually talk to the device, but
1133		 * some kinds of consistency checking may cause the
1134		 * request to be rejected immediately.
1135		 */
1136
1137		/*
1138		 * This sets up the scatter-gather table (allocating if
1139		 * required).
1140		 */
1141		ret = scsi_init_io(cmd);
1142		if (ret)	/* BLKPREP_KILL return also releases the command */
1143			return ret;
1144
1145		/*
1146		 * Initialize the actual SCSI command for this request.
1147		 */
1148		drv = *(struct scsi_driver **)req->rq_disk->private_data;
1149		if (unlikely(!drv->init_command(cmd))) {
1150			scsi_release_buffers(cmd);
1151			scsi_put_command(cmd);
1152			return BLKPREP_KILL;
1153		}
1154	}
1155
1156	/*
1157	 * The request is now prepped, no need to come back here
1158	 */
1159	req->flags |= REQ_DONTPREP;
1160	return BLKPREP_OK;
1161
1162 defer:
1163	/* If we defer, the elv_next_request() returns NULL, but the
1164	 * queue must be restarted, so we plug here if no returning
1165	 * command will automatically do that. */
1166	if (sdev->device_busy == 0)
1167		blk_plug_device(q);
1168	return BLKPREP_DEFER;
1169}
1170
1171/*
1172 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1173 * return 0.
1174 *
1175 * Called with the queue_lock held.
1176 */
1177static inline int scsi_dev_queue_ready(struct request_queue *q,
1178				  struct scsi_device *sdev)
1179{
1180	if (sdev->device_busy >= sdev->queue_depth)
1181		return 0;
1182	if (sdev->device_busy == 0 && sdev->device_blocked) {
1183		/*
1184		 * unblock after device_blocked iterates to zero
1185		 */
1186		if (--sdev->device_blocked == 0) {
1187			SCSI_LOG_MLQUEUE(3,
1188				printk("scsi%d (%d:%d) unblocking device at"
1189				       " zero depth\n", sdev->host->host_no,
1190				       sdev->id, sdev->lun));
1191		} else {
1192			blk_plug_device(q);
1193			return 0;
1194		}
1195	}
1196	if (sdev->device_blocked)
1197		return 0;
1198
1199	return 1;
1200}
1201
1202/*
1203 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1204 * return 0. We must end up running the queue again whenever 0 is
1205 * returned, else IO can hang.
1206 *
1207 * Called with host_lock held.
1208 */
1209static inline int scsi_host_queue_ready(struct request_queue *q,
1210				   struct Scsi_Host *shost,
1211				   struct scsi_device *sdev)
1212{
1213	if (test_bit(SHOST_RECOVERY, &shost->shost_state))
1214		return 0;
1215	if (shost->host_busy == 0 && shost->host_blocked) {
1216		/*
1217		 * unblock after host_blocked iterates to zero
1218		 */
1219		if (--shost->host_blocked == 0) {
1220			SCSI_LOG_MLQUEUE(3,
1221				printk("scsi%d unblocking host at zero depth\n",
1222					shost->host_no));
1223		} else {
1224			blk_plug_device(q);
1225			return 0;
1226		}
1227	}
1228	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1229	    shost->host_blocked || shost->host_self_blocked) {
1230		if (list_empty(&sdev->starved_entry))
1231			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1232		return 0;
1233	}
1234
1235	/* We're OK to process the command, so we can't be starved */
1236	if (!list_empty(&sdev->starved_entry))
1237		list_del_init(&sdev->starved_entry);
1238
1239	return 1;
1240}
1241
1242/*
1243 * Kill requests for a dead device
1244 */
1245static void scsi_kill_requests(request_queue_t *q)
1246{
1247	struct request *req;
1248
1249	while ((req = elv_next_request(q)) != NULL) {
1250		blkdev_dequeue_request(req);
1251		req->flags |= REQ_QUIET;
1252		while (end_that_request_first(req, 0, req->nr_sectors))
1253			;
1254		end_that_request_last(req);
1255	}
1256}
1257
1258/*
1259 * Function:    scsi_request_fn()
1260 *
1261 * Purpose:     Main strategy routine for SCSI.
1262 *
1263 * Arguments:   q       - Pointer to actual queue.
1264 *
1265 * Returns:     Nothing
1266 *
1267 * Lock status: IO request lock assumed to be held when called.
1268 */
1269static void scsi_request_fn(struct request_queue *q)
1270{
1271	struct scsi_device *sdev = q->queuedata;
1272	struct Scsi_Host *shost;
1273	struct scsi_cmnd *cmd;
1274	struct request *req;
1275
1276	if (!sdev) {
1277		printk("scsi: killing requests for dead queue\n");
1278		scsi_kill_requests(q);
1279		return;
1280	}
1281
1282	if(!get_device(&sdev->sdev_gendev))
1283		/* We must be tearing the block queue down already */
1284		return;
1285
1286	/*
1287	 * To start with, we keep looping until the queue is empty, or until
1288	 * the host is no longer able to accept any more requests.
1289	 */
1290	shost = sdev->host;
1291	while (!blk_queue_plugged(q)) {
1292		int rtn;
1293		/*
1294		 * get next queueable request.  We do this early to make sure
1295		 * that the request is fully prepared even if we cannot
1296		 * accept it.
1297		 */
1298		req = elv_next_request(q);
1299		if (!req || !scsi_dev_queue_ready(q, sdev))
1300			break;
1301
1302		if (unlikely(!scsi_device_online(sdev))) {
1303			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1304			       sdev->host->host_no, sdev->id, sdev->lun);
1305			blkdev_dequeue_request(req);
1306			req->flags |= REQ_QUIET;
1307			while (end_that_request_first(req, 0, req->nr_sectors))
1308				;
1309			end_that_request_last(req);
1310			continue;
1311		}
1312
1313
1314		/*
1315		 * Remove the request from the request list.
1316		 */
1317		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1318			blkdev_dequeue_request(req);
1319		sdev->device_busy++;
1320
1321		spin_unlock(q->queue_lock);
1322		spin_lock(shost->host_lock);
1323
1324		if (!scsi_host_queue_ready(q, shost, sdev))
1325			goto not_ready;
1326		if (sdev->single_lun) {
1327			if (scsi_target(sdev)->starget_sdev_user &&
1328			    scsi_target(sdev)->starget_sdev_user != sdev)
1329				goto not_ready;
1330			scsi_target(sdev)->starget_sdev_user = sdev;
1331		}
1332		shost->host_busy++;
1333
1334		/*
1335		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1336		 *		take the lock again.
1337		 */
1338		spin_unlock_irq(shost->host_lock);
1339
1340		cmd = req->special;
1341		if (unlikely(cmd == NULL)) {
1342			printk(KERN_CRIT "impossible request in %s.\n"
1343					 "please mail a stack trace to "
1344					 "linux-scsi@vger.kernel.org",
1345					 __FUNCTION__);
1346			BUG();
1347		}
1348
1349		/*
1350		 * Finally, initialize any error handling parameters, and set up
1351		 * the timers for timeouts.
1352		 */
1353		scsi_init_cmd_errh(cmd);
1354
1355		/*
1356		 * Dispatch the command to the low-level driver.
1357		 */
1358		rtn = scsi_dispatch_cmd(cmd);
1359		spin_lock_irq(q->queue_lock);
1360		if(rtn) {
1361			/* we're refusing the command; because of
1362			 * the way locks get dropped, we need to
1363			 * check here if plugging is required */
1364			if(sdev->device_busy == 0)
1365				blk_plug_device(q);
1366
1367			break;
1368		}
1369	}
1370
1371	goto out;
1372
1373 not_ready:
1374	spin_unlock_irq(shost->host_lock);
1375
1376	/*
1377	 * lock q, handle tag, requeue req, and decrement device_busy. We
1378	 * must return with queue_lock held.
1379	 *
1380	 * Decrementing device_busy without checking it is OK, as all such
1381	 * cases (host limits or settings) should run the queue at some
1382	 * later time.
1383	 */
1384	spin_lock_irq(q->queue_lock);
1385	blk_requeue_request(q, req);
1386	sdev->device_busy--;
1387	if(sdev->device_busy == 0)
1388		blk_plug_device(q);
1389 out:
1390	/* must be careful here...if we trigger the ->remove() function
1391	 * we cannot be holding the q lock */
1392	spin_unlock_irq(q->queue_lock);
1393	put_device(&sdev->sdev_gendev);
1394	spin_lock_irq(q->queue_lock);
1395}
1396
1397u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1398{
1399	struct device *host_dev;
1400	u64 bounce_limit = 0xffffffff;
1401
1402	if (shost->unchecked_isa_dma)
1403		return BLK_BOUNCE_ISA;
1404	/*
1405	 * Platforms with virtual-DMA translation
1406	 * hardware have no practical limit.
1407	 */
1408	if (!PCI_DMA_BUS_IS_PHYS)
1409		return BLK_BOUNCE_ANY;
1410
1411	host_dev = scsi_get_device(shost);
1412	if (host_dev && host_dev->dma_mask)
1413		bounce_limit = *host_dev->dma_mask;
1414
1415	return bounce_limit;
1416}
1417EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1418
1419struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1420{
1421	struct Scsi_Host *shost = sdev->host;
1422	struct request_queue *q;
1423
1424	q = blk_init_queue(scsi_request_fn, NULL);
1425	if (!q)
1426		return NULL;
1427
1428	blk_queue_prep_rq(q, scsi_prep_fn);
1429
1430	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1431	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1432	blk_queue_max_sectors(q, shost->max_sectors);
1433	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1434	blk_queue_segment_boundary(q, shost->dma_boundary);
1435	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1436
1437	/*
1438	 * ordered tags are superior to flush ordering
1439	 */
1440	if (shost->ordered_tag)
1441		blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1442	else if (shost->ordered_flush) {
1443		blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1444		q->prepare_flush_fn = scsi_prepare_flush_fn;
1445		q->end_flush_fn = scsi_end_flush_fn;
1446	}
1447
1448	if (!shost->use_clustering)
1449		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1450	return q;
1451}
1452
1453void scsi_free_queue(struct request_queue *q)
1454{
1455	blk_cleanup_queue(q);
1456}
1457
1458/*
1459 * Function:    scsi_block_requests()
1460 *
1461 * Purpose:     Utility function used by low-level drivers to prevent further
1462 *		commands from being queued to the device.
1463 *
1464 * Arguments:   shost       - Host in question
1465 *
1466 * Returns:     Nothing
1467 *
1468 * Lock status: No locks are assumed held.
1469 *
1470 * Notes:       There is no timer nor any other means by which the requests
1471 *		get unblocked other than the low-level driver calling
1472 *		scsi_unblock_requests().
1473 */
1474void scsi_block_requests(struct Scsi_Host *shost)
1475{
1476	shost->host_self_blocked = 1;
1477}
1478EXPORT_SYMBOL(scsi_block_requests);
1479
1480/*
1481 * Function:    scsi_unblock_requests()
1482 *
1483 * Purpose:     Utility function used by low-level drivers to allow further
1484 *		commands from being queued to the device.
1485 *
1486 * Arguments:   shost       - Host in question
1487 *
1488 * Returns:     Nothing
1489 *
1490 * Lock status: No locks are assumed held.
1491 *
1492 * Notes:       There is no timer nor any other means by which the requests
1493 *		get unblocked other than the low-level driver calling
1494 *		scsi_unblock_requests().
1495 *
1496 *		This is done as an API function so that changes to the
1497 *		internals of the scsi mid-layer won't require wholesale
1498 *		changes to drivers that use this feature.
1499 */
1500void scsi_unblock_requests(struct Scsi_Host *shost)
1501{
1502	shost->host_self_blocked = 0;
1503	scsi_run_host_queues(shost);
1504}
1505EXPORT_SYMBOL(scsi_unblock_requests);
1506
1507int __init scsi_init_queue(void)
1508{
1509	int i;
1510
1511	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1512		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1513		int size = sgp->size * sizeof(struct scatterlist);
1514
1515		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1516				SLAB_HWCACHE_ALIGN, NULL, NULL);
1517		if (!sgp->slab) {
1518			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1519					sgp->name);
1520		}
1521
1522		sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1523				mempool_alloc_slab, mempool_free_slab,
1524				sgp->slab);
1525		if (!sgp->pool) {
1526			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1527					sgp->name);
1528		}
1529	}
1530
1531	return 0;
1532}
1533
1534void scsi_exit_queue(void)
1535{
1536	int i;
1537
1538	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1539		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1540		mempool_destroy(sgp->pool);
1541		kmem_cache_destroy(sgp->slab);
1542	}
1543}
1544/**
1545 *	__scsi_mode_sense - issue a mode sense, falling back from 10 to
1546 *		six bytes if necessary.
1547 *	@sreq:	SCSI request to fill in with the MODE_SENSE
1548 *	@dbd:	set if mode sense will allow block descriptors to be returned
1549 *	@modepage: mode page being requested
1550 *	@buffer: request buffer (may not be smaller than eight bytes)
1551 *	@len:	length of request buffer.
1552 *	@timeout: command timeout
1553 *	@retries: number of retries before failing
1554 *	@data: returns a structure abstracting the mode header data
1555 *
1556 *	Returns zero if unsuccessful, or the header offset (either 4
1557 *	or 8 depending on whether a six or ten byte command was
1558 *	issued) if successful.
1559 **/
1560int
1561__scsi_mode_sense(struct scsi_request *sreq, int dbd, int modepage,
1562		  unsigned char *buffer, int len, int timeout, int retries,
1563		  struct scsi_mode_data *data) {
1564	unsigned char cmd[12];
1565	int use_10_for_ms;
1566	int header_length;
1567
1568	memset(data, 0, sizeof(*data));
1569	memset(&cmd[0], 0, 12);
1570	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1571	cmd[2] = modepage;
1572
1573 retry:
1574	use_10_for_ms = sreq->sr_device->use_10_for_ms;
1575
1576	if (use_10_for_ms) {
1577		if (len < 8)
1578			len = 8;
1579
1580		cmd[0] = MODE_SENSE_10;
1581		cmd[8] = len;
1582		header_length = 8;
1583	} else {
1584		if (len < 4)
1585			len = 4;
1586
1587		cmd[0] = MODE_SENSE;
1588		cmd[4] = len;
1589		header_length = 4;
1590	}
1591
1592	sreq->sr_cmd_len = 0;
1593	memset(sreq->sr_sense_buffer, 0, sizeof(sreq->sr_sense_buffer));
1594	sreq->sr_data_direction = DMA_FROM_DEVICE;
1595
1596	memset(buffer, 0, len);
1597
1598	scsi_wait_req(sreq, cmd, buffer, len, timeout, retries);
1599
1600	/* This code looks awful: what it's doing is making sure an
1601	 * ILLEGAL REQUEST sense return identifies the actual command
1602	 * byte as the problem.  MODE_SENSE commands can return
1603	 * ILLEGAL REQUEST if the code page isn't supported */
1604
1605	if (use_10_for_ms && !scsi_status_is_good(sreq->sr_result) &&
1606	    (driver_byte(sreq->sr_result) & DRIVER_SENSE)) {
1607		struct scsi_sense_hdr sshdr;
1608
1609		if (scsi_request_normalize_sense(sreq, &sshdr)) {
1610			if ((sshdr.sense_key == ILLEGAL_REQUEST) &&
1611			    (sshdr.asc == 0x20) && (sshdr.ascq == 0)) {
1612				/*
1613				 * Invalid command operation code
1614				 */
1615				sreq->sr_device->use_10_for_ms = 0;
1616				goto retry;
1617			}
1618		}
1619	}
1620
1621	if(scsi_status_is_good(sreq->sr_result)) {
1622		data->header_length = header_length;
1623		if(use_10_for_ms) {
1624			data->length = buffer[0]*256 + buffer[1] + 2;
1625			data->medium_type = buffer[2];
1626			data->device_specific = buffer[3];
1627			data->longlba = buffer[4] & 0x01;
1628			data->block_descriptor_length = buffer[6]*256
1629				+ buffer[7];
1630		} else {
1631			data->length = buffer[0] + 1;
1632			data->medium_type = buffer[1];
1633			data->device_specific = buffer[2];
1634			data->block_descriptor_length = buffer[3];
1635		}
1636	}
1637
1638	return sreq->sr_result;
1639}
1640EXPORT_SYMBOL(__scsi_mode_sense);
1641
1642/**
1643 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1644 *		six bytes if necessary.
1645 *	@sdev:	scsi device to send command to.
1646 *	@dbd:	set if mode sense will disable block descriptors in the return
1647 *	@modepage: mode page being requested
1648 *	@buffer: request buffer (may not be smaller than eight bytes)
1649 *	@len:	length of request buffer.
1650 *	@timeout: command timeout
1651 *	@retries: number of retries before failing
1652 *
1653 *	Returns zero if unsuccessful, or the header offset (either 4
1654 *	or 8 depending on whether a six or ten byte command was
1655 *	issued) if successful.
1656 **/
1657int
1658scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1659		unsigned char *buffer, int len, int timeout, int retries,
1660		struct scsi_mode_data *data)
1661{
1662	struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1663	int ret;
1664
1665	if (!sreq)
1666		return -1;
1667
1668	ret = __scsi_mode_sense(sreq, dbd, modepage, buffer, len,
1669				timeout, retries, data);
1670
1671	scsi_release_request(sreq);
1672
1673	return ret;
1674}
1675EXPORT_SYMBOL(scsi_mode_sense);
1676
1677int
1678scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1679{
1680	struct scsi_request *sreq;
1681	char cmd[] = {
1682		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1683	};
1684	int result;
1685
1686	sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1687	if (!sreq)
1688		return -ENOMEM;
1689
1690	sreq->sr_data_direction = DMA_NONE;
1691	scsi_wait_req(sreq, cmd, NULL, 0, timeout, retries);
1692
1693	if ((driver_byte(sreq->sr_result) & DRIVER_SENSE) && sdev->removable) {
1694		struct scsi_sense_hdr sshdr;
1695
1696		if ((scsi_request_normalize_sense(sreq, &sshdr)) &&
1697		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1698		     (sshdr.sense_key == NOT_READY))) {
1699			sdev->changed = 1;
1700			sreq->sr_result = 0;
1701		}
1702	}
1703	result = sreq->sr_result;
1704	scsi_release_request(sreq);
1705	return result;
1706}
1707EXPORT_SYMBOL(scsi_test_unit_ready);
1708
1709/**
1710 *	scsi_device_set_state - Take the given device through the device
1711 *		state model.
1712 *	@sdev:	scsi device to change the state of.
1713 *	@state:	state to change to.
1714 *
1715 *	Returns zero if unsuccessful or an error if the requested
1716 *	transition is illegal.
1717 **/
1718int
1719scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1720{
1721	enum scsi_device_state oldstate = sdev->sdev_state;
1722
1723	if (state == oldstate)
1724		return 0;
1725
1726	switch (state) {
1727	case SDEV_CREATED:
1728		/* There are no legal states that come back to
1729		 * created.  This is the manually initialised start
1730		 * state */
1731		goto illegal;
1732
1733	case SDEV_RUNNING:
1734		switch (oldstate) {
1735		case SDEV_CREATED:
1736		case SDEV_OFFLINE:
1737		case SDEV_QUIESCE:
1738		case SDEV_BLOCK:
1739			break;
1740		default:
1741			goto illegal;
1742		}
1743		break;
1744
1745	case SDEV_QUIESCE:
1746		switch (oldstate) {
1747		case SDEV_RUNNING:
1748		case SDEV_OFFLINE:
1749			break;
1750		default:
1751			goto illegal;
1752		}
1753		break;
1754
1755	case SDEV_OFFLINE:
1756		switch (oldstate) {
1757		case SDEV_CREATED:
1758		case SDEV_RUNNING:
1759		case SDEV_QUIESCE:
1760		case SDEV_BLOCK:
1761			break;
1762		default:
1763			goto illegal;
1764		}
1765		break;
1766
1767	case SDEV_BLOCK:
1768		switch (oldstate) {
1769		case SDEV_CREATED:
1770		case SDEV_RUNNING:
1771			break;
1772		default:
1773			goto illegal;
1774		}
1775		break;
1776
1777	case SDEV_CANCEL:
1778		switch (oldstate) {
1779		case SDEV_CREATED:
1780		case SDEV_RUNNING:
1781		case SDEV_OFFLINE:
1782		case SDEV_BLOCK:
1783			break;
1784		default:
1785			goto illegal;
1786		}
1787		break;
1788
1789	case SDEV_DEL:
1790		switch (oldstate) {
1791		case SDEV_CANCEL:
1792			break;
1793		default:
1794			goto illegal;
1795		}
1796		break;
1797
1798	}
1799	sdev->sdev_state = state;
1800	return 0;
1801
1802 illegal:
1803	SCSI_LOG_ERROR_RECOVERY(1,
1804				dev_printk(KERN_ERR, &sdev->sdev_gendev,
1805					   "Illegal state transition %s->%s\n",
1806					   scsi_device_state_name(oldstate),
1807					   scsi_device_state_name(state))
1808				);
1809	return -EINVAL;
1810}
1811EXPORT_SYMBOL(scsi_device_set_state);
1812
1813/**
1814 *	scsi_device_quiesce - Block user issued commands.
1815 *	@sdev:	scsi device to quiesce.
1816 *
1817 *	This works by trying to transition to the SDEV_QUIESCE state
1818 *	(which must be a legal transition).  When the device is in this
1819 *	state, only special requests will be accepted, all others will
1820 *	be deferred.  Since special requests may also be requeued requests,
1821 *	a successful return doesn't guarantee the device will be
1822 *	totally quiescent.
1823 *
1824 *	Must be called with user context, may sleep.
1825 *
1826 *	Returns zero if unsuccessful or an error if not.
1827 **/
1828int
1829scsi_device_quiesce(struct scsi_device *sdev)
1830{
1831	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1832	if (err)
1833		return err;
1834
1835	scsi_run_queue(sdev->request_queue);
1836	while (sdev->device_busy) {
1837		msleep_interruptible(200);
1838		scsi_run_queue(sdev->request_queue);
1839	}
1840	return 0;
1841}
1842EXPORT_SYMBOL(scsi_device_quiesce);
1843
1844/**
1845 *	scsi_device_resume - Restart user issued commands to a quiesced device.
1846 *	@sdev:	scsi device to resume.
1847 *
1848 *	Moves the device from quiesced back to running and restarts the
1849 *	queues.
1850 *
1851 *	Must be called with user context, may sleep.
1852 **/
1853void
1854scsi_device_resume(struct scsi_device *sdev)
1855{
1856	if(scsi_device_set_state(sdev, SDEV_RUNNING))
1857		return;
1858	scsi_run_queue(sdev->request_queue);
1859}
1860EXPORT_SYMBOL(scsi_device_resume);
1861
1862static void
1863device_quiesce_fn(struct scsi_device *sdev, void *data)
1864{
1865	scsi_device_quiesce(sdev);
1866}
1867
1868void
1869scsi_target_quiesce(struct scsi_target *starget)
1870{
1871	starget_for_each_device(starget, NULL, device_quiesce_fn);
1872}
1873EXPORT_SYMBOL(scsi_target_quiesce);
1874
1875static void
1876device_resume_fn(struct scsi_device *sdev, void *data)
1877{
1878	scsi_device_resume(sdev);
1879}
1880
1881void
1882scsi_target_resume(struct scsi_target *starget)
1883{
1884	starget_for_each_device(starget, NULL, device_resume_fn);
1885}
1886EXPORT_SYMBOL(scsi_target_resume);
1887
1888/**
1889 * scsi_internal_device_block - internal function to put a device
1890 *				temporarily into the SDEV_BLOCK state
1891 * @sdev:	device to block
1892 *
1893 * Block request made by scsi lld's to temporarily stop all
1894 * scsi commands on the specified device.  Called from interrupt
1895 * or normal process context.
1896 *
1897 * Returns zero if successful or error if not
1898 *
1899 * Notes:
1900 *	This routine transitions the device to the SDEV_BLOCK state
1901 *	(which must be a legal transition).  When the device is in this
1902 *	state, all commands are deferred until the scsi lld reenables
1903 *	the device with scsi_device_unblock or device_block_tmo fires.
1904 *	This routine assumes the host_lock is held on entry.
1905 **/
1906int
1907scsi_internal_device_block(struct scsi_device *sdev)
1908{
1909	request_queue_t *q = sdev->request_queue;
1910	unsigned long flags;
1911	int err = 0;
1912
1913	err = scsi_device_set_state(sdev, SDEV_BLOCK);
1914	if (err)
1915		return err;
1916
1917	/*
1918	 * The device has transitioned to SDEV_BLOCK.  Stop the
1919	 * block layer from calling the midlayer with this device's
1920	 * request queue.
1921	 */
1922	spin_lock_irqsave(q->queue_lock, flags);
1923	blk_stop_queue(q);
1924	spin_unlock_irqrestore(q->queue_lock, flags);
1925
1926	return 0;
1927}
1928EXPORT_SYMBOL_GPL(scsi_internal_device_block);
1929
1930/**
1931 * scsi_internal_device_unblock - resume a device after a block request
1932 * @sdev:	device to resume
1933 *
1934 * Called by scsi lld's or the midlayer to restart the device queue
1935 * for the previously suspended scsi device.  Called from interrupt or
1936 * normal process context.
1937 *
1938 * Returns zero if successful or error if not.
1939 *
1940 * Notes:
1941 *	This routine transitions the device to the SDEV_RUNNING state
1942 *	(which must be a legal transition) allowing the midlayer to
1943 *	goose the queue for this device.  This routine assumes the
1944 *	host_lock is held upon entry.
1945 **/
1946int
1947scsi_internal_device_unblock(struct scsi_device *sdev)
1948{
1949	request_queue_t *q = sdev->request_queue;
1950	int err;
1951	unsigned long flags;
1952
1953	/*
1954	 * Try to transition the scsi device to SDEV_RUNNING
1955	 * and goose the device queue if successful.
1956	 */
1957	err = scsi_device_set_state(sdev, SDEV_RUNNING);
1958	if (err)
1959		return err;
1960
1961	spin_lock_irqsave(q->queue_lock, flags);
1962	blk_start_queue(q);
1963	spin_unlock_irqrestore(q->queue_lock, flags);
1964
1965	return 0;
1966}
1967EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
1968
1969static void
1970device_block(struct scsi_device *sdev, void *data)
1971{
1972	scsi_internal_device_block(sdev);
1973}
1974
1975static int
1976target_block(struct device *dev, void *data)
1977{
1978	if (scsi_is_target_device(dev))
1979		starget_for_each_device(to_scsi_target(dev), NULL,
1980					device_block);
1981	return 0;
1982}
1983
1984void
1985scsi_target_block(struct device *dev)
1986{
1987	if (scsi_is_target_device(dev))
1988		starget_for_each_device(to_scsi_target(dev), NULL,
1989					device_block);
1990	else
1991		device_for_each_child(dev, NULL, target_block);
1992}
1993EXPORT_SYMBOL_GPL(scsi_target_block);
1994
1995static void
1996device_unblock(struct scsi_device *sdev, void *data)
1997{
1998	scsi_internal_device_unblock(sdev);
1999}
2000
2001static int
2002target_unblock(struct device *dev, void *data)
2003{
2004	if (scsi_is_target_device(dev))
2005		starget_for_each_device(to_scsi_target(dev), NULL,
2006					device_unblock);
2007	return 0;
2008}
2009
2010void
2011scsi_target_unblock(struct device *dev)
2012{
2013	if (scsi_is_target_device(dev))
2014		starget_for_each_device(to_scsi_target(dev), NULL,
2015					device_unblock);
2016	else
2017		device_for_each_child(dev, NULL, target_unblock);
2018}
2019EXPORT_SYMBOL_GPL(scsi_target_unblock);
2020