scsi_lib.c revision c98a0eb0e90d1caa8a92913cd45462102cbd5eaf
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68struct kmem_cache *scsi_sdb_cache;
69
70static void scsi_run_queue(struct request_queue *q);
71
72/*
73 * Function:	scsi_unprep_request()
74 *
75 * Purpose:	Remove all preparation done for a request, including its
76 *		associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments:	req	- request to unprepare
79 *
80 * Lock status:	Assumed that no locks are held upon entry.
81 *
82 * Returns:	Nothing.
83 */
84static void scsi_unprep_request(struct request *req)
85{
86	struct scsi_cmnd *cmd = req->special;
87
88	blk_unprep_request(req);
89	req->special = NULL;
90
91	scsi_put_command(cmd);
92}
93
94/**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason:  The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
99 *
100 * This is a private queue insertion.  The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion.  This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
105 */
106static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107{
108	struct Scsi_Host *host = cmd->device->host;
109	struct scsi_device *device = cmd->device;
110	struct scsi_target *starget = scsi_target(device);
111	struct request_queue *q = device->request_queue;
112	unsigned long flags;
113
114	SCSI_LOG_MLQUEUE(1,
115		 printk("Inserting command %p into mlqueue\n", cmd));
116
117	/*
118	 * Set the appropriate busy bit for the device/host.
119	 *
120	 * If the host/device isn't busy, assume that something actually
121	 * completed, and that we should be able to queue a command now.
122	 *
123	 * Note that the prior mid-layer assumption that any host could
124	 * always queue at least one command is now broken.  The mid-layer
125	 * will implement a user specifiable stall (see
126	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127	 * if a command is requeued with no other commands outstanding
128	 * either for the device or for the host.
129	 */
130	switch (reason) {
131	case SCSI_MLQUEUE_HOST_BUSY:
132		host->host_blocked = host->max_host_blocked;
133		break;
134	case SCSI_MLQUEUE_DEVICE_BUSY:
135		device->device_blocked = device->max_device_blocked;
136		break;
137	case SCSI_MLQUEUE_TARGET_BUSY:
138		starget->target_blocked = starget->max_target_blocked;
139		break;
140	}
141
142	/*
143	 * Decrement the counters, since these commands are no longer
144	 * active on the host/device.
145	 */
146	if (unbusy)
147		scsi_device_unbusy(device);
148
149	/*
150	 * Requeue this command.  It will go before all other commands
151	 * that are already in the queue.
152	 *
153	 * NOTE: there is magic here about the way the queue is plugged if
154	 * we have no outstanding commands.
155	 *
156	 * Although we *don't* plug the queue, we call the request
157	 * function.  The SCSI request function detects the blocked condition
158	 * and plugs the queue appropriately.
159         */
160	spin_lock_irqsave(q->queue_lock, flags);
161	blk_requeue_request(q, cmd->request);
162	spin_unlock_irqrestore(q->queue_lock, flags);
163
164	scsi_run_queue(q);
165
166	return 0;
167}
168
169/*
170 * Function:    scsi_queue_insert()
171 *
172 * Purpose:     Insert a command in the midlevel queue.
173 *
174 * Arguments:   cmd    - command that we are adding to queue.
175 *              reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns:     Nothing.
180 *
181 * Notes:       We do this for one of two cases.  Either the host is busy
182 *              and it cannot accept any more commands for the time being,
183 *              or the device returned QUEUE_FULL and can accept no more
184 *              commands.
185 * Notes:       This could be called either from an interrupt context or a
186 *              normal process context.
187 */
188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189{
190	return __scsi_queue_insert(cmd, reason, 1);
191}
192/**
193 * scsi_execute - insert request and wait for the result
194 * @sdev:	scsi device
195 * @cmd:	scsi command
196 * @data_direction: data direction
197 * @buffer:	data buffer
198 * @bufflen:	len of buffer
199 * @sense:	optional sense buffer
200 * @timeout:	request timeout in seconds
201 * @retries:	number of times to retry request
202 * @flags:	or into request flags;
203 * @resid:	optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209		 int data_direction, void *buffer, unsigned bufflen,
210		 unsigned char *sense, int timeout, int retries, int flags,
211		 int *resid)
212{
213	struct request *req;
214	int write = (data_direction == DMA_TO_DEVICE);
215	int ret = DRIVER_ERROR << 24;
216
217	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218
219	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220					buffer, bufflen, __GFP_WAIT))
221		goto out;
222
223	req->cmd_len = COMMAND_SIZE(cmd[0]);
224	memcpy(req->cmd, cmd, req->cmd_len);
225	req->sense = sense;
226	req->sense_len = 0;
227	req->retries = retries;
228	req->timeout = timeout;
229	req->cmd_type = REQ_TYPE_BLOCK_PC;
230	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232	/*
233	 * head injection *required* here otherwise quiesce won't work
234	 */
235	blk_execute_rq(req->q, NULL, req, 1);
236
237	/*
238	 * Some devices (USB mass-storage in particular) may transfer
239	 * garbage data together with a residue indicating that the data
240	 * is invalid.  Prevent the garbage from being misinterpreted
241	 * and prevent security leaks by zeroing out the excess data.
242	 */
243	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246	if (resid)
247		*resid = req->resid_len;
248	ret = req->errors;
249 out:
250	blk_put_request(req);
251
252	return ret;
253}
254EXPORT_SYMBOL(scsi_execute);
255
256
257int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258		     int data_direction, void *buffer, unsigned bufflen,
259		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260		     int *resid)
261{
262	char *sense = NULL;
263	int result;
264
265	if (sshdr) {
266		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267		if (!sense)
268			return DRIVER_ERROR << 24;
269	}
270	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271			      sense, timeout, retries, 0, resid);
272	if (sshdr)
273		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275	kfree(sense);
276	return result;
277}
278EXPORT_SYMBOL(scsi_execute_req);
279
280/*
281 * Function:    scsi_init_cmd_errh()
282 *
283 * Purpose:     Initialize cmd fields related to error handling.
284 *
285 * Arguments:   cmd	- command that is ready to be queued.
286 *
287 * Notes:       This function has the job of initializing a number of
288 *              fields related to error handling.   Typically this will
289 *              be called once for each command, as required.
290 */
291static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292{
293	cmd->serial_number = 0;
294	scsi_set_resid(cmd, 0);
295	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296	if (cmd->cmd_len == 0)
297		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298}
299
300void scsi_device_unbusy(struct scsi_device *sdev)
301{
302	struct Scsi_Host *shost = sdev->host;
303	struct scsi_target *starget = scsi_target(sdev);
304	unsigned long flags;
305
306	spin_lock_irqsave(shost->host_lock, flags);
307	shost->host_busy--;
308	starget->target_busy--;
309	if (unlikely(scsi_host_in_recovery(shost) &&
310		     (shost->host_failed || shost->host_eh_scheduled)))
311		scsi_eh_wakeup(shost);
312	spin_unlock(shost->host_lock);
313	spin_lock(sdev->request_queue->queue_lock);
314	sdev->device_busy--;
315	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316}
317
318/*
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
322 *
323 * Called with *no* scsi locks held.
324 */
325static void scsi_single_lun_run(struct scsi_device *current_sdev)
326{
327	struct Scsi_Host *shost = current_sdev->host;
328	struct scsi_device *sdev, *tmp;
329	struct scsi_target *starget = scsi_target(current_sdev);
330	unsigned long flags;
331
332	spin_lock_irqsave(shost->host_lock, flags);
333	starget->starget_sdev_user = NULL;
334	spin_unlock_irqrestore(shost->host_lock, flags);
335
336	/*
337	 * Call blk_run_queue for all LUNs on the target, starting with
338	 * current_sdev. We race with others (to set starget_sdev_user),
339	 * but in most cases, we will be first. Ideally, each LU on the
340	 * target would get some limited time or requests on the target.
341	 */
342	blk_run_queue(current_sdev->request_queue);
343
344	spin_lock_irqsave(shost->host_lock, flags);
345	if (starget->starget_sdev_user)
346		goto out;
347	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348			same_target_siblings) {
349		if (sdev == current_sdev)
350			continue;
351		if (scsi_device_get(sdev))
352			continue;
353
354		spin_unlock_irqrestore(shost->host_lock, flags);
355		blk_run_queue(sdev->request_queue);
356		spin_lock_irqsave(shost->host_lock, flags);
357
358		scsi_device_put(sdev);
359	}
360 out:
361	spin_unlock_irqrestore(shost->host_lock, flags);
362}
363
364static inline int scsi_device_is_busy(struct scsi_device *sdev)
365{
366	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367		return 1;
368
369	return 0;
370}
371
372static inline int scsi_target_is_busy(struct scsi_target *starget)
373{
374	return ((starget->can_queue > 0 &&
375		 starget->target_busy >= starget->can_queue) ||
376		 starget->target_blocked);
377}
378
379static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380{
381	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382	    shost->host_blocked || shost->host_self_blocked)
383		return 1;
384
385	return 0;
386}
387
388/*
389 * Function:	scsi_run_queue()
390 *
391 * Purpose:	Select a proper request queue to serve next
392 *
393 * Arguments:	q	- last request's queue
394 *
395 * Returns:     Nothing
396 *
397 * Notes:	The previous command was completely finished, start
398 *		a new one if possible.
399 */
400static void scsi_run_queue(struct request_queue *q)
401{
402	struct scsi_device *sdev = q->queuedata;
403	struct Scsi_Host *shost = sdev->host;
404	LIST_HEAD(starved_list);
405	unsigned long flags;
406
407	if (scsi_target(sdev)->single_lun)
408		scsi_single_lun_run(sdev);
409
410	spin_lock_irqsave(shost->host_lock, flags);
411	list_splice_init(&shost->starved_list, &starved_list);
412
413	while (!list_empty(&starved_list)) {
414		int flagset;
415
416		/*
417		 * As long as shost is accepting commands and we have
418		 * starved queues, call blk_run_queue. scsi_request_fn
419		 * drops the queue_lock and can add us back to the
420		 * starved_list.
421		 *
422		 * host_lock protects the starved_list and starved_entry.
423		 * scsi_request_fn must get the host_lock before checking
424		 * or modifying starved_list or starved_entry.
425		 */
426		if (scsi_host_is_busy(shost))
427			break;
428
429		sdev = list_entry(starved_list.next,
430				  struct scsi_device, starved_entry);
431		list_del_init(&sdev->starved_entry);
432		if (scsi_target_is_busy(scsi_target(sdev))) {
433			list_move_tail(&sdev->starved_entry,
434				       &shost->starved_list);
435			continue;
436		}
437
438		spin_unlock(shost->host_lock);
439
440		spin_lock(sdev->request_queue->queue_lock);
441		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442				!test_bit(QUEUE_FLAG_REENTER,
443					&sdev->request_queue->queue_flags);
444		if (flagset)
445			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446		__blk_run_queue(sdev->request_queue);
447		if (flagset)
448			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449		spin_unlock(sdev->request_queue->queue_lock);
450
451		spin_lock(shost->host_lock);
452	}
453	/* put any unprocessed entries back */
454	list_splice(&starved_list, &shost->starved_list);
455	spin_unlock_irqrestore(shost->host_lock, flags);
456
457	blk_run_queue(q);
458}
459
460/*
461 * Function:	scsi_requeue_command()
462 *
463 * Purpose:	Handle post-processing of completed commands.
464 *
465 * Arguments:	q	- queue to operate on
466 *		cmd	- command that may need to be requeued.
467 *
468 * Returns:	Nothing
469 *
470 * Notes:	After command completion, there may be blocks left
471 *		over which weren't finished by the previous command
472 *		this can be for a number of reasons - the main one is
473 *		I/O errors in the middle of the request, in which case
474 *		we need to request the blocks that come after the bad
475 *		sector.
476 * Notes:	Upon return, cmd is a stale pointer.
477 */
478static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479{
480	struct request *req = cmd->request;
481	unsigned long flags;
482
483	spin_lock_irqsave(q->queue_lock, flags);
484	scsi_unprep_request(req);
485	blk_requeue_request(q, req);
486	spin_unlock_irqrestore(q->queue_lock, flags);
487
488	scsi_run_queue(q);
489}
490
491void scsi_next_command(struct scsi_cmnd *cmd)
492{
493	struct scsi_device *sdev = cmd->device;
494	struct request_queue *q = sdev->request_queue;
495
496	/* need to hold a reference on the device before we let go of the cmd */
497	get_device(&sdev->sdev_gendev);
498
499	scsi_put_command(cmd);
500	scsi_run_queue(q);
501
502	/* ok to remove device now */
503	put_device(&sdev->sdev_gendev);
504}
505
506void scsi_run_host_queues(struct Scsi_Host *shost)
507{
508	struct scsi_device *sdev;
509
510	shost_for_each_device(sdev, shost)
511		scsi_run_queue(sdev->request_queue);
512}
513
514static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516/*
517 * Function:    scsi_end_request()
518 *
519 * Purpose:     Post-processing of completed commands (usually invoked at end
520 *		of upper level post-processing and scsi_io_completion).
521 *
522 * Arguments:   cmd	 - command that is complete.
523 *              error    - 0 if I/O indicates success, < 0 for I/O error.
524 *              bytes    - number of bytes of completed I/O
525 *		requeue  - indicates whether we should requeue leftovers.
526 *
527 * Lock status: Assumed that lock is not held upon entry.
528 *
529 * Returns:     cmd if requeue required, NULL otherwise.
530 *
531 * Notes:       This is called for block device requests in order to
532 *              mark some number of sectors as complete.
533 *
534 *		We are guaranteeing that the request queue will be goosed
535 *		at some point during this call.
536 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537 */
538static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539					  int bytes, int requeue)
540{
541	struct request_queue *q = cmd->device->request_queue;
542	struct request *req = cmd->request;
543
544	/*
545	 * If there are blocks left over at the end, set up the command
546	 * to queue the remainder of them.
547	 */
548	if (blk_end_request(req, error, bytes)) {
549		/* kill remainder if no retrys */
550		if (error && scsi_noretry_cmd(cmd))
551			blk_end_request_all(req, error);
552		else {
553			if (requeue) {
554				/*
555				 * Bleah.  Leftovers again.  Stick the
556				 * leftovers in the front of the
557				 * queue, and goose the queue again.
558				 */
559				scsi_release_buffers(cmd);
560				scsi_requeue_command(q, cmd);
561				cmd = NULL;
562			}
563			return cmd;
564		}
565	}
566
567	/*
568	 * This will goose the queue request function at the end, so we don't
569	 * need to worry about launching another command.
570	 */
571	__scsi_release_buffers(cmd, 0);
572	scsi_next_command(cmd);
573	return NULL;
574}
575
576static inline unsigned int scsi_sgtable_index(unsigned short nents)
577{
578	unsigned int index;
579
580	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581
582	if (nents <= 8)
583		index = 0;
584	else
585		index = get_count_order(nents) - 3;
586
587	return index;
588}
589
590static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591{
592	struct scsi_host_sg_pool *sgp;
593
594	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595	mempool_free(sgl, sgp->pool);
596}
597
598static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599{
600	struct scsi_host_sg_pool *sgp;
601
602	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603	return mempool_alloc(sgp->pool, gfp_mask);
604}
605
606static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607			      gfp_t gfp_mask)
608{
609	int ret;
610
611	BUG_ON(!nents);
612
613	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614			       gfp_mask, scsi_sg_alloc);
615	if (unlikely(ret))
616		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617				scsi_sg_free);
618
619	return ret;
620}
621
622static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623{
624	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625}
626
627static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628{
629
630	if (cmd->sdb.table.nents)
631		scsi_free_sgtable(&cmd->sdb);
632
633	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634
635	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636		struct scsi_data_buffer *bidi_sdb =
637			cmd->request->next_rq->special;
638		scsi_free_sgtable(bidi_sdb);
639		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640		cmd->request->next_rq->special = NULL;
641	}
642
643	if (scsi_prot_sg_count(cmd))
644		scsi_free_sgtable(cmd->prot_sdb);
645}
646
647/*
648 * Function:    scsi_release_buffers()
649 *
650 * Purpose:     Completion processing for block device I/O requests.
651 *
652 * Arguments:   cmd	- command that we are bailing.
653 *
654 * Lock status: Assumed that no lock is held upon entry.
655 *
656 * Returns:     Nothing
657 *
658 * Notes:       In the event that an upper level driver rejects a
659 *		command, we must release resources allocated during
660 *		the __init_io() function.  Primarily this would involve
661 *		the scatter-gather table, and potentially any bounce
662 *		buffers.
663 */
664void scsi_release_buffers(struct scsi_cmnd *cmd)
665{
666	__scsi_release_buffers(cmd, 1);
667}
668EXPORT_SYMBOL(scsi_release_buffers);
669
670static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
671{
672	int error = 0;
673
674	switch(host_byte(result)) {
675	case DID_TRANSPORT_FAILFAST:
676		error = -ENOLINK;
677		break;
678	case DID_TARGET_FAILURE:
679		cmd->result |= (DID_OK << 16);
680		error = -EREMOTEIO;
681		break;
682	case DID_NEXUS_FAILURE:
683		cmd->result |= (DID_OK << 16);
684		error = -EBADE;
685		break;
686	default:
687		error = -EIO;
688		break;
689	}
690
691	return error;
692}
693
694/*
695 * Function:    scsi_io_completion()
696 *
697 * Purpose:     Completion processing for block device I/O requests.
698 *
699 * Arguments:   cmd   - command that is finished.
700 *
701 * Lock status: Assumed that no lock is held upon entry.
702 *
703 * Returns:     Nothing
704 *
705 * Notes:       This function is matched in terms of capabilities to
706 *              the function that created the scatter-gather list.
707 *              In other words, if there are no bounce buffers
708 *              (the normal case for most drivers), we don't need
709 *              the logic to deal with cleaning up afterwards.
710 *
711 *		We must call scsi_end_request().  This will finish off
712 *		the specified number of sectors.  If we are done, the
713 *		command block will be released and the queue function
714 *		will be goosed.  If we are not done then we have to
715 *		figure out what to do next:
716 *
717 *		a) We can call scsi_requeue_command().  The request
718 *		   will be unprepared and put back on the queue.  Then
719 *		   a new command will be created for it.  This should
720 *		   be used if we made forward progress, or if we want
721 *		   to switch from READ(10) to READ(6) for example.
722 *
723 *		b) We can call scsi_queue_insert().  The request will
724 *		   be put back on the queue and retried using the same
725 *		   command as before, possibly after a delay.
726 *
727 *		c) We can call blk_end_request() with -EIO to fail
728 *		   the remainder of the request.
729 */
730void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
731{
732	int result = cmd->result;
733	struct request_queue *q = cmd->device->request_queue;
734	struct request *req = cmd->request;
735	int error = 0;
736	struct scsi_sense_hdr sshdr;
737	int sense_valid = 0;
738	int sense_deferred = 0;
739	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
740	      ACTION_DELAYED_RETRY} action;
741	char *description = NULL;
742
743	if (result) {
744		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
745		if (sense_valid)
746			sense_deferred = scsi_sense_is_deferred(&sshdr);
747	}
748
749	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
750		req->errors = result;
751		if (result) {
752			if (sense_valid && req->sense) {
753				/*
754				 * SG_IO wants current and deferred errors
755				 */
756				int len = 8 + cmd->sense_buffer[7];
757
758				if (len > SCSI_SENSE_BUFFERSIZE)
759					len = SCSI_SENSE_BUFFERSIZE;
760				memcpy(req->sense, cmd->sense_buffer,  len);
761				req->sense_len = len;
762			}
763			if (!sense_deferred)
764				error = __scsi_error_from_host_byte(cmd, result);
765		}
766
767		req->resid_len = scsi_get_resid(cmd);
768
769		if (scsi_bidi_cmnd(cmd)) {
770			/*
771			 * Bidi commands Must be complete as a whole,
772			 * both sides at once.
773			 */
774			req->next_rq->resid_len = scsi_in(cmd)->resid;
775
776			scsi_release_buffers(cmd);
777			blk_end_request_all(req, 0);
778
779			scsi_next_command(cmd);
780			return;
781		}
782	}
783
784	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
785	BUG_ON(blk_bidi_rq(req));
786
787	/*
788	 * Next deal with any sectors which we were able to correctly
789	 * handle.
790	 */
791	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
792				      "%d bytes done.\n",
793				      blk_rq_sectors(req), good_bytes));
794
795	/*
796	 * Recovered errors need reporting, but they're always treated
797	 * as success, so fiddle the result code here.  For BLOCK_PC
798	 * we already took a copy of the original into rq->errors which
799	 * is what gets returned to the user
800	 */
801	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
802		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
803		 * print since caller wants ATA registers. Only occurs on
804		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
805		 */
806		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
807			;
808		else if (!(req->cmd_flags & REQ_QUIET))
809			scsi_print_sense("", cmd);
810		result = 0;
811		/* BLOCK_PC may have set error */
812		error = 0;
813	}
814
815	/*
816	 * A number of bytes were successfully read.  If there
817	 * are leftovers and there is some kind of error
818	 * (result != 0), retry the rest.
819	 */
820	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
821		return;
822
823	error = __scsi_error_from_host_byte(cmd, result);
824
825	if (host_byte(result) == DID_RESET) {
826		/* Third party bus reset or reset for error recovery
827		 * reasons.  Just retry the command and see what
828		 * happens.
829		 */
830		action = ACTION_RETRY;
831	} else if (sense_valid && !sense_deferred) {
832		switch (sshdr.sense_key) {
833		case UNIT_ATTENTION:
834			if (cmd->device->removable) {
835				/* Detected disc change.  Set a bit
836				 * and quietly refuse further access.
837				 */
838				cmd->device->changed = 1;
839				description = "Media Changed";
840				action = ACTION_FAIL;
841			} else {
842				/* Must have been a power glitch, or a
843				 * bus reset.  Could not have been a
844				 * media change, so we just retry the
845				 * command and see what happens.
846				 */
847				action = ACTION_RETRY;
848			}
849			break;
850		case ILLEGAL_REQUEST:
851			/* If we had an ILLEGAL REQUEST returned, then
852			 * we may have performed an unsupported
853			 * command.  The only thing this should be
854			 * would be a ten byte read where only a six
855			 * byte read was supported.  Also, on a system
856			 * where READ CAPACITY failed, we may have
857			 * read past the end of the disk.
858			 */
859			if ((cmd->device->use_10_for_rw &&
860			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
861			    (cmd->cmnd[0] == READ_10 ||
862			     cmd->cmnd[0] == WRITE_10)) {
863				/* This will issue a new 6-byte command. */
864				cmd->device->use_10_for_rw = 0;
865				action = ACTION_REPREP;
866			} else if (sshdr.asc == 0x10) /* DIX */ {
867				description = "Host Data Integrity Failure";
868				action = ACTION_FAIL;
869				error = -EILSEQ;
870			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
871			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
872				   (cmd->cmnd[0] == UNMAP ||
873				    cmd->cmnd[0] == WRITE_SAME_16 ||
874				    cmd->cmnd[0] == WRITE_SAME)) {
875				description = "Discard failure";
876				action = ACTION_FAIL;
877			} else
878				action = ACTION_FAIL;
879			break;
880		case ABORTED_COMMAND:
881			action = ACTION_FAIL;
882			if (sshdr.asc == 0x10) { /* DIF */
883				description = "Target Data Integrity Failure";
884				error = -EILSEQ;
885			}
886			break;
887		case NOT_READY:
888			/* If the device is in the process of becoming
889			 * ready, or has a temporary blockage, retry.
890			 */
891			if (sshdr.asc == 0x04) {
892				switch (sshdr.ascq) {
893				case 0x01: /* becoming ready */
894				case 0x04: /* format in progress */
895				case 0x05: /* rebuild in progress */
896				case 0x06: /* recalculation in progress */
897				case 0x07: /* operation in progress */
898				case 0x08: /* Long write in progress */
899				case 0x09: /* self test in progress */
900				case 0x14: /* space allocation in progress */
901					action = ACTION_DELAYED_RETRY;
902					break;
903				default:
904					description = "Device not ready";
905					action = ACTION_FAIL;
906					break;
907				}
908			} else {
909				description = "Device not ready";
910				action = ACTION_FAIL;
911			}
912			break;
913		case VOLUME_OVERFLOW:
914			/* See SSC3rXX or current. */
915			action = ACTION_FAIL;
916			break;
917		default:
918			description = "Unhandled sense code";
919			action = ACTION_FAIL;
920			break;
921		}
922	} else {
923		description = "Unhandled error code";
924		action = ACTION_FAIL;
925	}
926
927	switch (action) {
928	case ACTION_FAIL:
929		/* Give up and fail the remainder of the request */
930		scsi_release_buffers(cmd);
931		if (!(req->cmd_flags & REQ_QUIET)) {
932			if (description)
933				scmd_printk(KERN_INFO, cmd, "%s\n",
934					    description);
935			scsi_print_result(cmd);
936			if (driver_byte(result) & DRIVER_SENSE)
937				scsi_print_sense("", cmd);
938			scsi_print_command(cmd);
939		}
940		if (blk_end_request_err(req, error))
941			scsi_requeue_command(q, cmd);
942		else
943			scsi_next_command(cmd);
944		break;
945	case ACTION_REPREP:
946		/* Unprep the request and put it back at the head of the queue.
947		 * A new command will be prepared and issued.
948		 */
949		scsi_release_buffers(cmd);
950		scsi_requeue_command(q, cmd);
951		break;
952	case ACTION_RETRY:
953		/* Retry the same command immediately */
954		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
955		break;
956	case ACTION_DELAYED_RETRY:
957		/* Retry the same command after a delay */
958		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
959		break;
960	}
961}
962
963static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
964			     gfp_t gfp_mask)
965{
966	int count;
967
968	/*
969	 * If sg table allocation fails, requeue request later.
970	 */
971	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
972					gfp_mask))) {
973		return BLKPREP_DEFER;
974	}
975
976	req->buffer = NULL;
977
978	/*
979	 * Next, walk the list, and fill in the addresses and sizes of
980	 * each segment.
981	 */
982	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
983	BUG_ON(count > sdb->table.nents);
984	sdb->table.nents = count;
985	sdb->length = blk_rq_bytes(req);
986	return BLKPREP_OK;
987}
988
989/*
990 * Function:    scsi_init_io()
991 *
992 * Purpose:     SCSI I/O initialize function.
993 *
994 * Arguments:   cmd   - Command descriptor we wish to initialize
995 *
996 * Returns:     0 on success
997 *		BLKPREP_DEFER if the failure is retryable
998 *		BLKPREP_KILL if the failure is fatal
999 */
1000int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1001{
1002	struct request *rq = cmd->request;
1003
1004	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1005	if (error)
1006		goto err_exit;
1007
1008	if (blk_bidi_rq(rq)) {
1009		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1010			scsi_sdb_cache, GFP_ATOMIC);
1011		if (!bidi_sdb) {
1012			error = BLKPREP_DEFER;
1013			goto err_exit;
1014		}
1015
1016		rq->next_rq->special = bidi_sdb;
1017		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1018		if (error)
1019			goto err_exit;
1020	}
1021
1022	if (blk_integrity_rq(rq)) {
1023		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1024		int ivecs, count;
1025
1026		BUG_ON(prot_sdb == NULL);
1027		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1028
1029		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1030			error = BLKPREP_DEFER;
1031			goto err_exit;
1032		}
1033
1034		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1035						prot_sdb->table.sgl);
1036		BUG_ON(unlikely(count > ivecs));
1037		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1038
1039		cmd->prot_sdb = prot_sdb;
1040		cmd->prot_sdb->table.nents = count;
1041	}
1042
1043	return BLKPREP_OK ;
1044
1045err_exit:
1046	scsi_release_buffers(cmd);
1047	cmd->request->special = NULL;
1048	scsi_put_command(cmd);
1049	return error;
1050}
1051EXPORT_SYMBOL(scsi_init_io);
1052
1053static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1054		struct request *req)
1055{
1056	struct scsi_cmnd *cmd;
1057
1058	if (!req->special) {
1059		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1060		if (unlikely(!cmd))
1061			return NULL;
1062		req->special = cmd;
1063	} else {
1064		cmd = req->special;
1065	}
1066
1067	/* pull a tag out of the request if we have one */
1068	cmd->tag = req->tag;
1069	cmd->request = req;
1070
1071	cmd->cmnd = req->cmd;
1072	cmd->prot_op = SCSI_PROT_NORMAL;
1073
1074	return cmd;
1075}
1076
1077int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1078{
1079	struct scsi_cmnd *cmd;
1080	int ret = scsi_prep_state_check(sdev, req);
1081
1082	if (ret != BLKPREP_OK)
1083		return ret;
1084
1085	cmd = scsi_get_cmd_from_req(sdev, req);
1086	if (unlikely(!cmd))
1087		return BLKPREP_DEFER;
1088
1089	/*
1090	 * BLOCK_PC requests may transfer data, in which case they must
1091	 * a bio attached to them.  Or they might contain a SCSI command
1092	 * that does not transfer data, in which case they may optionally
1093	 * submit a request without an attached bio.
1094	 */
1095	if (req->bio) {
1096		int ret;
1097
1098		BUG_ON(!req->nr_phys_segments);
1099
1100		ret = scsi_init_io(cmd, GFP_ATOMIC);
1101		if (unlikely(ret))
1102			return ret;
1103	} else {
1104		BUG_ON(blk_rq_bytes(req));
1105
1106		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1107		req->buffer = NULL;
1108	}
1109
1110	cmd->cmd_len = req->cmd_len;
1111	if (!blk_rq_bytes(req))
1112		cmd->sc_data_direction = DMA_NONE;
1113	else if (rq_data_dir(req) == WRITE)
1114		cmd->sc_data_direction = DMA_TO_DEVICE;
1115	else
1116		cmd->sc_data_direction = DMA_FROM_DEVICE;
1117
1118	cmd->transfersize = blk_rq_bytes(req);
1119	cmd->allowed = req->retries;
1120	return BLKPREP_OK;
1121}
1122EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1123
1124/*
1125 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1126 * from filesystems that still need to be translated to SCSI CDBs from
1127 * the ULD.
1128 */
1129int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1130{
1131	struct scsi_cmnd *cmd;
1132	int ret = scsi_prep_state_check(sdev, req);
1133
1134	if (ret != BLKPREP_OK)
1135		return ret;
1136
1137	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1138			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1139		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1140		if (ret != BLKPREP_OK)
1141			return ret;
1142	}
1143
1144	/*
1145	 * Filesystem requests must transfer data.
1146	 */
1147	BUG_ON(!req->nr_phys_segments);
1148
1149	cmd = scsi_get_cmd_from_req(sdev, req);
1150	if (unlikely(!cmd))
1151		return BLKPREP_DEFER;
1152
1153	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1154	return scsi_init_io(cmd, GFP_ATOMIC);
1155}
1156EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1157
1158int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1159{
1160	int ret = BLKPREP_OK;
1161
1162	/*
1163	 * If the device is not in running state we will reject some
1164	 * or all commands.
1165	 */
1166	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1167		switch (sdev->sdev_state) {
1168		case SDEV_OFFLINE:
1169			/*
1170			 * If the device is offline we refuse to process any
1171			 * commands.  The device must be brought online
1172			 * before trying any recovery commands.
1173			 */
1174			sdev_printk(KERN_ERR, sdev,
1175				    "rejecting I/O to offline device\n");
1176			ret = BLKPREP_KILL;
1177			break;
1178		case SDEV_DEL:
1179			/*
1180			 * If the device is fully deleted, we refuse to
1181			 * process any commands as well.
1182			 */
1183			sdev_printk(KERN_ERR, sdev,
1184				    "rejecting I/O to dead device\n");
1185			ret = BLKPREP_KILL;
1186			break;
1187		case SDEV_QUIESCE:
1188		case SDEV_BLOCK:
1189		case SDEV_CREATED_BLOCK:
1190			/*
1191			 * If the devices is blocked we defer normal commands.
1192			 */
1193			if (!(req->cmd_flags & REQ_PREEMPT))
1194				ret = BLKPREP_DEFER;
1195			break;
1196		default:
1197			/*
1198			 * For any other not fully online state we only allow
1199			 * special commands.  In particular any user initiated
1200			 * command is not allowed.
1201			 */
1202			if (!(req->cmd_flags & REQ_PREEMPT))
1203				ret = BLKPREP_KILL;
1204			break;
1205		}
1206	}
1207	return ret;
1208}
1209EXPORT_SYMBOL(scsi_prep_state_check);
1210
1211int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1212{
1213	struct scsi_device *sdev = q->queuedata;
1214
1215	switch (ret) {
1216	case BLKPREP_KILL:
1217		req->errors = DID_NO_CONNECT << 16;
1218		/* release the command and kill it */
1219		if (req->special) {
1220			struct scsi_cmnd *cmd = req->special;
1221			scsi_release_buffers(cmd);
1222			scsi_put_command(cmd);
1223			req->special = NULL;
1224		}
1225		break;
1226	case BLKPREP_DEFER:
1227		/*
1228		 * If we defer, the blk_peek_request() returns NULL, but the
1229		 * queue must be restarted, so we plug here if no returning
1230		 * command will automatically do that.
1231		 */
1232		if (sdev->device_busy == 0)
1233			blk_plug_device(q);
1234		break;
1235	default:
1236		req->cmd_flags |= REQ_DONTPREP;
1237	}
1238
1239	return ret;
1240}
1241EXPORT_SYMBOL(scsi_prep_return);
1242
1243int scsi_prep_fn(struct request_queue *q, struct request *req)
1244{
1245	struct scsi_device *sdev = q->queuedata;
1246	int ret = BLKPREP_KILL;
1247
1248	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1249		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1250	return scsi_prep_return(q, req, ret);
1251}
1252EXPORT_SYMBOL(scsi_prep_fn);
1253
1254/*
1255 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1256 * return 0.
1257 *
1258 * Called with the queue_lock held.
1259 */
1260static inline int scsi_dev_queue_ready(struct request_queue *q,
1261				  struct scsi_device *sdev)
1262{
1263	if (sdev->device_busy == 0 && sdev->device_blocked) {
1264		/*
1265		 * unblock after device_blocked iterates to zero
1266		 */
1267		if (--sdev->device_blocked == 0) {
1268			SCSI_LOG_MLQUEUE(3,
1269				   sdev_printk(KERN_INFO, sdev,
1270				   "unblocking device at zero depth\n"));
1271		} else {
1272			blk_plug_device(q);
1273			return 0;
1274		}
1275	}
1276	if (scsi_device_is_busy(sdev))
1277		return 0;
1278
1279	return 1;
1280}
1281
1282
1283/*
1284 * scsi_target_queue_ready: checks if there we can send commands to target
1285 * @sdev: scsi device on starget to check.
1286 *
1287 * Called with the host lock held.
1288 */
1289static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1290					   struct scsi_device *sdev)
1291{
1292	struct scsi_target *starget = scsi_target(sdev);
1293
1294	if (starget->single_lun) {
1295		if (starget->starget_sdev_user &&
1296		    starget->starget_sdev_user != sdev)
1297			return 0;
1298		starget->starget_sdev_user = sdev;
1299	}
1300
1301	if (starget->target_busy == 0 && starget->target_blocked) {
1302		/*
1303		 * unblock after target_blocked iterates to zero
1304		 */
1305		if (--starget->target_blocked == 0) {
1306			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1307					 "unblocking target at zero depth\n"));
1308		} else
1309			return 0;
1310	}
1311
1312	if (scsi_target_is_busy(starget)) {
1313		if (list_empty(&sdev->starved_entry))
1314			list_add_tail(&sdev->starved_entry,
1315				      &shost->starved_list);
1316		return 0;
1317	}
1318
1319	/* We're OK to process the command, so we can't be starved */
1320	if (!list_empty(&sdev->starved_entry))
1321		list_del_init(&sdev->starved_entry);
1322	return 1;
1323}
1324
1325/*
1326 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1327 * return 0. We must end up running the queue again whenever 0 is
1328 * returned, else IO can hang.
1329 *
1330 * Called with host_lock held.
1331 */
1332static inline int scsi_host_queue_ready(struct request_queue *q,
1333				   struct Scsi_Host *shost,
1334				   struct scsi_device *sdev)
1335{
1336	if (scsi_host_in_recovery(shost))
1337		return 0;
1338	if (shost->host_busy == 0 && shost->host_blocked) {
1339		/*
1340		 * unblock after host_blocked iterates to zero
1341		 */
1342		if (--shost->host_blocked == 0) {
1343			SCSI_LOG_MLQUEUE(3,
1344				printk("scsi%d unblocking host at zero depth\n",
1345					shost->host_no));
1346		} else {
1347			return 0;
1348		}
1349	}
1350	if (scsi_host_is_busy(shost)) {
1351		if (list_empty(&sdev->starved_entry))
1352			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1353		return 0;
1354	}
1355
1356	/* We're OK to process the command, so we can't be starved */
1357	if (!list_empty(&sdev->starved_entry))
1358		list_del_init(&sdev->starved_entry);
1359
1360	return 1;
1361}
1362
1363/*
1364 * Busy state exporting function for request stacking drivers.
1365 *
1366 * For efficiency, no lock is taken to check the busy state of
1367 * shost/starget/sdev, since the returned value is not guaranteed and
1368 * may be changed after request stacking drivers call the function,
1369 * regardless of taking lock or not.
1370 *
1371 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1372 * (e.g. !sdev), scsi needs to return 'not busy'.
1373 * Otherwise, request stacking drivers may hold requests forever.
1374 */
1375static int scsi_lld_busy(struct request_queue *q)
1376{
1377	struct scsi_device *sdev = q->queuedata;
1378	struct Scsi_Host *shost;
1379	struct scsi_target *starget;
1380
1381	if (!sdev)
1382		return 0;
1383
1384	shost = sdev->host;
1385	starget = scsi_target(sdev);
1386
1387	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1388	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1389		return 1;
1390
1391	return 0;
1392}
1393
1394/*
1395 * Kill a request for a dead device
1396 */
1397static void scsi_kill_request(struct request *req, struct request_queue *q)
1398{
1399	struct scsi_cmnd *cmd = req->special;
1400	struct scsi_device *sdev;
1401	struct scsi_target *starget;
1402	struct Scsi_Host *shost;
1403
1404	blk_start_request(req);
1405
1406	sdev = cmd->device;
1407	starget = scsi_target(sdev);
1408	shost = sdev->host;
1409	scsi_init_cmd_errh(cmd);
1410	cmd->result = DID_NO_CONNECT << 16;
1411	atomic_inc(&cmd->device->iorequest_cnt);
1412
1413	/*
1414	 * SCSI request completion path will do scsi_device_unbusy(),
1415	 * bump busy counts.  To bump the counters, we need to dance
1416	 * with the locks as normal issue path does.
1417	 */
1418	sdev->device_busy++;
1419	spin_unlock(sdev->request_queue->queue_lock);
1420	spin_lock(shost->host_lock);
1421	shost->host_busy++;
1422	starget->target_busy++;
1423	spin_unlock(shost->host_lock);
1424	spin_lock(sdev->request_queue->queue_lock);
1425
1426	blk_complete_request(req);
1427}
1428
1429static void scsi_softirq_done(struct request *rq)
1430{
1431	struct scsi_cmnd *cmd = rq->special;
1432	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1433	int disposition;
1434
1435	INIT_LIST_HEAD(&cmd->eh_entry);
1436
1437	atomic_inc(&cmd->device->iodone_cnt);
1438	if (cmd->result)
1439		atomic_inc(&cmd->device->ioerr_cnt);
1440
1441	disposition = scsi_decide_disposition(cmd);
1442	if (disposition != SUCCESS &&
1443	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1444		sdev_printk(KERN_ERR, cmd->device,
1445			    "timing out command, waited %lus\n",
1446			    wait_for/HZ);
1447		disposition = SUCCESS;
1448	}
1449
1450	scsi_log_completion(cmd, disposition);
1451
1452	switch (disposition) {
1453		case SUCCESS:
1454			scsi_finish_command(cmd);
1455			break;
1456		case NEEDS_RETRY:
1457			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1458			break;
1459		case ADD_TO_MLQUEUE:
1460			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1461			break;
1462		default:
1463			if (!scsi_eh_scmd_add(cmd, 0))
1464				scsi_finish_command(cmd);
1465	}
1466}
1467
1468/*
1469 * Function:    scsi_request_fn()
1470 *
1471 * Purpose:     Main strategy routine for SCSI.
1472 *
1473 * Arguments:   q       - Pointer to actual queue.
1474 *
1475 * Returns:     Nothing
1476 *
1477 * Lock status: IO request lock assumed to be held when called.
1478 */
1479static void scsi_request_fn(struct request_queue *q)
1480{
1481	struct scsi_device *sdev = q->queuedata;
1482	struct Scsi_Host *shost;
1483	struct scsi_cmnd *cmd;
1484	struct request *req;
1485
1486	if (!sdev) {
1487		printk("scsi: killing requests for dead queue\n");
1488		while ((req = blk_peek_request(q)) != NULL)
1489			scsi_kill_request(req, q);
1490		return;
1491	}
1492
1493	if(!get_device(&sdev->sdev_gendev))
1494		/* We must be tearing the block queue down already */
1495		return;
1496
1497	/*
1498	 * To start with, we keep looping until the queue is empty, or until
1499	 * the host is no longer able to accept any more requests.
1500	 */
1501	shost = sdev->host;
1502	while (!blk_queue_plugged(q)) {
1503		int rtn;
1504		/*
1505		 * get next queueable request.  We do this early to make sure
1506		 * that the request is fully prepared even if we cannot
1507		 * accept it.
1508		 */
1509		req = blk_peek_request(q);
1510		if (!req || !scsi_dev_queue_ready(q, sdev))
1511			break;
1512
1513		if (unlikely(!scsi_device_online(sdev))) {
1514			sdev_printk(KERN_ERR, sdev,
1515				    "rejecting I/O to offline device\n");
1516			scsi_kill_request(req, q);
1517			continue;
1518		}
1519
1520
1521		/*
1522		 * Remove the request from the request list.
1523		 */
1524		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1525			blk_start_request(req);
1526		sdev->device_busy++;
1527
1528		spin_unlock(q->queue_lock);
1529		cmd = req->special;
1530		if (unlikely(cmd == NULL)) {
1531			printk(KERN_CRIT "impossible request in %s.\n"
1532					 "please mail a stack trace to "
1533					 "linux-scsi@vger.kernel.org\n",
1534					 __func__);
1535			blk_dump_rq_flags(req, "foo");
1536			BUG();
1537		}
1538		spin_lock(shost->host_lock);
1539
1540		/*
1541		 * We hit this when the driver is using a host wide
1542		 * tag map. For device level tag maps the queue_depth check
1543		 * in the device ready fn would prevent us from trying
1544		 * to allocate a tag. Since the map is a shared host resource
1545		 * we add the dev to the starved list so it eventually gets
1546		 * a run when a tag is freed.
1547		 */
1548		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1549			if (list_empty(&sdev->starved_entry))
1550				list_add_tail(&sdev->starved_entry,
1551					      &shost->starved_list);
1552			goto not_ready;
1553		}
1554
1555		if (!scsi_target_queue_ready(shost, sdev))
1556			goto not_ready;
1557
1558		if (!scsi_host_queue_ready(q, shost, sdev))
1559			goto not_ready;
1560
1561		scsi_target(sdev)->target_busy++;
1562		shost->host_busy++;
1563
1564		/*
1565		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1566		 *		take the lock again.
1567		 */
1568		spin_unlock_irq(shost->host_lock);
1569
1570		/*
1571		 * Finally, initialize any error handling parameters, and set up
1572		 * the timers for timeouts.
1573		 */
1574		scsi_init_cmd_errh(cmd);
1575
1576		/*
1577		 * Dispatch the command to the low-level driver.
1578		 */
1579		rtn = scsi_dispatch_cmd(cmd);
1580		spin_lock_irq(q->queue_lock);
1581		if(rtn) {
1582			/* we're refusing the command; because of
1583			 * the way locks get dropped, we need to
1584			 * check here if plugging is required */
1585			if(sdev->device_busy == 0)
1586				blk_plug_device(q);
1587
1588			break;
1589		}
1590	}
1591
1592	goto out;
1593
1594 not_ready:
1595	spin_unlock_irq(shost->host_lock);
1596
1597	/*
1598	 * lock q, handle tag, requeue req, and decrement device_busy. We
1599	 * must return with queue_lock held.
1600	 *
1601	 * Decrementing device_busy without checking it is OK, as all such
1602	 * cases (host limits or settings) should run the queue at some
1603	 * later time.
1604	 */
1605	spin_lock_irq(q->queue_lock);
1606	blk_requeue_request(q, req);
1607	sdev->device_busy--;
1608	if(sdev->device_busy == 0)
1609		blk_plug_device(q);
1610 out:
1611	/* must be careful here...if we trigger the ->remove() function
1612	 * we cannot be holding the q lock */
1613	spin_unlock_irq(q->queue_lock);
1614	put_device(&sdev->sdev_gendev);
1615	spin_lock_irq(q->queue_lock);
1616}
1617
1618u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1619{
1620	struct device *host_dev;
1621	u64 bounce_limit = 0xffffffff;
1622
1623	if (shost->unchecked_isa_dma)
1624		return BLK_BOUNCE_ISA;
1625	/*
1626	 * Platforms with virtual-DMA translation
1627	 * hardware have no practical limit.
1628	 */
1629	if (!PCI_DMA_BUS_IS_PHYS)
1630		return BLK_BOUNCE_ANY;
1631
1632	host_dev = scsi_get_device(shost);
1633	if (host_dev && host_dev->dma_mask)
1634		bounce_limit = *host_dev->dma_mask;
1635
1636	return bounce_limit;
1637}
1638EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1639
1640struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1641					 request_fn_proc *request_fn)
1642{
1643	struct request_queue *q;
1644	struct device *dev = shost->shost_gendev.parent;
1645
1646	q = blk_init_queue(request_fn, NULL);
1647	if (!q)
1648		return NULL;
1649
1650	/*
1651	 * this limit is imposed by hardware restrictions
1652	 */
1653	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1654					SCSI_MAX_SG_CHAIN_SEGMENTS));
1655
1656	if (scsi_host_prot_dma(shost)) {
1657		shost->sg_prot_tablesize =
1658			min_not_zero(shost->sg_prot_tablesize,
1659				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1660		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1661		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1662	}
1663
1664	blk_queue_max_hw_sectors(q, shost->max_sectors);
1665	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1666	blk_queue_segment_boundary(q, shost->dma_boundary);
1667	dma_set_seg_boundary(dev, shost->dma_boundary);
1668
1669	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1670
1671	if (!shost->use_clustering)
1672		q->limits.cluster = 0;
1673
1674	/*
1675	 * set a reasonable default alignment on word boundaries: the
1676	 * host and device may alter it using
1677	 * blk_queue_update_dma_alignment() later.
1678	 */
1679	blk_queue_dma_alignment(q, 0x03);
1680
1681	return q;
1682}
1683EXPORT_SYMBOL(__scsi_alloc_queue);
1684
1685struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1686{
1687	struct request_queue *q;
1688
1689	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1690	if (!q)
1691		return NULL;
1692
1693	blk_queue_prep_rq(q, scsi_prep_fn);
1694	blk_queue_softirq_done(q, scsi_softirq_done);
1695	blk_queue_rq_timed_out(q, scsi_times_out);
1696	blk_queue_lld_busy(q, scsi_lld_busy);
1697	return q;
1698}
1699
1700void scsi_free_queue(struct request_queue *q)
1701{
1702	blk_cleanup_queue(q);
1703}
1704
1705/*
1706 * Function:    scsi_block_requests()
1707 *
1708 * Purpose:     Utility function used by low-level drivers to prevent further
1709 *		commands from being queued to the device.
1710 *
1711 * Arguments:   shost       - Host in question
1712 *
1713 * Returns:     Nothing
1714 *
1715 * Lock status: No locks are assumed held.
1716 *
1717 * Notes:       There is no timer nor any other means by which the requests
1718 *		get unblocked other than the low-level driver calling
1719 *		scsi_unblock_requests().
1720 */
1721void scsi_block_requests(struct Scsi_Host *shost)
1722{
1723	shost->host_self_blocked = 1;
1724}
1725EXPORT_SYMBOL(scsi_block_requests);
1726
1727/*
1728 * Function:    scsi_unblock_requests()
1729 *
1730 * Purpose:     Utility function used by low-level drivers to allow further
1731 *		commands from being queued to the device.
1732 *
1733 * Arguments:   shost       - Host in question
1734 *
1735 * Returns:     Nothing
1736 *
1737 * Lock status: No locks are assumed held.
1738 *
1739 * Notes:       There is no timer nor any other means by which the requests
1740 *		get unblocked other than the low-level driver calling
1741 *		scsi_unblock_requests().
1742 *
1743 *		This is done as an API function so that changes to the
1744 *		internals of the scsi mid-layer won't require wholesale
1745 *		changes to drivers that use this feature.
1746 */
1747void scsi_unblock_requests(struct Scsi_Host *shost)
1748{
1749	shost->host_self_blocked = 0;
1750	scsi_run_host_queues(shost);
1751}
1752EXPORT_SYMBOL(scsi_unblock_requests);
1753
1754int __init scsi_init_queue(void)
1755{
1756	int i;
1757
1758	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1759					   sizeof(struct scsi_data_buffer),
1760					   0, 0, NULL);
1761	if (!scsi_sdb_cache) {
1762		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1763		return -ENOMEM;
1764	}
1765
1766	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1767		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1768		int size = sgp->size * sizeof(struct scatterlist);
1769
1770		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1771				SLAB_HWCACHE_ALIGN, NULL);
1772		if (!sgp->slab) {
1773			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1774					sgp->name);
1775			goto cleanup_sdb;
1776		}
1777
1778		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1779						     sgp->slab);
1780		if (!sgp->pool) {
1781			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1782					sgp->name);
1783			goto cleanup_sdb;
1784		}
1785	}
1786
1787	return 0;
1788
1789cleanup_sdb:
1790	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1791		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1792		if (sgp->pool)
1793			mempool_destroy(sgp->pool);
1794		if (sgp->slab)
1795			kmem_cache_destroy(sgp->slab);
1796	}
1797	kmem_cache_destroy(scsi_sdb_cache);
1798
1799	return -ENOMEM;
1800}
1801
1802void scsi_exit_queue(void)
1803{
1804	int i;
1805
1806	kmem_cache_destroy(scsi_sdb_cache);
1807
1808	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1809		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1810		mempool_destroy(sgp->pool);
1811		kmem_cache_destroy(sgp->slab);
1812	}
1813}
1814
1815/**
1816 *	scsi_mode_select - issue a mode select
1817 *	@sdev:	SCSI device to be queried
1818 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1819 *	@sp:	Save page bit (0 == don't save, 1 == save)
1820 *	@modepage: mode page being requested
1821 *	@buffer: request buffer (may not be smaller than eight bytes)
1822 *	@len:	length of request buffer.
1823 *	@timeout: command timeout
1824 *	@retries: number of retries before failing
1825 *	@data: returns a structure abstracting the mode header data
1826 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1827 *		must be SCSI_SENSE_BUFFERSIZE big.
1828 *
1829 *	Returns zero if successful; negative error number or scsi
1830 *	status on error
1831 *
1832 */
1833int
1834scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1835		 unsigned char *buffer, int len, int timeout, int retries,
1836		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1837{
1838	unsigned char cmd[10];
1839	unsigned char *real_buffer;
1840	int ret;
1841
1842	memset(cmd, 0, sizeof(cmd));
1843	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1844
1845	if (sdev->use_10_for_ms) {
1846		if (len > 65535)
1847			return -EINVAL;
1848		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1849		if (!real_buffer)
1850			return -ENOMEM;
1851		memcpy(real_buffer + 8, buffer, len);
1852		len += 8;
1853		real_buffer[0] = 0;
1854		real_buffer[1] = 0;
1855		real_buffer[2] = data->medium_type;
1856		real_buffer[3] = data->device_specific;
1857		real_buffer[4] = data->longlba ? 0x01 : 0;
1858		real_buffer[5] = 0;
1859		real_buffer[6] = data->block_descriptor_length >> 8;
1860		real_buffer[7] = data->block_descriptor_length;
1861
1862		cmd[0] = MODE_SELECT_10;
1863		cmd[7] = len >> 8;
1864		cmd[8] = len;
1865	} else {
1866		if (len > 255 || data->block_descriptor_length > 255 ||
1867		    data->longlba)
1868			return -EINVAL;
1869
1870		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1871		if (!real_buffer)
1872			return -ENOMEM;
1873		memcpy(real_buffer + 4, buffer, len);
1874		len += 4;
1875		real_buffer[0] = 0;
1876		real_buffer[1] = data->medium_type;
1877		real_buffer[2] = data->device_specific;
1878		real_buffer[3] = data->block_descriptor_length;
1879
1880
1881		cmd[0] = MODE_SELECT;
1882		cmd[4] = len;
1883	}
1884
1885	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1886			       sshdr, timeout, retries, NULL);
1887	kfree(real_buffer);
1888	return ret;
1889}
1890EXPORT_SYMBOL_GPL(scsi_mode_select);
1891
1892/**
1893 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1894 *	@sdev:	SCSI device to be queried
1895 *	@dbd:	set if mode sense will allow block descriptors to be returned
1896 *	@modepage: mode page being requested
1897 *	@buffer: request buffer (may not be smaller than eight bytes)
1898 *	@len:	length of request buffer.
1899 *	@timeout: command timeout
1900 *	@retries: number of retries before failing
1901 *	@data: returns a structure abstracting the mode header data
1902 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1903 *		must be SCSI_SENSE_BUFFERSIZE big.
1904 *
1905 *	Returns zero if unsuccessful, or the header offset (either 4
1906 *	or 8 depending on whether a six or ten byte command was
1907 *	issued) if successful.
1908 */
1909int
1910scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1911		  unsigned char *buffer, int len, int timeout, int retries,
1912		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1913{
1914	unsigned char cmd[12];
1915	int use_10_for_ms;
1916	int header_length;
1917	int result;
1918	struct scsi_sense_hdr my_sshdr;
1919
1920	memset(data, 0, sizeof(*data));
1921	memset(&cmd[0], 0, 12);
1922	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1923	cmd[2] = modepage;
1924
1925	/* caller might not be interested in sense, but we need it */
1926	if (!sshdr)
1927		sshdr = &my_sshdr;
1928
1929 retry:
1930	use_10_for_ms = sdev->use_10_for_ms;
1931
1932	if (use_10_for_ms) {
1933		if (len < 8)
1934			len = 8;
1935
1936		cmd[0] = MODE_SENSE_10;
1937		cmd[8] = len;
1938		header_length = 8;
1939	} else {
1940		if (len < 4)
1941			len = 4;
1942
1943		cmd[0] = MODE_SENSE;
1944		cmd[4] = len;
1945		header_length = 4;
1946	}
1947
1948	memset(buffer, 0, len);
1949
1950	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1951				  sshdr, timeout, retries, NULL);
1952
1953	/* This code looks awful: what it's doing is making sure an
1954	 * ILLEGAL REQUEST sense return identifies the actual command
1955	 * byte as the problem.  MODE_SENSE commands can return
1956	 * ILLEGAL REQUEST if the code page isn't supported */
1957
1958	if (use_10_for_ms && !scsi_status_is_good(result) &&
1959	    (driver_byte(result) & DRIVER_SENSE)) {
1960		if (scsi_sense_valid(sshdr)) {
1961			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1962			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1963				/*
1964				 * Invalid command operation code
1965				 */
1966				sdev->use_10_for_ms = 0;
1967				goto retry;
1968			}
1969		}
1970	}
1971
1972	if(scsi_status_is_good(result)) {
1973		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1974			     (modepage == 6 || modepage == 8))) {
1975			/* Initio breakage? */
1976			header_length = 0;
1977			data->length = 13;
1978			data->medium_type = 0;
1979			data->device_specific = 0;
1980			data->longlba = 0;
1981			data->block_descriptor_length = 0;
1982		} else if(use_10_for_ms) {
1983			data->length = buffer[0]*256 + buffer[1] + 2;
1984			data->medium_type = buffer[2];
1985			data->device_specific = buffer[3];
1986			data->longlba = buffer[4] & 0x01;
1987			data->block_descriptor_length = buffer[6]*256
1988				+ buffer[7];
1989		} else {
1990			data->length = buffer[0] + 1;
1991			data->medium_type = buffer[1];
1992			data->device_specific = buffer[2];
1993			data->block_descriptor_length = buffer[3];
1994		}
1995		data->header_length = header_length;
1996	}
1997
1998	return result;
1999}
2000EXPORT_SYMBOL(scsi_mode_sense);
2001
2002/**
2003 *	scsi_test_unit_ready - test if unit is ready
2004 *	@sdev:	scsi device to change the state of.
2005 *	@timeout: command timeout
2006 *	@retries: number of retries before failing
2007 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2008 *		returning sense. Make sure that this is cleared before passing
2009 *		in.
2010 *
2011 *	Returns zero if unsuccessful or an error if TUR failed.  For
2012 *	removable media, UNIT_ATTENTION sets ->changed flag.
2013 **/
2014int
2015scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2016		     struct scsi_sense_hdr *sshdr_external)
2017{
2018	char cmd[] = {
2019		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2020	};
2021	struct scsi_sense_hdr *sshdr;
2022	int result;
2023
2024	if (!sshdr_external)
2025		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2026	else
2027		sshdr = sshdr_external;
2028
2029	/* try to eat the UNIT_ATTENTION if there are enough retries */
2030	do {
2031		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2032					  timeout, retries, NULL);
2033		if (sdev->removable && scsi_sense_valid(sshdr) &&
2034		    sshdr->sense_key == UNIT_ATTENTION)
2035			sdev->changed = 1;
2036	} while (scsi_sense_valid(sshdr) &&
2037		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2038
2039	if (!sshdr_external)
2040		kfree(sshdr);
2041	return result;
2042}
2043EXPORT_SYMBOL(scsi_test_unit_ready);
2044
2045/**
2046 *	scsi_device_set_state - Take the given device through the device state model.
2047 *	@sdev:	scsi device to change the state of.
2048 *	@state:	state to change to.
2049 *
2050 *	Returns zero if unsuccessful or an error if the requested
2051 *	transition is illegal.
2052 */
2053int
2054scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2055{
2056	enum scsi_device_state oldstate = sdev->sdev_state;
2057
2058	if (state == oldstate)
2059		return 0;
2060
2061	switch (state) {
2062	case SDEV_CREATED:
2063		switch (oldstate) {
2064		case SDEV_CREATED_BLOCK:
2065			break;
2066		default:
2067			goto illegal;
2068		}
2069		break;
2070
2071	case SDEV_RUNNING:
2072		switch (oldstate) {
2073		case SDEV_CREATED:
2074		case SDEV_OFFLINE:
2075		case SDEV_QUIESCE:
2076		case SDEV_BLOCK:
2077			break;
2078		default:
2079			goto illegal;
2080		}
2081		break;
2082
2083	case SDEV_QUIESCE:
2084		switch (oldstate) {
2085		case SDEV_RUNNING:
2086		case SDEV_OFFLINE:
2087			break;
2088		default:
2089			goto illegal;
2090		}
2091		break;
2092
2093	case SDEV_OFFLINE:
2094		switch (oldstate) {
2095		case SDEV_CREATED:
2096		case SDEV_RUNNING:
2097		case SDEV_QUIESCE:
2098		case SDEV_BLOCK:
2099			break;
2100		default:
2101			goto illegal;
2102		}
2103		break;
2104
2105	case SDEV_BLOCK:
2106		switch (oldstate) {
2107		case SDEV_RUNNING:
2108		case SDEV_CREATED_BLOCK:
2109			break;
2110		default:
2111			goto illegal;
2112		}
2113		break;
2114
2115	case SDEV_CREATED_BLOCK:
2116		switch (oldstate) {
2117		case SDEV_CREATED:
2118			break;
2119		default:
2120			goto illegal;
2121		}
2122		break;
2123
2124	case SDEV_CANCEL:
2125		switch (oldstate) {
2126		case SDEV_CREATED:
2127		case SDEV_RUNNING:
2128		case SDEV_QUIESCE:
2129		case SDEV_OFFLINE:
2130		case SDEV_BLOCK:
2131			break;
2132		default:
2133			goto illegal;
2134		}
2135		break;
2136
2137	case SDEV_DEL:
2138		switch (oldstate) {
2139		case SDEV_CREATED:
2140		case SDEV_RUNNING:
2141		case SDEV_OFFLINE:
2142		case SDEV_CANCEL:
2143			break;
2144		default:
2145			goto illegal;
2146		}
2147		break;
2148
2149	}
2150	sdev->sdev_state = state;
2151	return 0;
2152
2153 illegal:
2154	SCSI_LOG_ERROR_RECOVERY(1,
2155				sdev_printk(KERN_ERR, sdev,
2156					    "Illegal state transition %s->%s\n",
2157					    scsi_device_state_name(oldstate),
2158					    scsi_device_state_name(state))
2159				);
2160	return -EINVAL;
2161}
2162EXPORT_SYMBOL(scsi_device_set_state);
2163
2164/**
2165 * 	sdev_evt_emit - emit a single SCSI device uevent
2166 *	@sdev: associated SCSI device
2167 *	@evt: event to emit
2168 *
2169 *	Send a single uevent (scsi_event) to the associated scsi_device.
2170 */
2171static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2172{
2173	int idx = 0;
2174	char *envp[3];
2175
2176	switch (evt->evt_type) {
2177	case SDEV_EVT_MEDIA_CHANGE:
2178		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2179		break;
2180
2181	default:
2182		/* do nothing */
2183		break;
2184	}
2185
2186	envp[idx++] = NULL;
2187
2188	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2189}
2190
2191/**
2192 * 	sdev_evt_thread - send a uevent for each scsi event
2193 *	@work: work struct for scsi_device
2194 *
2195 *	Dispatch queued events to their associated scsi_device kobjects
2196 *	as uevents.
2197 */
2198void scsi_evt_thread(struct work_struct *work)
2199{
2200	struct scsi_device *sdev;
2201	LIST_HEAD(event_list);
2202
2203	sdev = container_of(work, struct scsi_device, event_work);
2204
2205	while (1) {
2206		struct scsi_event *evt;
2207		struct list_head *this, *tmp;
2208		unsigned long flags;
2209
2210		spin_lock_irqsave(&sdev->list_lock, flags);
2211		list_splice_init(&sdev->event_list, &event_list);
2212		spin_unlock_irqrestore(&sdev->list_lock, flags);
2213
2214		if (list_empty(&event_list))
2215			break;
2216
2217		list_for_each_safe(this, tmp, &event_list) {
2218			evt = list_entry(this, struct scsi_event, node);
2219			list_del(&evt->node);
2220			scsi_evt_emit(sdev, evt);
2221			kfree(evt);
2222		}
2223	}
2224}
2225
2226/**
2227 * 	sdev_evt_send - send asserted event to uevent thread
2228 *	@sdev: scsi_device event occurred on
2229 *	@evt: event to send
2230 *
2231 *	Assert scsi device event asynchronously.
2232 */
2233void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2234{
2235	unsigned long flags;
2236
2237#if 0
2238	/* FIXME: currently this check eliminates all media change events
2239	 * for polled devices.  Need to update to discriminate between AN
2240	 * and polled events */
2241	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2242		kfree(evt);
2243		return;
2244	}
2245#endif
2246
2247	spin_lock_irqsave(&sdev->list_lock, flags);
2248	list_add_tail(&evt->node, &sdev->event_list);
2249	schedule_work(&sdev->event_work);
2250	spin_unlock_irqrestore(&sdev->list_lock, flags);
2251}
2252EXPORT_SYMBOL_GPL(sdev_evt_send);
2253
2254/**
2255 * 	sdev_evt_alloc - allocate a new scsi event
2256 *	@evt_type: type of event to allocate
2257 *	@gfpflags: GFP flags for allocation
2258 *
2259 *	Allocates and returns a new scsi_event.
2260 */
2261struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2262				  gfp_t gfpflags)
2263{
2264	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2265	if (!evt)
2266		return NULL;
2267
2268	evt->evt_type = evt_type;
2269	INIT_LIST_HEAD(&evt->node);
2270
2271	/* evt_type-specific initialization, if any */
2272	switch (evt_type) {
2273	case SDEV_EVT_MEDIA_CHANGE:
2274	default:
2275		/* do nothing */
2276		break;
2277	}
2278
2279	return evt;
2280}
2281EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2282
2283/**
2284 * 	sdev_evt_send_simple - send asserted event to uevent thread
2285 *	@sdev: scsi_device event occurred on
2286 *	@evt_type: type of event to send
2287 *	@gfpflags: GFP flags for allocation
2288 *
2289 *	Assert scsi device event asynchronously, given an event type.
2290 */
2291void sdev_evt_send_simple(struct scsi_device *sdev,
2292			  enum scsi_device_event evt_type, gfp_t gfpflags)
2293{
2294	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2295	if (!evt) {
2296		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2297			    evt_type);
2298		return;
2299	}
2300
2301	sdev_evt_send(sdev, evt);
2302}
2303EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2304
2305/**
2306 *	scsi_device_quiesce - Block user issued commands.
2307 *	@sdev:	scsi device to quiesce.
2308 *
2309 *	This works by trying to transition to the SDEV_QUIESCE state
2310 *	(which must be a legal transition).  When the device is in this
2311 *	state, only special requests will be accepted, all others will
2312 *	be deferred.  Since special requests may also be requeued requests,
2313 *	a successful return doesn't guarantee the device will be
2314 *	totally quiescent.
2315 *
2316 *	Must be called with user context, may sleep.
2317 *
2318 *	Returns zero if unsuccessful or an error if not.
2319 */
2320int
2321scsi_device_quiesce(struct scsi_device *sdev)
2322{
2323	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2324	if (err)
2325		return err;
2326
2327	scsi_run_queue(sdev->request_queue);
2328	while (sdev->device_busy) {
2329		msleep_interruptible(200);
2330		scsi_run_queue(sdev->request_queue);
2331	}
2332	return 0;
2333}
2334EXPORT_SYMBOL(scsi_device_quiesce);
2335
2336/**
2337 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2338 *	@sdev:	scsi device to resume.
2339 *
2340 *	Moves the device from quiesced back to running and restarts the
2341 *	queues.
2342 *
2343 *	Must be called with user context, may sleep.
2344 */
2345void
2346scsi_device_resume(struct scsi_device *sdev)
2347{
2348	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2349		return;
2350	scsi_run_queue(sdev->request_queue);
2351}
2352EXPORT_SYMBOL(scsi_device_resume);
2353
2354static void
2355device_quiesce_fn(struct scsi_device *sdev, void *data)
2356{
2357	scsi_device_quiesce(sdev);
2358}
2359
2360void
2361scsi_target_quiesce(struct scsi_target *starget)
2362{
2363	starget_for_each_device(starget, NULL, device_quiesce_fn);
2364}
2365EXPORT_SYMBOL(scsi_target_quiesce);
2366
2367static void
2368device_resume_fn(struct scsi_device *sdev, void *data)
2369{
2370	scsi_device_resume(sdev);
2371}
2372
2373void
2374scsi_target_resume(struct scsi_target *starget)
2375{
2376	starget_for_each_device(starget, NULL, device_resume_fn);
2377}
2378EXPORT_SYMBOL(scsi_target_resume);
2379
2380/**
2381 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2382 * @sdev:	device to block
2383 *
2384 * Block request made by scsi lld's to temporarily stop all
2385 * scsi commands on the specified device.  Called from interrupt
2386 * or normal process context.
2387 *
2388 * Returns zero if successful or error if not
2389 *
2390 * Notes:
2391 *	This routine transitions the device to the SDEV_BLOCK state
2392 *	(which must be a legal transition).  When the device is in this
2393 *	state, all commands are deferred until the scsi lld reenables
2394 *	the device with scsi_device_unblock or device_block_tmo fires.
2395 *	This routine assumes the host_lock is held on entry.
2396 */
2397int
2398scsi_internal_device_block(struct scsi_device *sdev)
2399{
2400	struct request_queue *q = sdev->request_queue;
2401	unsigned long flags;
2402	int err = 0;
2403
2404	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2405	if (err) {
2406		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2407
2408		if (err)
2409			return err;
2410	}
2411
2412	/*
2413	 * The device has transitioned to SDEV_BLOCK.  Stop the
2414	 * block layer from calling the midlayer with this device's
2415	 * request queue.
2416	 */
2417	spin_lock_irqsave(q->queue_lock, flags);
2418	blk_stop_queue(q);
2419	spin_unlock_irqrestore(q->queue_lock, flags);
2420
2421	return 0;
2422}
2423EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2424
2425/**
2426 * scsi_internal_device_unblock - resume a device after a block request
2427 * @sdev:	device to resume
2428 *
2429 * Called by scsi lld's or the midlayer to restart the device queue
2430 * for the previously suspended scsi device.  Called from interrupt or
2431 * normal process context.
2432 *
2433 * Returns zero if successful or error if not.
2434 *
2435 * Notes:
2436 *	This routine transitions the device to the SDEV_RUNNING state
2437 *	(which must be a legal transition) allowing the midlayer to
2438 *	goose the queue for this device.  This routine assumes the
2439 *	host_lock is held upon entry.
2440 */
2441int
2442scsi_internal_device_unblock(struct scsi_device *sdev)
2443{
2444	struct request_queue *q = sdev->request_queue;
2445	unsigned long flags;
2446
2447	/*
2448	 * Try to transition the scsi device to SDEV_RUNNING
2449	 * and goose the device queue if successful.
2450	 */
2451	if (sdev->sdev_state == SDEV_BLOCK)
2452		sdev->sdev_state = SDEV_RUNNING;
2453	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2454		sdev->sdev_state = SDEV_CREATED;
2455	else if (sdev->sdev_state != SDEV_CANCEL &&
2456		 sdev->sdev_state != SDEV_OFFLINE)
2457		return -EINVAL;
2458
2459	spin_lock_irqsave(q->queue_lock, flags);
2460	blk_start_queue(q);
2461	spin_unlock_irqrestore(q->queue_lock, flags);
2462
2463	return 0;
2464}
2465EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2466
2467static void
2468device_block(struct scsi_device *sdev, void *data)
2469{
2470	scsi_internal_device_block(sdev);
2471}
2472
2473static int
2474target_block(struct device *dev, void *data)
2475{
2476	if (scsi_is_target_device(dev))
2477		starget_for_each_device(to_scsi_target(dev), NULL,
2478					device_block);
2479	return 0;
2480}
2481
2482void
2483scsi_target_block(struct device *dev)
2484{
2485	if (scsi_is_target_device(dev))
2486		starget_for_each_device(to_scsi_target(dev), NULL,
2487					device_block);
2488	else
2489		device_for_each_child(dev, NULL, target_block);
2490}
2491EXPORT_SYMBOL_GPL(scsi_target_block);
2492
2493static void
2494device_unblock(struct scsi_device *sdev, void *data)
2495{
2496	scsi_internal_device_unblock(sdev);
2497}
2498
2499static int
2500target_unblock(struct device *dev, void *data)
2501{
2502	if (scsi_is_target_device(dev))
2503		starget_for_each_device(to_scsi_target(dev), NULL,
2504					device_unblock);
2505	return 0;
2506}
2507
2508void
2509scsi_target_unblock(struct device *dev)
2510{
2511	if (scsi_is_target_device(dev))
2512		starget_for_each_device(to_scsi_target(dev), NULL,
2513					device_unblock);
2514	else
2515		device_for_each_child(dev, NULL, target_unblock);
2516}
2517EXPORT_SYMBOL_GPL(scsi_target_unblock);
2518
2519/**
2520 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2521 * @sgl:	scatter-gather list
2522 * @sg_count:	number of segments in sg
2523 * @offset:	offset in bytes into sg, on return offset into the mapped area
2524 * @len:	bytes to map, on return number of bytes mapped
2525 *
2526 * Returns virtual address of the start of the mapped page
2527 */
2528void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2529			  size_t *offset, size_t *len)
2530{
2531	int i;
2532	size_t sg_len = 0, len_complete = 0;
2533	struct scatterlist *sg;
2534	struct page *page;
2535
2536	WARN_ON(!irqs_disabled());
2537
2538	for_each_sg(sgl, sg, sg_count, i) {
2539		len_complete = sg_len; /* Complete sg-entries */
2540		sg_len += sg->length;
2541		if (sg_len > *offset)
2542			break;
2543	}
2544
2545	if (unlikely(i == sg_count)) {
2546		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2547			"elements %d\n",
2548		       __func__, sg_len, *offset, sg_count);
2549		WARN_ON(1);
2550		return NULL;
2551	}
2552
2553	/* Offset starting from the beginning of first page in this sg-entry */
2554	*offset = *offset - len_complete + sg->offset;
2555
2556	/* Assumption: contiguous pages can be accessed as "page + i" */
2557	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2558	*offset &= ~PAGE_MASK;
2559
2560	/* Bytes in this sg-entry from *offset to the end of the page */
2561	sg_len = PAGE_SIZE - *offset;
2562	if (*len > sg_len)
2563		*len = sg_len;
2564
2565	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2566}
2567EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2568
2569/**
2570 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2571 * @virt:	virtual address to be unmapped
2572 */
2573void scsi_kunmap_atomic_sg(void *virt)
2574{
2575	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2576}
2577EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2578