scsi_lib.c revision d626e3bf728c47746f2129aa00c775d4e8c2a73b
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68static struct kmem_cache *scsi_bidi_sdb_cache;
69
70static void scsi_run_queue(struct request_queue *q);
71
72/*
73 * Function:	scsi_unprep_request()
74 *
75 * Purpose:	Remove all preparation done for a request, including its
76 *		associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments:	req	- request to unprepare
79 *
80 * Lock status:	Assumed that no locks are held upon entry.
81 *
82 * Returns:	Nothing.
83 */
84static void scsi_unprep_request(struct request *req)
85{
86	struct scsi_cmnd *cmd = req->special;
87
88	req->cmd_flags &= ~REQ_DONTPREP;
89	req->special = NULL;
90
91	scsi_put_command(cmd);
92}
93
94/*
95 * Function:    scsi_queue_insert()
96 *
97 * Purpose:     Insert a command in the midlevel queue.
98 *
99 * Arguments:   cmd    - command that we are adding to queue.
100 *              reason - why we are inserting command to queue.
101 *
102 * Lock status: Assumed that lock is not held upon entry.
103 *
104 * Returns:     Nothing.
105 *
106 * Notes:       We do this for one of two cases.  Either the host is busy
107 *              and it cannot accept any more commands for the time being,
108 *              or the device returned QUEUE_FULL and can accept no more
109 *              commands.
110 * Notes:       This could be called either from an interrupt context or a
111 *              normal process context.
112 */
113int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114{
115	struct Scsi_Host *host = cmd->device->host;
116	struct scsi_device *device = cmd->device;
117	struct request_queue *q = device->request_queue;
118	unsigned long flags;
119
120	SCSI_LOG_MLQUEUE(1,
121		 printk("Inserting command %p into mlqueue\n", cmd));
122
123	/*
124	 * Set the appropriate busy bit for the device/host.
125	 *
126	 * If the host/device isn't busy, assume that something actually
127	 * completed, and that we should be able to queue a command now.
128	 *
129	 * Note that the prior mid-layer assumption that any host could
130	 * always queue at least one command is now broken.  The mid-layer
131	 * will implement a user specifiable stall (see
132	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133	 * if a command is requeued with no other commands outstanding
134	 * either for the device or for the host.
135	 */
136	if (reason == SCSI_MLQUEUE_HOST_BUSY)
137		host->host_blocked = host->max_host_blocked;
138	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139		device->device_blocked = device->max_device_blocked;
140
141	/*
142	 * Decrement the counters, since these commands are no longer
143	 * active on the host/device.
144	 */
145	scsi_device_unbusy(device);
146
147	/*
148	 * Requeue this command.  It will go before all other commands
149	 * that are already in the queue.
150	 *
151	 * NOTE: there is magic here about the way the queue is plugged if
152	 * we have no outstanding commands.
153	 *
154	 * Although we *don't* plug the queue, we call the request
155	 * function.  The SCSI request function detects the blocked condition
156	 * and plugs the queue appropriately.
157         */
158	spin_lock_irqsave(q->queue_lock, flags);
159	blk_requeue_request(q, cmd->request);
160	spin_unlock_irqrestore(q->queue_lock, flags);
161
162	scsi_run_queue(q);
163
164	return 0;
165}
166
167/**
168 * scsi_execute - insert request and wait for the result
169 * @sdev:	scsi device
170 * @cmd:	scsi command
171 * @data_direction: data direction
172 * @buffer:	data buffer
173 * @bufflen:	len of buffer
174 * @sense:	optional sense buffer
175 * @timeout:	request timeout in seconds
176 * @retries:	number of times to retry request
177 * @flags:	or into request flags;
178 *
179 * returns the req->errors value which is the scsi_cmnd result
180 * field.
181 */
182int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183		 int data_direction, void *buffer, unsigned bufflen,
184		 unsigned char *sense, int timeout, int retries, int flags)
185{
186	struct request *req;
187	int write = (data_direction == DMA_TO_DEVICE);
188	int ret = DRIVER_ERROR << 24;
189
190	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191
192	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
193					buffer, bufflen, __GFP_WAIT))
194		goto out;
195
196	req->cmd_len = COMMAND_SIZE(cmd[0]);
197	memcpy(req->cmd, cmd, req->cmd_len);
198	req->sense = sense;
199	req->sense_len = 0;
200	req->retries = retries;
201	req->timeout = timeout;
202	req->cmd_type = REQ_TYPE_BLOCK_PC;
203	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204
205	/*
206	 * head injection *required* here otherwise quiesce won't work
207	 */
208	blk_execute_rq(req->q, NULL, req, 1);
209
210	ret = req->errors;
211 out:
212	blk_put_request(req);
213
214	return ret;
215}
216EXPORT_SYMBOL(scsi_execute);
217
218
219int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
220		     int data_direction, void *buffer, unsigned bufflen,
221		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
222{
223	char *sense = NULL;
224	int result;
225
226	if (sshdr) {
227		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
228		if (!sense)
229			return DRIVER_ERROR << 24;
230	}
231	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
232			      sense, timeout, retries, 0);
233	if (sshdr)
234		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
235
236	kfree(sense);
237	return result;
238}
239EXPORT_SYMBOL(scsi_execute_req);
240
241struct scsi_io_context {
242	void *data;
243	void (*done)(void *data, char *sense, int result, int resid);
244	char sense[SCSI_SENSE_BUFFERSIZE];
245};
246
247static struct kmem_cache *scsi_io_context_cache;
248
249static void scsi_end_async(struct request *req, int uptodate)
250{
251	struct scsi_io_context *sioc = req->end_io_data;
252
253	if (sioc->done)
254		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
255
256	kmem_cache_free(scsi_io_context_cache, sioc);
257	__blk_put_request(req->q, req);
258}
259
260static int scsi_merge_bio(struct request *rq, struct bio *bio)
261{
262	struct request_queue *q = rq->q;
263
264	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
265	if (rq_data_dir(rq) == WRITE)
266		bio->bi_rw |= (1 << BIO_RW);
267	blk_queue_bounce(q, &bio);
268
269	return blk_rq_append_bio(q, rq, bio);
270}
271
272static void scsi_bi_endio(struct bio *bio, int error)
273{
274	bio_put(bio);
275}
276
277/**
278 * scsi_req_map_sg - map a scatterlist into a request
279 * @rq:		request to fill
280 * @sgl:	scatterlist
281 * @nsegs:	number of elements
282 * @bufflen:	len of buffer
283 * @gfp:	memory allocation flags
284 *
285 * scsi_req_map_sg maps a scatterlist into a request so that the
286 * request can be sent to the block layer. We do not trust the scatterlist
287 * sent to use, as some ULDs use that struct to only organize the pages.
288 */
289static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
290			   int nsegs, unsigned bufflen, gfp_t gfp)
291{
292	struct request_queue *q = rq->q;
293	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
294	unsigned int data_len = bufflen, len, bytes, off;
295	struct scatterlist *sg;
296	struct page *page;
297	struct bio *bio = NULL;
298	int i, err, nr_vecs = 0;
299
300	for_each_sg(sgl, sg, nsegs, i) {
301		page = sg_page(sg);
302		off = sg->offset;
303		len = sg->length;
304
305		while (len > 0 && data_len > 0) {
306			/*
307			 * sg sends a scatterlist that is larger than
308			 * the data_len it wants transferred for certain
309			 * IO sizes
310			 */
311			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
312			bytes = min(bytes, data_len);
313
314			if (!bio) {
315				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
316				nr_pages -= nr_vecs;
317
318				bio = bio_alloc(gfp, nr_vecs);
319				if (!bio) {
320					err = -ENOMEM;
321					goto free_bios;
322				}
323				bio->bi_end_io = scsi_bi_endio;
324			}
325
326			if (bio_add_pc_page(q, bio, page, bytes, off) !=
327			    bytes) {
328				bio_put(bio);
329				err = -EINVAL;
330				goto free_bios;
331			}
332
333			if (bio->bi_vcnt >= nr_vecs) {
334				err = scsi_merge_bio(rq, bio);
335				if (err) {
336					bio_endio(bio, 0);
337					goto free_bios;
338				}
339				bio = NULL;
340			}
341
342			page++;
343			len -= bytes;
344			data_len -=bytes;
345			off = 0;
346		}
347	}
348
349	rq->buffer = rq->data = NULL;
350	rq->data_len = bufflen;
351	return 0;
352
353free_bios:
354	while ((bio = rq->bio) != NULL) {
355		rq->bio = bio->bi_next;
356		/*
357		 * call endio instead of bio_put incase it was bounced
358		 */
359		bio_endio(bio, 0);
360	}
361
362	return err;
363}
364
365/**
366 * scsi_execute_async - insert request
367 * @sdev:	scsi device
368 * @cmd:	scsi command
369 * @cmd_len:	length of scsi cdb
370 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
371 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
372 * @bufflen:	len of buffer
373 * @use_sg:	if buffer is a scatterlist this is the number of elements
374 * @timeout:	request timeout in seconds
375 * @retries:	number of times to retry request
376 * @privdata:	data passed to done()
377 * @done:	callback function when done
378 * @gfp:	memory allocation flags
379 */
380int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
381		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
382		       int use_sg, int timeout, int retries, void *privdata,
383		       void (*done)(void *, char *, int, int), gfp_t gfp)
384{
385	struct request *req;
386	struct scsi_io_context *sioc;
387	int err = 0;
388	int write = (data_direction == DMA_TO_DEVICE);
389
390	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
391	if (!sioc)
392		return DRIVER_ERROR << 24;
393
394	req = blk_get_request(sdev->request_queue, write, gfp);
395	if (!req)
396		goto free_sense;
397	req->cmd_type = REQ_TYPE_BLOCK_PC;
398	req->cmd_flags |= REQ_QUIET;
399
400	if (use_sg)
401		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
402	else if (bufflen)
403		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
404
405	if (err)
406		goto free_req;
407
408	req->cmd_len = cmd_len;
409	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
410	memcpy(req->cmd, cmd, req->cmd_len);
411	req->sense = sioc->sense;
412	req->sense_len = 0;
413	req->timeout = timeout;
414	req->retries = retries;
415	req->end_io_data = sioc;
416
417	sioc->data = privdata;
418	sioc->done = done;
419
420	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
421	return 0;
422
423free_req:
424	blk_put_request(req);
425free_sense:
426	kmem_cache_free(scsi_io_context_cache, sioc);
427	return DRIVER_ERROR << 24;
428}
429EXPORT_SYMBOL_GPL(scsi_execute_async);
430
431/*
432 * Function:    scsi_init_cmd_errh()
433 *
434 * Purpose:     Initialize cmd fields related to error handling.
435 *
436 * Arguments:   cmd	- command that is ready to be queued.
437 *
438 * Notes:       This function has the job of initializing a number of
439 *              fields related to error handling.   Typically this will
440 *              be called once for each command, as required.
441 */
442static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
443{
444	cmd->serial_number = 0;
445	scsi_set_resid(cmd, 0);
446	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
447	if (cmd->cmd_len == 0)
448		cmd->cmd_len = scsi_command_size(cmd->cmnd);
449}
450
451void scsi_device_unbusy(struct scsi_device *sdev)
452{
453	struct Scsi_Host *shost = sdev->host;
454	unsigned long flags;
455
456	spin_lock_irqsave(shost->host_lock, flags);
457	shost->host_busy--;
458	if (unlikely(scsi_host_in_recovery(shost) &&
459		     (shost->host_failed || shost->host_eh_scheduled)))
460		scsi_eh_wakeup(shost);
461	spin_unlock(shost->host_lock);
462	spin_lock(sdev->request_queue->queue_lock);
463	sdev->device_busy--;
464	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465}
466
467/*
468 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469 * and call blk_run_queue for all the scsi_devices on the target -
470 * including current_sdev first.
471 *
472 * Called with *no* scsi locks held.
473 */
474static void scsi_single_lun_run(struct scsi_device *current_sdev)
475{
476	struct Scsi_Host *shost = current_sdev->host;
477	struct scsi_device *sdev, *tmp;
478	struct scsi_target *starget = scsi_target(current_sdev);
479	unsigned long flags;
480
481	spin_lock_irqsave(shost->host_lock, flags);
482	starget->starget_sdev_user = NULL;
483	spin_unlock_irqrestore(shost->host_lock, flags);
484
485	/*
486	 * Call blk_run_queue for all LUNs on the target, starting with
487	 * current_sdev. We race with others (to set starget_sdev_user),
488	 * but in most cases, we will be first. Ideally, each LU on the
489	 * target would get some limited time or requests on the target.
490	 */
491	blk_run_queue(current_sdev->request_queue);
492
493	spin_lock_irqsave(shost->host_lock, flags);
494	if (starget->starget_sdev_user)
495		goto out;
496	list_for_each_entry_safe(sdev, tmp, &starget->devices,
497			same_target_siblings) {
498		if (sdev == current_sdev)
499			continue;
500		if (scsi_device_get(sdev))
501			continue;
502
503		spin_unlock_irqrestore(shost->host_lock, flags);
504		blk_run_queue(sdev->request_queue);
505		spin_lock_irqsave(shost->host_lock, flags);
506
507		scsi_device_put(sdev);
508	}
509 out:
510	spin_unlock_irqrestore(shost->host_lock, flags);
511}
512
513/*
514 * Function:	scsi_run_queue()
515 *
516 * Purpose:	Select a proper request queue to serve next
517 *
518 * Arguments:	q	- last request's queue
519 *
520 * Returns:     Nothing
521 *
522 * Notes:	The previous command was completely finished, start
523 *		a new one if possible.
524 */
525static void scsi_run_queue(struct request_queue *q)
526{
527	struct scsi_device *sdev = q->queuedata;
528	struct Scsi_Host *shost = sdev->host;
529	unsigned long flags;
530
531	if (scsi_target(sdev)->single_lun)
532		scsi_single_lun_run(sdev);
533
534	spin_lock_irqsave(shost->host_lock, flags);
535	while (!list_empty(&shost->starved_list) &&
536	       !shost->host_blocked && !shost->host_self_blocked &&
537		!((shost->can_queue > 0) &&
538		  (shost->host_busy >= shost->can_queue))) {
539
540		int flagset;
541
542		/*
543		 * As long as shost is accepting commands and we have
544		 * starved queues, call blk_run_queue. scsi_request_fn
545		 * drops the queue_lock and can add us back to the
546		 * starved_list.
547		 *
548		 * host_lock protects the starved_list and starved_entry.
549		 * scsi_request_fn must get the host_lock before checking
550		 * or modifying starved_list or starved_entry.
551		 */
552		sdev = list_entry(shost->starved_list.next,
553					  struct scsi_device, starved_entry);
554		list_del_init(&sdev->starved_entry);
555		spin_unlock(shost->host_lock);
556
557		spin_lock(sdev->request_queue->queue_lock);
558		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
559				!test_bit(QUEUE_FLAG_REENTER,
560					&sdev->request_queue->queue_flags);
561		if (flagset)
562			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
563		__blk_run_queue(sdev->request_queue);
564		if (flagset)
565			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
566		spin_unlock(sdev->request_queue->queue_lock);
567
568		spin_lock(shost->host_lock);
569		if (unlikely(!list_empty(&sdev->starved_entry)))
570			/*
571			 * sdev lost a race, and was put back on the
572			 * starved list. This is unlikely but without this
573			 * in theory we could loop forever.
574			 */
575			break;
576	}
577	spin_unlock_irqrestore(shost->host_lock, flags);
578
579	blk_run_queue(q);
580}
581
582/*
583 * Function:	scsi_requeue_command()
584 *
585 * Purpose:	Handle post-processing of completed commands.
586 *
587 * Arguments:	q	- queue to operate on
588 *		cmd	- command that may need to be requeued.
589 *
590 * Returns:	Nothing
591 *
592 * Notes:	After command completion, there may be blocks left
593 *		over which weren't finished by the previous command
594 *		this can be for a number of reasons - the main one is
595 *		I/O errors in the middle of the request, in which case
596 *		we need to request the blocks that come after the bad
597 *		sector.
598 * Notes:	Upon return, cmd is a stale pointer.
599 */
600static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
601{
602	struct request *req = cmd->request;
603	unsigned long flags;
604
605	scsi_unprep_request(req);
606	spin_lock_irqsave(q->queue_lock, flags);
607	blk_requeue_request(q, req);
608	spin_unlock_irqrestore(q->queue_lock, flags);
609
610	scsi_run_queue(q);
611}
612
613void scsi_next_command(struct scsi_cmnd *cmd)
614{
615	struct scsi_device *sdev = cmd->device;
616	struct request_queue *q = sdev->request_queue;
617
618	/* need to hold a reference on the device before we let go of the cmd */
619	get_device(&sdev->sdev_gendev);
620
621	scsi_put_command(cmd);
622	scsi_run_queue(q);
623
624	/* ok to remove device now */
625	put_device(&sdev->sdev_gendev);
626}
627
628void scsi_run_host_queues(struct Scsi_Host *shost)
629{
630	struct scsi_device *sdev;
631
632	shost_for_each_device(sdev, shost)
633		scsi_run_queue(sdev->request_queue);
634}
635
636/*
637 * Function:    scsi_end_request()
638 *
639 * Purpose:     Post-processing of completed commands (usually invoked at end
640 *		of upper level post-processing and scsi_io_completion).
641 *
642 * Arguments:   cmd	 - command that is complete.
643 *              error    - 0 if I/O indicates success, < 0 for I/O error.
644 *              bytes    - number of bytes of completed I/O
645 *		requeue  - indicates whether we should requeue leftovers.
646 *
647 * Lock status: Assumed that lock is not held upon entry.
648 *
649 * Returns:     cmd if requeue required, NULL otherwise.
650 *
651 * Notes:       This is called for block device requests in order to
652 *              mark some number of sectors as complete.
653 *
654 *		We are guaranteeing that the request queue will be goosed
655 *		at some point during this call.
656 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
657 */
658static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
659					  int bytes, int requeue)
660{
661	struct request_queue *q = cmd->device->request_queue;
662	struct request *req = cmd->request;
663
664	/*
665	 * If there are blocks left over at the end, set up the command
666	 * to queue the remainder of them.
667	 */
668	if (blk_end_request(req, error, bytes)) {
669		int leftover = (req->hard_nr_sectors << 9);
670
671		if (blk_pc_request(req))
672			leftover = req->data_len;
673
674		/* kill remainder if no retrys */
675		if (error && blk_noretry_request(req))
676			blk_end_request(req, error, leftover);
677		else {
678			if (requeue) {
679				/*
680				 * Bleah.  Leftovers again.  Stick the
681				 * leftovers in the front of the
682				 * queue, and goose the queue again.
683				 */
684				scsi_requeue_command(q, cmd);
685				cmd = NULL;
686			}
687			return cmd;
688		}
689	}
690
691	/*
692	 * This will goose the queue request function at the end, so we don't
693	 * need to worry about launching another command.
694	 */
695	scsi_next_command(cmd);
696	return NULL;
697}
698
699static inline unsigned int scsi_sgtable_index(unsigned short nents)
700{
701	unsigned int index;
702
703	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
704
705	if (nents <= 8)
706		index = 0;
707	else
708		index = get_count_order(nents) - 3;
709
710	return index;
711}
712
713static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
714{
715	struct scsi_host_sg_pool *sgp;
716
717	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
718	mempool_free(sgl, sgp->pool);
719}
720
721static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
722{
723	struct scsi_host_sg_pool *sgp;
724
725	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
726	return mempool_alloc(sgp->pool, gfp_mask);
727}
728
729static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
730			      gfp_t gfp_mask)
731{
732	int ret;
733
734	BUG_ON(!nents);
735
736	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
737			       gfp_mask, scsi_sg_alloc);
738	if (unlikely(ret))
739		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
740				scsi_sg_free);
741
742	return ret;
743}
744
745static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
746{
747	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
748}
749
750/*
751 * Function:    scsi_release_buffers()
752 *
753 * Purpose:     Completion processing for block device I/O requests.
754 *
755 * Arguments:   cmd	- command that we are bailing.
756 *
757 * Lock status: Assumed that no lock is held upon entry.
758 *
759 * Returns:     Nothing
760 *
761 * Notes:       In the event that an upper level driver rejects a
762 *		command, we must release resources allocated during
763 *		the __init_io() function.  Primarily this would involve
764 *		the scatter-gather table, and potentially any bounce
765 *		buffers.
766 */
767void scsi_release_buffers(struct scsi_cmnd *cmd)
768{
769	if (cmd->sdb.table.nents)
770		scsi_free_sgtable(&cmd->sdb);
771
772	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
773
774	if (scsi_bidi_cmnd(cmd)) {
775		struct scsi_data_buffer *bidi_sdb =
776			cmd->request->next_rq->special;
777		scsi_free_sgtable(bidi_sdb);
778		kmem_cache_free(scsi_bidi_sdb_cache, bidi_sdb);
779		cmd->request->next_rq->special = NULL;
780	}
781}
782EXPORT_SYMBOL(scsi_release_buffers);
783
784/*
785 * Bidi commands Must be complete as a whole, both sides at once.
786 * If part of the bytes were written and lld returned
787 * scsi_in()->resid and/or scsi_out()->resid this information will be left
788 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
789 * decide what to do with this information.
790 */
791static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
792{
793	struct request *req = cmd->request;
794	unsigned int dlen = req->data_len;
795	unsigned int next_dlen = req->next_rq->data_len;
796
797	req->data_len = scsi_out(cmd)->resid;
798	req->next_rq->data_len = scsi_in(cmd)->resid;
799
800	/* The req and req->next_rq have not been completed */
801	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
802
803	scsi_release_buffers(cmd);
804
805	/*
806	 * This will goose the queue request function at the end, so we don't
807	 * need to worry about launching another command.
808	 */
809	scsi_next_command(cmd);
810}
811
812/*
813 * Function:    scsi_io_completion()
814 *
815 * Purpose:     Completion processing for block device I/O requests.
816 *
817 * Arguments:   cmd   - command that is finished.
818 *
819 * Lock status: Assumed that no lock is held upon entry.
820 *
821 * Returns:     Nothing
822 *
823 * Notes:       This function is matched in terms of capabilities to
824 *              the function that created the scatter-gather list.
825 *              In other words, if there are no bounce buffers
826 *              (the normal case for most drivers), we don't need
827 *              the logic to deal with cleaning up afterwards.
828 *
829 *		We must do one of several things here:
830 *
831 *		a) Call scsi_end_request.  This will finish off the
832 *		   specified number of sectors.  If we are done, the
833 *		   command block will be released, and the queue
834 *		   function will be goosed.  If we are not done, then
835 *		   scsi_end_request will directly goose the queue.
836 *
837 *		b) We can just use scsi_requeue_command() here.  This would
838 *		   be used if we just wanted to retry, for example.
839 */
840void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
841{
842	int result = cmd->result;
843	int this_count = scsi_bufflen(cmd);
844	struct request_queue *q = cmd->device->request_queue;
845	struct request *req = cmd->request;
846	int error = 0;
847	struct scsi_sense_hdr sshdr;
848	int sense_valid = 0;
849	int sense_deferred = 0;
850
851	if (result) {
852		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
853		if (sense_valid)
854			sense_deferred = scsi_sense_is_deferred(&sshdr);
855	}
856
857	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
858		req->errors = result;
859		if (result) {
860			if (sense_valid && req->sense) {
861				/*
862				 * SG_IO wants current and deferred errors
863				 */
864				int len = 8 + cmd->sense_buffer[7];
865
866				if (len > SCSI_SENSE_BUFFERSIZE)
867					len = SCSI_SENSE_BUFFERSIZE;
868				memcpy(req->sense, cmd->sense_buffer,  len);
869				req->sense_len = len;
870			}
871			if (!sense_deferred)
872				error = -EIO;
873		}
874		if (scsi_bidi_cmnd(cmd)) {
875			/* will also release_buffers */
876			scsi_end_bidi_request(cmd);
877			return;
878		}
879		req->data_len = scsi_get_resid(cmd);
880	}
881
882	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
883	scsi_release_buffers(cmd);
884
885	/*
886	 * Next deal with any sectors which we were able to correctly
887	 * handle.
888	 */
889	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
890				      "%d bytes done.\n",
891				      req->nr_sectors, good_bytes));
892
893	/* A number of bytes were successfully read.  If there
894	 * are leftovers and there is some kind of error
895	 * (result != 0), retry the rest.
896	 */
897	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
898		return;
899
900	/* good_bytes = 0, or (inclusive) there were leftovers and
901	 * result = 0, so scsi_end_request couldn't retry.
902	 */
903	if (sense_valid && !sense_deferred) {
904		switch (sshdr.sense_key) {
905		case UNIT_ATTENTION:
906			if (cmd->device->removable) {
907				/* Detected disc change.  Set a bit
908				 * and quietly refuse further access.
909				 */
910				cmd->device->changed = 1;
911				scsi_end_request(cmd, -EIO, this_count, 1);
912				return;
913			} else {
914				/* Must have been a power glitch, or a
915				 * bus reset.  Could not have been a
916				 * media change, so we just retry the
917				 * request and see what happens.
918				 */
919				scsi_requeue_command(q, cmd);
920				return;
921			}
922			break;
923		case ILLEGAL_REQUEST:
924			/* If we had an ILLEGAL REQUEST returned, then
925			 * we may have performed an unsupported
926			 * command.  The only thing this should be
927			 * would be a ten byte read where only a six
928			 * byte read was supported.  Also, on a system
929			 * where READ CAPACITY failed, we may have
930			 * read past the end of the disk.
931			 */
932			if ((cmd->device->use_10_for_rw &&
933			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
934			    (cmd->cmnd[0] == READ_10 ||
935			     cmd->cmnd[0] == WRITE_10)) {
936				cmd->device->use_10_for_rw = 0;
937				/* This will cause a retry with a
938				 * 6-byte command.
939				 */
940				scsi_requeue_command(q, cmd);
941				return;
942			} else {
943				scsi_end_request(cmd, -EIO, this_count, 1);
944				return;
945			}
946			break;
947		case NOT_READY:
948			/* If the device is in the process of becoming
949			 * ready, or has a temporary blockage, retry.
950			 */
951			if (sshdr.asc == 0x04) {
952				switch (sshdr.ascq) {
953				case 0x01: /* becoming ready */
954				case 0x04: /* format in progress */
955				case 0x05: /* rebuild in progress */
956				case 0x06: /* recalculation in progress */
957				case 0x07: /* operation in progress */
958				case 0x08: /* Long write in progress */
959				case 0x09: /* self test in progress */
960					scsi_requeue_command(q, cmd);
961					return;
962				default:
963					break;
964				}
965			}
966			if (!(req->cmd_flags & REQ_QUIET))
967				scsi_cmd_print_sense_hdr(cmd,
968							 "Device not ready",
969							 &sshdr);
970
971			scsi_end_request(cmd, -EIO, this_count, 1);
972			return;
973		case VOLUME_OVERFLOW:
974			if (!(req->cmd_flags & REQ_QUIET)) {
975				scmd_printk(KERN_INFO, cmd,
976					    "Volume overflow, CDB: ");
977				__scsi_print_command(cmd->cmnd);
978				scsi_print_sense("", cmd);
979			}
980			/* See SSC3rXX or current. */
981			scsi_end_request(cmd, -EIO, this_count, 1);
982			return;
983		default:
984			break;
985		}
986	}
987	if (host_byte(result) == DID_RESET) {
988		/* Third party bus reset or reset for error recovery
989		 * reasons.  Just retry the request and see what
990		 * happens.
991		 */
992		scsi_requeue_command(q, cmd);
993		return;
994	}
995	if (result) {
996		if (!(req->cmd_flags & REQ_QUIET)) {
997			scsi_print_result(cmd);
998			if (driver_byte(result) & DRIVER_SENSE)
999				scsi_print_sense("", cmd);
1000		}
1001	}
1002	scsi_end_request(cmd, -EIO, this_count, !result);
1003}
1004
1005static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1006			     gfp_t gfp_mask)
1007{
1008	int count;
1009
1010	/*
1011	 * If sg table allocation fails, requeue request later.
1012	 */
1013	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1014					gfp_mask))) {
1015		return BLKPREP_DEFER;
1016	}
1017
1018	req->buffer = NULL;
1019
1020	/*
1021	 * Next, walk the list, and fill in the addresses and sizes of
1022	 * each segment.
1023	 */
1024	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1025	BUG_ON(count > sdb->table.nents);
1026	sdb->table.nents = count;
1027	if (blk_pc_request(req))
1028		sdb->length = req->data_len;
1029	else
1030		sdb->length = req->nr_sectors << 9;
1031	return BLKPREP_OK;
1032}
1033
1034/*
1035 * Function:    scsi_init_io()
1036 *
1037 * Purpose:     SCSI I/O initialize function.
1038 *
1039 * Arguments:   cmd   - Command descriptor we wish to initialize
1040 *
1041 * Returns:     0 on success
1042 *		BLKPREP_DEFER if the failure is retryable
1043 *		BLKPREP_KILL if the failure is fatal
1044 */
1045int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1046{
1047	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1048	if (error)
1049		goto err_exit;
1050
1051	if (blk_bidi_rq(cmd->request)) {
1052		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1053			scsi_bidi_sdb_cache, GFP_ATOMIC);
1054		if (!bidi_sdb) {
1055			error = BLKPREP_DEFER;
1056			goto err_exit;
1057		}
1058
1059		cmd->request->next_rq->special = bidi_sdb;
1060		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1061								    GFP_ATOMIC);
1062		if (error)
1063			goto err_exit;
1064	}
1065
1066	return BLKPREP_OK ;
1067
1068err_exit:
1069	scsi_release_buffers(cmd);
1070	if (error == BLKPREP_KILL)
1071		scsi_put_command(cmd);
1072	else /* BLKPREP_DEFER */
1073		scsi_unprep_request(cmd->request);
1074
1075	return error;
1076}
1077EXPORT_SYMBOL(scsi_init_io);
1078
1079static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1080		struct request *req)
1081{
1082	struct scsi_cmnd *cmd;
1083
1084	if (!req->special) {
1085		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1086		if (unlikely(!cmd))
1087			return NULL;
1088		req->special = cmd;
1089	} else {
1090		cmd = req->special;
1091	}
1092
1093	/* pull a tag out of the request if we have one */
1094	cmd->tag = req->tag;
1095	cmd->request = req;
1096
1097	cmd->cmnd = req->cmd;
1098
1099	return cmd;
1100}
1101
1102int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1103{
1104	struct scsi_cmnd *cmd;
1105	int ret = scsi_prep_state_check(sdev, req);
1106
1107	if (ret != BLKPREP_OK)
1108		return ret;
1109
1110	cmd = scsi_get_cmd_from_req(sdev, req);
1111	if (unlikely(!cmd))
1112		return BLKPREP_DEFER;
1113
1114	/*
1115	 * BLOCK_PC requests may transfer data, in which case they must
1116	 * a bio attached to them.  Or they might contain a SCSI command
1117	 * that does not transfer data, in which case they may optionally
1118	 * submit a request without an attached bio.
1119	 */
1120	if (req->bio) {
1121		int ret;
1122
1123		BUG_ON(!req->nr_phys_segments);
1124
1125		ret = scsi_init_io(cmd, GFP_ATOMIC);
1126		if (unlikely(ret))
1127			return ret;
1128	} else {
1129		BUG_ON(req->data_len);
1130		BUG_ON(req->data);
1131
1132		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1133		req->buffer = NULL;
1134	}
1135
1136	cmd->cmd_len = req->cmd_len;
1137	if (!req->data_len)
1138		cmd->sc_data_direction = DMA_NONE;
1139	else if (rq_data_dir(req) == WRITE)
1140		cmd->sc_data_direction = DMA_TO_DEVICE;
1141	else
1142		cmd->sc_data_direction = DMA_FROM_DEVICE;
1143
1144	cmd->transfersize = req->data_len;
1145	cmd->allowed = req->retries;
1146	cmd->timeout_per_command = req->timeout;
1147	return BLKPREP_OK;
1148}
1149EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1150
1151/*
1152 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1153 * from filesystems that still need to be translated to SCSI CDBs from
1154 * the ULD.
1155 */
1156int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1157{
1158	struct scsi_cmnd *cmd;
1159	int ret = scsi_prep_state_check(sdev, req);
1160
1161	if (ret != BLKPREP_OK)
1162		return ret;
1163	/*
1164	 * Filesystem requests must transfer data.
1165	 */
1166	BUG_ON(!req->nr_phys_segments);
1167
1168	cmd = scsi_get_cmd_from_req(sdev, req);
1169	if (unlikely(!cmd))
1170		return BLKPREP_DEFER;
1171
1172	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1173	return scsi_init_io(cmd, GFP_ATOMIC);
1174}
1175EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1176
1177int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1178{
1179	int ret = BLKPREP_OK;
1180
1181	/*
1182	 * If the device is not in running state we will reject some
1183	 * or all commands.
1184	 */
1185	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1186		switch (sdev->sdev_state) {
1187		case SDEV_OFFLINE:
1188			/*
1189			 * If the device is offline we refuse to process any
1190			 * commands.  The device must be brought online
1191			 * before trying any recovery commands.
1192			 */
1193			sdev_printk(KERN_ERR, sdev,
1194				    "rejecting I/O to offline device\n");
1195			ret = BLKPREP_KILL;
1196			break;
1197		case SDEV_DEL:
1198			/*
1199			 * If the device is fully deleted, we refuse to
1200			 * process any commands as well.
1201			 */
1202			sdev_printk(KERN_ERR, sdev,
1203				    "rejecting I/O to dead device\n");
1204			ret = BLKPREP_KILL;
1205			break;
1206		case SDEV_QUIESCE:
1207		case SDEV_BLOCK:
1208			/*
1209			 * If the devices is blocked we defer normal commands.
1210			 */
1211			if (!(req->cmd_flags & REQ_PREEMPT))
1212				ret = BLKPREP_DEFER;
1213			break;
1214		default:
1215			/*
1216			 * For any other not fully online state we only allow
1217			 * special commands.  In particular any user initiated
1218			 * command is not allowed.
1219			 */
1220			if (!(req->cmd_flags & REQ_PREEMPT))
1221				ret = BLKPREP_KILL;
1222			break;
1223		}
1224	}
1225	return ret;
1226}
1227EXPORT_SYMBOL(scsi_prep_state_check);
1228
1229int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1230{
1231	struct scsi_device *sdev = q->queuedata;
1232
1233	switch (ret) {
1234	case BLKPREP_KILL:
1235		req->errors = DID_NO_CONNECT << 16;
1236		/* release the command and kill it */
1237		if (req->special) {
1238			struct scsi_cmnd *cmd = req->special;
1239			scsi_release_buffers(cmd);
1240			scsi_put_command(cmd);
1241			req->special = NULL;
1242		}
1243		break;
1244	case BLKPREP_DEFER:
1245		/*
1246		 * If we defer, the elv_next_request() returns NULL, but the
1247		 * queue must be restarted, so we plug here if no returning
1248		 * command will automatically do that.
1249		 */
1250		if (sdev->device_busy == 0)
1251			blk_plug_device(q);
1252		break;
1253	default:
1254		req->cmd_flags |= REQ_DONTPREP;
1255	}
1256
1257	return ret;
1258}
1259EXPORT_SYMBOL(scsi_prep_return);
1260
1261int scsi_prep_fn(struct request_queue *q, struct request *req)
1262{
1263	struct scsi_device *sdev = q->queuedata;
1264	int ret = BLKPREP_KILL;
1265
1266	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1267		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1268	return scsi_prep_return(q, req, ret);
1269}
1270
1271/*
1272 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1273 * return 0.
1274 *
1275 * Called with the queue_lock held.
1276 */
1277static inline int scsi_dev_queue_ready(struct request_queue *q,
1278				  struct scsi_device *sdev)
1279{
1280	if (sdev->device_busy >= sdev->queue_depth)
1281		return 0;
1282	if (sdev->device_busy == 0 && sdev->device_blocked) {
1283		/*
1284		 * unblock after device_blocked iterates to zero
1285		 */
1286		if (--sdev->device_blocked == 0) {
1287			SCSI_LOG_MLQUEUE(3,
1288				   sdev_printk(KERN_INFO, sdev,
1289				   "unblocking device at zero depth\n"));
1290		} else {
1291			blk_plug_device(q);
1292			return 0;
1293		}
1294	}
1295	if (sdev->device_blocked)
1296		return 0;
1297
1298	return 1;
1299}
1300
1301/*
1302 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1303 * return 0. We must end up running the queue again whenever 0 is
1304 * returned, else IO can hang.
1305 *
1306 * Called with host_lock held.
1307 */
1308static inline int scsi_host_queue_ready(struct request_queue *q,
1309				   struct Scsi_Host *shost,
1310				   struct scsi_device *sdev)
1311{
1312	if (scsi_host_in_recovery(shost))
1313		return 0;
1314	if (shost->host_busy == 0 && shost->host_blocked) {
1315		/*
1316		 * unblock after host_blocked iterates to zero
1317		 */
1318		if (--shost->host_blocked == 0) {
1319			SCSI_LOG_MLQUEUE(3,
1320				printk("scsi%d unblocking host at zero depth\n",
1321					shost->host_no));
1322		} else {
1323			blk_plug_device(q);
1324			return 0;
1325		}
1326	}
1327	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1328	    shost->host_blocked || shost->host_self_blocked) {
1329		if (list_empty(&sdev->starved_entry))
1330			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1331		return 0;
1332	}
1333
1334	/* We're OK to process the command, so we can't be starved */
1335	if (!list_empty(&sdev->starved_entry))
1336		list_del_init(&sdev->starved_entry);
1337
1338	return 1;
1339}
1340
1341/*
1342 * Kill a request for a dead device
1343 */
1344static void scsi_kill_request(struct request *req, struct request_queue *q)
1345{
1346	struct scsi_cmnd *cmd = req->special;
1347	struct scsi_device *sdev = cmd->device;
1348	struct Scsi_Host *shost = sdev->host;
1349
1350	blkdev_dequeue_request(req);
1351
1352	if (unlikely(cmd == NULL)) {
1353		printk(KERN_CRIT "impossible request in %s.\n",
1354				 __FUNCTION__);
1355		BUG();
1356	}
1357
1358	scsi_init_cmd_errh(cmd);
1359	cmd->result = DID_NO_CONNECT << 16;
1360	atomic_inc(&cmd->device->iorequest_cnt);
1361
1362	/*
1363	 * SCSI request completion path will do scsi_device_unbusy(),
1364	 * bump busy counts.  To bump the counters, we need to dance
1365	 * with the locks as normal issue path does.
1366	 */
1367	sdev->device_busy++;
1368	spin_unlock(sdev->request_queue->queue_lock);
1369	spin_lock(shost->host_lock);
1370	shost->host_busy++;
1371	spin_unlock(shost->host_lock);
1372	spin_lock(sdev->request_queue->queue_lock);
1373
1374	__scsi_done(cmd);
1375}
1376
1377static void scsi_softirq_done(struct request *rq)
1378{
1379	struct scsi_cmnd *cmd = rq->completion_data;
1380	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1381	int disposition;
1382
1383	INIT_LIST_HEAD(&cmd->eh_entry);
1384
1385	disposition = scsi_decide_disposition(cmd);
1386	if (disposition != SUCCESS &&
1387	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1388		sdev_printk(KERN_ERR, cmd->device,
1389			    "timing out command, waited %lus\n",
1390			    wait_for/HZ);
1391		disposition = SUCCESS;
1392	}
1393
1394	scsi_log_completion(cmd, disposition);
1395
1396	switch (disposition) {
1397		case SUCCESS:
1398			scsi_finish_command(cmd);
1399			break;
1400		case NEEDS_RETRY:
1401			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1402			break;
1403		case ADD_TO_MLQUEUE:
1404			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1405			break;
1406		default:
1407			if (!scsi_eh_scmd_add(cmd, 0))
1408				scsi_finish_command(cmd);
1409	}
1410}
1411
1412/*
1413 * Function:    scsi_request_fn()
1414 *
1415 * Purpose:     Main strategy routine for SCSI.
1416 *
1417 * Arguments:   q       - Pointer to actual queue.
1418 *
1419 * Returns:     Nothing
1420 *
1421 * Lock status: IO request lock assumed to be held when called.
1422 */
1423static void scsi_request_fn(struct request_queue *q)
1424{
1425	struct scsi_device *sdev = q->queuedata;
1426	struct Scsi_Host *shost;
1427	struct scsi_cmnd *cmd;
1428	struct request *req;
1429
1430	if (!sdev) {
1431		printk("scsi: killing requests for dead queue\n");
1432		while ((req = elv_next_request(q)) != NULL)
1433			scsi_kill_request(req, q);
1434		return;
1435	}
1436
1437	if(!get_device(&sdev->sdev_gendev))
1438		/* We must be tearing the block queue down already */
1439		return;
1440
1441	/*
1442	 * To start with, we keep looping until the queue is empty, or until
1443	 * the host is no longer able to accept any more requests.
1444	 */
1445	shost = sdev->host;
1446	while (!blk_queue_plugged(q)) {
1447		int rtn;
1448		/*
1449		 * get next queueable request.  We do this early to make sure
1450		 * that the request is fully prepared even if we cannot
1451		 * accept it.
1452		 */
1453		req = elv_next_request(q);
1454		if (!req || !scsi_dev_queue_ready(q, sdev))
1455			break;
1456
1457		if (unlikely(!scsi_device_online(sdev))) {
1458			sdev_printk(KERN_ERR, sdev,
1459				    "rejecting I/O to offline device\n");
1460			scsi_kill_request(req, q);
1461			continue;
1462		}
1463
1464
1465		/*
1466		 * Remove the request from the request list.
1467		 */
1468		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1469			blkdev_dequeue_request(req);
1470		sdev->device_busy++;
1471
1472		spin_unlock(q->queue_lock);
1473		cmd = req->special;
1474		if (unlikely(cmd == NULL)) {
1475			printk(KERN_CRIT "impossible request in %s.\n"
1476					 "please mail a stack trace to "
1477					 "linux-scsi@vger.kernel.org\n",
1478					 __FUNCTION__);
1479			blk_dump_rq_flags(req, "foo");
1480			BUG();
1481		}
1482		spin_lock(shost->host_lock);
1483
1484		if (!scsi_host_queue_ready(q, shost, sdev))
1485			goto not_ready;
1486		if (scsi_target(sdev)->single_lun) {
1487			if (scsi_target(sdev)->starget_sdev_user &&
1488			    scsi_target(sdev)->starget_sdev_user != sdev)
1489				goto not_ready;
1490			scsi_target(sdev)->starget_sdev_user = sdev;
1491		}
1492		shost->host_busy++;
1493
1494		/*
1495		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1496		 *		take the lock again.
1497		 */
1498		spin_unlock_irq(shost->host_lock);
1499
1500		/*
1501		 * Finally, initialize any error handling parameters, and set up
1502		 * the timers for timeouts.
1503		 */
1504		scsi_init_cmd_errh(cmd);
1505
1506		/*
1507		 * Dispatch the command to the low-level driver.
1508		 */
1509		rtn = scsi_dispatch_cmd(cmd);
1510		spin_lock_irq(q->queue_lock);
1511		if(rtn) {
1512			/* we're refusing the command; because of
1513			 * the way locks get dropped, we need to
1514			 * check here if plugging is required */
1515			if(sdev->device_busy == 0)
1516				blk_plug_device(q);
1517
1518			break;
1519		}
1520	}
1521
1522	goto out;
1523
1524 not_ready:
1525	spin_unlock_irq(shost->host_lock);
1526
1527	/*
1528	 * lock q, handle tag, requeue req, and decrement device_busy. We
1529	 * must return with queue_lock held.
1530	 *
1531	 * Decrementing device_busy without checking it is OK, as all such
1532	 * cases (host limits or settings) should run the queue at some
1533	 * later time.
1534	 */
1535	spin_lock_irq(q->queue_lock);
1536	blk_requeue_request(q, req);
1537	sdev->device_busy--;
1538	if(sdev->device_busy == 0)
1539		blk_plug_device(q);
1540 out:
1541	/* must be careful here...if we trigger the ->remove() function
1542	 * we cannot be holding the q lock */
1543	spin_unlock_irq(q->queue_lock);
1544	put_device(&sdev->sdev_gendev);
1545	spin_lock_irq(q->queue_lock);
1546}
1547
1548u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1549{
1550	struct device *host_dev;
1551	u64 bounce_limit = 0xffffffff;
1552
1553	if (shost->unchecked_isa_dma)
1554		return BLK_BOUNCE_ISA;
1555	/*
1556	 * Platforms with virtual-DMA translation
1557	 * hardware have no practical limit.
1558	 */
1559	if (!PCI_DMA_BUS_IS_PHYS)
1560		return BLK_BOUNCE_ANY;
1561
1562	host_dev = scsi_get_device(shost);
1563	if (host_dev && host_dev->dma_mask)
1564		bounce_limit = *host_dev->dma_mask;
1565
1566	return bounce_limit;
1567}
1568EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1569
1570struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1571					 request_fn_proc *request_fn)
1572{
1573	struct request_queue *q;
1574	struct device *dev = shost->shost_gendev.parent;
1575
1576	q = blk_init_queue(request_fn, NULL);
1577	if (!q)
1578		return NULL;
1579
1580	/*
1581	 * this limit is imposed by hardware restrictions
1582	 */
1583	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1584	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1585
1586	blk_queue_max_sectors(q, shost->max_sectors);
1587	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1588	blk_queue_segment_boundary(q, shost->dma_boundary);
1589	dma_set_seg_boundary(dev, shost->dma_boundary);
1590
1591	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1592
1593	/* New queue, no concurrency on queue_flags */
1594	if (!shost->use_clustering)
1595		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1596
1597	/*
1598	 * set a reasonable default alignment on word boundaries: the
1599	 * host and device may alter it using
1600	 * blk_queue_update_dma_alignment() later.
1601	 */
1602	blk_queue_dma_alignment(q, 0x03);
1603
1604	return q;
1605}
1606EXPORT_SYMBOL(__scsi_alloc_queue);
1607
1608struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1609{
1610	struct request_queue *q;
1611
1612	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1613	if (!q)
1614		return NULL;
1615
1616	blk_queue_prep_rq(q, scsi_prep_fn);
1617	blk_queue_softirq_done(q, scsi_softirq_done);
1618	return q;
1619}
1620
1621void scsi_free_queue(struct request_queue *q)
1622{
1623	blk_cleanup_queue(q);
1624}
1625
1626/*
1627 * Function:    scsi_block_requests()
1628 *
1629 * Purpose:     Utility function used by low-level drivers to prevent further
1630 *		commands from being queued to the device.
1631 *
1632 * Arguments:   shost       - Host in question
1633 *
1634 * Returns:     Nothing
1635 *
1636 * Lock status: No locks are assumed held.
1637 *
1638 * Notes:       There is no timer nor any other means by which the requests
1639 *		get unblocked other than the low-level driver calling
1640 *		scsi_unblock_requests().
1641 */
1642void scsi_block_requests(struct Scsi_Host *shost)
1643{
1644	shost->host_self_blocked = 1;
1645}
1646EXPORT_SYMBOL(scsi_block_requests);
1647
1648/*
1649 * Function:    scsi_unblock_requests()
1650 *
1651 * Purpose:     Utility function used by low-level drivers to allow further
1652 *		commands from being queued to the device.
1653 *
1654 * Arguments:   shost       - Host in question
1655 *
1656 * Returns:     Nothing
1657 *
1658 * Lock status: No locks are assumed held.
1659 *
1660 * Notes:       There is no timer nor any other means by which the requests
1661 *		get unblocked other than the low-level driver calling
1662 *		scsi_unblock_requests().
1663 *
1664 *		This is done as an API function so that changes to the
1665 *		internals of the scsi mid-layer won't require wholesale
1666 *		changes to drivers that use this feature.
1667 */
1668void scsi_unblock_requests(struct Scsi_Host *shost)
1669{
1670	shost->host_self_blocked = 0;
1671	scsi_run_host_queues(shost);
1672}
1673EXPORT_SYMBOL(scsi_unblock_requests);
1674
1675int __init scsi_init_queue(void)
1676{
1677	int i;
1678
1679	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1680					sizeof(struct scsi_io_context),
1681					0, 0, NULL);
1682	if (!scsi_io_context_cache) {
1683		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1684		return -ENOMEM;
1685	}
1686
1687	scsi_bidi_sdb_cache = kmem_cache_create("scsi_bidi_sdb",
1688					sizeof(struct scsi_data_buffer),
1689					0, 0, NULL);
1690	if (!scsi_bidi_sdb_cache) {
1691		printk(KERN_ERR "SCSI: can't init scsi bidi sdb cache\n");
1692		goto cleanup_io_context;
1693	}
1694
1695	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1696		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1697		int size = sgp->size * sizeof(struct scatterlist);
1698
1699		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1700				SLAB_HWCACHE_ALIGN, NULL);
1701		if (!sgp->slab) {
1702			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1703					sgp->name);
1704			goto cleanup_bidi_sdb;
1705		}
1706
1707		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1708						     sgp->slab);
1709		if (!sgp->pool) {
1710			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1711					sgp->name);
1712			goto cleanup_bidi_sdb;
1713		}
1714	}
1715
1716	return 0;
1717
1718cleanup_bidi_sdb:
1719	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1720		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1721		if (sgp->pool)
1722			mempool_destroy(sgp->pool);
1723		if (sgp->slab)
1724			kmem_cache_destroy(sgp->slab);
1725	}
1726	kmem_cache_destroy(scsi_bidi_sdb_cache);
1727cleanup_io_context:
1728	kmem_cache_destroy(scsi_io_context_cache);
1729
1730	return -ENOMEM;
1731}
1732
1733void scsi_exit_queue(void)
1734{
1735	int i;
1736
1737	kmem_cache_destroy(scsi_io_context_cache);
1738	kmem_cache_destroy(scsi_bidi_sdb_cache);
1739
1740	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1741		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1742		mempool_destroy(sgp->pool);
1743		kmem_cache_destroy(sgp->slab);
1744	}
1745}
1746
1747/**
1748 *	scsi_mode_select - issue a mode select
1749 *	@sdev:	SCSI device to be queried
1750 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1751 *	@sp:	Save page bit (0 == don't save, 1 == save)
1752 *	@modepage: mode page being requested
1753 *	@buffer: request buffer (may not be smaller than eight bytes)
1754 *	@len:	length of request buffer.
1755 *	@timeout: command timeout
1756 *	@retries: number of retries before failing
1757 *	@data: returns a structure abstracting the mode header data
1758 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1759 *		must be SCSI_SENSE_BUFFERSIZE big.
1760 *
1761 *	Returns zero if successful; negative error number or scsi
1762 *	status on error
1763 *
1764 */
1765int
1766scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1767		 unsigned char *buffer, int len, int timeout, int retries,
1768		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1769{
1770	unsigned char cmd[10];
1771	unsigned char *real_buffer;
1772	int ret;
1773
1774	memset(cmd, 0, sizeof(cmd));
1775	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1776
1777	if (sdev->use_10_for_ms) {
1778		if (len > 65535)
1779			return -EINVAL;
1780		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1781		if (!real_buffer)
1782			return -ENOMEM;
1783		memcpy(real_buffer + 8, buffer, len);
1784		len += 8;
1785		real_buffer[0] = 0;
1786		real_buffer[1] = 0;
1787		real_buffer[2] = data->medium_type;
1788		real_buffer[3] = data->device_specific;
1789		real_buffer[4] = data->longlba ? 0x01 : 0;
1790		real_buffer[5] = 0;
1791		real_buffer[6] = data->block_descriptor_length >> 8;
1792		real_buffer[7] = data->block_descriptor_length;
1793
1794		cmd[0] = MODE_SELECT_10;
1795		cmd[7] = len >> 8;
1796		cmd[8] = len;
1797	} else {
1798		if (len > 255 || data->block_descriptor_length > 255 ||
1799		    data->longlba)
1800			return -EINVAL;
1801
1802		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1803		if (!real_buffer)
1804			return -ENOMEM;
1805		memcpy(real_buffer + 4, buffer, len);
1806		len += 4;
1807		real_buffer[0] = 0;
1808		real_buffer[1] = data->medium_type;
1809		real_buffer[2] = data->device_specific;
1810		real_buffer[3] = data->block_descriptor_length;
1811
1812
1813		cmd[0] = MODE_SELECT;
1814		cmd[4] = len;
1815	}
1816
1817	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1818			       sshdr, timeout, retries);
1819	kfree(real_buffer);
1820	return ret;
1821}
1822EXPORT_SYMBOL_GPL(scsi_mode_select);
1823
1824/**
1825 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1826 *	@sdev:	SCSI device to be queried
1827 *	@dbd:	set if mode sense will allow block descriptors to be returned
1828 *	@modepage: mode page being requested
1829 *	@buffer: request buffer (may not be smaller than eight bytes)
1830 *	@len:	length of request buffer.
1831 *	@timeout: command timeout
1832 *	@retries: number of retries before failing
1833 *	@data: returns a structure abstracting the mode header data
1834 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1835 *		must be SCSI_SENSE_BUFFERSIZE big.
1836 *
1837 *	Returns zero if unsuccessful, or the header offset (either 4
1838 *	or 8 depending on whether a six or ten byte command was
1839 *	issued) if successful.
1840 */
1841int
1842scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1843		  unsigned char *buffer, int len, int timeout, int retries,
1844		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1845{
1846	unsigned char cmd[12];
1847	int use_10_for_ms;
1848	int header_length;
1849	int result;
1850	struct scsi_sense_hdr my_sshdr;
1851
1852	memset(data, 0, sizeof(*data));
1853	memset(&cmd[0], 0, 12);
1854	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1855	cmd[2] = modepage;
1856
1857	/* caller might not be interested in sense, but we need it */
1858	if (!sshdr)
1859		sshdr = &my_sshdr;
1860
1861 retry:
1862	use_10_for_ms = sdev->use_10_for_ms;
1863
1864	if (use_10_for_ms) {
1865		if (len < 8)
1866			len = 8;
1867
1868		cmd[0] = MODE_SENSE_10;
1869		cmd[8] = len;
1870		header_length = 8;
1871	} else {
1872		if (len < 4)
1873			len = 4;
1874
1875		cmd[0] = MODE_SENSE;
1876		cmd[4] = len;
1877		header_length = 4;
1878	}
1879
1880	memset(buffer, 0, len);
1881
1882	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1883				  sshdr, timeout, retries);
1884
1885	/* This code looks awful: what it's doing is making sure an
1886	 * ILLEGAL REQUEST sense return identifies the actual command
1887	 * byte as the problem.  MODE_SENSE commands can return
1888	 * ILLEGAL REQUEST if the code page isn't supported */
1889
1890	if (use_10_for_ms && !scsi_status_is_good(result) &&
1891	    (driver_byte(result) & DRIVER_SENSE)) {
1892		if (scsi_sense_valid(sshdr)) {
1893			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1894			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1895				/*
1896				 * Invalid command operation code
1897				 */
1898				sdev->use_10_for_ms = 0;
1899				goto retry;
1900			}
1901		}
1902	}
1903
1904	if(scsi_status_is_good(result)) {
1905		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1906			     (modepage == 6 || modepage == 8))) {
1907			/* Initio breakage? */
1908			header_length = 0;
1909			data->length = 13;
1910			data->medium_type = 0;
1911			data->device_specific = 0;
1912			data->longlba = 0;
1913			data->block_descriptor_length = 0;
1914		} else if(use_10_for_ms) {
1915			data->length = buffer[0]*256 + buffer[1] + 2;
1916			data->medium_type = buffer[2];
1917			data->device_specific = buffer[3];
1918			data->longlba = buffer[4] & 0x01;
1919			data->block_descriptor_length = buffer[6]*256
1920				+ buffer[7];
1921		} else {
1922			data->length = buffer[0] + 1;
1923			data->medium_type = buffer[1];
1924			data->device_specific = buffer[2];
1925			data->block_descriptor_length = buffer[3];
1926		}
1927		data->header_length = header_length;
1928	}
1929
1930	return result;
1931}
1932EXPORT_SYMBOL(scsi_mode_sense);
1933
1934/**
1935 *	scsi_test_unit_ready - test if unit is ready
1936 *	@sdev:	scsi device to change the state of.
1937 *	@timeout: command timeout
1938 *	@retries: number of retries before failing
1939 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1940 *		returning sense. Make sure that this is cleared before passing
1941 *		in.
1942 *
1943 *	Returns zero if unsuccessful or an error if TUR failed.  For
1944 *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1945 *	translated to success, with the ->changed flag updated.
1946 **/
1947int
1948scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1949		     struct scsi_sense_hdr *sshdr_external)
1950{
1951	char cmd[] = {
1952		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1953	};
1954	struct scsi_sense_hdr *sshdr;
1955	int result;
1956
1957	if (!sshdr_external)
1958		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1959	else
1960		sshdr = sshdr_external;
1961
1962	/* try to eat the UNIT_ATTENTION if there are enough retries */
1963	do {
1964		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1965					  timeout, retries);
1966	} while ((driver_byte(result) & DRIVER_SENSE) &&
1967		 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1968		 --retries);
1969
1970	if (!sshdr)
1971		/* could not allocate sense buffer, so can't process it */
1972		return result;
1973
1974	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1975
1976		if ((scsi_sense_valid(sshdr)) &&
1977		    ((sshdr->sense_key == UNIT_ATTENTION) ||
1978		     (sshdr->sense_key == NOT_READY))) {
1979			sdev->changed = 1;
1980			result = 0;
1981		}
1982	}
1983	if (!sshdr_external)
1984		kfree(sshdr);
1985	return result;
1986}
1987EXPORT_SYMBOL(scsi_test_unit_ready);
1988
1989/**
1990 *	scsi_device_set_state - Take the given device through the device state model.
1991 *	@sdev:	scsi device to change the state of.
1992 *	@state:	state to change to.
1993 *
1994 *	Returns zero if unsuccessful or an error if the requested
1995 *	transition is illegal.
1996 */
1997int
1998scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1999{
2000	enum scsi_device_state oldstate = sdev->sdev_state;
2001
2002	if (state == oldstate)
2003		return 0;
2004
2005	switch (state) {
2006	case SDEV_CREATED:
2007		/* There are no legal states that come back to
2008		 * created.  This is the manually initialised start
2009		 * state */
2010		goto illegal;
2011
2012	case SDEV_RUNNING:
2013		switch (oldstate) {
2014		case SDEV_CREATED:
2015		case SDEV_OFFLINE:
2016		case SDEV_QUIESCE:
2017		case SDEV_BLOCK:
2018			break;
2019		default:
2020			goto illegal;
2021		}
2022		break;
2023
2024	case SDEV_QUIESCE:
2025		switch (oldstate) {
2026		case SDEV_RUNNING:
2027		case SDEV_OFFLINE:
2028			break;
2029		default:
2030			goto illegal;
2031		}
2032		break;
2033
2034	case SDEV_OFFLINE:
2035		switch (oldstate) {
2036		case SDEV_CREATED:
2037		case SDEV_RUNNING:
2038		case SDEV_QUIESCE:
2039		case SDEV_BLOCK:
2040			break;
2041		default:
2042			goto illegal;
2043		}
2044		break;
2045
2046	case SDEV_BLOCK:
2047		switch (oldstate) {
2048		case SDEV_CREATED:
2049		case SDEV_RUNNING:
2050			break;
2051		default:
2052			goto illegal;
2053		}
2054		break;
2055
2056	case SDEV_CANCEL:
2057		switch (oldstate) {
2058		case SDEV_CREATED:
2059		case SDEV_RUNNING:
2060		case SDEV_QUIESCE:
2061		case SDEV_OFFLINE:
2062		case SDEV_BLOCK:
2063			break;
2064		default:
2065			goto illegal;
2066		}
2067		break;
2068
2069	case SDEV_DEL:
2070		switch (oldstate) {
2071		case SDEV_CREATED:
2072		case SDEV_RUNNING:
2073		case SDEV_OFFLINE:
2074		case SDEV_CANCEL:
2075			break;
2076		default:
2077			goto illegal;
2078		}
2079		break;
2080
2081	}
2082	sdev->sdev_state = state;
2083	return 0;
2084
2085 illegal:
2086	SCSI_LOG_ERROR_RECOVERY(1,
2087				sdev_printk(KERN_ERR, sdev,
2088					    "Illegal state transition %s->%s\n",
2089					    scsi_device_state_name(oldstate),
2090					    scsi_device_state_name(state))
2091				);
2092	return -EINVAL;
2093}
2094EXPORT_SYMBOL(scsi_device_set_state);
2095
2096/**
2097 * 	sdev_evt_emit - emit a single SCSI device uevent
2098 *	@sdev: associated SCSI device
2099 *	@evt: event to emit
2100 *
2101 *	Send a single uevent (scsi_event) to the associated scsi_device.
2102 */
2103static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2104{
2105	int idx = 0;
2106	char *envp[3];
2107
2108	switch (evt->evt_type) {
2109	case SDEV_EVT_MEDIA_CHANGE:
2110		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2111		break;
2112
2113	default:
2114		/* do nothing */
2115		break;
2116	}
2117
2118	envp[idx++] = NULL;
2119
2120	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2121}
2122
2123/**
2124 * 	sdev_evt_thread - send a uevent for each scsi event
2125 *	@work: work struct for scsi_device
2126 *
2127 *	Dispatch queued events to their associated scsi_device kobjects
2128 *	as uevents.
2129 */
2130void scsi_evt_thread(struct work_struct *work)
2131{
2132	struct scsi_device *sdev;
2133	LIST_HEAD(event_list);
2134
2135	sdev = container_of(work, struct scsi_device, event_work);
2136
2137	while (1) {
2138		struct scsi_event *evt;
2139		struct list_head *this, *tmp;
2140		unsigned long flags;
2141
2142		spin_lock_irqsave(&sdev->list_lock, flags);
2143		list_splice_init(&sdev->event_list, &event_list);
2144		spin_unlock_irqrestore(&sdev->list_lock, flags);
2145
2146		if (list_empty(&event_list))
2147			break;
2148
2149		list_for_each_safe(this, tmp, &event_list) {
2150			evt = list_entry(this, struct scsi_event, node);
2151			list_del(&evt->node);
2152			scsi_evt_emit(sdev, evt);
2153			kfree(evt);
2154		}
2155	}
2156}
2157
2158/**
2159 * 	sdev_evt_send - send asserted event to uevent thread
2160 *	@sdev: scsi_device event occurred on
2161 *	@evt: event to send
2162 *
2163 *	Assert scsi device event asynchronously.
2164 */
2165void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2166{
2167	unsigned long flags;
2168
2169#if 0
2170	/* FIXME: currently this check eliminates all media change events
2171	 * for polled devices.  Need to update to discriminate between AN
2172	 * and polled events */
2173	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2174		kfree(evt);
2175		return;
2176	}
2177#endif
2178
2179	spin_lock_irqsave(&sdev->list_lock, flags);
2180	list_add_tail(&evt->node, &sdev->event_list);
2181	schedule_work(&sdev->event_work);
2182	spin_unlock_irqrestore(&sdev->list_lock, flags);
2183}
2184EXPORT_SYMBOL_GPL(sdev_evt_send);
2185
2186/**
2187 * 	sdev_evt_alloc - allocate a new scsi event
2188 *	@evt_type: type of event to allocate
2189 *	@gfpflags: GFP flags for allocation
2190 *
2191 *	Allocates and returns a new scsi_event.
2192 */
2193struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2194				  gfp_t gfpflags)
2195{
2196	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2197	if (!evt)
2198		return NULL;
2199
2200	evt->evt_type = evt_type;
2201	INIT_LIST_HEAD(&evt->node);
2202
2203	/* evt_type-specific initialization, if any */
2204	switch (evt_type) {
2205	case SDEV_EVT_MEDIA_CHANGE:
2206	default:
2207		/* do nothing */
2208		break;
2209	}
2210
2211	return evt;
2212}
2213EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2214
2215/**
2216 * 	sdev_evt_send_simple - send asserted event to uevent thread
2217 *	@sdev: scsi_device event occurred on
2218 *	@evt_type: type of event to send
2219 *	@gfpflags: GFP flags for allocation
2220 *
2221 *	Assert scsi device event asynchronously, given an event type.
2222 */
2223void sdev_evt_send_simple(struct scsi_device *sdev,
2224			  enum scsi_device_event evt_type, gfp_t gfpflags)
2225{
2226	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2227	if (!evt) {
2228		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2229			    evt_type);
2230		return;
2231	}
2232
2233	sdev_evt_send(sdev, evt);
2234}
2235EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2236
2237/**
2238 *	scsi_device_quiesce - Block user issued commands.
2239 *	@sdev:	scsi device to quiesce.
2240 *
2241 *	This works by trying to transition to the SDEV_QUIESCE state
2242 *	(which must be a legal transition).  When the device is in this
2243 *	state, only special requests will be accepted, all others will
2244 *	be deferred.  Since special requests may also be requeued requests,
2245 *	a successful return doesn't guarantee the device will be
2246 *	totally quiescent.
2247 *
2248 *	Must be called with user context, may sleep.
2249 *
2250 *	Returns zero if unsuccessful or an error if not.
2251 */
2252int
2253scsi_device_quiesce(struct scsi_device *sdev)
2254{
2255	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2256	if (err)
2257		return err;
2258
2259	scsi_run_queue(sdev->request_queue);
2260	while (sdev->device_busy) {
2261		msleep_interruptible(200);
2262		scsi_run_queue(sdev->request_queue);
2263	}
2264	return 0;
2265}
2266EXPORT_SYMBOL(scsi_device_quiesce);
2267
2268/**
2269 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2270 *	@sdev:	scsi device to resume.
2271 *
2272 *	Moves the device from quiesced back to running and restarts the
2273 *	queues.
2274 *
2275 *	Must be called with user context, may sleep.
2276 */
2277void
2278scsi_device_resume(struct scsi_device *sdev)
2279{
2280	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2281		return;
2282	scsi_run_queue(sdev->request_queue);
2283}
2284EXPORT_SYMBOL(scsi_device_resume);
2285
2286static void
2287device_quiesce_fn(struct scsi_device *sdev, void *data)
2288{
2289	scsi_device_quiesce(sdev);
2290}
2291
2292void
2293scsi_target_quiesce(struct scsi_target *starget)
2294{
2295	starget_for_each_device(starget, NULL, device_quiesce_fn);
2296}
2297EXPORT_SYMBOL(scsi_target_quiesce);
2298
2299static void
2300device_resume_fn(struct scsi_device *sdev, void *data)
2301{
2302	scsi_device_resume(sdev);
2303}
2304
2305void
2306scsi_target_resume(struct scsi_target *starget)
2307{
2308	starget_for_each_device(starget, NULL, device_resume_fn);
2309}
2310EXPORT_SYMBOL(scsi_target_resume);
2311
2312/**
2313 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2314 * @sdev:	device to block
2315 *
2316 * Block request made by scsi lld's to temporarily stop all
2317 * scsi commands on the specified device.  Called from interrupt
2318 * or normal process context.
2319 *
2320 * Returns zero if successful or error if not
2321 *
2322 * Notes:
2323 *	This routine transitions the device to the SDEV_BLOCK state
2324 *	(which must be a legal transition).  When the device is in this
2325 *	state, all commands are deferred until the scsi lld reenables
2326 *	the device with scsi_device_unblock or device_block_tmo fires.
2327 *	This routine assumes the host_lock is held on entry.
2328 */
2329int
2330scsi_internal_device_block(struct scsi_device *sdev)
2331{
2332	struct request_queue *q = sdev->request_queue;
2333	unsigned long flags;
2334	int err = 0;
2335
2336	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2337	if (err)
2338		return err;
2339
2340	/*
2341	 * The device has transitioned to SDEV_BLOCK.  Stop the
2342	 * block layer from calling the midlayer with this device's
2343	 * request queue.
2344	 */
2345	spin_lock_irqsave(q->queue_lock, flags);
2346	blk_stop_queue(q);
2347	spin_unlock_irqrestore(q->queue_lock, flags);
2348
2349	return 0;
2350}
2351EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2352
2353/**
2354 * scsi_internal_device_unblock - resume a device after a block request
2355 * @sdev:	device to resume
2356 *
2357 * Called by scsi lld's or the midlayer to restart the device queue
2358 * for the previously suspended scsi device.  Called from interrupt or
2359 * normal process context.
2360 *
2361 * Returns zero if successful or error if not.
2362 *
2363 * Notes:
2364 *	This routine transitions the device to the SDEV_RUNNING state
2365 *	(which must be a legal transition) allowing the midlayer to
2366 *	goose the queue for this device.  This routine assumes the
2367 *	host_lock is held upon entry.
2368 */
2369int
2370scsi_internal_device_unblock(struct scsi_device *sdev)
2371{
2372	struct request_queue *q = sdev->request_queue;
2373	int err;
2374	unsigned long flags;
2375
2376	/*
2377	 * Try to transition the scsi device to SDEV_RUNNING
2378	 * and goose the device queue if successful.
2379	 */
2380	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2381	if (err)
2382		return err;
2383
2384	spin_lock_irqsave(q->queue_lock, flags);
2385	blk_start_queue(q);
2386	spin_unlock_irqrestore(q->queue_lock, flags);
2387
2388	return 0;
2389}
2390EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2391
2392static void
2393device_block(struct scsi_device *sdev, void *data)
2394{
2395	scsi_internal_device_block(sdev);
2396}
2397
2398static int
2399target_block(struct device *dev, void *data)
2400{
2401	if (scsi_is_target_device(dev))
2402		starget_for_each_device(to_scsi_target(dev), NULL,
2403					device_block);
2404	return 0;
2405}
2406
2407void
2408scsi_target_block(struct device *dev)
2409{
2410	if (scsi_is_target_device(dev))
2411		starget_for_each_device(to_scsi_target(dev), NULL,
2412					device_block);
2413	else
2414		device_for_each_child(dev, NULL, target_block);
2415}
2416EXPORT_SYMBOL_GPL(scsi_target_block);
2417
2418static void
2419device_unblock(struct scsi_device *sdev, void *data)
2420{
2421	scsi_internal_device_unblock(sdev);
2422}
2423
2424static int
2425target_unblock(struct device *dev, void *data)
2426{
2427	if (scsi_is_target_device(dev))
2428		starget_for_each_device(to_scsi_target(dev), NULL,
2429					device_unblock);
2430	return 0;
2431}
2432
2433void
2434scsi_target_unblock(struct device *dev)
2435{
2436	if (scsi_is_target_device(dev))
2437		starget_for_each_device(to_scsi_target(dev), NULL,
2438					device_unblock);
2439	else
2440		device_for_each_child(dev, NULL, target_unblock);
2441}
2442EXPORT_SYMBOL_GPL(scsi_target_unblock);
2443
2444/**
2445 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2446 * @sgl:	scatter-gather list
2447 * @sg_count:	number of segments in sg
2448 * @offset:	offset in bytes into sg, on return offset into the mapped area
2449 * @len:	bytes to map, on return number of bytes mapped
2450 *
2451 * Returns virtual address of the start of the mapped page
2452 */
2453void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2454			  size_t *offset, size_t *len)
2455{
2456	int i;
2457	size_t sg_len = 0, len_complete = 0;
2458	struct scatterlist *sg;
2459	struct page *page;
2460
2461	WARN_ON(!irqs_disabled());
2462
2463	for_each_sg(sgl, sg, sg_count, i) {
2464		len_complete = sg_len; /* Complete sg-entries */
2465		sg_len += sg->length;
2466		if (sg_len > *offset)
2467			break;
2468	}
2469
2470	if (unlikely(i == sg_count)) {
2471		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2472			"elements %d\n",
2473		       __FUNCTION__, sg_len, *offset, sg_count);
2474		WARN_ON(1);
2475		return NULL;
2476	}
2477
2478	/* Offset starting from the beginning of first page in this sg-entry */
2479	*offset = *offset - len_complete + sg->offset;
2480
2481	/* Assumption: contiguous pages can be accessed as "page + i" */
2482	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2483	*offset &= ~PAGE_MASK;
2484
2485	/* Bytes in this sg-entry from *offset to the end of the page */
2486	sg_len = PAGE_SIZE - *offset;
2487	if (*len > sg_len)
2488		*len = sg_len;
2489
2490	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2491}
2492EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2493
2494/**
2495 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2496 * @virt:	virtual address to be unmapped
2497 */
2498void scsi_kunmap_atomic_sg(void *virt)
2499{
2500	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2501}
2502EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2503