scsi_lib.c revision e18b890bb0881bbab6f4f1a6cd20d9c60d66b003
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20
21#include <scsi/scsi.h>
22#include <scsi/scsi_cmnd.h>
23#include <scsi/scsi_dbg.h>
24#include <scsi/scsi_device.h>
25#include <scsi/scsi_driver.h>
26#include <scsi/scsi_eh.h>
27#include <scsi/scsi_host.h>
28
29#include "scsi_priv.h"
30#include "scsi_logging.h"
31
32
33#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
34#define SG_MEMPOOL_SIZE		32
35
36struct scsi_host_sg_pool {
37	size_t		size;
38	char		*name;
39	struct kmem_cache	*slab;
40	mempool_t	*pool;
41};
42
43#if (SCSI_MAX_PHYS_SEGMENTS < 32)
44#error SCSI_MAX_PHYS_SEGMENTS is too small
45#endif
46
47#define SP(x) { x, "sgpool-" #x }
48static struct scsi_host_sg_pool scsi_sg_pools[] = {
49	SP(8),
50	SP(16),
51	SP(32),
52#if (SCSI_MAX_PHYS_SEGMENTS > 32)
53	SP(64),
54#if (SCSI_MAX_PHYS_SEGMENTS > 64)
55	SP(128),
56#if (SCSI_MAX_PHYS_SEGMENTS > 128)
57	SP(256),
58#if (SCSI_MAX_PHYS_SEGMENTS > 256)
59#error SCSI_MAX_PHYS_SEGMENTS is too large
60#endif
61#endif
62#endif
63#endif
64};
65#undef SP
66
67static void scsi_run_queue(struct request_queue *q);
68
69/*
70 * Function:	scsi_unprep_request()
71 *
72 * Purpose:	Remove all preparation done for a request, including its
73 *		associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments:	req	- request to unprepare
76 *
77 * Lock status:	Assumed that no locks are held upon entry.
78 *
79 * Returns:	Nothing.
80 */
81static void scsi_unprep_request(struct request *req)
82{
83	struct scsi_cmnd *cmd = req->special;
84
85	req->cmd_flags &= ~REQ_DONTPREP;
86	req->special = NULL;
87
88	scsi_put_command(cmd);
89}
90
91/*
92 * Function:    scsi_queue_insert()
93 *
94 * Purpose:     Insert a command in the midlevel queue.
95 *
96 * Arguments:   cmd    - command that we are adding to queue.
97 *              reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns:     Nothing.
102 *
103 * Notes:       We do this for one of two cases.  Either the host is busy
104 *              and it cannot accept any more commands for the time being,
105 *              or the device returned QUEUE_FULL and can accept no more
106 *              commands.
107 * Notes:       This could be called either from an interrupt context or a
108 *              normal process context.
109 */
110int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111{
112	struct Scsi_Host *host = cmd->device->host;
113	struct scsi_device *device = cmd->device;
114	struct request_queue *q = device->request_queue;
115	unsigned long flags;
116
117	SCSI_LOG_MLQUEUE(1,
118		 printk("Inserting command %p into mlqueue\n", cmd));
119
120	/*
121	 * Set the appropriate busy bit for the device/host.
122	 *
123	 * If the host/device isn't busy, assume that something actually
124	 * completed, and that we should be able to queue a command now.
125	 *
126	 * Note that the prior mid-layer assumption that any host could
127	 * always queue at least one command is now broken.  The mid-layer
128	 * will implement a user specifiable stall (see
129	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130	 * if a command is requeued with no other commands outstanding
131	 * either for the device or for the host.
132	 */
133	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134		host->host_blocked = host->max_host_blocked;
135	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136		device->device_blocked = device->max_device_blocked;
137
138	/*
139	 * Decrement the counters, since these commands are no longer
140	 * active on the host/device.
141	 */
142	scsi_device_unbusy(device);
143
144	/*
145	 * Requeue this command.  It will go before all other commands
146	 * that are already in the queue.
147	 *
148	 * NOTE: there is magic here about the way the queue is plugged if
149	 * we have no outstanding commands.
150	 *
151	 * Although we *don't* plug the queue, we call the request
152	 * function.  The SCSI request function detects the blocked condition
153	 * and plugs the queue appropriately.
154         */
155	spin_lock_irqsave(q->queue_lock, flags);
156	blk_requeue_request(q, cmd->request);
157	spin_unlock_irqrestore(q->queue_lock, flags);
158
159	scsi_run_queue(q);
160
161	return 0;
162}
163
164/**
165 * scsi_execute - insert request and wait for the result
166 * @sdev:	scsi device
167 * @cmd:	scsi command
168 * @data_direction: data direction
169 * @buffer:	data buffer
170 * @bufflen:	len of buffer
171 * @sense:	optional sense buffer
172 * @timeout:	request timeout in seconds
173 * @retries:	number of times to retry request
174 * @flags:	or into request flags;
175 *
176 * returns the req->errors value which is the the scsi_cmnd result
177 * field.
178 **/
179int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180		 int data_direction, void *buffer, unsigned bufflen,
181		 unsigned char *sense, int timeout, int retries, int flags)
182{
183	struct request *req;
184	int write = (data_direction == DMA_TO_DEVICE);
185	int ret = DRIVER_ERROR << 24;
186
187	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190					buffer, bufflen, __GFP_WAIT))
191		goto out;
192
193	req->cmd_len = COMMAND_SIZE(cmd[0]);
194	memcpy(req->cmd, cmd, req->cmd_len);
195	req->sense = sense;
196	req->sense_len = 0;
197	req->retries = retries;
198	req->timeout = timeout;
199	req->cmd_type = REQ_TYPE_BLOCK_PC;
200	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202	/*
203	 * head injection *required* here otherwise quiesce won't work
204	 */
205	blk_execute_rq(req->q, NULL, req, 1);
206
207	ret = req->errors;
208 out:
209	blk_put_request(req);
210
211	return ret;
212}
213EXPORT_SYMBOL(scsi_execute);
214
215
216int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217		     int data_direction, void *buffer, unsigned bufflen,
218		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219{
220	char *sense = NULL;
221	int result;
222
223	if (sshdr) {
224		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225		if (!sense)
226			return DRIVER_ERROR << 24;
227	}
228	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229			      sense, timeout, retries, 0);
230	if (sshdr)
231		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233	kfree(sense);
234	return result;
235}
236EXPORT_SYMBOL(scsi_execute_req);
237
238struct scsi_io_context {
239	void *data;
240	void (*done)(void *data, char *sense, int result, int resid);
241	char sense[SCSI_SENSE_BUFFERSIZE];
242};
243
244static struct kmem_cache *scsi_io_context_cache;
245
246static void scsi_end_async(struct request *req, int uptodate)
247{
248	struct scsi_io_context *sioc = req->end_io_data;
249
250	if (sioc->done)
251		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253	kmem_cache_free(scsi_io_context_cache, sioc);
254	__blk_put_request(req->q, req);
255}
256
257static int scsi_merge_bio(struct request *rq, struct bio *bio)
258{
259	struct request_queue *q = rq->q;
260
261	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262	if (rq_data_dir(rq) == WRITE)
263		bio->bi_rw |= (1 << BIO_RW);
264	blk_queue_bounce(q, &bio);
265
266	if (!rq->bio)
267		blk_rq_bio_prep(q, rq, bio);
268	else if (!q->back_merge_fn(q, rq, bio))
269		return -EINVAL;
270	else {
271		rq->biotail->bi_next = bio;
272		rq->biotail = bio;
273		rq->hard_nr_sectors += bio_sectors(bio);
274		rq->nr_sectors = rq->hard_nr_sectors;
275	}
276
277	return 0;
278}
279
280static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
281{
282	if (bio->bi_size)
283		return 1;
284
285	bio_put(bio);
286	return 0;
287}
288
289/**
290 * scsi_req_map_sg - map a scatterlist into a request
291 * @rq:		request to fill
292 * @sg:		scatterlist
293 * @nsegs:	number of elements
294 * @bufflen:	len of buffer
295 * @gfp:	memory allocation flags
296 *
297 * scsi_req_map_sg maps a scatterlist into a request so that the
298 * request can be sent to the block layer. We do not trust the scatterlist
299 * sent to use, as some ULDs use that struct to only organize the pages.
300 */
301static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
302			   int nsegs, unsigned bufflen, gfp_t gfp)
303{
304	struct request_queue *q = rq->q;
305	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
306	unsigned int data_len = 0, len, bytes, off;
307	struct page *page;
308	struct bio *bio = NULL;
309	int i, err, nr_vecs = 0;
310
311	for (i = 0; i < nsegs; i++) {
312		page = sgl[i].page;
313		off = sgl[i].offset;
314		len = sgl[i].length;
315		data_len += len;
316
317		while (len > 0) {
318			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
319
320			if (!bio) {
321				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
322				nr_pages -= nr_vecs;
323
324				bio = bio_alloc(gfp, nr_vecs);
325				if (!bio) {
326					err = -ENOMEM;
327					goto free_bios;
328				}
329				bio->bi_end_io = scsi_bi_endio;
330			}
331
332			if (bio_add_pc_page(q, bio, page, bytes, off) !=
333			    bytes) {
334				bio_put(bio);
335				err = -EINVAL;
336				goto free_bios;
337			}
338
339			if (bio->bi_vcnt >= nr_vecs) {
340				err = scsi_merge_bio(rq, bio);
341				if (err) {
342					bio_endio(bio, bio->bi_size, 0);
343					goto free_bios;
344				}
345				bio = NULL;
346			}
347
348			page++;
349			len -= bytes;
350			off = 0;
351		}
352	}
353
354	rq->buffer = rq->data = NULL;
355	rq->data_len = data_len;
356	return 0;
357
358free_bios:
359	while ((bio = rq->bio) != NULL) {
360		rq->bio = bio->bi_next;
361		/*
362		 * call endio instead of bio_put incase it was bounced
363		 */
364		bio_endio(bio, bio->bi_size, 0);
365	}
366
367	return err;
368}
369
370/**
371 * scsi_execute_async - insert request
372 * @sdev:	scsi device
373 * @cmd:	scsi command
374 * @cmd_len:	length of scsi cdb
375 * @data_direction: data direction
376 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
377 * @bufflen:	len of buffer
378 * @use_sg:	if buffer is a scatterlist this is the number of elements
379 * @timeout:	request timeout in seconds
380 * @retries:	number of times to retry request
381 * @flags:	or into request flags
382 **/
383int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
384		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
385		       int use_sg, int timeout, int retries, void *privdata,
386		       void (*done)(void *, char *, int, int), gfp_t gfp)
387{
388	struct request *req;
389	struct scsi_io_context *sioc;
390	int err = 0;
391	int write = (data_direction == DMA_TO_DEVICE);
392
393	sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
394	if (!sioc)
395		return DRIVER_ERROR << 24;
396	memset(sioc, 0, sizeof(*sioc));
397
398	req = blk_get_request(sdev->request_queue, write, gfp);
399	if (!req)
400		goto free_sense;
401	req->cmd_type = REQ_TYPE_BLOCK_PC;
402	req->cmd_flags |= REQ_QUIET;
403
404	if (use_sg)
405		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
406	else if (bufflen)
407		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
408
409	if (err)
410		goto free_req;
411
412	req->cmd_len = cmd_len;
413	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
414	memcpy(req->cmd, cmd, req->cmd_len);
415	req->sense = sioc->sense;
416	req->sense_len = 0;
417	req->timeout = timeout;
418	req->retries = retries;
419	req->end_io_data = sioc;
420
421	sioc->data = privdata;
422	sioc->done = done;
423
424	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
425	return 0;
426
427free_req:
428	blk_put_request(req);
429free_sense:
430	kmem_cache_free(scsi_io_context_cache, sioc);
431	return DRIVER_ERROR << 24;
432}
433EXPORT_SYMBOL_GPL(scsi_execute_async);
434
435/*
436 * Function:    scsi_init_cmd_errh()
437 *
438 * Purpose:     Initialize cmd fields related to error handling.
439 *
440 * Arguments:   cmd	- command that is ready to be queued.
441 *
442 * Notes:       This function has the job of initializing a number of
443 *              fields related to error handling.   Typically this will
444 *              be called once for each command, as required.
445 */
446static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
447{
448	cmd->serial_number = 0;
449	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
450	if (cmd->cmd_len == 0)
451		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
452}
453
454void scsi_device_unbusy(struct scsi_device *sdev)
455{
456	struct Scsi_Host *shost = sdev->host;
457	unsigned long flags;
458
459	spin_lock_irqsave(shost->host_lock, flags);
460	shost->host_busy--;
461	if (unlikely(scsi_host_in_recovery(shost) &&
462		     (shost->host_failed || shost->host_eh_scheduled)))
463		scsi_eh_wakeup(shost);
464	spin_unlock(shost->host_lock);
465	spin_lock(sdev->request_queue->queue_lock);
466	sdev->device_busy--;
467	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
468}
469
470/*
471 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
472 * and call blk_run_queue for all the scsi_devices on the target -
473 * including current_sdev first.
474 *
475 * Called with *no* scsi locks held.
476 */
477static void scsi_single_lun_run(struct scsi_device *current_sdev)
478{
479	struct Scsi_Host *shost = current_sdev->host;
480	struct scsi_device *sdev, *tmp;
481	struct scsi_target *starget = scsi_target(current_sdev);
482	unsigned long flags;
483
484	spin_lock_irqsave(shost->host_lock, flags);
485	starget->starget_sdev_user = NULL;
486	spin_unlock_irqrestore(shost->host_lock, flags);
487
488	/*
489	 * Call blk_run_queue for all LUNs on the target, starting with
490	 * current_sdev. We race with others (to set starget_sdev_user),
491	 * but in most cases, we will be first. Ideally, each LU on the
492	 * target would get some limited time or requests on the target.
493	 */
494	blk_run_queue(current_sdev->request_queue);
495
496	spin_lock_irqsave(shost->host_lock, flags);
497	if (starget->starget_sdev_user)
498		goto out;
499	list_for_each_entry_safe(sdev, tmp, &starget->devices,
500			same_target_siblings) {
501		if (sdev == current_sdev)
502			continue;
503		if (scsi_device_get(sdev))
504			continue;
505
506		spin_unlock_irqrestore(shost->host_lock, flags);
507		blk_run_queue(sdev->request_queue);
508		spin_lock_irqsave(shost->host_lock, flags);
509
510		scsi_device_put(sdev);
511	}
512 out:
513	spin_unlock_irqrestore(shost->host_lock, flags);
514}
515
516/*
517 * Function:	scsi_run_queue()
518 *
519 * Purpose:	Select a proper request queue to serve next
520 *
521 * Arguments:	q	- last request's queue
522 *
523 * Returns:     Nothing
524 *
525 * Notes:	The previous command was completely finished, start
526 *		a new one if possible.
527 */
528static void scsi_run_queue(struct request_queue *q)
529{
530	struct scsi_device *sdev = q->queuedata;
531	struct Scsi_Host *shost = sdev->host;
532	unsigned long flags;
533
534	if (sdev->single_lun)
535		scsi_single_lun_run(sdev);
536
537	spin_lock_irqsave(shost->host_lock, flags);
538	while (!list_empty(&shost->starved_list) &&
539	       !shost->host_blocked && !shost->host_self_blocked &&
540		!((shost->can_queue > 0) &&
541		  (shost->host_busy >= shost->can_queue))) {
542		/*
543		 * As long as shost is accepting commands and we have
544		 * starved queues, call blk_run_queue. scsi_request_fn
545		 * drops the queue_lock and can add us back to the
546		 * starved_list.
547		 *
548		 * host_lock protects the starved_list and starved_entry.
549		 * scsi_request_fn must get the host_lock before checking
550		 * or modifying starved_list or starved_entry.
551		 */
552		sdev = list_entry(shost->starved_list.next,
553					  struct scsi_device, starved_entry);
554		list_del_init(&sdev->starved_entry);
555		spin_unlock_irqrestore(shost->host_lock, flags);
556
557
558		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
559		    !test_and_set_bit(QUEUE_FLAG_REENTER,
560				      &sdev->request_queue->queue_flags)) {
561			blk_run_queue(sdev->request_queue);
562			clear_bit(QUEUE_FLAG_REENTER,
563				  &sdev->request_queue->queue_flags);
564		} else
565			blk_run_queue(sdev->request_queue);
566
567		spin_lock_irqsave(shost->host_lock, flags);
568		if (unlikely(!list_empty(&sdev->starved_entry)))
569			/*
570			 * sdev lost a race, and was put back on the
571			 * starved list. This is unlikely but without this
572			 * in theory we could loop forever.
573			 */
574			break;
575	}
576	spin_unlock_irqrestore(shost->host_lock, flags);
577
578	blk_run_queue(q);
579}
580
581/*
582 * Function:	scsi_requeue_command()
583 *
584 * Purpose:	Handle post-processing of completed commands.
585 *
586 * Arguments:	q	- queue to operate on
587 *		cmd	- command that may need to be requeued.
588 *
589 * Returns:	Nothing
590 *
591 * Notes:	After command completion, there may be blocks left
592 *		over which weren't finished by the previous command
593 *		this can be for a number of reasons - the main one is
594 *		I/O errors in the middle of the request, in which case
595 *		we need to request the blocks that come after the bad
596 *		sector.
597 * Notes:	Upon return, cmd is a stale pointer.
598 */
599static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
600{
601	struct request *req = cmd->request;
602	unsigned long flags;
603
604	scsi_unprep_request(req);
605	spin_lock_irqsave(q->queue_lock, flags);
606	blk_requeue_request(q, req);
607	spin_unlock_irqrestore(q->queue_lock, flags);
608
609	scsi_run_queue(q);
610}
611
612void scsi_next_command(struct scsi_cmnd *cmd)
613{
614	struct scsi_device *sdev = cmd->device;
615	struct request_queue *q = sdev->request_queue;
616
617	/* need to hold a reference on the device before we let go of the cmd */
618	get_device(&sdev->sdev_gendev);
619
620	scsi_put_command(cmd);
621	scsi_run_queue(q);
622
623	/* ok to remove device now */
624	put_device(&sdev->sdev_gendev);
625}
626
627void scsi_run_host_queues(struct Scsi_Host *shost)
628{
629	struct scsi_device *sdev;
630
631	shost_for_each_device(sdev, shost)
632		scsi_run_queue(sdev->request_queue);
633}
634
635/*
636 * Function:    scsi_end_request()
637 *
638 * Purpose:     Post-processing of completed commands (usually invoked at end
639 *		of upper level post-processing and scsi_io_completion).
640 *
641 * Arguments:   cmd	 - command that is complete.
642 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
643 *              bytes    - number of bytes of completed I/O
644 *		requeue  - indicates whether we should requeue leftovers.
645 *
646 * Lock status: Assumed that lock is not held upon entry.
647 *
648 * Returns:     cmd if requeue required, NULL otherwise.
649 *
650 * Notes:       This is called for block device requests in order to
651 *              mark some number of sectors as complete.
652 *
653 *		We are guaranteeing that the request queue will be goosed
654 *		at some point during this call.
655 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
656 */
657static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
658					  int bytes, int requeue)
659{
660	request_queue_t *q = cmd->device->request_queue;
661	struct request *req = cmd->request;
662	unsigned long flags;
663
664	/*
665	 * If there are blocks left over at the end, set up the command
666	 * to queue the remainder of them.
667	 */
668	if (end_that_request_chunk(req, uptodate, bytes)) {
669		int leftover = (req->hard_nr_sectors << 9);
670
671		if (blk_pc_request(req))
672			leftover = req->data_len;
673
674		/* kill remainder if no retrys */
675		if (!uptodate && blk_noretry_request(req))
676			end_that_request_chunk(req, 0, leftover);
677		else {
678			if (requeue) {
679				/*
680				 * Bleah.  Leftovers again.  Stick the
681				 * leftovers in the front of the
682				 * queue, and goose the queue again.
683				 */
684				scsi_requeue_command(q, cmd);
685				cmd = NULL;
686			}
687			return cmd;
688		}
689	}
690
691	add_disk_randomness(req->rq_disk);
692
693	spin_lock_irqsave(q->queue_lock, flags);
694	if (blk_rq_tagged(req))
695		blk_queue_end_tag(q, req);
696	end_that_request_last(req, uptodate);
697	spin_unlock_irqrestore(q->queue_lock, flags);
698
699	/*
700	 * This will goose the queue request function at the end, so we don't
701	 * need to worry about launching another command.
702	 */
703	scsi_next_command(cmd);
704	return NULL;
705}
706
707struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
708{
709	struct scsi_host_sg_pool *sgp;
710	struct scatterlist *sgl;
711
712	BUG_ON(!cmd->use_sg);
713
714	switch (cmd->use_sg) {
715	case 1 ... 8:
716		cmd->sglist_len = 0;
717		break;
718	case 9 ... 16:
719		cmd->sglist_len = 1;
720		break;
721	case 17 ... 32:
722		cmd->sglist_len = 2;
723		break;
724#if (SCSI_MAX_PHYS_SEGMENTS > 32)
725	case 33 ... 64:
726		cmd->sglist_len = 3;
727		break;
728#if (SCSI_MAX_PHYS_SEGMENTS > 64)
729	case 65 ... 128:
730		cmd->sglist_len = 4;
731		break;
732#if (SCSI_MAX_PHYS_SEGMENTS  > 128)
733	case 129 ... 256:
734		cmd->sglist_len = 5;
735		break;
736#endif
737#endif
738#endif
739	default:
740		return NULL;
741	}
742
743	sgp = scsi_sg_pools + cmd->sglist_len;
744	sgl = mempool_alloc(sgp->pool, gfp_mask);
745	return sgl;
746}
747
748EXPORT_SYMBOL(scsi_alloc_sgtable);
749
750void scsi_free_sgtable(struct scatterlist *sgl, int index)
751{
752	struct scsi_host_sg_pool *sgp;
753
754	BUG_ON(index >= SG_MEMPOOL_NR);
755
756	sgp = scsi_sg_pools + index;
757	mempool_free(sgl, sgp->pool);
758}
759
760EXPORT_SYMBOL(scsi_free_sgtable);
761
762/*
763 * Function:    scsi_release_buffers()
764 *
765 * Purpose:     Completion processing for block device I/O requests.
766 *
767 * Arguments:   cmd	- command that we are bailing.
768 *
769 * Lock status: Assumed that no lock is held upon entry.
770 *
771 * Returns:     Nothing
772 *
773 * Notes:       In the event that an upper level driver rejects a
774 *		command, we must release resources allocated during
775 *		the __init_io() function.  Primarily this would involve
776 *		the scatter-gather table, and potentially any bounce
777 *		buffers.
778 */
779static void scsi_release_buffers(struct scsi_cmnd *cmd)
780{
781	if (cmd->use_sg)
782		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
783
784	/*
785	 * Zero these out.  They now point to freed memory, and it is
786	 * dangerous to hang onto the pointers.
787	 */
788	cmd->request_buffer = NULL;
789	cmd->request_bufflen = 0;
790}
791
792/*
793 * Function:    scsi_io_completion()
794 *
795 * Purpose:     Completion processing for block device I/O requests.
796 *
797 * Arguments:   cmd   - command that is finished.
798 *
799 * Lock status: Assumed that no lock is held upon entry.
800 *
801 * Returns:     Nothing
802 *
803 * Notes:       This function is matched in terms of capabilities to
804 *              the function that created the scatter-gather list.
805 *              In other words, if there are no bounce buffers
806 *              (the normal case for most drivers), we don't need
807 *              the logic to deal with cleaning up afterwards.
808 *
809 *		We must do one of several things here:
810 *
811 *		a) Call scsi_end_request.  This will finish off the
812 *		   specified number of sectors.  If we are done, the
813 *		   command block will be released, and the queue
814 *		   function will be goosed.  If we are not done, then
815 *		   scsi_end_request will directly goose the queue.
816 *
817 *		b) We can just use scsi_requeue_command() here.  This would
818 *		   be used if we just wanted to retry, for example.
819 */
820void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
821{
822	int result = cmd->result;
823	int this_count = cmd->request_bufflen;
824	request_queue_t *q = cmd->device->request_queue;
825	struct request *req = cmd->request;
826	int clear_errors = 1;
827	struct scsi_sense_hdr sshdr;
828	int sense_valid = 0;
829	int sense_deferred = 0;
830
831	scsi_release_buffers(cmd);
832
833	if (result) {
834		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
835		if (sense_valid)
836			sense_deferred = scsi_sense_is_deferred(&sshdr);
837	}
838
839	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
840		req->errors = result;
841		if (result) {
842			clear_errors = 0;
843			if (sense_valid && req->sense) {
844				/*
845				 * SG_IO wants current and deferred errors
846				 */
847				int len = 8 + cmd->sense_buffer[7];
848
849				if (len > SCSI_SENSE_BUFFERSIZE)
850					len = SCSI_SENSE_BUFFERSIZE;
851				memcpy(req->sense, cmd->sense_buffer,  len);
852				req->sense_len = len;
853			}
854		} else
855			req->data_len = cmd->resid;
856	}
857
858	/*
859	 * Next deal with any sectors which we were able to correctly
860	 * handle.
861	 */
862	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
863				      "%d bytes done.\n",
864				      req->nr_sectors, good_bytes));
865	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
866
867	if (clear_errors)
868		req->errors = 0;
869
870	/* A number of bytes were successfully read.  If there
871	 * are leftovers and there is some kind of error
872	 * (result != 0), retry the rest.
873	 */
874	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
875		return;
876
877	/* good_bytes = 0, or (inclusive) there were leftovers and
878	 * result = 0, so scsi_end_request couldn't retry.
879	 */
880	if (sense_valid && !sense_deferred) {
881		switch (sshdr.sense_key) {
882		case UNIT_ATTENTION:
883			if (cmd->device->removable) {
884				/* Detected disc change.  Set a bit
885				 * and quietly refuse further access.
886				 */
887				cmd->device->changed = 1;
888				scsi_end_request(cmd, 0, this_count, 1);
889				return;
890			} else {
891				/* Must have been a power glitch, or a
892				 * bus reset.  Could not have been a
893				 * media change, so we just retry the
894				 * request and see what happens.
895				 */
896				scsi_requeue_command(q, cmd);
897				return;
898			}
899			break;
900		case ILLEGAL_REQUEST:
901			/* If we had an ILLEGAL REQUEST returned, then
902			 * we may have performed an unsupported
903			 * command.  The only thing this should be
904			 * would be a ten byte read where only a six
905			 * byte read was supported.  Also, on a system
906			 * where READ CAPACITY failed, we may have
907			 * read past the end of the disk.
908			 */
909			if ((cmd->device->use_10_for_rw &&
910			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
911			    (cmd->cmnd[0] == READ_10 ||
912			     cmd->cmnd[0] == WRITE_10)) {
913				cmd->device->use_10_for_rw = 0;
914				/* This will cause a retry with a
915				 * 6-byte command.
916				 */
917				scsi_requeue_command(q, cmd);
918				return;
919			} else {
920				scsi_end_request(cmd, 0, this_count, 1);
921				return;
922			}
923			break;
924		case NOT_READY:
925			/* If the device is in the process of becoming
926			 * ready, or has a temporary blockage, retry.
927			 */
928			if (sshdr.asc == 0x04) {
929				switch (sshdr.ascq) {
930				case 0x01: /* becoming ready */
931				case 0x04: /* format in progress */
932				case 0x05: /* rebuild in progress */
933				case 0x06: /* recalculation in progress */
934				case 0x07: /* operation in progress */
935				case 0x08: /* Long write in progress */
936				case 0x09: /* self test in progress */
937					scsi_requeue_command(q, cmd);
938					return;
939				default:
940					break;
941				}
942			}
943			if (!(req->cmd_flags & REQ_QUIET)) {
944				scmd_printk(KERN_INFO, cmd,
945					    "Device not ready: ");
946				scsi_print_sense_hdr("", &sshdr);
947			}
948			scsi_end_request(cmd, 0, this_count, 1);
949			return;
950		case VOLUME_OVERFLOW:
951			if (!(req->cmd_flags & REQ_QUIET)) {
952				scmd_printk(KERN_INFO, cmd,
953					    "Volume overflow, CDB: ");
954				__scsi_print_command(cmd->cmnd);
955				scsi_print_sense("", cmd);
956			}
957			/* See SSC3rXX or current. */
958			scsi_end_request(cmd, 0, this_count, 1);
959			return;
960		default:
961			break;
962		}
963	}
964	if (host_byte(result) == DID_RESET) {
965		/* Third party bus reset or reset for error recovery
966		 * reasons.  Just retry the request and see what
967		 * happens.
968		 */
969		scsi_requeue_command(q, cmd);
970		return;
971	}
972	if (result) {
973		if (!(req->cmd_flags & REQ_QUIET)) {
974			scmd_printk(KERN_INFO, cmd,
975				    "SCSI error: return code = 0x%08x\n",
976				    result);
977			if (driver_byte(result) & DRIVER_SENSE)
978				scsi_print_sense("", cmd);
979		}
980	}
981	scsi_end_request(cmd, 0, this_count, !result);
982}
983EXPORT_SYMBOL(scsi_io_completion);
984
985/*
986 * Function:    scsi_init_io()
987 *
988 * Purpose:     SCSI I/O initialize function.
989 *
990 * Arguments:   cmd   - Command descriptor we wish to initialize
991 *
992 * Returns:     0 on success
993 *		BLKPREP_DEFER if the failure is retryable
994 *		BLKPREP_KILL if the failure is fatal
995 */
996static int scsi_init_io(struct scsi_cmnd *cmd)
997{
998	struct request     *req = cmd->request;
999	struct scatterlist *sgpnt;
1000	int		   count;
1001
1002	/*
1003	 * We used to not use scatter-gather for single segment request,
1004	 * but now we do (it makes highmem I/O easier to support without
1005	 * kmapping pages)
1006	 */
1007	cmd->use_sg = req->nr_phys_segments;
1008
1009	/*
1010	 * If sg table allocation fails, requeue request later.
1011	 */
1012	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1013	if (unlikely(!sgpnt)) {
1014		scsi_unprep_request(req);
1015		return BLKPREP_DEFER;
1016	}
1017
1018	req->buffer = NULL;
1019	cmd->request_buffer = (char *) sgpnt;
1020	if (blk_pc_request(req))
1021		cmd->request_bufflen = req->data_len;
1022	else
1023		cmd->request_bufflen = req->nr_sectors << 9;
1024
1025	/*
1026	 * Next, walk the list, and fill in the addresses and sizes of
1027	 * each segment.
1028	 */
1029	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1030	if (likely(count <= cmd->use_sg)) {
1031		cmd->use_sg = count;
1032		return BLKPREP_OK;
1033	}
1034
1035	printk(KERN_ERR "Incorrect number of segments after building list\n");
1036	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1037	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1038			req->current_nr_sectors);
1039
1040	/* release the command and kill it */
1041	scsi_release_buffers(cmd);
1042	scsi_put_command(cmd);
1043	return BLKPREP_KILL;
1044}
1045
1046static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1047			       sector_t *error_sector)
1048{
1049	struct scsi_device *sdev = q->queuedata;
1050	struct scsi_driver *drv;
1051
1052	if (sdev->sdev_state != SDEV_RUNNING)
1053		return -ENXIO;
1054
1055	drv = *(struct scsi_driver **) disk->private_data;
1056	if (drv->issue_flush)
1057		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1058
1059	return -EOPNOTSUPP;
1060}
1061
1062static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1063		struct request *req)
1064{
1065	struct scsi_cmnd *cmd;
1066
1067	if (!req->special) {
1068		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1069		if (unlikely(!cmd))
1070			return NULL;
1071		req->special = cmd;
1072	} else {
1073		cmd = req->special;
1074	}
1075
1076	/* pull a tag out of the request if we have one */
1077	cmd->tag = req->tag;
1078	cmd->request = req;
1079
1080	return cmd;
1081}
1082
1083static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1084{
1085	BUG_ON(!blk_pc_request(cmd->request));
1086	/*
1087	 * This will complete the whole command with uptodate=1 so
1088	 * as far as the block layer is concerned the command completed
1089	 * successfully. Since this is a REQ_BLOCK_PC command the
1090	 * caller should check the request's errors value
1091	 */
1092	scsi_io_completion(cmd, cmd->request_bufflen);
1093}
1094
1095static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1096{
1097	struct scsi_cmnd *cmd;
1098
1099	cmd = scsi_get_cmd_from_req(sdev, req);
1100	if (unlikely(!cmd))
1101		return BLKPREP_DEFER;
1102
1103	/*
1104	 * BLOCK_PC requests may transfer data, in which case they must
1105	 * a bio attached to them.  Or they might contain a SCSI command
1106	 * that does not transfer data, in which case they may optionally
1107	 * submit a request without an attached bio.
1108	 */
1109	if (req->bio) {
1110		int ret;
1111
1112		BUG_ON(!req->nr_phys_segments);
1113
1114		ret = scsi_init_io(cmd);
1115		if (unlikely(ret))
1116			return ret;
1117	} else {
1118		BUG_ON(req->data_len);
1119		BUG_ON(req->data);
1120
1121		cmd->request_bufflen = 0;
1122		cmd->request_buffer = NULL;
1123		cmd->use_sg = 0;
1124		req->buffer = NULL;
1125	}
1126
1127	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1128	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1129	cmd->cmd_len = req->cmd_len;
1130	if (!req->data_len)
1131		cmd->sc_data_direction = DMA_NONE;
1132	else if (rq_data_dir(req) == WRITE)
1133		cmd->sc_data_direction = DMA_TO_DEVICE;
1134	else
1135		cmd->sc_data_direction = DMA_FROM_DEVICE;
1136
1137	cmd->transfersize = req->data_len;
1138	cmd->allowed = req->retries;
1139	cmd->timeout_per_command = req->timeout;
1140	cmd->done = scsi_blk_pc_done;
1141	return BLKPREP_OK;
1142}
1143
1144/*
1145 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1146 * from filesystems that still need to be translated to SCSI CDBs from
1147 * the ULD.
1148 */
1149static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1150{
1151	struct scsi_cmnd *cmd;
1152	struct scsi_driver *drv;
1153	int ret;
1154
1155	/*
1156	 * Filesystem requests must transfer data.
1157	 */
1158	BUG_ON(!req->nr_phys_segments);
1159
1160	cmd = scsi_get_cmd_from_req(sdev, req);
1161	if (unlikely(!cmd))
1162		return BLKPREP_DEFER;
1163
1164	ret = scsi_init_io(cmd);
1165	if (unlikely(ret))
1166		return ret;
1167
1168	/*
1169	 * Initialize the actual SCSI command for this request.
1170	 */
1171	drv = *(struct scsi_driver **)req->rq_disk->private_data;
1172	if (unlikely(!drv->init_command(cmd))) {
1173		scsi_release_buffers(cmd);
1174		scsi_put_command(cmd);
1175		return BLKPREP_KILL;
1176	}
1177
1178	return BLKPREP_OK;
1179}
1180
1181static int scsi_prep_fn(struct request_queue *q, struct request *req)
1182{
1183	struct scsi_device *sdev = q->queuedata;
1184	int ret = BLKPREP_OK;
1185
1186	/*
1187	 * If the device is not in running state we will reject some
1188	 * or all commands.
1189	 */
1190	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1191		switch (sdev->sdev_state) {
1192		case SDEV_OFFLINE:
1193			/*
1194			 * If the device is offline we refuse to process any
1195			 * commands.  The device must be brought online
1196			 * before trying any recovery commands.
1197			 */
1198			sdev_printk(KERN_ERR, sdev,
1199				    "rejecting I/O to offline device\n");
1200			ret = BLKPREP_KILL;
1201			break;
1202		case SDEV_DEL:
1203			/*
1204			 * If the device is fully deleted, we refuse to
1205			 * process any commands as well.
1206			 */
1207			sdev_printk(KERN_ERR, sdev,
1208				    "rejecting I/O to dead device\n");
1209			ret = BLKPREP_KILL;
1210			break;
1211		case SDEV_QUIESCE:
1212		case SDEV_BLOCK:
1213			/*
1214			 * If the devices is blocked we defer normal commands.
1215			 */
1216			if (!(req->cmd_flags & REQ_PREEMPT))
1217				ret = BLKPREP_DEFER;
1218			break;
1219		default:
1220			/*
1221			 * For any other not fully online state we only allow
1222			 * special commands.  In particular any user initiated
1223			 * command is not allowed.
1224			 */
1225			if (!(req->cmd_flags & REQ_PREEMPT))
1226				ret = BLKPREP_KILL;
1227			break;
1228		}
1229
1230		if (ret != BLKPREP_OK)
1231			goto out;
1232	}
1233
1234	switch (req->cmd_type) {
1235	case REQ_TYPE_BLOCK_PC:
1236		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1237		break;
1238	case REQ_TYPE_FS:
1239		ret = scsi_setup_fs_cmnd(sdev, req);
1240		break;
1241	default:
1242		/*
1243		 * All other command types are not supported.
1244		 *
1245		 * Note that these days the SCSI subsystem does not use
1246		 * REQ_TYPE_SPECIAL requests anymore.  These are only used
1247		 * (directly or via blk_insert_request) by non-SCSI drivers.
1248		 */
1249		blk_dump_rq_flags(req, "SCSI bad req");
1250		ret = BLKPREP_KILL;
1251		break;
1252	}
1253
1254 out:
1255	switch (ret) {
1256	case BLKPREP_KILL:
1257		req->errors = DID_NO_CONNECT << 16;
1258		break;
1259	case BLKPREP_DEFER:
1260		/*
1261		 * If we defer, the elv_next_request() returns NULL, but the
1262		 * queue must be restarted, so we plug here if no returning
1263		 * command will automatically do that.
1264		 */
1265		if (sdev->device_busy == 0)
1266			blk_plug_device(q);
1267		break;
1268	default:
1269		req->cmd_flags |= REQ_DONTPREP;
1270	}
1271
1272	return ret;
1273}
1274
1275/*
1276 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1277 * return 0.
1278 *
1279 * Called with the queue_lock held.
1280 */
1281static inline int scsi_dev_queue_ready(struct request_queue *q,
1282				  struct scsi_device *sdev)
1283{
1284	if (sdev->device_busy >= sdev->queue_depth)
1285		return 0;
1286	if (sdev->device_busy == 0 && sdev->device_blocked) {
1287		/*
1288		 * unblock after device_blocked iterates to zero
1289		 */
1290		if (--sdev->device_blocked == 0) {
1291			SCSI_LOG_MLQUEUE(3,
1292				   sdev_printk(KERN_INFO, sdev,
1293				   "unblocking device at zero depth\n"));
1294		} else {
1295			blk_plug_device(q);
1296			return 0;
1297		}
1298	}
1299	if (sdev->device_blocked)
1300		return 0;
1301
1302	return 1;
1303}
1304
1305/*
1306 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1307 * return 0. We must end up running the queue again whenever 0 is
1308 * returned, else IO can hang.
1309 *
1310 * Called with host_lock held.
1311 */
1312static inline int scsi_host_queue_ready(struct request_queue *q,
1313				   struct Scsi_Host *shost,
1314				   struct scsi_device *sdev)
1315{
1316	if (scsi_host_in_recovery(shost))
1317		return 0;
1318	if (shost->host_busy == 0 && shost->host_blocked) {
1319		/*
1320		 * unblock after host_blocked iterates to zero
1321		 */
1322		if (--shost->host_blocked == 0) {
1323			SCSI_LOG_MLQUEUE(3,
1324				printk("scsi%d unblocking host at zero depth\n",
1325					shost->host_no));
1326		} else {
1327			blk_plug_device(q);
1328			return 0;
1329		}
1330	}
1331	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1332	    shost->host_blocked || shost->host_self_blocked) {
1333		if (list_empty(&sdev->starved_entry))
1334			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1335		return 0;
1336	}
1337
1338	/* We're OK to process the command, so we can't be starved */
1339	if (!list_empty(&sdev->starved_entry))
1340		list_del_init(&sdev->starved_entry);
1341
1342	return 1;
1343}
1344
1345/*
1346 * Kill a request for a dead device
1347 */
1348static void scsi_kill_request(struct request *req, request_queue_t *q)
1349{
1350	struct scsi_cmnd *cmd = req->special;
1351	struct scsi_device *sdev = cmd->device;
1352	struct Scsi_Host *shost = sdev->host;
1353
1354	blkdev_dequeue_request(req);
1355
1356	if (unlikely(cmd == NULL)) {
1357		printk(KERN_CRIT "impossible request in %s.\n",
1358				 __FUNCTION__);
1359		BUG();
1360	}
1361
1362	scsi_init_cmd_errh(cmd);
1363	cmd->result = DID_NO_CONNECT << 16;
1364	atomic_inc(&cmd->device->iorequest_cnt);
1365
1366	/*
1367	 * SCSI request completion path will do scsi_device_unbusy(),
1368	 * bump busy counts.  To bump the counters, we need to dance
1369	 * with the locks as normal issue path does.
1370	 */
1371	sdev->device_busy++;
1372	spin_unlock(sdev->request_queue->queue_lock);
1373	spin_lock(shost->host_lock);
1374	shost->host_busy++;
1375	spin_unlock(shost->host_lock);
1376	spin_lock(sdev->request_queue->queue_lock);
1377
1378	__scsi_done(cmd);
1379}
1380
1381static void scsi_softirq_done(struct request *rq)
1382{
1383	struct scsi_cmnd *cmd = rq->completion_data;
1384	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1385	int disposition;
1386
1387	INIT_LIST_HEAD(&cmd->eh_entry);
1388
1389	disposition = scsi_decide_disposition(cmd);
1390	if (disposition != SUCCESS &&
1391	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1392		sdev_printk(KERN_ERR, cmd->device,
1393			    "timing out command, waited %lus\n",
1394			    wait_for/HZ);
1395		disposition = SUCCESS;
1396	}
1397
1398	scsi_log_completion(cmd, disposition);
1399
1400	switch (disposition) {
1401		case SUCCESS:
1402			scsi_finish_command(cmd);
1403			break;
1404		case NEEDS_RETRY:
1405			scsi_retry_command(cmd);
1406			break;
1407		case ADD_TO_MLQUEUE:
1408			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1409			break;
1410		default:
1411			if (!scsi_eh_scmd_add(cmd, 0))
1412				scsi_finish_command(cmd);
1413	}
1414}
1415
1416/*
1417 * Function:    scsi_request_fn()
1418 *
1419 * Purpose:     Main strategy routine for SCSI.
1420 *
1421 * Arguments:   q       - Pointer to actual queue.
1422 *
1423 * Returns:     Nothing
1424 *
1425 * Lock status: IO request lock assumed to be held when called.
1426 */
1427static void scsi_request_fn(struct request_queue *q)
1428{
1429	struct scsi_device *sdev = q->queuedata;
1430	struct Scsi_Host *shost;
1431	struct scsi_cmnd *cmd;
1432	struct request *req;
1433
1434	if (!sdev) {
1435		printk("scsi: killing requests for dead queue\n");
1436		while ((req = elv_next_request(q)) != NULL)
1437			scsi_kill_request(req, q);
1438		return;
1439	}
1440
1441	if(!get_device(&sdev->sdev_gendev))
1442		/* We must be tearing the block queue down already */
1443		return;
1444
1445	/*
1446	 * To start with, we keep looping until the queue is empty, or until
1447	 * the host is no longer able to accept any more requests.
1448	 */
1449	shost = sdev->host;
1450	while (!blk_queue_plugged(q)) {
1451		int rtn;
1452		/*
1453		 * get next queueable request.  We do this early to make sure
1454		 * that the request is fully prepared even if we cannot
1455		 * accept it.
1456		 */
1457		req = elv_next_request(q);
1458		if (!req || !scsi_dev_queue_ready(q, sdev))
1459			break;
1460
1461		if (unlikely(!scsi_device_online(sdev))) {
1462			sdev_printk(KERN_ERR, sdev,
1463				    "rejecting I/O to offline device\n");
1464			scsi_kill_request(req, q);
1465			continue;
1466		}
1467
1468
1469		/*
1470		 * Remove the request from the request list.
1471		 */
1472		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1473			blkdev_dequeue_request(req);
1474		sdev->device_busy++;
1475
1476		spin_unlock(q->queue_lock);
1477		cmd = req->special;
1478		if (unlikely(cmd == NULL)) {
1479			printk(KERN_CRIT "impossible request in %s.\n"
1480					 "please mail a stack trace to "
1481					 "linux-scsi@vger.kernel.org\n",
1482					 __FUNCTION__);
1483			blk_dump_rq_flags(req, "foo");
1484			BUG();
1485		}
1486		spin_lock(shost->host_lock);
1487
1488		if (!scsi_host_queue_ready(q, shost, sdev))
1489			goto not_ready;
1490		if (sdev->single_lun) {
1491			if (scsi_target(sdev)->starget_sdev_user &&
1492			    scsi_target(sdev)->starget_sdev_user != sdev)
1493				goto not_ready;
1494			scsi_target(sdev)->starget_sdev_user = sdev;
1495		}
1496		shost->host_busy++;
1497
1498		/*
1499		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1500		 *		take the lock again.
1501		 */
1502		spin_unlock_irq(shost->host_lock);
1503
1504		/*
1505		 * Finally, initialize any error handling parameters, and set up
1506		 * the timers for timeouts.
1507		 */
1508		scsi_init_cmd_errh(cmd);
1509
1510		/*
1511		 * Dispatch the command to the low-level driver.
1512		 */
1513		rtn = scsi_dispatch_cmd(cmd);
1514		spin_lock_irq(q->queue_lock);
1515		if(rtn) {
1516			/* we're refusing the command; because of
1517			 * the way locks get dropped, we need to
1518			 * check here if plugging is required */
1519			if(sdev->device_busy == 0)
1520				blk_plug_device(q);
1521
1522			break;
1523		}
1524	}
1525
1526	goto out;
1527
1528 not_ready:
1529	spin_unlock_irq(shost->host_lock);
1530
1531	/*
1532	 * lock q, handle tag, requeue req, and decrement device_busy. We
1533	 * must return with queue_lock held.
1534	 *
1535	 * Decrementing device_busy without checking it is OK, as all such
1536	 * cases (host limits or settings) should run the queue at some
1537	 * later time.
1538	 */
1539	spin_lock_irq(q->queue_lock);
1540	blk_requeue_request(q, req);
1541	sdev->device_busy--;
1542	if(sdev->device_busy == 0)
1543		blk_plug_device(q);
1544 out:
1545	/* must be careful here...if we trigger the ->remove() function
1546	 * we cannot be holding the q lock */
1547	spin_unlock_irq(q->queue_lock);
1548	put_device(&sdev->sdev_gendev);
1549	spin_lock_irq(q->queue_lock);
1550}
1551
1552u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1553{
1554	struct device *host_dev;
1555	u64 bounce_limit = 0xffffffff;
1556
1557	if (shost->unchecked_isa_dma)
1558		return BLK_BOUNCE_ISA;
1559	/*
1560	 * Platforms with virtual-DMA translation
1561	 * hardware have no practical limit.
1562	 */
1563	if (!PCI_DMA_BUS_IS_PHYS)
1564		return BLK_BOUNCE_ANY;
1565
1566	host_dev = scsi_get_device(shost);
1567	if (host_dev && host_dev->dma_mask)
1568		bounce_limit = *host_dev->dma_mask;
1569
1570	return bounce_limit;
1571}
1572EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1573
1574struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1575					 request_fn_proc *request_fn)
1576{
1577	struct request_queue *q;
1578
1579	q = blk_init_queue(request_fn, NULL);
1580	if (!q)
1581		return NULL;
1582
1583	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1584	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1585	blk_queue_max_sectors(q, shost->max_sectors);
1586	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1587	blk_queue_segment_boundary(q, shost->dma_boundary);
1588
1589	if (!shost->use_clustering)
1590		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1591	return q;
1592}
1593EXPORT_SYMBOL(__scsi_alloc_queue);
1594
1595struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1596{
1597	struct request_queue *q;
1598
1599	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1600	if (!q)
1601		return NULL;
1602
1603	blk_queue_prep_rq(q, scsi_prep_fn);
1604	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1605	blk_queue_softirq_done(q, scsi_softirq_done);
1606	return q;
1607}
1608
1609void scsi_free_queue(struct request_queue *q)
1610{
1611	blk_cleanup_queue(q);
1612}
1613
1614/*
1615 * Function:    scsi_block_requests()
1616 *
1617 * Purpose:     Utility function used by low-level drivers to prevent further
1618 *		commands from being queued to the device.
1619 *
1620 * Arguments:   shost       - Host in question
1621 *
1622 * Returns:     Nothing
1623 *
1624 * Lock status: No locks are assumed held.
1625 *
1626 * Notes:       There is no timer nor any other means by which the requests
1627 *		get unblocked other than the low-level driver calling
1628 *		scsi_unblock_requests().
1629 */
1630void scsi_block_requests(struct Scsi_Host *shost)
1631{
1632	shost->host_self_blocked = 1;
1633}
1634EXPORT_SYMBOL(scsi_block_requests);
1635
1636/*
1637 * Function:    scsi_unblock_requests()
1638 *
1639 * Purpose:     Utility function used by low-level drivers to allow further
1640 *		commands from being queued to the device.
1641 *
1642 * Arguments:   shost       - Host in question
1643 *
1644 * Returns:     Nothing
1645 *
1646 * Lock status: No locks are assumed held.
1647 *
1648 * Notes:       There is no timer nor any other means by which the requests
1649 *		get unblocked other than the low-level driver calling
1650 *		scsi_unblock_requests().
1651 *
1652 *		This is done as an API function so that changes to the
1653 *		internals of the scsi mid-layer won't require wholesale
1654 *		changes to drivers that use this feature.
1655 */
1656void scsi_unblock_requests(struct Scsi_Host *shost)
1657{
1658	shost->host_self_blocked = 0;
1659	scsi_run_host_queues(shost);
1660}
1661EXPORT_SYMBOL(scsi_unblock_requests);
1662
1663int __init scsi_init_queue(void)
1664{
1665	int i;
1666
1667	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1668					sizeof(struct scsi_io_context),
1669					0, 0, NULL, NULL);
1670	if (!scsi_io_context_cache) {
1671		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1672		return -ENOMEM;
1673	}
1674
1675	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1676		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1677		int size = sgp->size * sizeof(struct scatterlist);
1678
1679		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1680				SLAB_HWCACHE_ALIGN, NULL, NULL);
1681		if (!sgp->slab) {
1682			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1683					sgp->name);
1684		}
1685
1686		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1687						     sgp->slab);
1688		if (!sgp->pool) {
1689			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1690					sgp->name);
1691		}
1692	}
1693
1694	return 0;
1695}
1696
1697void scsi_exit_queue(void)
1698{
1699	int i;
1700
1701	kmem_cache_destroy(scsi_io_context_cache);
1702
1703	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1704		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1705		mempool_destroy(sgp->pool);
1706		kmem_cache_destroy(sgp->slab);
1707	}
1708}
1709
1710/**
1711 *	scsi_mode_select - issue a mode select
1712 *	@sdev:	SCSI device to be queried
1713 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1714 *	@sp:	Save page bit (0 == don't save, 1 == save)
1715 *	@modepage: mode page being requested
1716 *	@buffer: request buffer (may not be smaller than eight bytes)
1717 *	@len:	length of request buffer.
1718 *	@timeout: command timeout
1719 *	@retries: number of retries before failing
1720 *	@data: returns a structure abstracting the mode header data
1721 *	@sense: place to put sense data (or NULL if no sense to be collected).
1722 *		must be SCSI_SENSE_BUFFERSIZE big.
1723 *
1724 *	Returns zero if successful; negative error number or scsi
1725 *	status on error
1726 *
1727 */
1728int
1729scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1730		 unsigned char *buffer, int len, int timeout, int retries,
1731		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1732{
1733	unsigned char cmd[10];
1734	unsigned char *real_buffer;
1735	int ret;
1736
1737	memset(cmd, 0, sizeof(cmd));
1738	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1739
1740	if (sdev->use_10_for_ms) {
1741		if (len > 65535)
1742			return -EINVAL;
1743		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1744		if (!real_buffer)
1745			return -ENOMEM;
1746		memcpy(real_buffer + 8, buffer, len);
1747		len += 8;
1748		real_buffer[0] = 0;
1749		real_buffer[1] = 0;
1750		real_buffer[2] = data->medium_type;
1751		real_buffer[3] = data->device_specific;
1752		real_buffer[4] = data->longlba ? 0x01 : 0;
1753		real_buffer[5] = 0;
1754		real_buffer[6] = data->block_descriptor_length >> 8;
1755		real_buffer[7] = data->block_descriptor_length;
1756
1757		cmd[0] = MODE_SELECT_10;
1758		cmd[7] = len >> 8;
1759		cmd[8] = len;
1760	} else {
1761		if (len > 255 || data->block_descriptor_length > 255 ||
1762		    data->longlba)
1763			return -EINVAL;
1764
1765		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1766		if (!real_buffer)
1767			return -ENOMEM;
1768		memcpy(real_buffer + 4, buffer, len);
1769		len += 4;
1770		real_buffer[0] = 0;
1771		real_buffer[1] = data->medium_type;
1772		real_buffer[2] = data->device_specific;
1773		real_buffer[3] = data->block_descriptor_length;
1774
1775
1776		cmd[0] = MODE_SELECT;
1777		cmd[4] = len;
1778	}
1779
1780	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1781			       sshdr, timeout, retries);
1782	kfree(real_buffer);
1783	return ret;
1784}
1785EXPORT_SYMBOL_GPL(scsi_mode_select);
1786
1787/**
1788 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1789 *		six bytes if necessary.
1790 *	@sdev:	SCSI device to be queried
1791 *	@dbd:	set if mode sense will allow block descriptors to be returned
1792 *	@modepage: mode page being requested
1793 *	@buffer: request buffer (may not be smaller than eight bytes)
1794 *	@len:	length of request buffer.
1795 *	@timeout: command timeout
1796 *	@retries: number of retries before failing
1797 *	@data: returns a structure abstracting the mode header data
1798 *	@sense: place to put sense data (or NULL if no sense to be collected).
1799 *		must be SCSI_SENSE_BUFFERSIZE big.
1800 *
1801 *	Returns zero if unsuccessful, or the header offset (either 4
1802 *	or 8 depending on whether a six or ten byte command was
1803 *	issued) if successful.
1804 **/
1805int
1806scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1807		  unsigned char *buffer, int len, int timeout, int retries,
1808		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1809{
1810	unsigned char cmd[12];
1811	int use_10_for_ms;
1812	int header_length;
1813	int result;
1814	struct scsi_sense_hdr my_sshdr;
1815
1816	memset(data, 0, sizeof(*data));
1817	memset(&cmd[0], 0, 12);
1818	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1819	cmd[2] = modepage;
1820
1821	/* caller might not be interested in sense, but we need it */
1822	if (!sshdr)
1823		sshdr = &my_sshdr;
1824
1825 retry:
1826	use_10_for_ms = sdev->use_10_for_ms;
1827
1828	if (use_10_for_ms) {
1829		if (len < 8)
1830			len = 8;
1831
1832		cmd[0] = MODE_SENSE_10;
1833		cmd[8] = len;
1834		header_length = 8;
1835	} else {
1836		if (len < 4)
1837			len = 4;
1838
1839		cmd[0] = MODE_SENSE;
1840		cmd[4] = len;
1841		header_length = 4;
1842	}
1843
1844	memset(buffer, 0, len);
1845
1846	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1847				  sshdr, timeout, retries);
1848
1849	/* This code looks awful: what it's doing is making sure an
1850	 * ILLEGAL REQUEST sense return identifies the actual command
1851	 * byte as the problem.  MODE_SENSE commands can return
1852	 * ILLEGAL REQUEST if the code page isn't supported */
1853
1854	if (use_10_for_ms && !scsi_status_is_good(result) &&
1855	    (driver_byte(result) & DRIVER_SENSE)) {
1856		if (scsi_sense_valid(sshdr)) {
1857			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1858			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1859				/*
1860				 * Invalid command operation code
1861				 */
1862				sdev->use_10_for_ms = 0;
1863				goto retry;
1864			}
1865		}
1866	}
1867
1868	if(scsi_status_is_good(result)) {
1869		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1870			     (modepage == 6 || modepage == 8))) {
1871			/* Initio breakage? */
1872			header_length = 0;
1873			data->length = 13;
1874			data->medium_type = 0;
1875			data->device_specific = 0;
1876			data->longlba = 0;
1877			data->block_descriptor_length = 0;
1878		} else if(use_10_for_ms) {
1879			data->length = buffer[0]*256 + buffer[1] + 2;
1880			data->medium_type = buffer[2];
1881			data->device_specific = buffer[3];
1882			data->longlba = buffer[4] & 0x01;
1883			data->block_descriptor_length = buffer[6]*256
1884				+ buffer[7];
1885		} else {
1886			data->length = buffer[0] + 1;
1887			data->medium_type = buffer[1];
1888			data->device_specific = buffer[2];
1889			data->block_descriptor_length = buffer[3];
1890		}
1891		data->header_length = header_length;
1892	}
1893
1894	return result;
1895}
1896EXPORT_SYMBOL(scsi_mode_sense);
1897
1898int
1899scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1900{
1901	char cmd[] = {
1902		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1903	};
1904	struct scsi_sense_hdr sshdr;
1905	int result;
1906
1907	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1908				  timeout, retries);
1909
1910	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1911
1912		if ((scsi_sense_valid(&sshdr)) &&
1913		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1914		     (sshdr.sense_key == NOT_READY))) {
1915			sdev->changed = 1;
1916			result = 0;
1917		}
1918	}
1919	return result;
1920}
1921EXPORT_SYMBOL(scsi_test_unit_ready);
1922
1923/**
1924 *	scsi_device_set_state - Take the given device through the device
1925 *		state model.
1926 *	@sdev:	scsi device to change the state of.
1927 *	@state:	state to change to.
1928 *
1929 *	Returns zero if unsuccessful or an error if the requested
1930 *	transition is illegal.
1931 **/
1932int
1933scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1934{
1935	enum scsi_device_state oldstate = sdev->sdev_state;
1936
1937	if (state == oldstate)
1938		return 0;
1939
1940	switch (state) {
1941	case SDEV_CREATED:
1942		/* There are no legal states that come back to
1943		 * created.  This is the manually initialised start
1944		 * state */
1945		goto illegal;
1946
1947	case SDEV_RUNNING:
1948		switch (oldstate) {
1949		case SDEV_CREATED:
1950		case SDEV_OFFLINE:
1951		case SDEV_QUIESCE:
1952		case SDEV_BLOCK:
1953			break;
1954		default:
1955			goto illegal;
1956		}
1957		break;
1958
1959	case SDEV_QUIESCE:
1960		switch (oldstate) {
1961		case SDEV_RUNNING:
1962		case SDEV_OFFLINE:
1963			break;
1964		default:
1965			goto illegal;
1966		}
1967		break;
1968
1969	case SDEV_OFFLINE:
1970		switch (oldstate) {
1971		case SDEV_CREATED:
1972		case SDEV_RUNNING:
1973		case SDEV_QUIESCE:
1974		case SDEV_BLOCK:
1975			break;
1976		default:
1977			goto illegal;
1978		}
1979		break;
1980
1981	case SDEV_BLOCK:
1982		switch (oldstate) {
1983		case SDEV_CREATED:
1984		case SDEV_RUNNING:
1985			break;
1986		default:
1987			goto illegal;
1988		}
1989		break;
1990
1991	case SDEV_CANCEL:
1992		switch (oldstate) {
1993		case SDEV_CREATED:
1994		case SDEV_RUNNING:
1995		case SDEV_QUIESCE:
1996		case SDEV_OFFLINE:
1997		case SDEV_BLOCK:
1998			break;
1999		default:
2000			goto illegal;
2001		}
2002		break;
2003
2004	case SDEV_DEL:
2005		switch (oldstate) {
2006		case SDEV_CREATED:
2007		case SDEV_RUNNING:
2008		case SDEV_OFFLINE:
2009		case SDEV_CANCEL:
2010			break;
2011		default:
2012			goto illegal;
2013		}
2014		break;
2015
2016	}
2017	sdev->sdev_state = state;
2018	return 0;
2019
2020 illegal:
2021	SCSI_LOG_ERROR_RECOVERY(1,
2022				sdev_printk(KERN_ERR, sdev,
2023					    "Illegal state transition %s->%s\n",
2024					    scsi_device_state_name(oldstate),
2025					    scsi_device_state_name(state))
2026				);
2027	return -EINVAL;
2028}
2029EXPORT_SYMBOL(scsi_device_set_state);
2030
2031/**
2032 *	scsi_device_quiesce - Block user issued commands.
2033 *	@sdev:	scsi device to quiesce.
2034 *
2035 *	This works by trying to transition to the SDEV_QUIESCE state
2036 *	(which must be a legal transition).  When the device is in this
2037 *	state, only special requests will be accepted, all others will
2038 *	be deferred.  Since special requests may also be requeued requests,
2039 *	a successful return doesn't guarantee the device will be
2040 *	totally quiescent.
2041 *
2042 *	Must be called with user context, may sleep.
2043 *
2044 *	Returns zero if unsuccessful or an error if not.
2045 **/
2046int
2047scsi_device_quiesce(struct scsi_device *sdev)
2048{
2049	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2050	if (err)
2051		return err;
2052
2053	scsi_run_queue(sdev->request_queue);
2054	while (sdev->device_busy) {
2055		msleep_interruptible(200);
2056		scsi_run_queue(sdev->request_queue);
2057	}
2058	return 0;
2059}
2060EXPORT_SYMBOL(scsi_device_quiesce);
2061
2062/**
2063 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2064 *	@sdev:	scsi device to resume.
2065 *
2066 *	Moves the device from quiesced back to running and restarts the
2067 *	queues.
2068 *
2069 *	Must be called with user context, may sleep.
2070 **/
2071void
2072scsi_device_resume(struct scsi_device *sdev)
2073{
2074	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2075		return;
2076	scsi_run_queue(sdev->request_queue);
2077}
2078EXPORT_SYMBOL(scsi_device_resume);
2079
2080static void
2081device_quiesce_fn(struct scsi_device *sdev, void *data)
2082{
2083	scsi_device_quiesce(sdev);
2084}
2085
2086void
2087scsi_target_quiesce(struct scsi_target *starget)
2088{
2089	starget_for_each_device(starget, NULL, device_quiesce_fn);
2090}
2091EXPORT_SYMBOL(scsi_target_quiesce);
2092
2093static void
2094device_resume_fn(struct scsi_device *sdev, void *data)
2095{
2096	scsi_device_resume(sdev);
2097}
2098
2099void
2100scsi_target_resume(struct scsi_target *starget)
2101{
2102	starget_for_each_device(starget, NULL, device_resume_fn);
2103}
2104EXPORT_SYMBOL(scsi_target_resume);
2105
2106/**
2107 * scsi_internal_device_block - internal function to put a device
2108 *				temporarily into the SDEV_BLOCK state
2109 * @sdev:	device to block
2110 *
2111 * Block request made by scsi lld's to temporarily stop all
2112 * scsi commands on the specified device.  Called from interrupt
2113 * or normal process context.
2114 *
2115 * Returns zero if successful or error if not
2116 *
2117 * Notes:
2118 *	This routine transitions the device to the SDEV_BLOCK state
2119 *	(which must be a legal transition).  When the device is in this
2120 *	state, all commands are deferred until the scsi lld reenables
2121 *	the device with scsi_device_unblock or device_block_tmo fires.
2122 *	This routine assumes the host_lock is held on entry.
2123 **/
2124int
2125scsi_internal_device_block(struct scsi_device *sdev)
2126{
2127	request_queue_t *q = sdev->request_queue;
2128	unsigned long flags;
2129	int err = 0;
2130
2131	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2132	if (err)
2133		return err;
2134
2135	/*
2136	 * The device has transitioned to SDEV_BLOCK.  Stop the
2137	 * block layer from calling the midlayer with this device's
2138	 * request queue.
2139	 */
2140	spin_lock_irqsave(q->queue_lock, flags);
2141	blk_stop_queue(q);
2142	spin_unlock_irqrestore(q->queue_lock, flags);
2143
2144	return 0;
2145}
2146EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2147
2148/**
2149 * scsi_internal_device_unblock - resume a device after a block request
2150 * @sdev:	device to resume
2151 *
2152 * Called by scsi lld's or the midlayer to restart the device queue
2153 * for the previously suspended scsi device.  Called from interrupt or
2154 * normal process context.
2155 *
2156 * Returns zero if successful or error if not.
2157 *
2158 * Notes:
2159 *	This routine transitions the device to the SDEV_RUNNING state
2160 *	(which must be a legal transition) allowing the midlayer to
2161 *	goose the queue for this device.  This routine assumes the
2162 *	host_lock is held upon entry.
2163 **/
2164int
2165scsi_internal_device_unblock(struct scsi_device *sdev)
2166{
2167	request_queue_t *q = sdev->request_queue;
2168	int err;
2169	unsigned long flags;
2170
2171	/*
2172	 * Try to transition the scsi device to SDEV_RUNNING
2173	 * and goose the device queue if successful.
2174	 */
2175	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2176	if (err)
2177		return err;
2178
2179	spin_lock_irqsave(q->queue_lock, flags);
2180	blk_start_queue(q);
2181	spin_unlock_irqrestore(q->queue_lock, flags);
2182
2183	return 0;
2184}
2185EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2186
2187static void
2188device_block(struct scsi_device *sdev, void *data)
2189{
2190	scsi_internal_device_block(sdev);
2191}
2192
2193static int
2194target_block(struct device *dev, void *data)
2195{
2196	if (scsi_is_target_device(dev))
2197		starget_for_each_device(to_scsi_target(dev), NULL,
2198					device_block);
2199	return 0;
2200}
2201
2202void
2203scsi_target_block(struct device *dev)
2204{
2205	if (scsi_is_target_device(dev))
2206		starget_for_each_device(to_scsi_target(dev), NULL,
2207					device_block);
2208	else
2209		device_for_each_child(dev, NULL, target_block);
2210}
2211EXPORT_SYMBOL_GPL(scsi_target_block);
2212
2213static void
2214device_unblock(struct scsi_device *sdev, void *data)
2215{
2216	scsi_internal_device_unblock(sdev);
2217}
2218
2219static int
2220target_unblock(struct device *dev, void *data)
2221{
2222	if (scsi_is_target_device(dev))
2223		starget_for_each_device(to_scsi_target(dev), NULL,
2224					device_unblock);
2225	return 0;
2226}
2227
2228void
2229scsi_target_unblock(struct device *dev)
2230{
2231	if (scsi_is_target_device(dev))
2232		starget_for_each_device(to_scsi_target(dev), NULL,
2233					device_unblock);
2234	else
2235		device_for_each_child(dev, NULL, target_unblock);
2236}
2237EXPORT_SYMBOL_GPL(scsi_target_unblock);
2238
2239/**
2240 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2241 * @sg:		scatter-gather list
2242 * @sg_count:	number of segments in sg
2243 * @offset:	offset in bytes into sg, on return offset into the mapped area
2244 * @len:	bytes to map, on return number of bytes mapped
2245 *
2246 * Returns virtual address of the start of the mapped page
2247 */
2248void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2249			  size_t *offset, size_t *len)
2250{
2251	int i;
2252	size_t sg_len = 0, len_complete = 0;
2253	struct page *page;
2254
2255	for (i = 0; i < sg_count; i++) {
2256		len_complete = sg_len; /* Complete sg-entries */
2257		sg_len += sg[i].length;
2258		if (sg_len > *offset)
2259			break;
2260	}
2261
2262	if (unlikely(i == sg_count)) {
2263		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2264			"elements %d\n",
2265		       __FUNCTION__, sg_len, *offset, sg_count);
2266		WARN_ON(1);
2267		return NULL;
2268	}
2269
2270	/* Offset starting from the beginning of first page in this sg-entry */
2271	*offset = *offset - len_complete + sg[i].offset;
2272
2273	/* Assumption: contiguous pages can be accessed as "page + i" */
2274	page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2275	*offset &= ~PAGE_MASK;
2276
2277	/* Bytes in this sg-entry from *offset to the end of the page */
2278	sg_len = PAGE_SIZE - *offset;
2279	if (*len > sg_len)
2280		*len = sg_len;
2281
2282	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2283}
2284EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2285
2286/**
2287 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2288 *			   mapped with scsi_kmap_atomic_sg
2289 * @virt:	virtual address to be unmapped
2290 */
2291void scsi_kunmap_atomic_sg(void *virt)
2292{
2293	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2294}
2295EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2296