scsi_lib.c revision f0c0a376d0fcd4c5579ecf5e95f88387cba85211
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68struct kmem_cache *scsi_sdb_cache;
69
70static void scsi_run_queue(struct request_queue *q);
71
72/*
73 * Function:	scsi_unprep_request()
74 *
75 * Purpose:	Remove all preparation done for a request, including its
76 *		associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments:	req	- request to unprepare
79 *
80 * Lock status:	Assumed that no locks are held upon entry.
81 *
82 * Returns:	Nothing.
83 */
84static void scsi_unprep_request(struct request *req)
85{
86	struct scsi_cmnd *cmd = req->special;
87
88	req->cmd_flags &= ~REQ_DONTPREP;
89	req->special = NULL;
90
91	scsi_put_command(cmd);
92}
93
94/*
95 * Function:    scsi_queue_insert()
96 *
97 * Purpose:     Insert a command in the midlevel queue.
98 *
99 * Arguments:   cmd    - command that we are adding to queue.
100 *              reason - why we are inserting command to queue.
101 *
102 * Lock status: Assumed that lock is not held upon entry.
103 *
104 * Returns:     Nothing.
105 *
106 * Notes:       We do this for one of two cases.  Either the host is busy
107 *              and it cannot accept any more commands for the time being,
108 *              or the device returned QUEUE_FULL and can accept no more
109 *              commands.
110 * Notes:       This could be called either from an interrupt context or a
111 *              normal process context.
112 */
113int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114{
115	struct Scsi_Host *host = cmd->device->host;
116	struct scsi_device *device = cmd->device;
117	struct scsi_target *starget = scsi_target(device);
118	struct request_queue *q = device->request_queue;
119	unsigned long flags;
120
121	SCSI_LOG_MLQUEUE(1,
122		 printk("Inserting command %p into mlqueue\n", cmd));
123
124	/*
125	 * Set the appropriate busy bit for the device/host.
126	 *
127	 * If the host/device isn't busy, assume that something actually
128	 * completed, and that we should be able to queue a command now.
129	 *
130	 * Note that the prior mid-layer assumption that any host could
131	 * always queue at least one command is now broken.  The mid-layer
132	 * will implement a user specifiable stall (see
133	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134	 * if a command is requeued with no other commands outstanding
135	 * either for the device or for the host.
136	 */
137	switch (reason) {
138	case SCSI_MLQUEUE_HOST_BUSY:
139		host->host_blocked = host->max_host_blocked;
140		break;
141	case SCSI_MLQUEUE_DEVICE_BUSY:
142		device->device_blocked = device->max_device_blocked;
143		break;
144	case SCSI_MLQUEUE_TARGET_BUSY:
145		starget->target_blocked = starget->max_target_blocked;
146		break;
147	}
148
149	/*
150	 * Decrement the counters, since these commands are no longer
151	 * active on the host/device.
152	 */
153	scsi_device_unbusy(device);
154
155	/*
156	 * Requeue this command.  It will go before all other commands
157	 * that are already in the queue.
158	 *
159	 * NOTE: there is magic here about the way the queue is plugged if
160	 * we have no outstanding commands.
161	 *
162	 * Although we *don't* plug the queue, we call the request
163	 * function.  The SCSI request function detects the blocked condition
164	 * and plugs the queue appropriately.
165         */
166	spin_lock_irqsave(q->queue_lock, flags);
167	blk_requeue_request(q, cmd->request);
168	spin_unlock_irqrestore(q->queue_lock, flags);
169
170	scsi_run_queue(q);
171
172	return 0;
173}
174
175/**
176 * scsi_execute - insert request and wait for the result
177 * @sdev:	scsi device
178 * @cmd:	scsi command
179 * @data_direction: data direction
180 * @buffer:	data buffer
181 * @bufflen:	len of buffer
182 * @sense:	optional sense buffer
183 * @timeout:	request timeout in seconds
184 * @retries:	number of times to retry request
185 * @flags:	or into request flags;
186 *
187 * returns the req->errors value which is the scsi_cmnd result
188 * field.
189 */
190int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
191		 int data_direction, void *buffer, unsigned bufflen,
192		 unsigned char *sense, int timeout, int retries, int flags)
193{
194	struct request *req;
195	int write = (data_direction == DMA_TO_DEVICE);
196	int ret = DRIVER_ERROR << 24;
197
198	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
199
200	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
201					buffer, bufflen, __GFP_WAIT))
202		goto out;
203
204	req->cmd_len = COMMAND_SIZE(cmd[0]);
205	memcpy(req->cmd, cmd, req->cmd_len);
206	req->sense = sense;
207	req->sense_len = 0;
208	req->retries = retries;
209	req->timeout = timeout;
210	req->cmd_type = REQ_TYPE_BLOCK_PC;
211	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
212
213	/*
214	 * head injection *required* here otherwise quiesce won't work
215	 */
216	blk_execute_rq(req->q, NULL, req, 1);
217
218	/*
219	 * Some devices (USB mass-storage in particular) may transfer
220	 * garbage data together with a residue indicating that the data
221	 * is invalid.  Prevent the garbage from being misinterpreted
222	 * and prevent security leaks by zeroing out the excess data.
223	 */
224	if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
225		memset(buffer + (bufflen - req->data_len), 0, req->data_len);
226
227	ret = req->errors;
228 out:
229	blk_put_request(req);
230
231	return ret;
232}
233EXPORT_SYMBOL(scsi_execute);
234
235
236int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
237		     int data_direction, void *buffer, unsigned bufflen,
238		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
239{
240	char *sense = NULL;
241	int result;
242
243	if (sshdr) {
244		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
245		if (!sense)
246			return DRIVER_ERROR << 24;
247	}
248	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249			      sense, timeout, retries, 0);
250	if (sshdr)
251		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
252
253	kfree(sense);
254	return result;
255}
256EXPORT_SYMBOL(scsi_execute_req);
257
258struct scsi_io_context {
259	void *data;
260	void (*done)(void *data, char *sense, int result, int resid);
261	char sense[SCSI_SENSE_BUFFERSIZE];
262};
263
264static struct kmem_cache *scsi_io_context_cache;
265
266static void scsi_end_async(struct request *req, int uptodate)
267{
268	struct scsi_io_context *sioc = req->end_io_data;
269
270	if (sioc->done)
271		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
272
273	kmem_cache_free(scsi_io_context_cache, sioc);
274	__blk_put_request(req->q, req);
275}
276
277static int scsi_merge_bio(struct request *rq, struct bio *bio)
278{
279	struct request_queue *q = rq->q;
280
281	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
282	if (rq_data_dir(rq) == WRITE)
283		bio->bi_rw |= (1 << BIO_RW);
284	blk_queue_bounce(q, &bio);
285
286	return blk_rq_append_bio(q, rq, bio);
287}
288
289static void scsi_bi_endio(struct bio *bio, int error)
290{
291	bio_put(bio);
292}
293
294/**
295 * scsi_req_map_sg - map a scatterlist into a request
296 * @rq:		request to fill
297 * @sgl:	scatterlist
298 * @nsegs:	number of elements
299 * @bufflen:	len of buffer
300 * @gfp:	memory allocation flags
301 *
302 * scsi_req_map_sg maps a scatterlist into a request so that the
303 * request can be sent to the block layer. We do not trust the scatterlist
304 * sent to use, as some ULDs use that struct to only organize the pages.
305 */
306static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
307			   int nsegs, unsigned bufflen, gfp_t gfp)
308{
309	struct request_queue *q = rq->q;
310	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
311	unsigned int data_len = bufflen, len, bytes, off;
312	struct scatterlist *sg;
313	struct page *page;
314	struct bio *bio = NULL;
315	int i, err, nr_vecs = 0;
316
317	for_each_sg(sgl, sg, nsegs, i) {
318		page = sg_page(sg);
319		off = sg->offset;
320		len = sg->length;
321
322		while (len > 0 && data_len > 0) {
323			/*
324			 * sg sends a scatterlist that is larger than
325			 * the data_len it wants transferred for certain
326			 * IO sizes
327			 */
328			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
329			bytes = min(bytes, data_len);
330
331			if (!bio) {
332				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
333				nr_pages -= nr_vecs;
334
335				bio = bio_alloc(gfp, nr_vecs);
336				if (!bio) {
337					err = -ENOMEM;
338					goto free_bios;
339				}
340				bio->bi_end_io = scsi_bi_endio;
341			}
342
343			if (bio_add_pc_page(q, bio, page, bytes, off) !=
344			    bytes) {
345				bio_put(bio);
346				err = -EINVAL;
347				goto free_bios;
348			}
349
350			if (bio->bi_vcnt >= nr_vecs) {
351				err = scsi_merge_bio(rq, bio);
352				if (err) {
353					bio_endio(bio, 0);
354					goto free_bios;
355				}
356				bio = NULL;
357			}
358
359			page++;
360			len -= bytes;
361			data_len -=bytes;
362			off = 0;
363		}
364	}
365
366	rq->buffer = rq->data = NULL;
367	rq->data_len = bufflen;
368	return 0;
369
370free_bios:
371	while ((bio = rq->bio) != NULL) {
372		rq->bio = bio->bi_next;
373		/*
374		 * call endio instead of bio_put incase it was bounced
375		 */
376		bio_endio(bio, 0);
377	}
378
379	return err;
380}
381
382/**
383 * scsi_execute_async - insert request
384 * @sdev:	scsi device
385 * @cmd:	scsi command
386 * @cmd_len:	length of scsi cdb
387 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
388 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
389 * @bufflen:	len of buffer
390 * @use_sg:	if buffer is a scatterlist this is the number of elements
391 * @timeout:	request timeout in seconds
392 * @retries:	number of times to retry request
393 * @privdata:	data passed to done()
394 * @done:	callback function when done
395 * @gfp:	memory allocation flags
396 */
397int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
398		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
399		       int use_sg, int timeout, int retries, void *privdata,
400		       void (*done)(void *, char *, int, int), gfp_t gfp)
401{
402	struct request *req;
403	struct scsi_io_context *sioc;
404	int err = 0;
405	int write = (data_direction == DMA_TO_DEVICE);
406
407	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
408	if (!sioc)
409		return DRIVER_ERROR << 24;
410
411	req = blk_get_request(sdev->request_queue, write, gfp);
412	if (!req)
413		goto free_sense;
414	req->cmd_type = REQ_TYPE_BLOCK_PC;
415	req->cmd_flags |= REQ_QUIET;
416
417	if (use_sg)
418		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
419	else if (bufflen)
420		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
421
422	if (err)
423		goto free_req;
424
425	req->cmd_len = cmd_len;
426	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
427	memcpy(req->cmd, cmd, req->cmd_len);
428	req->sense = sioc->sense;
429	req->sense_len = 0;
430	req->timeout = timeout;
431	req->retries = retries;
432	req->end_io_data = sioc;
433
434	sioc->data = privdata;
435	sioc->done = done;
436
437	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
438	return 0;
439
440free_req:
441	blk_put_request(req);
442free_sense:
443	kmem_cache_free(scsi_io_context_cache, sioc);
444	return DRIVER_ERROR << 24;
445}
446EXPORT_SYMBOL_GPL(scsi_execute_async);
447
448/*
449 * Function:    scsi_init_cmd_errh()
450 *
451 * Purpose:     Initialize cmd fields related to error handling.
452 *
453 * Arguments:   cmd	- command that is ready to be queued.
454 *
455 * Notes:       This function has the job of initializing a number of
456 *              fields related to error handling.   Typically this will
457 *              be called once for each command, as required.
458 */
459static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
460{
461	cmd->serial_number = 0;
462	scsi_set_resid(cmd, 0);
463	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
464	if (cmd->cmd_len == 0)
465		cmd->cmd_len = scsi_command_size(cmd->cmnd);
466}
467
468void scsi_device_unbusy(struct scsi_device *sdev)
469{
470	struct Scsi_Host *shost = sdev->host;
471	struct scsi_target *starget = scsi_target(sdev);
472	unsigned long flags;
473
474	spin_lock_irqsave(shost->host_lock, flags);
475	shost->host_busy--;
476	starget->target_busy--;
477	if (unlikely(scsi_host_in_recovery(shost) &&
478		     (shost->host_failed || shost->host_eh_scheduled)))
479		scsi_eh_wakeup(shost);
480	spin_unlock(shost->host_lock);
481	spin_lock(sdev->request_queue->queue_lock);
482	sdev->device_busy--;
483	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
484}
485
486/*
487 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
488 * and call blk_run_queue for all the scsi_devices on the target -
489 * including current_sdev first.
490 *
491 * Called with *no* scsi locks held.
492 */
493static void scsi_single_lun_run(struct scsi_device *current_sdev)
494{
495	struct Scsi_Host *shost = current_sdev->host;
496	struct scsi_device *sdev, *tmp;
497	struct scsi_target *starget = scsi_target(current_sdev);
498	unsigned long flags;
499
500	spin_lock_irqsave(shost->host_lock, flags);
501	starget->starget_sdev_user = NULL;
502	spin_unlock_irqrestore(shost->host_lock, flags);
503
504	/*
505	 * Call blk_run_queue for all LUNs on the target, starting with
506	 * current_sdev. We race with others (to set starget_sdev_user),
507	 * but in most cases, we will be first. Ideally, each LU on the
508	 * target would get some limited time or requests on the target.
509	 */
510	blk_run_queue(current_sdev->request_queue);
511
512	spin_lock_irqsave(shost->host_lock, flags);
513	if (starget->starget_sdev_user)
514		goto out;
515	list_for_each_entry_safe(sdev, tmp, &starget->devices,
516			same_target_siblings) {
517		if (sdev == current_sdev)
518			continue;
519		if (scsi_device_get(sdev))
520			continue;
521
522		spin_unlock_irqrestore(shost->host_lock, flags);
523		blk_run_queue(sdev->request_queue);
524		spin_lock_irqsave(shost->host_lock, flags);
525
526		scsi_device_put(sdev);
527	}
528 out:
529	spin_unlock_irqrestore(shost->host_lock, flags);
530}
531
532static inline int scsi_target_is_busy(struct scsi_target *starget)
533{
534	return ((starget->can_queue > 0 &&
535		 starget->target_busy >= starget->can_queue) ||
536		 starget->target_blocked);
537}
538
539/*
540 * Function:	scsi_run_queue()
541 *
542 * Purpose:	Select a proper request queue to serve next
543 *
544 * Arguments:	q	- last request's queue
545 *
546 * Returns:     Nothing
547 *
548 * Notes:	The previous command was completely finished, start
549 *		a new one if possible.
550 */
551static void scsi_run_queue(struct request_queue *q)
552{
553	struct scsi_device *starved_head = NULL, *sdev = q->queuedata;
554	struct Scsi_Host *shost = sdev->host;
555	unsigned long flags;
556
557	if (scsi_target(sdev)->single_lun)
558		scsi_single_lun_run(sdev);
559
560	spin_lock_irqsave(shost->host_lock, flags);
561	while (!list_empty(&shost->starved_list) &&
562	       !shost->host_blocked && !shost->host_self_blocked &&
563		!((shost->can_queue > 0) &&
564		  (shost->host_busy >= shost->can_queue))) {
565
566		int flagset;
567
568		/*
569		 * As long as shost is accepting commands and we have
570		 * starved queues, call blk_run_queue. scsi_request_fn
571		 * drops the queue_lock and can add us back to the
572		 * starved_list.
573		 *
574		 * host_lock protects the starved_list and starved_entry.
575		 * scsi_request_fn must get the host_lock before checking
576		 * or modifying starved_list or starved_entry.
577		 */
578		sdev = list_entry(shost->starved_list.next,
579					  struct scsi_device, starved_entry);
580		/*
581		 * The *queue_ready functions can add a device back onto the
582		 * starved list's tail, so we must check for a infinite loop.
583		 */
584		if (sdev == starved_head)
585			break;
586		if (!starved_head)
587			starved_head = sdev;
588
589		if (scsi_target_is_busy(scsi_target(sdev))) {
590			list_move_tail(&sdev->starved_entry,
591				       &shost->starved_list);
592			continue;
593		}
594
595		list_del_init(&sdev->starved_entry);
596		spin_unlock(shost->host_lock);
597
598		spin_lock(sdev->request_queue->queue_lock);
599		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
600				!test_bit(QUEUE_FLAG_REENTER,
601					&sdev->request_queue->queue_flags);
602		if (flagset)
603			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
604		__blk_run_queue(sdev->request_queue);
605		if (flagset)
606			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
607		spin_unlock(sdev->request_queue->queue_lock);
608
609		spin_lock(shost->host_lock);
610	}
611	spin_unlock_irqrestore(shost->host_lock, flags);
612
613	blk_run_queue(q);
614}
615
616/*
617 * Function:	scsi_requeue_command()
618 *
619 * Purpose:	Handle post-processing of completed commands.
620 *
621 * Arguments:	q	- queue to operate on
622 *		cmd	- command that may need to be requeued.
623 *
624 * Returns:	Nothing
625 *
626 * Notes:	After command completion, there may be blocks left
627 *		over which weren't finished by the previous command
628 *		this can be for a number of reasons - the main one is
629 *		I/O errors in the middle of the request, in which case
630 *		we need to request the blocks that come after the bad
631 *		sector.
632 * Notes:	Upon return, cmd is a stale pointer.
633 */
634static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
635{
636	struct request *req = cmd->request;
637	unsigned long flags;
638
639	scsi_unprep_request(req);
640	spin_lock_irqsave(q->queue_lock, flags);
641	blk_requeue_request(q, req);
642	spin_unlock_irqrestore(q->queue_lock, flags);
643
644	scsi_run_queue(q);
645}
646
647void scsi_next_command(struct scsi_cmnd *cmd)
648{
649	struct scsi_device *sdev = cmd->device;
650	struct request_queue *q = sdev->request_queue;
651
652	/* need to hold a reference on the device before we let go of the cmd */
653	get_device(&sdev->sdev_gendev);
654
655	scsi_put_command(cmd);
656	scsi_run_queue(q);
657
658	/* ok to remove device now */
659	put_device(&sdev->sdev_gendev);
660}
661
662void scsi_run_host_queues(struct Scsi_Host *shost)
663{
664	struct scsi_device *sdev;
665
666	shost_for_each_device(sdev, shost)
667		scsi_run_queue(sdev->request_queue);
668}
669
670/*
671 * Function:    scsi_end_request()
672 *
673 * Purpose:     Post-processing of completed commands (usually invoked at end
674 *		of upper level post-processing and scsi_io_completion).
675 *
676 * Arguments:   cmd	 - command that is complete.
677 *              error    - 0 if I/O indicates success, < 0 for I/O error.
678 *              bytes    - number of bytes of completed I/O
679 *		requeue  - indicates whether we should requeue leftovers.
680 *
681 * Lock status: Assumed that lock is not held upon entry.
682 *
683 * Returns:     cmd if requeue required, NULL otherwise.
684 *
685 * Notes:       This is called for block device requests in order to
686 *              mark some number of sectors as complete.
687 *
688 *		We are guaranteeing that the request queue will be goosed
689 *		at some point during this call.
690 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
691 */
692static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
693					  int bytes, int requeue)
694{
695	struct request_queue *q = cmd->device->request_queue;
696	struct request *req = cmd->request;
697
698	/*
699	 * If there are blocks left over at the end, set up the command
700	 * to queue the remainder of them.
701	 */
702	if (blk_end_request(req, error, bytes)) {
703		int leftover = (req->hard_nr_sectors << 9);
704
705		if (blk_pc_request(req))
706			leftover = req->data_len;
707
708		/* kill remainder if no retrys */
709		if (error && blk_noretry_request(req))
710			blk_end_request(req, error, leftover);
711		else {
712			if (requeue) {
713				/*
714				 * Bleah.  Leftovers again.  Stick the
715				 * leftovers in the front of the
716				 * queue, and goose the queue again.
717				 */
718				scsi_requeue_command(q, cmd);
719				cmd = NULL;
720			}
721			return cmd;
722		}
723	}
724
725	/*
726	 * This will goose the queue request function at the end, so we don't
727	 * need to worry about launching another command.
728	 */
729	scsi_next_command(cmd);
730	return NULL;
731}
732
733static inline unsigned int scsi_sgtable_index(unsigned short nents)
734{
735	unsigned int index;
736
737	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
738
739	if (nents <= 8)
740		index = 0;
741	else
742		index = get_count_order(nents) - 3;
743
744	return index;
745}
746
747static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
748{
749	struct scsi_host_sg_pool *sgp;
750
751	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
752	mempool_free(sgl, sgp->pool);
753}
754
755static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
756{
757	struct scsi_host_sg_pool *sgp;
758
759	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
760	return mempool_alloc(sgp->pool, gfp_mask);
761}
762
763static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
764			      gfp_t gfp_mask)
765{
766	int ret;
767
768	BUG_ON(!nents);
769
770	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
771			       gfp_mask, scsi_sg_alloc);
772	if (unlikely(ret))
773		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
774				scsi_sg_free);
775
776	return ret;
777}
778
779static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
780{
781	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
782}
783
784/*
785 * Function:    scsi_release_buffers()
786 *
787 * Purpose:     Completion processing for block device I/O requests.
788 *
789 * Arguments:   cmd	- command that we are bailing.
790 *
791 * Lock status: Assumed that no lock is held upon entry.
792 *
793 * Returns:     Nothing
794 *
795 * Notes:       In the event that an upper level driver rejects a
796 *		command, we must release resources allocated during
797 *		the __init_io() function.  Primarily this would involve
798 *		the scatter-gather table, and potentially any bounce
799 *		buffers.
800 */
801void scsi_release_buffers(struct scsi_cmnd *cmd)
802{
803	if (cmd->sdb.table.nents)
804		scsi_free_sgtable(&cmd->sdb);
805
806	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
807
808	if (scsi_bidi_cmnd(cmd)) {
809		struct scsi_data_buffer *bidi_sdb =
810			cmd->request->next_rq->special;
811		scsi_free_sgtable(bidi_sdb);
812		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
813		cmd->request->next_rq->special = NULL;
814	}
815
816	if (scsi_prot_sg_count(cmd))
817		scsi_free_sgtable(cmd->prot_sdb);
818}
819EXPORT_SYMBOL(scsi_release_buffers);
820
821/*
822 * Bidi commands Must be complete as a whole, both sides at once.
823 * If part of the bytes were written and lld returned
824 * scsi_in()->resid and/or scsi_out()->resid this information will be left
825 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
826 * decide what to do with this information.
827 */
828static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
829{
830	struct request *req = cmd->request;
831	unsigned int dlen = req->data_len;
832	unsigned int next_dlen = req->next_rq->data_len;
833
834	req->data_len = scsi_out(cmd)->resid;
835	req->next_rq->data_len = scsi_in(cmd)->resid;
836
837	/* The req and req->next_rq have not been completed */
838	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
839
840	scsi_release_buffers(cmd);
841
842	/*
843	 * This will goose the queue request function at the end, so we don't
844	 * need to worry about launching another command.
845	 */
846	scsi_next_command(cmd);
847}
848
849/*
850 * Function:    scsi_io_completion()
851 *
852 * Purpose:     Completion processing for block device I/O requests.
853 *
854 * Arguments:   cmd   - command that is finished.
855 *
856 * Lock status: Assumed that no lock is held upon entry.
857 *
858 * Returns:     Nothing
859 *
860 * Notes:       This function is matched in terms of capabilities to
861 *              the function that created the scatter-gather list.
862 *              In other words, if there are no bounce buffers
863 *              (the normal case for most drivers), we don't need
864 *              the logic to deal with cleaning up afterwards.
865 *
866 *		We must do one of several things here:
867 *
868 *		a) Call scsi_end_request.  This will finish off the
869 *		   specified number of sectors.  If we are done, the
870 *		   command block will be released, and the queue
871 *		   function will be goosed.  If we are not done, then
872 *		   scsi_end_request will directly goose the queue.
873 *
874 *		b) We can just use scsi_requeue_command() here.  This would
875 *		   be used if we just wanted to retry, for example.
876 */
877void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
878{
879	int result = cmd->result;
880	int this_count;
881	struct request_queue *q = cmd->device->request_queue;
882	struct request *req = cmd->request;
883	int error = 0;
884	struct scsi_sense_hdr sshdr;
885	int sense_valid = 0;
886	int sense_deferred = 0;
887
888	if (result) {
889		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
890		if (sense_valid)
891			sense_deferred = scsi_sense_is_deferred(&sshdr);
892	}
893
894	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
895		req->errors = result;
896		if (result) {
897			if (sense_valid && req->sense) {
898				/*
899				 * SG_IO wants current and deferred errors
900				 */
901				int len = 8 + cmd->sense_buffer[7];
902
903				if (len > SCSI_SENSE_BUFFERSIZE)
904					len = SCSI_SENSE_BUFFERSIZE;
905				memcpy(req->sense, cmd->sense_buffer,  len);
906				req->sense_len = len;
907			}
908			if (!sense_deferred)
909				error = -EIO;
910		}
911		if (scsi_bidi_cmnd(cmd)) {
912			/* will also release_buffers */
913			scsi_end_bidi_request(cmd);
914			return;
915		}
916		req->data_len = scsi_get_resid(cmd);
917	}
918
919	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
920	scsi_release_buffers(cmd);
921
922	/*
923	 * Next deal with any sectors which we were able to correctly
924	 * handle.
925	 */
926	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
927				      "%d bytes done.\n",
928				      req->nr_sectors, good_bytes));
929
930	/* A number of bytes were successfully read.  If there
931	 * are leftovers and there is some kind of error
932	 * (result != 0), retry the rest.
933	 */
934	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
935		return;
936	this_count = blk_rq_bytes(req);
937
938	/* good_bytes = 0, or (inclusive) there were leftovers and
939	 * result = 0, so scsi_end_request couldn't retry.
940	 */
941	if (sense_valid && !sense_deferred) {
942		switch (sshdr.sense_key) {
943		case UNIT_ATTENTION:
944			if (cmd->device->removable) {
945				/* Detected disc change.  Set a bit
946				 * and quietly refuse further access.
947				 */
948				cmd->device->changed = 1;
949				scsi_end_request(cmd, -EIO, this_count, 1);
950				return;
951			} else {
952				/* Must have been a power glitch, or a
953				 * bus reset.  Could not have been a
954				 * media change, so we just retry the
955				 * request and see what happens.
956				 */
957				scsi_requeue_command(q, cmd);
958				return;
959			}
960			break;
961		case ILLEGAL_REQUEST:
962			/* If we had an ILLEGAL REQUEST returned, then
963			 * we may have performed an unsupported
964			 * command.  The only thing this should be
965			 * would be a ten byte read where only a six
966			 * byte read was supported.  Also, on a system
967			 * where READ CAPACITY failed, we may have
968			 * read past the end of the disk.
969			 */
970			if ((cmd->device->use_10_for_rw &&
971			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
972			    (cmd->cmnd[0] == READ_10 ||
973			     cmd->cmnd[0] == WRITE_10)) {
974				cmd->device->use_10_for_rw = 0;
975				/* This will cause a retry with a
976				 * 6-byte command.
977				 */
978				scsi_requeue_command(q, cmd);
979			} else if (sshdr.asc == 0x10) /* DIX */
980				scsi_end_request(cmd, -EIO, this_count, 0);
981			else
982				scsi_end_request(cmd, -EIO, this_count, 1);
983			return;
984		case ABORTED_COMMAND:
985			if (sshdr.asc == 0x10) { /* DIF */
986				scsi_end_request(cmd, -EIO, this_count, 0);
987				return;
988			}
989			break;
990		case NOT_READY:
991			/* If the device is in the process of becoming
992			 * ready, or has a temporary blockage, retry.
993			 */
994			if (sshdr.asc == 0x04) {
995				switch (sshdr.ascq) {
996				case 0x01: /* becoming ready */
997				case 0x04: /* format in progress */
998				case 0x05: /* rebuild in progress */
999				case 0x06: /* recalculation in progress */
1000				case 0x07: /* operation in progress */
1001				case 0x08: /* Long write in progress */
1002				case 0x09: /* self test in progress */
1003					scsi_requeue_command(q, cmd);
1004					return;
1005				default:
1006					break;
1007				}
1008			}
1009			if (!(req->cmd_flags & REQ_QUIET))
1010				scsi_cmd_print_sense_hdr(cmd,
1011							 "Device not ready",
1012							 &sshdr);
1013
1014			scsi_end_request(cmd, -EIO, this_count, 1);
1015			return;
1016		case VOLUME_OVERFLOW:
1017			if (!(req->cmd_flags & REQ_QUIET)) {
1018				scmd_printk(KERN_INFO, cmd,
1019					    "Volume overflow, CDB: ");
1020				__scsi_print_command(cmd->cmnd);
1021				scsi_print_sense("", cmd);
1022			}
1023			/* See SSC3rXX or current. */
1024			scsi_end_request(cmd, -EIO, this_count, 1);
1025			return;
1026		default:
1027			break;
1028		}
1029	}
1030	if (host_byte(result) == DID_RESET) {
1031		/* Third party bus reset or reset for error recovery
1032		 * reasons.  Just retry the request and see what
1033		 * happens.
1034		 */
1035		scsi_requeue_command(q, cmd);
1036		return;
1037	}
1038	if (result) {
1039		if (!(req->cmd_flags & REQ_QUIET)) {
1040			scsi_print_result(cmd);
1041			if (driver_byte(result) & DRIVER_SENSE)
1042				scsi_print_sense("", cmd);
1043		}
1044	}
1045	scsi_end_request(cmd, -EIO, this_count, !result);
1046}
1047
1048static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1049			     gfp_t gfp_mask)
1050{
1051	int count;
1052
1053	/*
1054	 * If sg table allocation fails, requeue request later.
1055	 */
1056	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1057					gfp_mask))) {
1058		return BLKPREP_DEFER;
1059	}
1060
1061	req->buffer = NULL;
1062
1063	/*
1064	 * Next, walk the list, and fill in the addresses and sizes of
1065	 * each segment.
1066	 */
1067	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1068	BUG_ON(count > sdb->table.nents);
1069	sdb->table.nents = count;
1070	if (blk_pc_request(req))
1071		sdb->length = req->data_len;
1072	else
1073		sdb->length = req->nr_sectors << 9;
1074	return BLKPREP_OK;
1075}
1076
1077/*
1078 * Function:    scsi_init_io()
1079 *
1080 * Purpose:     SCSI I/O initialize function.
1081 *
1082 * Arguments:   cmd   - Command descriptor we wish to initialize
1083 *
1084 * Returns:     0 on success
1085 *		BLKPREP_DEFER if the failure is retryable
1086 *		BLKPREP_KILL if the failure is fatal
1087 */
1088int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1089{
1090	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1091	if (error)
1092		goto err_exit;
1093
1094	if (blk_bidi_rq(cmd->request)) {
1095		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1096			scsi_sdb_cache, GFP_ATOMIC);
1097		if (!bidi_sdb) {
1098			error = BLKPREP_DEFER;
1099			goto err_exit;
1100		}
1101
1102		cmd->request->next_rq->special = bidi_sdb;
1103		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1104								    GFP_ATOMIC);
1105		if (error)
1106			goto err_exit;
1107	}
1108
1109	if (blk_integrity_rq(cmd->request)) {
1110		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1111		int ivecs, count;
1112
1113		BUG_ON(prot_sdb == NULL);
1114		ivecs = blk_rq_count_integrity_sg(cmd->request);
1115
1116		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1117			error = BLKPREP_DEFER;
1118			goto err_exit;
1119		}
1120
1121		count = blk_rq_map_integrity_sg(cmd->request,
1122						prot_sdb->table.sgl);
1123		BUG_ON(unlikely(count > ivecs));
1124
1125		cmd->prot_sdb = prot_sdb;
1126		cmd->prot_sdb->table.nents = count;
1127	}
1128
1129	return BLKPREP_OK ;
1130
1131err_exit:
1132	scsi_release_buffers(cmd);
1133	if (error == BLKPREP_KILL)
1134		scsi_put_command(cmd);
1135	else /* BLKPREP_DEFER */
1136		scsi_unprep_request(cmd->request);
1137
1138	return error;
1139}
1140EXPORT_SYMBOL(scsi_init_io);
1141
1142static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1143		struct request *req)
1144{
1145	struct scsi_cmnd *cmd;
1146
1147	if (!req->special) {
1148		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1149		if (unlikely(!cmd))
1150			return NULL;
1151		req->special = cmd;
1152	} else {
1153		cmd = req->special;
1154	}
1155
1156	/* pull a tag out of the request if we have one */
1157	cmd->tag = req->tag;
1158	cmd->request = req;
1159
1160	cmd->cmnd = req->cmd;
1161
1162	return cmd;
1163}
1164
1165int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1166{
1167	struct scsi_cmnd *cmd;
1168	int ret = scsi_prep_state_check(sdev, req);
1169
1170	if (ret != BLKPREP_OK)
1171		return ret;
1172
1173	cmd = scsi_get_cmd_from_req(sdev, req);
1174	if (unlikely(!cmd))
1175		return BLKPREP_DEFER;
1176
1177	/*
1178	 * BLOCK_PC requests may transfer data, in which case they must
1179	 * a bio attached to them.  Or they might contain a SCSI command
1180	 * that does not transfer data, in which case they may optionally
1181	 * submit a request without an attached bio.
1182	 */
1183	if (req->bio) {
1184		int ret;
1185
1186		BUG_ON(!req->nr_phys_segments);
1187
1188		ret = scsi_init_io(cmd, GFP_ATOMIC);
1189		if (unlikely(ret))
1190			return ret;
1191	} else {
1192		BUG_ON(req->data_len);
1193		BUG_ON(req->data);
1194
1195		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1196		req->buffer = NULL;
1197	}
1198
1199	cmd->cmd_len = req->cmd_len;
1200	if (!req->data_len)
1201		cmd->sc_data_direction = DMA_NONE;
1202	else if (rq_data_dir(req) == WRITE)
1203		cmd->sc_data_direction = DMA_TO_DEVICE;
1204	else
1205		cmd->sc_data_direction = DMA_FROM_DEVICE;
1206
1207	cmd->transfersize = req->data_len;
1208	cmd->allowed = req->retries;
1209	return BLKPREP_OK;
1210}
1211EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1212
1213/*
1214 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1215 * from filesystems that still need to be translated to SCSI CDBs from
1216 * the ULD.
1217 */
1218int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1219{
1220	struct scsi_cmnd *cmd;
1221	int ret = scsi_prep_state_check(sdev, req);
1222
1223	if (ret != BLKPREP_OK)
1224		return ret;
1225
1226	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1227			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1228		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1229		if (ret != BLKPREP_OK)
1230			return ret;
1231	}
1232
1233	/*
1234	 * Filesystem requests must transfer data.
1235	 */
1236	BUG_ON(!req->nr_phys_segments);
1237
1238	cmd = scsi_get_cmd_from_req(sdev, req);
1239	if (unlikely(!cmd))
1240		return BLKPREP_DEFER;
1241
1242	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1243	return scsi_init_io(cmd, GFP_ATOMIC);
1244}
1245EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1246
1247int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1248{
1249	int ret = BLKPREP_OK;
1250
1251	/*
1252	 * If the device is not in running state we will reject some
1253	 * or all commands.
1254	 */
1255	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1256		switch (sdev->sdev_state) {
1257		case SDEV_OFFLINE:
1258			/*
1259			 * If the device is offline we refuse to process any
1260			 * commands.  The device must be brought online
1261			 * before trying any recovery commands.
1262			 */
1263			sdev_printk(KERN_ERR, sdev,
1264				    "rejecting I/O to offline device\n");
1265			ret = BLKPREP_KILL;
1266			break;
1267		case SDEV_DEL:
1268			/*
1269			 * If the device is fully deleted, we refuse to
1270			 * process any commands as well.
1271			 */
1272			sdev_printk(KERN_ERR, sdev,
1273				    "rejecting I/O to dead device\n");
1274			ret = BLKPREP_KILL;
1275			break;
1276		case SDEV_QUIESCE:
1277		case SDEV_BLOCK:
1278		case SDEV_CREATED_BLOCK:
1279			/*
1280			 * If the devices is blocked we defer normal commands.
1281			 */
1282			if (!(req->cmd_flags & REQ_PREEMPT))
1283				ret = BLKPREP_DEFER;
1284			break;
1285		default:
1286			/*
1287			 * For any other not fully online state we only allow
1288			 * special commands.  In particular any user initiated
1289			 * command is not allowed.
1290			 */
1291			if (!(req->cmd_flags & REQ_PREEMPT))
1292				ret = BLKPREP_KILL;
1293			break;
1294		}
1295	}
1296	return ret;
1297}
1298EXPORT_SYMBOL(scsi_prep_state_check);
1299
1300int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1301{
1302	struct scsi_device *sdev = q->queuedata;
1303
1304	switch (ret) {
1305	case BLKPREP_KILL:
1306		req->errors = DID_NO_CONNECT << 16;
1307		/* release the command and kill it */
1308		if (req->special) {
1309			struct scsi_cmnd *cmd = req->special;
1310			scsi_release_buffers(cmd);
1311			scsi_put_command(cmd);
1312			req->special = NULL;
1313		}
1314		break;
1315	case BLKPREP_DEFER:
1316		/*
1317		 * If we defer, the elv_next_request() returns NULL, but the
1318		 * queue must be restarted, so we plug here if no returning
1319		 * command will automatically do that.
1320		 */
1321		if (sdev->device_busy == 0)
1322			blk_plug_device(q);
1323		break;
1324	default:
1325		req->cmd_flags |= REQ_DONTPREP;
1326	}
1327
1328	return ret;
1329}
1330EXPORT_SYMBOL(scsi_prep_return);
1331
1332int scsi_prep_fn(struct request_queue *q, struct request *req)
1333{
1334	struct scsi_device *sdev = q->queuedata;
1335	int ret = BLKPREP_KILL;
1336
1337	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1338		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1339	return scsi_prep_return(q, req, ret);
1340}
1341
1342/*
1343 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1344 * return 0.
1345 *
1346 * Called with the queue_lock held.
1347 */
1348static inline int scsi_dev_queue_ready(struct request_queue *q,
1349				  struct scsi_device *sdev)
1350{
1351	if (sdev->device_busy >= sdev->queue_depth)
1352		return 0;
1353	if (sdev->device_busy == 0 && sdev->device_blocked) {
1354		/*
1355		 * unblock after device_blocked iterates to zero
1356		 */
1357		if (--sdev->device_blocked == 0) {
1358			SCSI_LOG_MLQUEUE(3,
1359				   sdev_printk(KERN_INFO, sdev,
1360				   "unblocking device at zero depth\n"));
1361		} else {
1362			blk_plug_device(q);
1363			return 0;
1364		}
1365	}
1366	if (sdev->device_blocked)
1367		return 0;
1368
1369	return 1;
1370}
1371
1372
1373/*
1374 * scsi_target_queue_ready: checks if there we can send commands to target
1375 * @sdev: scsi device on starget to check.
1376 *
1377 * Called with the host lock held.
1378 */
1379static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1380					   struct scsi_device *sdev)
1381{
1382	struct scsi_target *starget = scsi_target(sdev);
1383
1384	if (starget->single_lun) {
1385		if (starget->starget_sdev_user &&
1386		    starget->starget_sdev_user != sdev)
1387			return 0;
1388		starget->starget_sdev_user = sdev;
1389	}
1390
1391	if (starget->target_busy == 0 && starget->target_blocked) {
1392		/*
1393		 * unblock after target_blocked iterates to zero
1394		 */
1395		if (--starget->target_blocked == 0) {
1396			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1397					 "unblocking target at zero depth\n"));
1398		} else {
1399			blk_plug_device(sdev->request_queue);
1400			return 0;
1401		}
1402	}
1403
1404	if (scsi_target_is_busy(starget)) {
1405		if (list_empty(&sdev->starved_entry)) {
1406			list_add_tail(&sdev->starved_entry,
1407				      &shost->starved_list);
1408			return 0;
1409		}
1410	}
1411
1412	/* We're OK to process the command, so we can't be starved */
1413	if (!list_empty(&sdev->starved_entry))
1414		list_del_init(&sdev->starved_entry);
1415	return 1;
1416}
1417
1418/*
1419 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1420 * return 0. We must end up running the queue again whenever 0 is
1421 * returned, else IO can hang.
1422 *
1423 * Called with host_lock held.
1424 */
1425static inline int scsi_host_queue_ready(struct request_queue *q,
1426				   struct Scsi_Host *shost,
1427				   struct scsi_device *sdev)
1428{
1429	if (scsi_host_in_recovery(shost))
1430		return 0;
1431	if (shost->host_busy == 0 && shost->host_blocked) {
1432		/*
1433		 * unblock after host_blocked iterates to zero
1434		 */
1435		if (--shost->host_blocked == 0) {
1436			SCSI_LOG_MLQUEUE(3,
1437				printk("scsi%d unblocking host at zero depth\n",
1438					shost->host_no));
1439		} else {
1440			return 0;
1441		}
1442	}
1443	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1444	    shost->host_blocked || shost->host_self_blocked) {
1445		if (list_empty(&sdev->starved_entry))
1446			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1447		return 0;
1448	}
1449
1450	/* We're OK to process the command, so we can't be starved */
1451	if (!list_empty(&sdev->starved_entry))
1452		list_del_init(&sdev->starved_entry);
1453
1454	return 1;
1455}
1456
1457/*
1458 * Kill a request for a dead device
1459 */
1460static void scsi_kill_request(struct request *req, struct request_queue *q)
1461{
1462	struct scsi_cmnd *cmd = req->special;
1463	struct scsi_device *sdev = cmd->device;
1464	struct scsi_target *starget = scsi_target(sdev);
1465	struct Scsi_Host *shost = sdev->host;
1466
1467	blkdev_dequeue_request(req);
1468
1469	if (unlikely(cmd == NULL)) {
1470		printk(KERN_CRIT "impossible request in %s.\n",
1471				 __func__);
1472		BUG();
1473	}
1474
1475	scsi_init_cmd_errh(cmd);
1476	cmd->result = DID_NO_CONNECT << 16;
1477	atomic_inc(&cmd->device->iorequest_cnt);
1478
1479	/*
1480	 * SCSI request completion path will do scsi_device_unbusy(),
1481	 * bump busy counts.  To bump the counters, we need to dance
1482	 * with the locks as normal issue path does.
1483	 */
1484	sdev->device_busy++;
1485	spin_unlock(sdev->request_queue->queue_lock);
1486	spin_lock(shost->host_lock);
1487	shost->host_busy++;
1488	starget->target_busy++;
1489	spin_unlock(shost->host_lock);
1490	spin_lock(sdev->request_queue->queue_lock);
1491
1492	blk_complete_request(req);
1493}
1494
1495static void scsi_softirq_done(struct request *rq)
1496{
1497	struct scsi_cmnd *cmd = rq->special;
1498	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1499	int disposition;
1500
1501	INIT_LIST_HEAD(&cmd->eh_entry);
1502
1503	/*
1504	 * Set the serial numbers back to zero
1505	 */
1506	cmd->serial_number = 0;
1507
1508	atomic_inc(&cmd->device->iodone_cnt);
1509	if (cmd->result)
1510		atomic_inc(&cmd->device->ioerr_cnt);
1511
1512	disposition = scsi_decide_disposition(cmd);
1513	if (disposition != SUCCESS &&
1514	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1515		sdev_printk(KERN_ERR, cmd->device,
1516			    "timing out command, waited %lus\n",
1517			    wait_for/HZ);
1518		disposition = SUCCESS;
1519	}
1520
1521	scsi_log_completion(cmd, disposition);
1522
1523	switch (disposition) {
1524		case SUCCESS:
1525			scsi_finish_command(cmd);
1526			break;
1527		case NEEDS_RETRY:
1528			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1529			break;
1530		case ADD_TO_MLQUEUE:
1531			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1532			break;
1533		default:
1534			if (!scsi_eh_scmd_add(cmd, 0))
1535				scsi_finish_command(cmd);
1536	}
1537}
1538
1539/*
1540 * Function:    scsi_request_fn()
1541 *
1542 * Purpose:     Main strategy routine for SCSI.
1543 *
1544 * Arguments:   q       - Pointer to actual queue.
1545 *
1546 * Returns:     Nothing
1547 *
1548 * Lock status: IO request lock assumed to be held when called.
1549 */
1550static void scsi_request_fn(struct request_queue *q)
1551{
1552	struct scsi_device *sdev = q->queuedata;
1553	struct Scsi_Host *shost;
1554	struct scsi_cmnd *cmd;
1555	struct request *req;
1556
1557	if (!sdev) {
1558		printk("scsi: killing requests for dead queue\n");
1559		while ((req = elv_next_request(q)) != NULL)
1560			scsi_kill_request(req, q);
1561		return;
1562	}
1563
1564	if(!get_device(&sdev->sdev_gendev))
1565		/* We must be tearing the block queue down already */
1566		return;
1567
1568	/*
1569	 * To start with, we keep looping until the queue is empty, or until
1570	 * the host is no longer able to accept any more requests.
1571	 */
1572	shost = sdev->host;
1573	while (!blk_queue_plugged(q)) {
1574		int rtn;
1575		/*
1576		 * get next queueable request.  We do this early to make sure
1577		 * that the request is fully prepared even if we cannot
1578		 * accept it.
1579		 */
1580		req = elv_next_request(q);
1581		if (!req || !scsi_dev_queue_ready(q, sdev))
1582			break;
1583
1584		if (unlikely(!scsi_device_online(sdev))) {
1585			sdev_printk(KERN_ERR, sdev,
1586				    "rejecting I/O to offline device\n");
1587			scsi_kill_request(req, q);
1588			continue;
1589		}
1590
1591
1592		/*
1593		 * Remove the request from the request list.
1594		 */
1595		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1596			blkdev_dequeue_request(req);
1597		sdev->device_busy++;
1598
1599		spin_unlock(q->queue_lock);
1600		cmd = req->special;
1601		if (unlikely(cmd == NULL)) {
1602			printk(KERN_CRIT "impossible request in %s.\n"
1603					 "please mail a stack trace to "
1604					 "linux-scsi@vger.kernel.org\n",
1605					 __func__);
1606			blk_dump_rq_flags(req, "foo");
1607			BUG();
1608		}
1609		spin_lock(shost->host_lock);
1610
1611		/*
1612		 * We hit this when the driver is using a host wide
1613		 * tag map. For device level tag maps the queue_depth check
1614		 * in the device ready fn would prevent us from trying
1615		 * to allocate a tag. Since the map is a shared host resource
1616		 * we add the dev to the starved list so it eventually gets
1617		 * a run when a tag is freed.
1618		 */
1619		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1620			if (list_empty(&sdev->starved_entry))
1621				list_add_tail(&sdev->starved_entry,
1622					      &shost->starved_list);
1623			goto not_ready;
1624		}
1625
1626		if (!scsi_target_queue_ready(shost, sdev))
1627			goto not_ready;
1628
1629		if (!scsi_host_queue_ready(q, shost, sdev))
1630			goto not_ready;
1631
1632		scsi_target(sdev)->target_busy++;
1633		shost->host_busy++;
1634
1635		/*
1636		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1637		 *		take the lock again.
1638		 */
1639		spin_unlock_irq(shost->host_lock);
1640
1641		/*
1642		 * Finally, initialize any error handling parameters, and set up
1643		 * the timers for timeouts.
1644		 */
1645		scsi_init_cmd_errh(cmd);
1646
1647		/*
1648		 * Dispatch the command to the low-level driver.
1649		 */
1650		rtn = scsi_dispatch_cmd(cmd);
1651		spin_lock_irq(q->queue_lock);
1652		if(rtn) {
1653			/* we're refusing the command; because of
1654			 * the way locks get dropped, we need to
1655			 * check here if plugging is required */
1656			if(sdev->device_busy == 0)
1657				blk_plug_device(q);
1658
1659			break;
1660		}
1661	}
1662
1663	goto out;
1664
1665 not_ready:
1666	spin_unlock_irq(shost->host_lock);
1667
1668	/*
1669	 * lock q, handle tag, requeue req, and decrement device_busy. We
1670	 * must return with queue_lock held.
1671	 *
1672	 * Decrementing device_busy without checking it is OK, as all such
1673	 * cases (host limits or settings) should run the queue at some
1674	 * later time.
1675	 */
1676	spin_lock_irq(q->queue_lock);
1677	blk_requeue_request(q, req);
1678	sdev->device_busy--;
1679	if(sdev->device_busy == 0)
1680		blk_plug_device(q);
1681 out:
1682	/* must be careful here...if we trigger the ->remove() function
1683	 * we cannot be holding the q lock */
1684	spin_unlock_irq(q->queue_lock);
1685	put_device(&sdev->sdev_gendev);
1686	spin_lock_irq(q->queue_lock);
1687}
1688
1689u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1690{
1691	struct device *host_dev;
1692	u64 bounce_limit = 0xffffffff;
1693
1694	if (shost->unchecked_isa_dma)
1695		return BLK_BOUNCE_ISA;
1696	/*
1697	 * Platforms with virtual-DMA translation
1698	 * hardware have no practical limit.
1699	 */
1700	if (!PCI_DMA_BUS_IS_PHYS)
1701		return BLK_BOUNCE_ANY;
1702
1703	host_dev = scsi_get_device(shost);
1704	if (host_dev && host_dev->dma_mask)
1705		bounce_limit = *host_dev->dma_mask;
1706
1707	return bounce_limit;
1708}
1709EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1710
1711struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1712					 request_fn_proc *request_fn)
1713{
1714	struct request_queue *q;
1715	struct device *dev = shost->shost_gendev.parent;
1716
1717	q = blk_init_queue(request_fn, NULL);
1718	if (!q)
1719		return NULL;
1720
1721	/*
1722	 * this limit is imposed by hardware restrictions
1723	 */
1724	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1725	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1726
1727	blk_queue_max_sectors(q, shost->max_sectors);
1728	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1729	blk_queue_segment_boundary(q, shost->dma_boundary);
1730	dma_set_seg_boundary(dev, shost->dma_boundary);
1731
1732	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1733
1734	/* New queue, no concurrency on queue_flags */
1735	if (!shost->use_clustering)
1736		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1737
1738	/*
1739	 * set a reasonable default alignment on word boundaries: the
1740	 * host and device may alter it using
1741	 * blk_queue_update_dma_alignment() later.
1742	 */
1743	blk_queue_dma_alignment(q, 0x03);
1744
1745	return q;
1746}
1747EXPORT_SYMBOL(__scsi_alloc_queue);
1748
1749struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1750{
1751	struct request_queue *q;
1752
1753	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1754	if (!q)
1755		return NULL;
1756
1757	blk_queue_prep_rq(q, scsi_prep_fn);
1758	blk_queue_softirq_done(q, scsi_softirq_done);
1759	blk_queue_rq_timed_out(q, scsi_times_out);
1760	return q;
1761}
1762
1763void scsi_free_queue(struct request_queue *q)
1764{
1765	blk_cleanup_queue(q);
1766}
1767
1768/*
1769 * Function:    scsi_block_requests()
1770 *
1771 * Purpose:     Utility function used by low-level drivers to prevent further
1772 *		commands from being queued to the device.
1773 *
1774 * Arguments:   shost       - Host in question
1775 *
1776 * Returns:     Nothing
1777 *
1778 * Lock status: No locks are assumed held.
1779 *
1780 * Notes:       There is no timer nor any other means by which the requests
1781 *		get unblocked other than the low-level driver calling
1782 *		scsi_unblock_requests().
1783 */
1784void scsi_block_requests(struct Scsi_Host *shost)
1785{
1786	shost->host_self_blocked = 1;
1787}
1788EXPORT_SYMBOL(scsi_block_requests);
1789
1790/*
1791 * Function:    scsi_unblock_requests()
1792 *
1793 * Purpose:     Utility function used by low-level drivers to allow further
1794 *		commands from being queued to the device.
1795 *
1796 * Arguments:   shost       - Host in question
1797 *
1798 * Returns:     Nothing
1799 *
1800 * Lock status: No locks are assumed held.
1801 *
1802 * Notes:       There is no timer nor any other means by which the requests
1803 *		get unblocked other than the low-level driver calling
1804 *		scsi_unblock_requests().
1805 *
1806 *		This is done as an API function so that changes to the
1807 *		internals of the scsi mid-layer won't require wholesale
1808 *		changes to drivers that use this feature.
1809 */
1810void scsi_unblock_requests(struct Scsi_Host *shost)
1811{
1812	shost->host_self_blocked = 0;
1813	scsi_run_host_queues(shost);
1814}
1815EXPORT_SYMBOL(scsi_unblock_requests);
1816
1817int __init scsi_init_queue(void)
1818{
1819	int i;
1820
1821	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1822					sizeof(struct scsi_io_context),
1823					0, 0, NULL);
1824	if (!scsi_io_context_cache) {
1825		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1826		return -ENOMEM;
1827	}
1828
1829	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1830					   sizeof(struct scsi_data_buffer),
1831					   0, 0, NULL);
1832	if (!scsi_sdb_cache) {
1833		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1834		goto cleanup_io_context;
1835	}
1836
1837	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1838		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1839		int size = sgp->size * sizeof(struct scatterlist);
1840
1841		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1842				SLAB_HWCACHE_ALIGN, NULL);
1843		if (!sgp->slab) {
1844			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1845					sgp->name);
1846			goto cleanup_sdb;
1847		}
1848
1849		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1850						     sgp->slab);
1851		if (!sgp->pool) {
1852			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1853					sgp->name);
1854			goto cleanup_sdb;
1855		}
1856	}
1857
1858	return 0;
1859
1860cleanup_sdb:
1861	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1862		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1863		if (sgp->pool)
1864			mempool_destroy(sgp->pool);
1865		if (sgp->slab)
1866			kmem_cache_destroy(sgp->slab);
1867	}
1868	kmem_cache_destroy(scsi_sdb_cache);
1869cleanup_io_context:
1870	kmem_cache_destroy(scsi_io_context_cache);
1871
1872	return -ENOMEM;
1873}
1874
1875void scsi_exit_queue(void)
1876{
1877	int i;
1878
1879	kmem_cache_destroy(scsi_io_context_cache);
1880	kmem_cache_destroy(scsi_sdb_cache);
1881
1882	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1883		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1884		mempool_destroy(sgp->pool);
1885		kmem_cache_destroy(sgp->slab);
1886	}
1887}
1888
1889/**
1890 *	scsi_mode_select - issue a mode select
1891 *	@sdev:	SCSI device to be queried
1892 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1893 *	@sp:	Save page bit (0 == don't save, 1 == save)
1894 *	@modepage: mode page being requested
1895 *	@buffer: request buffer (may not be smaller than eight bytes)
1896 *	@len:	length of request buffer.
1897 *	@timeout: command timeout
1898 *	@retries: number of retries before failing
1899 *	@data: returns a structure abstracting the mode header data
1900 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1901 *		must be SCSI_SENSE_BUFFERSIZE big.
1902 *
1903 *	Returns zero if successful; negative error number or scsi
1904 *	status on error
1905 *
1906 */
1907int
1908scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1909		 unsigned char *buffer, int len, int timeout, int retries,
1910		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1911{
1912	unsigned char cmd[10];
1913	unsigned char *real_buffer;
1914	int ret;
1915
1916	memset(cmd, 0, sizeof(cmd));
1917	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1918
1919	if (sdev->use_10_for_ms) {
1920		if (len > 65535)
1921			return -EINVAL;
1922		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1923		if (!real_buffer)
1924			return -ENOMEM;
1925		memcpy(real_buffer + 8, buffer, len);
1926		len += 8;
1927		real_buffer[0] = 0;
1928		real_buffer[1] = 0;
1929		real_buffer[2] = data->medium_type;
1930		real_buffer[3] = data->device_specific;
1931		real_buffer[4] = data->longlba ? 0x01 : 0;
1932		real_buffer[5] = 0;
1933		real_buffer[6] = data->block_descriptor_length >> 8;
1934		real_buffer[7] = data->block_descriptor_length;
1935
1936		cmd[0] = MODE_SELECT_10;
1937		cmd[7] = len >> 8;
1938		cmd[8] = len;
1939	} else {
1940		if (len > 255 || data->block_descriptor_length > 255 ||
1941		    data->longlba)
1942			return -EINVAL;
1943
1944		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1945		if (!real_buffer)
1946			return -ENOMEM;
1947		memcpy(real_buffer + 4, buffer, len);
1948		len += 4;
1949		real_buffer[0] = 0;
1950		real_buffer[1] = data->medium_type;
1951		real_buffer[2] = data->device_specific;
1952		real_buffer[3] = data->block_descriptor_length;
1953
1954
1955		cmd[0] = MODE_SELECT;
1956		cmd[4] = len;
1957	}
1958
1959	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1960			       sshdr, timeout, retries);
1961	kfree(real_buffer);
1962	return ret;
1963}
1964EXPORT_SYMBOL_GPL(scsi_mode_select);
1965
1966/**
1967 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1968 *	@sdev:	SCSI device to be queried
1969 *	@dbd:	set if mode sense will allow block descriptors to be returned
1970 *	@modepage: mode page being requested
1971 *	@buffer: request buffer (may not be smaller than eight bytes)
1972 *	@len:	length of request buffer.
1973 *	@timeout: command timeout
1974 *	@retries: number of retries before failing
1975 *	@data: returns a structure abstracting the mode header data
1976 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1977 *		must be SCSI_SENSE_BUFFERSIZE big.
1978 *
1979 *	Returns zero if unsuccessful, or the header offset (either 4
1980 *	or 8 depending on whether a six or ten byte command was
1981 *	issued) if successful.
1982 */
1983int
1984scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1985		  unsigned char *buffer, int len, int timeout, int retries,
1986		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1987{
1988	unsigned char cmd[12];
1989	int use_10_for_ms;
1990	int header_length;
1991	int result;
1992	struct scsi_sense_hdr my_sshdr;
1993
1994	memset(data, 0, sizeof(*data));
1995	memset(&cmd[0], 0, 12);
1996	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1997	cmd[2] = modepage;
1998
1999	/* caller might not be interested in sense, but we need it */
2000	if (!sshdr)
2001		sshdr = &my_sshdr;
2002
2003 retry:
2004	use_10_for_ms = sdev->use_10_for_ms;
2005
2006	if (use_10_for_ms) {
2007		if (len < 8)
2008			len = 8;
2009
2010		cmd[0] = MODE_SENSE_10;
2011		cmd[8] = len;
2012		header_length = 8;
2013	} else {
2014		if (len < 4)
2015			len = 4;
2016
2017		cmd[0] = MODE_SENSE;
2018		cmd[4] = len;
2019		header_length = 4;
2020	}
2021
2022	memset(buffer, 0, len);
2023
2024	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2025				  sshdr, timeout, retries);
2026
2027	/* This code looks awful: what it's doing is making sure an
2028	 * ILLEGAL REQUEST sense return identifies the actual command
2029	 * byte as the problem.  MODE_SENSE commands can return
2030	 * ILLEGAL REQUEST if the code page isn't supported */
2031
2032	if (use_10_for_ms && !scsi_status_is_good(result) &&
2033	    (driver_byte(result) & DRIVER_SENSE)) {
2034		if (scsi_sense_valid(sshdr)) {
2035			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2036			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2037				/*
2038				 * Invalid command operation code
2039				 */
2040				sdev->use_10_for_ms = 0;
2041				goto retry;
2042			}
2043		}
2044	}
2045
2046	if(scsi_status_is_good(result)) {
2047		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2048			     (modepage == 6 || modepage == 8))) {
2049			/* Initio breakage? */
2050			header_length = 0;
2051			data->length = 13;
2052			data->medium_type = 0;
2053			data->device_specific = 0;
2054			data->longlba = 0;
2055			data->block_descriptor_length = 0;
2056		} else if(use_10_for_ms) {
2057			data->length = buffer[0]*256 + buffer[1] + 2;
2058			data->medium_type = buffer[2];
2059			data->device_specific = buffer[3];
2060			data->longlba = buffer[4] & 0x01;
2061			data->block_descriptor_length = buffer[6]*256
2062				+ buffer[7];
2063		} else {
2064			data->length = buffer[0] + 1;
2065			data->medium_type = buffer[1];
2066			data->device_specific = buffer[2];
2067			data->block_descriptor_length = buffer[3];
2068		}
2069		data->header_length = header_length;
2070	}
2071
2072	return result;
2073}
2074EXPORT_SYMBOL(scsi_mode_sense);
2075
2076/**
2077 *	scsi_test_unit_ready - test if unit is ready
2078 *	@sdev:	scsi device to change the state of.
2079 *	@timeout: command timeout
2080 *	@retries: number of retries before failing
2081 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2082 *		returning sense. Make sure that this is cleared before passing
2083 *		in.
2084 *
2085 *	Returns zero if unsuccessful or an error if TUR failed.  For
2086 *	removable media, a return of NOT_READY or UNIT_ATTENTION is
2087 *	translated to success, with the ->changed flag updated.
2088 **/
2089int
2090scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2091		     struct scsi_sense_hdr *sshdr_external)
2092{
2093	char cmd[] = {
2094		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2095	};
2096	struct scsi_sense_hdr *sshdr;
2097	int result;
2098
2099	if (!sshdr_external)
2100		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2101	else
2102		sshdr = sshdr_external;
2103
2104	/* try to eat the UNIT_ATTENTION if there are enough retries */
2105	do {
2106		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2107					  timeout, retries);
2108	} while ((driver_byte(result) & DRIVER_SENSE) &&
2109		 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
2110		 --retries);
2111
2112	if (!sshdr)
2113		/* could not allocate sense buffer, so can't process it */
2114		return result;
2115
2116	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
2117
2118		if ((scsi_sense_valid(sshdr)) &&
2119		    ((sshdr->sense_key == UNIT_ATTENTION) ||
2120		     (sshdr->sense_key == NOT_READY))) {
2121			sdev->changed = 1;
2122			result = 0;
2123		}
2124	}
2125	if (!sshdr_external)
2126		kfree(sshdr);
2127	return result;
2128}
2129EXPORT_SYMBOL(scsi_test_unit_ready);
2130
2131/**
2132 *	scsi_device_set_state - Take the given device through the device state model.
2133 *	@sdev:	scsi device to change the state of.
2134 *	@state:	state to change to.
2135 *
2136 *	Returns zero if unsuccessful or an error if the requested
2137 *	transition is illegal.
2138 */
2139int
2140scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2141{
2142	enum scsi_device_state oldstate = sdev->sdev_state;
2143
2144	if (state == oldstate)
2145		return 0;
2146
2147	switch (state) {
2148	case SDEV_CREATED:
2149		switch (oldstate) {
2150		case SDEV_CREATED_BLOCK:
2151			break;
2152		default:
2153			goto illegal;
2154		}
2155		break;
2156
2157	case SDEV_RUNNING:
2158		switch (oldstate) {
2159		case SDEV_CREATED:
2160		case SDEV_OFFLINE:
2161		case SDEV_QUIESCE:
2162		case SDEV_BLOCK:
2163			break;
2164		default:
2165			goto illegal;
2166		}
2167		break;
2168
2169	case SDEV_QUIESCE:
2170		switch (oldstate) {
2171		case SDEV_RUNNING:
2172		case SDEV_OFFLINE:
2173			break;
2174		default:
2175			goto illegal;
2176		}
2177		break;
2178
2179	case SDEV_OFFLINE:
2180		switch (oldstate) {
2181		case SDEV_CREATED:
2182		case SDEV_RUNNING:
2183		case SDEV_QUIESCE:
2184		case SDEV_BLOCK:
2185			break;
2186		default:
2187			goto illegal;
2188		}
2189		break;
2190
2191	case SDEV_BLOCK:
2192		switch (oldstate) {
2193		case SDEV_RUNNING:
2194		case SDEV_CREATED_BLOCK:
2195			break;
2196		default:
2197			goto illegal;
2198		}
2199		break;
2200
2201	case SDEV_CREATED_BLOCK:
2202		switch (oldstate) {
2203		case SDEV_CREATED:
2204			break;
2205		default:
2206			goto illegal;
2207		}
2208		break;
2209
2210	case SDEV_CANCEL:
2211		switch (oldstate) {
2212		case SDEV_CREATED:
2213		case SDEV_RUNNING:
2214		case SDEV_QUIESCE:
2215		case SDEV_OFFLINE:
2216		case SDEV_BLOCK:
2217			break;
2218		default:
2219			goto illegal;
2220		}
2221		break;
2222
2223	case SDEV_DEL:
2224		switch (oldstate) {
2225		case SDEV_CREATED:
2226		case SDEV_RUNNING:
2227		case SDEV_OFFLINE:
2228		case SDEV_CANCEL:
2229			break;
2230		default:
2231			goto illegal;
2232		}
2233		break;
2234
2235	}
2236	sdev->sdev_state = state;
2237	return 0;
2238
2239 illegal:
2240	SCSI_LOG_ERROR_RECOVERY(1,
2241				sdev_printk(KERN_ERR, sdev,
2242					    "Illegal state transition %s->%s\n",
2243					    scsi_device_state_name(oldstate),
2244					    scsi_device_state_name(state))
2245				);
2246	return -EINVAL;
2247}
2248EXPORT_SYMBOL(scsi_device_set_state);
2249
2250/**
2251 * 	sdev_evt_emit - emit a single SCSI device uevent
2252 *	@sdev: associated SCSI device
2253 *	@evt: event to emit
2254 *
2255 *	Send a single uevent (scsi_event) to the associated scsi_device.
2256 */
2257static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2258{
2259	int idx = 0;
2260	char *envp[3];
2261
2262	switch (evt->evt_type) {
2263	case SDEV_EVT_MEDIA_CHANGE:
2264		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2265		break;
2266
2267	default:
2268		/* do nothing */
2269		break;
2270	}
2271
2272	envp[idx++] = NULL;
2273
2274	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2275}
2276
2277/**
2278 * 	sdev_evt_thread - send a uevent for each scsi event
2279 *	@work: work struct for scsi_device
2280 *
2281 *	Dispatch queued events to their associated scsi_device kobjects
2282 *	as uevents.
2283 */
2284void scsi_evt_thread(struct work_struct *work)
2285{
2286	struct scsi_device *sdev;
2287	LIST_HEAD(event_list);
2288
2289	sdev = container_of(work, struct scsi_device, event_work);
2290
2291	while (1) {
2292		struct scsi_event *evt;
2293		struct list_head *this, *tmp;
2294		unsigned long flags;
2295
2296		spin_lock_irqsave(&sdev->list_lock, flags);
2297		list_splice_init(&sdev->event_list, &event_list);
2298		spin_unlock_irqrestore(&sdev->list_lock, flags);
2299
2300		if (list_empty(&event_list))
2301			break;
2302
2303		list_for_each_safe(this, tmp, &event_list) {
2304			evt = list_entry(this, struct scsi_event, node);
2305			list_del(&evt->node);
2306			scsi_evt_emit(sdev, evt);
2307			kfree(evt);
2308		}
2309	}
2310}
2311
2312/**
2313 * 	sdev_evt_send - send asserted event to uevent thread
2314 *	@sdev: scsi_device event occurred on
2315 *	@evt: event to send
2316 *
2317 *	Assert scsi device event asynchronously.
2318 */
2319void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2320{
2321	unsigned long flags;
2322
2323#if 0
2324	/* FIXME: currently this check eliminates all media change events
2325	 * for polled devices.  Need to update to discriminate between AN
2326	 * and polled events */
2327	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2328		kfree(evt);
2329		return;
2330	}
2331#endif
2332
2333	spin_lock_irqsave(&sdev->list_lock, flags);
2334	list_add_tail(&evt->node, &sdev->event_list);
2335	schedule_work(&sdev->event_work);
2336	spin_unlock_irqrestore(&sdev->list_lock, flags);
2337}
2338EXPORT_SYMBOL_GPL(sdev_evt_send);
2339
2340/**
2341 * 	sdev_evt_alloc - allocate a new scsi event
2342 *	@evt_type: type of event to allocate
2343 *	@gfpflags: GFP flags for allocation
2344 *
2345 *	Allocates and returns a new scsi_event.
2346 */
2347struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2348				  gfp_t gfpflags)
2349{
2350	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2351	if (!evt)
2352		return NULL;
2353
2354	evt->evt_type = evt_type;
2355	INIT_LIST_HEAD(&evt->node);
2356
2357	/* evt_type-specific initialization, if any */
2358	switch (evt_type) {
2359	case SDEV_EVT_MEDIA_CHANGE:
2360	default:
2361		/* do nothing */
2362		break;
2363	}
2364
2365	return evt;
2366}
2367EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2368
2369/**
2370 * 	sdev_evt_send_simple - send asserted event to uevent thread
2371 *	@sdev: scsi_device event occurred on
2372 *	@evt_type: type of event to send
2373 *	@gfpflags: GFP flags for allocation
2374 *
2375 *	Assert scsi device event asynchronously, given an event type.
2376 */
2377void sdev_evt_send_simple(struct scsi_device *sdev,
2378			  enum scsi_device_event evt_type, gfp_t gfpflags)
2379{
2380	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2381	if (!evt) {
2382		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2383			    evt_type);
2384		return;
2385	}
2386
2387	sdev_evt_send(sdev, evt);
2388}
2389EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2390
2391/**
2392 *	scsi_device_quiesce - Block user issued commands.
2393 *	@sdev:	scsi device to quiesce.
2394 *
2395 *	This works by trying to transition to the SDEV_QUIESCE state
2396 *	(which must be a legal transition).  When the device is in this
2397 *	state, only special requests will be accepted, all others will
2398 *	be deferred.  Since special requests may also be requeued requests,
2399 *	a successful return doesn't guarantee the device will be
2400 *	totally quiescent.
2401 *
2402 *	Must be called with user context, may sleep.
2403 *
2404 *	Returns zero if unsuccessful or an error if not.
2405 */
2406int
2407scsi_device_quiesce(struct scsi_device *sdev)
2408{
2409	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2410	if (err)
2411		return err;
2412
2413	scsi_run_queue(sdev->request_queue);
2414	while (sdev->device_busy) {
2415		msleep_interruptible(200);
2416		scsi_run_queue(sdev->request_queue);
2417	}
2418	return 0;
2419}
2420EXPORT_SYMBOL(scsi_device_quiesce);
2421
2422/**
2423 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2424 *	@sdev:	scsi device to resume.
2425 *
2426 *	Moves the device from quiesced back to running and restarts the
2427 *	queues.
2428 *
2429 *	Must be called with user context, may sleep.
2430 */
2431void
2432scsi_device_resume(struct scsi_device *sdev)
2433{
2434	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2435		return;
2436	scsi_run_queue(sdev->request_queue);
2437}
2438EXPORT_SYMBOL(scsi_device_resume);
2439
2440static void
2441device_quiesce_fn(struct scsi_device *sdev, void *data)
2442{
2443	scsi_device_quiesce(sdev);
2444}
2445
2446void
2447scsi_target_quiesce(struct scsi_target *starget)
2448{
2449	starget_for_each_device(starget, NULL, device_quiesce_fn);
2450}
2451EXPORT_SYMBOL(scsi_target_quiesce);
2452
2453static void
2454device_resume_fn(struct scsi_device *sdev, void *data)
2455{
2456	scsi_device_resume(sdev);
2457}
2458
2459void
2460scsi_target_resume(struct scsi_target *starget)
2461{
2462	starget_for_each_device(starget, NULL, device_resume_fn);
2463}
2464EXPORT_SYMBOL(scsi_target_resume);
2465
2466/**
2467 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2468 * @sdev:	device to block
2469 *
2470 * Block request made by scsi lld's to temporarily stop all
2471 * scsi commands on the specified device.  Called from interrupt
2472 * or normal process context.
2473 *
2474 * Returns zero if successful or error if not
2475 *
2476 * Notes:
2477 *	This routine transitions the device to the SDEV_BLOCK state
2478 *	(which must be a legal transition).  When the device is in this
2479 *	state, all commands are deferred until the scsi lld reenables
2480 *	the device with scsi_device_unblock or device_block_tmo fires.
2481 *	This routine assumes the host_lock is held on entry.
2482 */
2483int
2484scsi_internal_device_block(struct scsi_device *sdev)
2485{
2486	struct request_queue *q = sdev->request_queue;
2487	unsigned long flags;
2488	int err = 0;
2489
2490	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2491	if (err) {
2492		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2493
2494		if (err)
2495			return err;
2496	}
2497
2498	/*
2499	 * The device has transitioned to SDEV_BLOCK.  Stop the
2500	 * block layer from calling the midlayer with this device's
2501	 * request queue.
2502	 */
2503	spin_lock_irqsave(q->queue_lock, flags);
2504	blk_stop_queue(q);
2505	spin_unlock_irqrestore(q->queue_lock, flags);
2506
2507	return 0;
2508}
2509EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2510
2511/**
2512 * scsi_internal_device_unblock - resume a device after a block request
2513 * @sdev:	device to resume
2514 *
2515 * Called by scsi lld's or the midlayer to restart the device queue
2516 * for the previously suspended scsi device.  Called from interrupt or
2517 * normal process context.
2518 *
2519 * Returns zero if successful or error if not.
2520 *
2521 * Notes:
2522 *	This routine transitions the device to the SDEV_RUNNING state
2523 *	(which must be a legal transition) allowing the midlayer to
2524 *	goose the queue for this device.  This routine assumes the
2525 *	host_lock is held upon entry.
2526 */
2527int
2528scsi_internal_device_unblock(struct scsi_device *sdev)
2529{
2530	struct request_queue *q = sdev->request_queue;
2531	int err;
2532	unsigned long flags;
2533
2534	/*
2535	 * Try to transition the scsi device to SDEV_RUNNING
2536	 * and goose the device queue if successful.
2537	 */
2538	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2539	if (err) {
2540		err = scsi_device_set_state(sdev, SDEV_CREATED);
2541
2542		if (err)
2543			return err;
2544	}
2545
2546	spin_lock_irqsave(q->queue_lock, flags);
2547	blk_start_queue(q);
2548	spin_unlock_irqrestore(q->queue_lock, flags);
2549
2550	return 0;
2551}
2552EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2553
2554static void
2555device_block(struct scsi_device *sdev, void *data)
2556{
2557	scsi_internal_device_block(sdev);
2558}
2559
2560static int
2561target_block(struct device *dev, void *data)
2562{
2563	if (scsi_is_target_device(dev))
2564		starget_for_each_device(to_scsi_target(dev), NULL,
2565					device_block);
2566	return 0;
2567}
2568
2569void
2570scsi_target_block(struct device *dev)
2571{
2572	if (scsi_is_target_device(dev))
2573		starget_for_each_device(to_scsi_target(dev), NULL,
2574					device_block);
2575	else
2576		device_for_each_child(dev, NULL, target_block);
2577}
2578EXPORT_SYMBOL_GPL(scsi_target_block);
2579
2580static void
2581device_unblock(struct scsi_device *sdev, void *data)
2582{
2583	scsi_internal_device_unblock(sdev);
2584}
2585
2586static int
2587target_unblock(struct device *dev, void *data)
2588{
2589	if (scsi_is_target_device(dev))
2590		starget_for_each_device(to_scsi_target(dev), NULL,
2591					device_unblock);
2592	return 0;
2593}
2594
2595void
2596scsi_target_unblock(struct device *dev)
2597{
2598	if (scsi_is_target_device(dev))
2599		starget_for_each_device(to_scsi_target(dev), NULL,
2600					device_unblock);
2601	else
2602		device_for_each_child(dev, NULL, target_unblock);
2603}
2604EXPORT_SYMBOL_GPL(scsi_target_unblock);
2605
2606/**
2607 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2608 * @sgl:	scatter-gather list
2609 * @sg_count:	number of segments in sg
2610 * @offset:	offset in bytes into sg, on return offset into the mapped area
2611 * @len:	bytes to map, on return number of bytes mapped
2612 *
2613 * Returns virtual address of the start of the mapped page
2614 */
2615void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2616			  size_t *offset, size_t *len)
2617{
2618	int i;
2619	size_t sg_len = 0, len_complete = 0;
2620	struct scatterlist *sg;
2621	struct page *page;
2622
2623	WARN_ON(!irqs_disabled());
2624
2625	for_each_sg(sgl, sg, sg_count, i) {
2626		len_complete = sg_len; /* Complete sg-entries */
2627		sg_len += sg->length;
2628		if (sg_len > *offset)
2629			break;
2630	}
2631
2632	if (unlikely(i == sg_count)) {
2633		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2634			"elements %d\n",
2635		       __func__, sg_len, *offset, sg_count);
2636		WARN_ON(1);
2637		return NULL;
2638	}
2639
2640	/* Offset starting from the beginning of first page in this sg-entry */
2641	*offset = *offset - len_complete + sg->offset;
2642
2643	/* Assumption: contiguous pages can be accessed as "page + i" */
2644	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2645	*offset &= ~PAGE_MASK;
2646
2647	/* Bytes in this sg-entry from *offset to the end of the page */
2648	sg_len = PAGE_SIZE - *offset;
2649	if (*len > sg_len)
2650		*len = sg_len;
2651
2652	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2653}
2654EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2655
2656/**
2657 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2658 * @virt:	virtual address to be unmapped
2659 */
2660void scsi_kunmap_atomic_sg(void *virt)
2661{
2662	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2663}
2664EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2665