scsi_lib.c revision f5ad56145d43cdb68760bba3e14655ff6ae726aa
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19
20#include <scsi/scsi.h>
21#include <scsi/scsi_dbg.h>
22#include <scsi/scsi_device.h>
23#include <scsi/scsi_driver.h>
24#include <scsi/scsi_eh.h>
25#include <scsi/scsi_host.h>
26#include <scsi/scsi_request.h>
27
28#include "scsi_priv.h"
29#include "scsi_logging.h"
30
31
32#define SG_MEMPOOL_NR		(sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33#define SG_MEMPOOL_SIZE		32
34
35struct scsi_host_sg_pool {
36	size_t		size;
37	char		*name;
38	kmem_cache_t	*slab;
39	mempool_t	*pool;
40};
41
42#if (SCSI_MAX_PHYS_SEGMENTS < 32)
43#error SCSI_MAX_PHYS_SEGMENTS is too small
44#endif
45
46#define SP(x) { x, "sgpool-" #x }
47static struct scsi_host_sg_pool scsi_sg_pools[] = {
48	SP(8),
49	SP(16),
50	SP(32),
51#if (SCSI_MAX_PHYS_SEGMENTS > 32)
52	SP(64),
53#if (SCSI_MAX_PHYS_SEGMENTS > 64)
54	SP(128),
55#if (SCSI_MAX_PHYS_SEGMENTS > 128)
56	SP(256),
57#if (SCSI_MAX_PHYS_SEGMENTS > 256)
58#error SCSI_MAX_PHYS_SEGMENTS is too large
59#endif
60#endif
61#endif
62#endif
63};
64#undef SP
65
66
67/*
68 * Function:    scsi_insert_special_req()
69 *
70 * Purpose:     Insert pre-formed request into request queue.
71 *
72 * Arguments:   sreq	- request that is ready to be queued.
73 *              at_head	- boolean.  True if we should insert at head
74 *                        of queue, false if we should insert at tail.
75 *
76 * Lock status: Assumed that lock is not held upon entry.
77 *
78 * Returns:     Nothing
79 *
80 * Notes:       This function is called from character device and from
81 *              ioctl types of functions where the caller knows exactly
82 *              what SCSI command needs to be issued.   The idea is that
83 *              we merely inject the command into the queue (at the head
84 *              for now), and then call the queue request function to actually
85 *              process it.
86 */
87int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
88{
89	/*
90	 * Because users of this function are apt to reuse requests with no
91	 * modification, we have to sanitise the request flags here
92	 */
93	sreq->sr_request->flags &= ~REQ_DONTPREP;
94	blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
95		       	   at_head, sreq);
96	return 0;
97}
98
99static void scsi_run_queue(struct request_queue *q);
100
101/*
102 * Function:    scsi_queue_insert()
103 *
104 * Purpose:     Insert a command in the midlevel queue.
105 *
106 * Arguments:   cmd    - command that we are adding to queue.
107 *              reason - why we are inserting command to queue.
108 *
109 * Lock status: Assumed that lock is not held upon entry.
110 *
111 * Returns:     Nothing.
112 *
113 * Notes:       We do this for one of two cases.  Either the host is busy
114 *              and it cannot accept any more commands for the time being,
115 *              or the device returned QUEUE_FULL and can accept no more
116 *              commands.
117 * Notes:       This could be called either from an interrupt context or a
118 *              normal process context.
119 */
120int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
121{
122	struct Scsi_Host *host = cmd->device->host;
123	struct scsi_device *device = cmd->device;
124	struct request_queue *q = device->request_queue;
125	unsigned long flags;
126
127	SCSI_LOG_MLQUEUE(1,
128		 printk("Inserting command %p into mlqueue\n", cmd));
129
130	/*
131	 * Set the appropriate busy bit for the device/host.
132	 *
133	 * If the host/device isn't busy, assume that something actually
134	 * completed, and that we should be able to queue a command now.
135	 *
136	 * Note that the prior mid-layer assumption that any host could
137	 * always queue at least one command is now broken.  The mid-layer
138	 * will implement a user specifiable stall (see
139	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
140	 * if a command is requeued with no other commands outstanding
141	 * either for the device or for the host.
142	 */
143	if (reason == SCSI_MLQUEUE_HOST_BUSY)
144		host->host_blocked = host->max_host_blocked;
145	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
146		device->device_blocked = device->max_device_blocked;
147
148	/*
149	 * Register the fact that we own the thing for now.
150	 */
151	cmd->state = SCSI_STATE_MLQUEUE;
152	cmd->owner = SCSI_OWNER_MIDLEVEL;
153
154	/*
155	 * Decrement the counters, since these commands are no longer
156	 * active on the host/device.
157	 */
158	scsi_device_unbusy(device);
159
160	/*
161	 * Requeue this command.  It will go before all other commands
162	 * that are already in the queue.
163	 *
164	 * NOTE: there is magic here about the way the queue is plugged if
165	 * we have no outstanding commands.
166	 *
167	 * Although we *don't* plug the queue, we call the request
168	 * function.  The SCSI request function detects the blocked condition
169	 * and plugs the queue appropriately.
170         */
171	spin_lock_irqsave(q->queue_lock, flags);
172	blk_requeue_request(q, cmd->request);
173	spin_unlock_irqrestore(q->queue_lock, flags);
174
175	scsi_run_queue(q);
176
177	return 0;
178}
179
180/*
181 * Function:    scsi_do_req
182 *
183 * Purpose:     Queue a SCSI request
184 *
185 * Arguments:   sreq	  - command descriptor.
186 *              cmnd      - actual SCSI command to be performed.
187 *              buffer    - data buffer.
188 *              bufflen   - size of data buffer.
189 *              done      - completion function to be run.
190 *              timeout   - how long to let it run before timeout.
191 *              retries   - number of retries we allow.
192 *
193 * Lock status: No locks held upon entry.
194 *
195 * Returns:     Nothing.
196 *
197 * Notes:	This function is only used for queueing requests for things
198 *		like ioctls and character device requests - this is because
199 *		we essentially just inject a request into the queue for the
200 *		device.
201 *
202 *		In order to support the scsi_device_quiesce function, we
203 *		now inject requests on the *head* of the device queue
204 *		rather than the tail.
205 */
206void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
207		 void *buffer, unsigned bufflen,
208		 void (*done)(struct scsi_cmnd *),
209		 int timeout, int retries)
210{
211	/*
212	 * If the upper level driver is reusing these things, then
213	 * we should release the low-level block now.  Another one will
214	 * be allocated later when this request is getting queued.
215	 */
216	__scsi_release_request(sreq);
217
218	/*
219	 * Our own function scsi_done (which marks the host as not busy,
220	 * disables the timeout counter, etc) will be called by us or by the
221	 * scsi_hosts[host].queuecommand() function needs to also call
222	 * the completion function for the high level driver.
223	 */
224	memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
225	sreq->sr_bufflen = bufflen;
226	sreq->sr_buffer = buffer;
227	sreq->sr_allowed = retries;
228	sreq->sr_done = done;
229	sreq->sr_timeout_per_command = timeout;
230
231	if (sreq->sr_cmd_len == 0)
232		sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
233
234	/*
235	 * head injection *required* here otherwise quiesce won't work
236	 */
237	scsi_insert_special_req(sreq, 1);
238}
239EXPORT_SYMBOL(scsi_do_req);
240
241static void scsi_wait_done(struct scsi_cmnd *cmd)
242{
243	struct request *req = cmd->request;
244	struct request_queue *q = cmd->device->request_queue;
245	unsigned long flags;
246
247	req->rq_status = RQ_SCSI_DONE;	/* Busy, but indicate request done */
248
249	spin_lock_irqsave(q->queue_lock, flags);
250	if (blk_rq_tagged(req))
251		blk_queue_end_tag(q, req);
252	spin_unlock_irqrestore(q->queue_lock, flags);
253
254	if (req->waiting)
255		complete(req->waiting);
256}
257
258/* This is the end routine we get to if a command was never attached
259 * to the request.  Simply complete the request without changing
260 * rq_status; this will cause a DRIVER_ERROR. */
261static void scsi_wait_req_end_io(struct request *req)
262{
263	BUG_ON(!req->waiting);
264
265	complete(req->waiting);
266}
267
268void scsi_wait_req(struct scsi_request *sreq, const void *cmnd, void *buffer,
269		   unsigned bufflen, int timeout, int retries)
270{
271	DECLARE_COMPLETION(wait);
272
273	sreq->sr_request->waiting = &wait;
274	sreq->sr_request->rq_status = RQ_SCSI_BUSY;
275	sreq->sr_request->end_io = scsi_wait_req_end_io;
276	scsi_do_req(sreq, cmnd, buffer, bufflen, scsi_wait_done,
277			timeout, retries);
278	wait_for_completion(&wait);
279	sreq->sr_request->waiting = NULL;
280	if (sreq->sr_request->rq_status != RQ_SCSI_DONE)
281		sreq->sr_result |= (DRIVER_ERROR << 24);
282
283	__scsi_release_request(sreq);
284}
285EXPORT_SYMBOL(scsi_wait_req);
286
287/*
288 * Function:    scsi_init_cmd_errh()
289 *
290 * Purpose:     Initialize cmd fields related to error handling.
291 *
292 * Arguments:   cmd	- command that is ready to be queued.
293 *
294 * Returns:     Nothing
295 *
296 * Notes:       This function has the job of initializing a number of
297 *              fields related to error handling.   Typically this will
298 *              be called once for each command, as required.
299 */
300static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
301{
302	cmd->owner = SCSI_OWNER_MIDLEVEL;
303	cmd->serial_number = 0;
304
305	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
306
307	if (cmd->cmd_len == 0)
308		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
309
310	/*
311	 * We need saved copies of a number of fields - this is because
312	 * error handling may need to overwrite these with different values
313	 * to run different commands, and once error handling is complete,
314	 * we will need to restore these values prior to running the actual
315	 * command.
316	 */
317	cmd->old_use_sg = cmd->use_sg;
318	cmd->old_cmd_len = cmd->cmd_len;
319	cmd->sc_old_data_direction = cmd->sc_data_direction;
320	cmd->old_underflow = cmd->underflow;
321	memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
322	cmd->buffer = cmd->request_buffer;
323	cmd->bufflen = cmd->request_bufflen;
324
325	return 1;
326}
327
328/*
329 * Function:   scsi_setup_cmd_retry()
330 *
331 * Purpose:    Restore the command state for a retry
332 *
333 * Arguments:  cmd	- command to be restored
334 *
335 * Returns:    Nothing
336 *
337 * Notes:      Immediately prior to retrying a command, we need
338 *             to restore certain fields that we saved above.
339 */
340void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
341{
342	memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
343	cmd->request_buffer = cmd->buffer;
344	cmd->request_bufflen = cmd->bufflen;
345	cmd->use_sg = cmd->old_use_sg;
346	cmd->cmd_len = cmd->old_cmd_len;
347	cmd->sc_data_direction = cmd->sc_old_data_direction;
348	cmd->underflow = cmd->old_underflow;
349}
350
351void scsi_device_unbusy(struct scsi_device *sdev)
352{
353	struct Scsi_Host *shost = sdev->host;
354	unsigned long flags;
355
356	spin_lock_irqsave(shost->host_lock, flags);
357	shost->host_busy--;
358	if (unlikely(test_bit(SHOST_RECOVERY, &shost->shost_state) &&
359		     shost->host_failed))
360		scsi_eh_wakeup(shost);
361	spin_unlock(shost->host_lock);
362	spin_lock(sdev->request_queue->queue_lock);
363	sdev->device_busy--;
364	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
365}
366
367/*
368 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
369 * and call blk_run_queue for all the scsi_devices on the target -
370 * including current_sdev first.
371 *
372 * Called with *no* scsi locks held.
373 */
374static void scsi_single_lun_run(struct scsi_device *current_sdev)
375{
376	struct Scsi_Host *shost = current_sdev->host;
377	struct scsi_device *sdev, *tmp;
378	struct scsi_target *starget = scsi_target(current_sdev);
379	unsigned long flags;
380
381	spin_lock_irqsave(shost->host_lock, flags);
382	starget->starget_sdev_user = NULL;
383	spin_unlock_irqrestore(shost->host_lock, flags);
384
385	/*
386	 * Call blk_run_queue for all LUNs on the target, starting with
387	 * current_sdev. We race with others (to set starget_sdev_user),
388	 * but in most cases, we will be first. Ideally, each LU on the
389	 * target would get some limited time or requests on the target.
390	 */
391	blk_run_queue(current_sdev->request_queue);
392
393	spin_lock_irqsave(shost->host_lock, flags);
394	if (starget->starget_sdev_user)
395		goto out;
396	list_for_each_entry_safe(sdev, tmp, &starget->devices,
397			same_target_siblings) {
398		if (sdev == current_sdev)
399			continue;
400		if (scsi_device_get(sdev))
401			continue;
402
403		spin_unlock_irqrestore(shost->host_lock, flags);
404		blk_run_queue(sdev->request_queue);
405		spin_lock_irqsave(shost->host_lock, flags);
406
407		scsi_device_put(sdev);
408	}
409 out:
410	spin_unlock_irqrestore(shost->host_lock, flags);
411}
412
413/*
414 * Function:	scsi_run_queue()
415 *
416 * Purpose:	Select a proper request queue to serve next
417 *
418 * Arguments:	q	- last request's queue
419 *
420 * Returns:     Nothing
421 *
422 * Notes:	The previous command was completely finished, start
423 *		a new one if possible.
424 */
425static void scsi_run_queue(struct request_queue *q)
426{
427	struct scsi_device *sdev = q->queuedata;
428	struct Scsi_Host *shost = sdev->host;
429	unsigned long flags;
430
431	if (sdev->single_lun)
432		scsi_single_lun_run(sdev);
433
434	spin_lock_irqsave(shost->host_lock, flags);
435	while (!list_empty(&shost->starved_list) &&
436	       !shost->host_blocked && !shost->host_self_blocked &&
437		!((shost->can_queue > 0) &&
438		  (shost->host_busy >= shost->can_queue))) {
439		/*
440		 * As long as shost is accepting commands and we have
441		 * starved queues, call blk_run_queue. scsi_request_fn
442		 * drops the queue_lock and can add us back to the
443		 * starved_list.
444		 *
445		 * host_lock protects the starved_list and starved_entry.
446		 * scsi_request_fn must get the host_lock before checking
447		 * or modifying starved_list or starved_entry.
448		 */
449		sdev = list_entry(shost->starved_list.next,
450					  struct scsi_device, starved_entry);
451		list_del_init(&sdev->starved_entry);
452		spin_unlock_irqrestore(shost->host_lock, flags);
453
454		blk_run_queue(sdev->request_queue);
455
456		spin_lock_irqsave(shost->host_lock, flags);
457		if (unlikely(!list_empty(&sdev->starved_entry)))
458			/*
459			 * sdev lost a race, and was put back on the
460			 * starved list. This is unlikely but without this
461			 * in theory we could loop forever.
462			 */
463			break;
464	}
465	spin_unlock_irqrestore(shost->host_lock, flags);
466
467	blk_run_queue(q);
468}
469
470/*
471 * Function:	scsi_requeue_command()
472 *
473 * Purpose:	Handle post-processing of completed commands.
474 *
475 * Arguments:	q	- queue to operate on
476 *		cmd	- command that may need to be requeued.
477 *
478 * Returns:	Nothing
479 *
480 * Notes:	After command completion, there may be blocks left
481 *		over which weren't finished by the previous command
482 *		this can be for a number of reasons - the main one is
483 *		I/O errors in the middle of the request, in which case
484 *		we need to request the blocks that come after the bad
485 *		sector.
486 */
487static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
488{
489	unsigned long flags;
490
491	cmd->request->flags &= ~REQ_DONTPREP;
492
493	spin_lock_irqsave(q->queue_lock, flags);
494	blk_requeue_request(q, cmd->request);
495	spin_unlock_irqrestore(q->queue_lock, flags);
496
497	scsi_run_queue(q);
498}
499
500void scsi_next_command(struct scsi_cmnd *cmd)
501{
502	struct request_queue *q = cmd->device->request_queue;
503
504	scsi_put_command(cmd);
505	scsi_run_queue(q);
506}
507
508void scsi_run_host_queues(struct Scsi_Host *shost)
509{
510	struct scsi_device *sdev;
511
512	shost_for_each_device(sdev, shost)
513		scsi_run_queue(sdev->request_queue);
514}
515
516/*
517 * Function:    scsi_end_request()
518 *
519 * Purpose:     Post-processing of completed commands (usually invoked at end
520 *		of upper level post-processing and scsi_io_completion).
521 *
522 * Arguments:   cmd	 - command that is complete.
523 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
524 *              bytes    - number of bytes of completed I/O
525 *		requeue  - indicates whether we should requeue leftovers.
526 *
527 * Lock status: Assumed that lock is not held upon entry.
528 *
529 * Returns:     cmd if requeue done or required, NULL otherwise
530 *
531 * Notes:       This is called for block device requests in order to
532 *              mark some number of sectors as complete.
533 *
534 *		We are guaranteeing that the request queue will be goosed
535 *		at some point during this call.
536 */
537static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
538					  int bytes, int requeue)
539{
540	request_queue_t *q = cmd->device->request_queue;
541	struct request *req = cmd->request;
542	unsigned long flags;
543
544	/*
545	 * If there are blocks left over at the end, set up the command
546	 * to queue the remainder of them.
547	 */
548	if (end_that_request_chunk(req, uptodate, bytes)) {
549		int leftover = (req->hard_nr_sectors << 9);
550
551		if (blk_pc_request(req))
552			leftover = req->data_len;
553
554		/* kill remainder if no retrys */
555		if (!uptodate && blk_noretry_request(req))
556			end_that_request_chunk(req, 0, leftover);
557		else {
558			if (requeue)
559				/*
560				 * Bleah.  Leftovers again.  Stick the
561				 * leftovers in the front of the
562				 * queue, and goose the queue again.
563				 */
564				scsi_requeue_command(q, cmd);
565
566			return cmd;
567		}
568	}
569
570	add_disk_randomness(req->rq_disk);
571
572	spin_lock_irqsave(q->queue_lock, flags);
573	if (blk_rq_tagged(req))
574		blk_queue_end_tag(q, req);
575	end_that_request_last(req);
576	spin_unlock_irqrestore(q->queue_lock, flags);
577
578	/*
579	 * This will goose the queue request function at the end, so we don't
580	 * need to worry about launching another command.
581	 */
582	scsi_next_command(cmd);
583	return NULL;
584}
585
586static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, int gfp_mask)
587{
588	struct scsi_host_sg_pool *sgp;
589	struct scatterlist *sgl;
590
591	BUG_ON(!cmd->use_sg);
592
593	switch (cmd->use_sg) {
594	case 1 ... 8:
595		cmd->sglist_len = 0;
596		break;
597	case 9 ... 16:
598		cmd->sglist_len = 1;
599		break;
600	case 17 ... 32:
601		cmd->sglist_len = 2;
602		break;
603#if (SCSI_MAX_PHYS_SEGMENTS > 32)
604	case 33 ... 64:
605		cmd->sglist_len = 3;
606		break;
607#if (SCSI_MAX_PHYS_SEGMENTS > 64)
608	case 65 ... 128:
609		cmd->sglist_len = 4;
610		break;
611#if (SCSI_MAX_PHYS_SEGMENTS  > 128)
612	case 129 ... 256:
613		cmd->sglist_len = 5;
614		break;
615#endif
616#endif
617#endif
618	default:
619		return NULL;
620	}
621
622	sgp = scsi_sg_pools + cmd->sglist_len;
623	sgl = mempool_alloc(sgp->pool, gfp_mask);
624	if (sgl)
625		memset(sgl, 0, sgp->size);
626	return sgl;
627}
628
629static void scsi_free_sgtable(struct scatterlist *sgl, int index)
630{
631	struct scsi_host_sg_pool *sgp;
632
633	BUG_ON(index > SG_MEMPOOL_NR);
634
635	sgp = scsi_sg_pools + index;
636	mempool_free(sgl, sgp->pool);
637}
638
639/*
640 * Function:    scsi_release_buffers()
641 *
642 * Purpose:     Completion processing for block device I/O requests.
643 *
644 * Arguments:   cmd	- command that we are bailing.
645 *
646 * Lock status: Assumed that no lock is held upon entry.
647 *
648 * Returns:     Nothing
649 *
650 * Notes:       In the event that an upper level driver rejects a
651 *		command, we must release resources allocated during
652 *		the __init_io() function.  Primarily this would involve
653 *		the scatter-gather table, and potentially any bounce
654 *		buffers.
655 */
656static void scsi_release_buffers(struct scsi_cmnd *cmd)
657{
658	struct request *req = cmd->request;
659
660	/*
661	 * Free up any indirection buffers we allocated for DMA purposes.
662	 */
663	if (cmd->use_sg)
664		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
665	else if (cmd->request_buffer != req->buffer)
666		kfree(cmd->request_buffer);
667
668	/*
669	 * Zero these out.  They now point to freed memory, and it is
670	 * dangerous to hang onto the pointers.
671	 */
672	cmd->buffer  = NULL;
673	cmd->bufflen = 0;
674	cmd->request_buffer = NULL;
675	cmd->request_bufflen = 0;
676}
677
678/*
679 * Function:    scsi_io_completion()
680 *
681 * Purpose:     Completion processing for block device I/O requests.
682 *
683 * Arguments:   cmd   - command that is finished.
684 *
685 * Lock status: Assumed that no lock is held upon entry.
686 *
687 * Returns:     Nothing
688 *
689 * Notes:       This function is matched in terms of capabilities to
690 *              the function that created the scatter-gather list.
691 *              In other words, if there are no bounce buffers
692 *              (the normal case for most drivers), we don't need
693 *              the logic to deal with cleaning up afterwards.
694 *
695 *		We must do one of several things here:
696 *
697 *		a) Call scsi_end_request.  This will finish off the
698 *		   specified number of sectors.  If we are done, the
699 *		   command block will be released, and the queue
700 *		   function will be goosed.  If we are not done, then
701 *		   scsi_end_request will directly goose the queue.
702 *
703 *		b) We can just use scsi_requeue_command() here.  This would
704 *		   be used if we just wanted to retry, for example.
705 */
706void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
707			unsigned int block_bytes)
708{
709	int result = cmd->result;
710	int this_count = cmd->bufflen;
711	request_queue_t *q = cmd->device->request_queue;
712	struct request *req = cmd->request;
713	int clear_errors = 1;
714	struct scsi_sense_hdr sshdr;
715	int sense_valid = 0;
716	int sense_deferred = 0;
717
718	if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
719		return;
720
721	/*
722	 * Free up any indirection buffers we allocated for DMA purposes.
723	 * For the case of a READ, we need to copy the data out of the
724	 * bounce buffer and into the real buffer.
725	 */
726	if (cmd->use_sg)
727		scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
728	else if (cmd->buffer != req->buffer) {
729		if (rq_data_dir(req) == READ) {
730			unsigned long flags;
731			char *to = bio_kmap_irq(req->bio, &flags);
732			memcpy(to, cmd->buffer, cmd->bufflen);
733			bio_kunmap_irq(to, &flags);
734		}
735		kfree(cmd->buffer);
736	}
737
738	if (result) {
739		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
740		if (sense_valid)
741			sense_deferred = scsi_sense_is_deferred(&sshdr);
742	}
743	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
744		req->errors = result;
745		if (result) {
746			clear_errors = 0;
747			if (sense_valid && req->sense) {
748				/*
749				 * SG_IO wants current and deferred errors
750				 */
751				int len = 8 + cmd->sense_buffer[7];
752
753				if (len > SCSI_SENSE_BUFFERSIZE)
754					len = SCSI_SENSE_BUFFERSIZE;
755				memcpy(req->sense, cmd->sense_buffer,  len);
756				req->sense_len = len;
757			}
758		} else
759			req->data_len = cmd->resid;
760	}
761
762	/*
763	 * Zero these out.  They now point to freed memory, and it is
764	 * dangerous to hang onto the pointers.
765	 */
766	cmd->buffer  = NULL;
767	cmd->bufflen = 0;
768	cmd->request_buffer = NULL;
769	cmd->request_bufflen = 0;
770
771	/*
772	 * Next deal with any sectors which we were able to correctly
773	 * handle.
774	 */
775	if (good_bytes >= 0) {
776		SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
777					      req->nr_sectors, good_bytes));
778		SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
779
780		if (clear_errors)
781			req->errors = 0;
782		/*
783		 * If multiple sectors are requested in one buffer, then
784		 * they will have been finished off by the first command.
785		 * If not, then we have a multi-buffer command.
786		 *
787		 * If block_bytes != 0, it means we had a medium error
788		 * of some sort, and that we want to mark some number of
789		 * sectors as not uptodate.  Thus we want to inhibit
790		 * requeueing right here - we will requeue down below
791		 * when we handle the bad sectors.
792		 */
793		cmd = scsi_end_request(cmd, 1, good_bytes, result == 0);
794
795		/*
796		 * If the command completed without error, then either finish off the
797		 * rest of the command, or start a new one.
798		 */
799		if (result == 0 || cmd == NULL ) {
800			return;
801		}
802	}
803	/*
804	 * Now, if we were good little boys and girls, Santa left us a request
805	 * sense buffer.  We can extract information from this, so we
806	 * can choose a block to remap, etc.
807	 */
808	if (sense_valid && !sense_deferred) {
809		switch (sshdr.sense_key) {
810		case UNIT_ATTENTION:
811			if (cmd->device->removable) {
812				/* detected disc change.  set a bit
813				 * and quietly refuse further access.
814				 */
815				cmd->device->changed = 1;
816				cmd = scsi_end_request(cmd, 0,
817						this_count, 1);
818				return;
819			} else {
820				/*
821				* Must have been a power glitch, or a
822				* bus reset.  Could not have been a
823				* media change, so we just retry the
824				* request and see what happens.
825				*/
826				scsi_requeue_command(q, cmd);
827				return;
828			}
829			break;
830		case ILLEGAL_REQUEST:
831			/*
832		 	* If we had an ILLEGAL REQUEST returned, then we may
833		 	* have performed an unsupported command.  The only
834		 	* thing this should be would be a ten byte read where
835			* only a six byte read was supported.  Also, on a
836			* system where READ CAPACITY failed, we may have read
837			* past the end of the disk.
838		 	*/
839			if (cmd->device->use_10_for_rw &&
840			    (cmd->cmnd[0] == READ_10 ||
841			     cmd->cmnd[0] == WRITE_10)) {
842				cmd->device->use_10_for_rw = 0;
843				/*
844				 * This will cause a retry with a 6-byte
845				 * command.
846				 */
847				scsi_requeue_command(q, cmd);
848				result = 0;
849			} else {
850				cmd = scsi_end_request(cmd, 0, this_count, 1);
851				return;
852			}
853			break;
854		case NOT_READY:
855			/*
856			 * If the device is in the process of becoming ready,
857			 * retry.
858			 */
859			if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
860				scsi_requeue_command(q, cmd);
861				return;
862			}
863			printk(KERN_INFO "Device %s not ready.\n",
864			       req->rq_disk ? req->rq_disk->disk_name : "");
865			cmd = scsi_end_request(cmd, 0, this_count, 1);
866			return;
867		case VOLUME_OVERFLOW:
868			printk(KERN_INFO "Volume overflow <%d %d %d %d> CDB: ",
869			       cmd->device->host->host_no,
870			       (int)cmd->device->channel,
871			       (int)cmd->device->id, (int)cmd->device->lun);
872			__scsi_print_command(cmd->data_cmnd);
873			scsi_print_sense("", cmd);
874			cmd = scsi_end_request(cmd, 0, block_bytes, 1);
875			return;
876		default:
877			break;
878		}
879	}			/* driver byte != 0 */
880	if (host_byte(result) == DID_RESET) {
881		/*
882		 * Third party bus reset or reset for error
883		 * recovery reasons.  Just retry the request
884		 * and see what happens.
885		 */
886		scsi_requeue_command(q, cmd);
887		return;
888	}
889	if (result) {
890		printk(KERN_INFO "SCSI error : <%d %d %d %d> return code "
891		       "= 0x%x\n", cmd->device->host->host_no,
892		       cmd->device->channel,
893		       cmd->device->id,
894		       cmd->device->lun, result);
895
896		if (driver_byte(result) & DRIVER_SENSE)
897			scsi_print_sense("", cmd);
898		/*
899		 * Mark a single buffer as not uptodate.  Queue the remainder.
900		 * We sometimes get this cruft in the event that a medium error
901		 * isn't properly reported.
902		 */
903		block_bytes = req->hard_cur_sectors << 9;
904		if (!block_bytes)
905			block_bytes = req->data_len;
906		cmd = scsi_end_request(cmd, 0, block_bytes, 1);
907	}
908}
909EXPORT_SYMBOL(scsi_io_completion);
910
911/*
912 * Function:    scsi_init_io()
913 *
914 * Purpose:     SCSI I/O initialize function.
915 *
916 * Arguments:   cmd   - Command descriptor we wish to initialize
917 *
918 * Returns:     0 on success
919 *		BLKPREP_DEFER if the failure is retryable
920 *		BLKPREP_KILL if the failure is fatal
921 */
922static int scsi_init_io(struct scsi_cmnd *cmd)
923{
924	struct request     *req = cmd->request;
925	struct scatterlist *sgpnt;
926	int		   count;
927
928	/*
929	 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
930	 */
931	if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
932		cmd->request_bufflen = req->data_len;
933		cmd->request_buffer = req->data;
934		req->buffer = req->data;
935		cmd->use_sg = 0;
936		return 0;
937	}
938
939	/*
940	 * we used to not use scatter-gather for single segment request,
941	 * but now we do (it makes highmem I/O easier to support without
942	 * kmapping pages)
943	 */
944	cmd->use_sg = req->nr_phys_segments;
945
946	/*
947	 * if sg table allocation fails, requeue request later.
948	 */
949	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
950	if (unlikely(!sgpnt))
951		return BLKPREP_DEFER;
952
953	cmd->request_buffer = (char *) sgpnt;
954	cmd->request_bufflen = req->nr_sectors << 9;
955	if (blk_pc_request(req))
956		cmd->request_bufflen = req->data_len;
957	req->buffer = NULL;
958
959	/*
960	 * Next, walk the list, and fill in the addresses and sizes of
961	 * each segment.
962	 */
963	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
964
965	/*
966	 * mapped well, send it off
967	 */
968	if (likely(count <= cmd->use_sg)) {
969		cmd->use_sg = count;
970		return 0;
971	}
972
973	printk(KERN_ERR "Incorrect number of segments after building list\n");
974	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
975	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
976			req->current_nr_sectors);
977
978	/* release the command and kill it */
979	scsi_release_buffers(cmd);
980	scsi_put_command(cmd);
981	return BLKPREP_KILL;
982}
983
984static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
985{
986	struct scsi_device *sdev = q->queuedata;
987	struct scsi_driver *drv;
988
989	if (sdev->sdev_state == SDEV_RUNNING) {
990		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
991
992		if (drv->prepare_flush)
993			return drv->prepare_flush(q, rq);
994	}
995
996	return 0;
997}
998
999static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
1000{
1001	struct scsi_device *sdev = q->queuedata;
1002	struct request *flush_rq = rq->end_io_data;
1003	struct scsi_driver *drv;
1004
1005	if (flush_rq->errors) {
1006		printk("scsi: barrier error, disabling flush support\n");
1007		blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1008	}
1009
1010	if (sdev->sdev_state == SDEV_RUNNING) {
1011		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1012		drv->end_flush(q, rq);
1013	}
1014}
1015
1016static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1017			       sector_t *error_sector)
1018{
1019	struct scsi_device *sdev = q->queuedata;
1020	struct scsi_driver *drv;
1021
1022	if (sdev->sdev_state != SDEV_RUNNING)
1023		return -ENXIO;
1024
1025	drv = *(struct scsi_driver **) disk->private_data;
1026	if (drv->issue_flush)
1027		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1028
1029	return -EOPNOTSUPP;
1030}
1031
1032static int scsi_prep_fn(struct request_queue *q, struct request *req)
1033{
1034	struct scsi_device *sdev = q->queuedata;
1035	struct scsi_cmnd *cmd;
1036	int specials_only = 0;
1037
1038	/*
1039	 * Just check to see if the device is online.  If it isn't, we
1040	 * refuse to process any commands.  The device must be brought
1041	 * online before trying any recovery commands
1042	 */
1043	if (unlikely(!scsi_device_online(sdev))) {
1044		printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1045		       sdev->host->host_no, sdev->id, sdev->lun);
1046		return BLKPREP_KILL;
1047	}
1048	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1049		/* OK, we're not in a running state don't prep
1050		 * user commands */
1051		if (sdev->sdev_state == SDEV_DEL) {
1052			/* Device is fully deleted, no commands
1053			 * at all allowed down */
1054			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to dead device\n",
1055			       sdev->host->host_no, sdev->id, sdev->lun);
1056			return BLKPREP_KILL;
1057		}
1058		/* OK, we only allow special commands (i.e. not
1059		 * user initiated ones */
1060		specials_only = sdev->sdev_state;
1061	}
1062
1063	/*
1064	 * Find the actual device driver associated with this command.
1065	 * The SPECIAL requests are things like character device or
1066	 * ioctls, which did not originate from ll_rw_blk.  Note that
1067	 * the special field is also used to indicate the cmd for
1068	 * the remainder of a partially fulfilled request that can
1069	 * come up when there is a medium error.  We have to treat
1070	 * these two cases differently.  We differentiate by looking
1071	 * at request->cmd, as this tells us the real story.
1072	 */
1073	if (req->flags & REQ_SPECIAL) {
1074		struct scsi_request *sreq = req->special;
1075
1076		if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1077			cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1078			if (unlikely(!cmd))
1079				goto defer;
1080			scsi_init_cmd_from_req(cmd, sreq);
1081		} else
1082			cmd = req->special;
1083	} else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1084
1085		if(unlikely(specials_only)) {
1086			if(specials_only == SDEV_QUIESCE ||
1087					specials_only == SDEV_BLOCK)
1088				return BLKPREP_DEFER;
1089
1090			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to device being removed\n",
1091			       sdev->host->host_no, sdev->id, sdev->lun);
1092			return BLKPREP_KILL;
1093		}
1094
1095
1096		/*
1097		 * Now try and find a command block that we can use.
1098		 */
1099		if (!req->special) {
1100			cmd = scsi_get_command(sdev, GFP_ATOMIC);
1101			if (unlikely(!cmd))
1102				goto defer;
1103		} else
1104			cmd = req->special;
1105
1106		/* pull a tag out of the request if we have one */
1107		cmd->tag = req->tag;
1108	} else {
1109		blk_dump_rq_flags(req, "SCSI bad req");
1110		return BLKPREP_KILL;
1111	}
1112
1113	/* note the overloading of req->special.  When the tag
1114	 * is active it always means cmd.  If the tag goes
1115	 * back for re-queueing, it may be reset */
1116	req->special = cmd;
1117	cmd->request = req;
1118
1119	/*
1120	 * FIXME: drop the lock here because the functions below
1121	 * expect to be called without the queue lock held.  Also,
1122	 * previously, we dequeued the request before dropping the
1123	 * lock.  We hope REQ_STARTED prevents anything untoward from
1124	 * happening now.
1125	 */
1126	if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1127		struct scsi_driver *drv;
1128		int ret;
1129
1130		/*
1131		 * This will do a couple of things:
1132		 *  1) Fill in the actual SCSI command.
1133		 *  2) Fill in any other upper-level specific fields
1134		 * (timeout).
1135		 *
1136		 * If this returns 0, it means that the request failed
1137		 * (reading past end of disk, reading offline device,
1138		 * etc).   This won't actually talk to the device, but
1139		 * some kinds of consistency checking may cause the
1140		 * request to be rejected immediately.
1141		 */
1142
1143		/*
1144		 * This sets up the scatter-gather table (allocating if
1145		 * required).
1146		 */
1147		ret = scsi_init_io(cmd);
1148		if (ret)	/* BLKPREP_KILL return also releases the command */
1149			return ret;
1150
1151		/*
1152		 * Initialize the actual SCSI command for this request.
1153		 */
1154		drv = *(struct scsi_driver **)req->rq_disk->private_data;
1155		if (unlikely(!drv->init_command(cmd))) {
1156			scsi_release_buffers(cmd);
1157			scsi_put_command(cmd);
1158			return BLKPREP_KILL;
1159		}
1160	}
1161
1162	/*
1163	 * The request is now prepped, no need to come back here
1164	 */
1165	req->flags |= REQ_DONTPREP;
1166	return BLKPREP_OK;
1167
1168 defer:
1169	/* If we defer, the elv_next_request() returns NULL, but the
1170	 * queue must be restarted, so we plug here if no returning
1171	 * command will automatically do that. */
1172	if (sdev->device_busy == 0)
1173		blk_plug_device(q);
1174	return BLKPREP_DEFER;
1175}
1176
1177/*
1178 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1179 * return 0.
1180 *
1181 * Called with the queue_lock held.
1182 */
1183static inline int scsi_dev_queue_ready(struct request_queue *q,
1184				  struct scsi_device *sdev)
1185{
1186	if (sdev->device_busy >= sdev->queue_depth)
1187		return 0;
1188	if (sdev->device_busy == 0 && sdev->device_blocked) {
1189		/*
1190		 * unblock after device_blocked iterates to zero
1191		 */
1192		if (--sdev->device_blocked == 0) {
1193			SCSI_LOG_MLQUEUE(3,
1194				printk("scsi%d (%d:%d) unblocking device at"
1195				       " zero depth\n", sdev->host->host_no,
1196				       sdev->id, sdev->lun));
1197		} else {
1198			blk_plug_device(q);
1199			return 0;
1200		}
1201	}
1202	if (sdev->device_blocked)
1203		return 0;
1204
1205	return 1;
1206}
1207
1208/*
1209 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1210 * return 0. We must end up running the queue again whenever 0 is
1211 * returned, else IO can hang.
1212 *
1213 * Called with host_lock held.
1214 */
1215static inline int scsi_host_queue_ready(struct request_queue *q,
1216				   struct Scsi_Host *shost,
1217				   struct scsi_device *sdev)
1218{
1219	if (test_bit(SHOST_RECOVERY, &shost->shost_state))
1220		return 0;
1221	if (shost->host_busy == 0 && shost->host_blocked) {
1222		/*
1223		 * unblock after host_blocked iterates to zero
1224		 */
1225		if (--shost->host_blocked == 0) {
1226			SCSI_LOG_MLQUEUE(3,
1227				printk("scsi%d unblocking host at zero depth\n",
1228					shost->host_no));
1229		} else {
1230			blk_plug_device(q);
1231			return 0;
1232		}
1233	}
1234	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1235	    shost->host_blocked || shost->host_self_blocked) {
1236		if (list_empty(&sdev->starved_entry))
1237			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1238		return 0;
1239	}
1240
1241	/* We're OK to process the command, so we can't be starved */
1242	if (!list_empty(&sdev->starved_entry))
1243		list_del_init(&sdev->starved_entry);
1244
1245	return 1;
1246}
1247
1248/*
1249 * Kill requests for a dead device
1250 */
1251static void scsi_kill_requests(request_queue_t *q)
1252{
1253	struct request *req;
1254
1255	while ((req = elv_next_request(q)) != NULL) {
1256		blkdev_dequeue_request(req);
1257		req->flags |= REQ_QUIET;
1258		while (end_that_request_first(req, 0, req->nr_sectors))
1259			;
1260		end_that_request_last(req);
1261	}
1262}
1263
1264/*
1265 * Function:    scsi_request_fn()
1266 *
1267 * Purpose:     Main strategy routine for SCSI.
1268 *
1269 * Arguments:   q       - Pointer to actual queue.
1270 *
1271 * Returns:     Nothing
1272 *
1273 * Lock status: IO request lock assumed to be held when called.
1274 */
1275static void scsi_request_fn(struct request_queue *q)
1276{
1277	struct scsi_device *sdev = q->queuedata;
1278	struct Scsi_Host *shost;
1279	struct scsi_cmnd *cmd;
1280	struct request *req;
1281
1282	if (!sdev) {
1283		printk("scsi: killing requests for dead queue\n");
1284		scsi_kill_requests(q);
1285		return;
1286	}
1287
1288	if(!get_device(&sdev->sdev_gendev))
1289		/* We must be tearing the block queue down already */
1290		return;
1291
1292	/*
1293	 * To start with, we keep looping until the queue is empty, or until
1294	 * the host is no longer able to accept any more requests.
1295	 */
1296	shost = sdev->host;
1297	while (!blk_queue_plugged(q)) {
1298		int rtn;
1299		/*
1300		 * get next queueable request.  We do this early to make sure
1301		 * that the request is fully prepared even if we cannot
1302		 * accept it.
1303		 */
1304		req = elv_next_request(q);
1305		if (!req || !scsi_dev_queue_ready(q, sdev))
1306			break;
1307
1308		if (unlikely(!scsi_device_online(sdev))) {
1309			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1310			       sdev->host->host_no, sdev->id, sdev->lun);
1311			blkdev_dequeue_request(req);
1312			req->flags |= REQ_QUIET;
1313			while (end_that_request_first(req, 0, req->nr_sectors))
1314				;
1315			end_that_request_last(req);
1316			continue;
1317		}
1318
1319
1320		/*
1321		 * Remove the request from the request list.
1322		 */
1323		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1324			blkdev_dequeue_request(req);
1325		sdev->device_busy++;
1326
1327		spin_unlock(q->queue_lock);
1328		spin_lock(shost->host_lock);
1329
1330		if (!scsi_host_queue_ready(q, shost, sdev))
1331			goto not_ready;
1332		if (sdev->single_lun) {
1333			if (scsi_target(sdev)->starget_sdev_user &&
1334			    scsi_target(sdev)->starget_sdev_user != sdev)
1335				goto not_ready;
1336			scsi_target(sdev)->starget_sdev_user = sdev;
1337		}
1338		shost->host_busy++;
1339
1340		/*
1341		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1342		 *		take the lock again.
1343		 */
1344		spin_unlock_irq(shost->host_lock);
1345
1346		cmd = req->special;
1347		if (unlikely(cmd == NULL)) {
1348			printk(KERN_CRIT "impossible request in %s.\n"
1349					 "please mail a stack trace to "
1350					 "linux-scsi@vger.kernel.org",
1351					 __FUNCTION__);
1352			BUG();
1353		}
1354
1355		/*
1356		 * Finally, initialize any error handling parameters, and set up
1357		 * the timers for timeouts.
1358		 */
1359		scsi_init_cmd_errh(cmd);
1360
1361		/*
1362		 * Dispatch the command to the low-level driver.
1363		 */
1364		rtn = scsi_dispatch_cmd(cmd);
1365		spin_lock_irq(q->queue_lock);
1366		if(rtn) {
1367			/* we're refusing the command; because of
1368			 * the way locks get dropped, we need to
1369			 * check here if plugging is required */
1370			if(sdev->device_busy == 0)
1371				blk_plug_device(q);
1372
1373			break;
1374		}
1375	}
1376
1377	goto out;
1378
1379 not_ready:
1380	spin_unlock_irq(shost->host_lock);
1381
1382	/*
1383	 * lock q, handle tag, requeue req, and decrement device_busy. We
1384	 * must return with queue_lock held.
1385	 *
1386	 * Decrementing device_busy without checking it is OK, as all such
1387	 * cases (host limits or settings) should run the queue at some
1388	 * later time.
1389	 */
1390	spin_lock_irq(q->queue_lock);
1391	blk_requeue_request(q, req);
1392	sdev->device_busy--;
1393	if(sdev->device_busy == 0)
1394		blk_plug_device(q);
1395 out:
1396	/* must be careful here...if we trigger the ->remove() function
1397	 * we cannot be holding the q lock */
1398	spin_unlock_irq(q->queue_lock);
1399	put_device(&sdev->sdev_gendev);
1400	spin_lock_irq(q->queue_lock);
1401}
1402
1403u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1404{
1405	struct device *host_dev;
1406	u64 bounce_limit = 0xffffffff;
1407
1408	if (shost->unchecked_isa_dma)
1409		return BLK_BOUNCE_ISA;
1410	/*
1411	 * Platforms with virtual-DMA translation
1412	 * hardware have no practical limit.
1413	 */
1414	if (!PCI_DMA_BUS_IS_PHYS)
1415		return BLK_BOUNCE_ANY;
1416
1417	host_dev = scsi_get_device(shost);
1418	if (host_dev && host_dev->dma_mask)
1419		bounce_limit = *host_dev->dma_mask;
1420
1421	return bounce_limit;
1422}
1423EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1424
1425struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1426{
1427	struct Scsi_Host *shost = sdev->host;
1428	struct request_queue *q;
1429
1430	q = blk_init_queue(scsi_request_fn, NULL);
1431	if (!q)
1432		return NULL;
1433
1434	blk_queue_prep_rq(q, scsi_prep_fn);
1435
1436	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1437	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1438	blk_queue_max_sectors(q, shost->max_sectors);
1439	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1440	blk_queue_segment_boundary(q, shost->dma_boundary);
1441	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1442
1443	/*
1444	 * ordered tags are superior to flush ordering
1445	 */
1446	if (shost->ordered_tag)
1447		blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1448	else if (shost->ordered_flush) {
1449		blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1450		q->prepare_flush_fn = scsi_prepare_flush_fn;
1451		q->end_flush_fn = scsi_end_flush_fn;
1452	}
1453
1454	if (!shost->use_clustering)
1455		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1456	return q;
1457}
1458
1459void scsi_free_queue(struct request_queue *q)
1460{
1461	blk_cleanup_queue(q);
1462}
1463
1464/*
1465 * Function:    scsi_block_requests()
1466 *
1467 * Purpose:     Utility function used by low-level drivers to prevent further
1468 *		commands from being queued to the device.
1469 *
1470 * Arguments:   shost       - Host in question
1471 *
1472 * Returns:     Nothing
1473 *
1474 * Lock status: No locks are assumed held.
1475 *
1476 * Notes:       There is no timer nor any other means by which the requests
1477 *		get unblocked other than the low-level driver calling
1478 *		scsi_unblock_requests().
1479 */
1480void scsi_block_requests(struct Scsi_Host *shost)
1481{
1482	shost->host_self_blocked = 1;
1483}
1484EXPORT_SYMBOL(scsi_block_requests);
1485
1486/*
1487 * Function:    scsi_unblock_requests()
1488 *
1489 * Purpose:     Utility function used by low-level drivers to allow further
1490 *		commands from being queued to the device.
1491 *
1492 * Arguments:   shost       - Host in question
1493 *
1494 * Returns:     Nothing
1495 *
1496 * Lock status: No locks are assumed held.
1497 *
1498 * Notes:       There is no timer nor any other means by which the requests
1499 *		get unblocked other than the low-level driver calling
1500 *		scsi_unblock_requests().
1501 *
1502 *		This is done as an API function so that changes to the
1503 *		internals of the scsi mid-layer won't require wholesale
1504 *		changes to drivers that use this feature.
1505 */
1506void scsi_unblock_requests(struct Scsi_Host *shost)
1507{
1508	shost->host_self_blocked = 0;
1509	scsi_run_host_queues(shost);
1510}
1511EXPORT_SYMBOL(scsi_unblock_requests);
1512
1513int __init scsi_init_queue(void)
1514{
1515	int i;
1516
1517	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1518		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1519		int size = sgp->size * sizeof(struct scatterlist);
1520
1521		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1522				SLAB_HWCACHE_ALIGN, NULL, NULL);
1523		if (!sgp->slab) {
1524			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1525					sgp->name);
1526		}
1527
1528		sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1529				mempool_alloc_slab, mempool_free_slab,
1530				sgp->slab);
1531		if (!sgp->pool) {
1532			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1533					sgp->name);
1534		}
1535	}
1536
1537	return 0;
1538}
1539
1540void scsi_exit_queue(void)
1541{
1542	int i;
1543
1544	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1545		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1546		mempool_destroy(sgp->pool);
1547		kmem_cache_destroy(sgp->slab);
1548	}
1549}
1550/**
1551 *	__scsi_mode_sense - issue a mode sense, falling back from 10 to
1552 *		six bytes if necessary.
1553 *	@sreq:	SCSI request to fill in with the MODE_SENSE
1554 *	@dbd:	set if mode sense will allow block descriptors to be returned
1555 *	@modepage: mode page being requested
1556 *	@buffer: request buffer (may not be smaller than eight bytes)
1557 *	@len:	length of request buffer.
1558 *	@timeout: command timeout
1559 *	@retries: number of retries before failing
1560 *	@data: returns a structure abstracting the mode header data
1561 *
1562 *	Returns zero if unsuccessful, or the header offset (either 4
1563 *	or 8 depending on whether a six or ten byte command was
1564 *	issued) if successful.
1565 **/
1566int
1567__scsi_mode_sense(struct scsi_request *sreq, int dbd, int modepage,
1568		  unsigned char *buffer, int len, int timeout, int retries,
1569		  struct scsi_mode_data *data) {
1570	unsigned char cmd[12];
1571	int use_10_for_ms;
1572	int header_length;
1573
1574	memset(data, 0, sizeof(*data));
1575	memset(&cmd[0], 0, 12);
1576	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1577	cmd[2] = modepage;
1578
1579 retry:
1580	use_10_for_ms = sreq->sr_device->use_10_for_ms;
1581
1582	if (use_10_for_ms) {
1583		if (len < 8)
1584			len = 8;
1585
1586		cmd[0] = MODE_SENSE_10;
1587		cmd[8] = len;
1588		header_length = 8;
1589	} else {
1590		if (len < 4)
1591			len = 4;
1592
1593		cmd[0] = MODE_SENSE;
1594		cmd[4] = len;
1595		header_length = 4;
1596	}
1597
1598	sreq->sr_cmd_len = 0;
1599	memset(sreq->sr_sense_buffer, 0, sizeof(sreq->sr_sense_buffer));
1600	sreq->sr_data_direction = DMA_FROM_DEVICE;
1601
1602	memset(buffer, 0, len);
1603
1604	scsi_wait_req(sreq, cmd, buffer, len, timeout, retries);
1605
1606	/* This code looks awful: what it's doing is making sure an
1607	 * ILLEGAL REQUEST sense return identifies the actual command
1608	 * byte as the problem.  MODE_SENSE commands can return
1609	 * ILLEGAL REQUEST if the code page isn't supported */
1610
1611	if (use_10_for_ms && !scsi_status_is_good(sreq->sr_result) &&
1612	    (driver_byte(sreq->sr_result) & DRIVER_SENSE)) {
1613		struct scsi_sense_hdr sshdr;
1614
1615		if (scsi_request_normalize_sense(sreq, &sshdr)) {
1616			if ((sshdr.sense_key == ILLEGAL_REQUEST) &&
1617			    (sshdr.asc == 0x20) && (sshdr.ascq == 0)) {
1618				/*
1619				 * Invalid command operation code
1620				 */
1621				sreq->sr_device->use_10_for_ms = 0;
1622				goto retry;
1623			}
1624		}
1625	}
1626
1627	if(scsi_status_is_good(sreq->sr_result)) {
1628		data->header_length = header_length;
1629		if(use_10_for_ms) {
1630			data->length = buffer[0]*256 + buffer[1] + 2;
1631			data->medium_type = buffer[2];
1632			data->device_specific = buffer[3];
1633			data->longlba = buffer[4] & 0x01;
1634			data->block_descriptor_length = buffer[6]*256
1635				+ buffer[7];
1636		} else {
1637			data->length = buffer[0] + 1;
1638			data->medium_type = buffer[1];
1639			data->device_specific = buffer[2];
1640			data->block_descriptor_length = buffer[3];
1641		}
1642	}
1643
1644	return sreq->sr_result;
1645}
1646EXPORT_SYMBOL(__scsi_mode_sense);
1647
1648/**
1649 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1650 *		six bytes if necessary.
1651 *	@sdev:	scsi device to send command to.
1652 *	@dbd:	set if mode sense will disable block descriptors in the return
1653 *	@modepage: mode page being requested
1654 *	@buffer: request buffer (may not be smaller than eight bytes)
1655 *	@len:	length of request buffer.
1656 *	@timeout: command timeout
1657 *	@retries: number of retries before failing
1658 *
1659 *	Returns zero if unsuccessful, or the header offset (either 4
1660 *	or 8 depending on whether a six or ten byte command was
1661 *	issued) if successful.
1662 **/
1663int
1664scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1665		unsigned char *buffer, int len, int timeout, int retries,
1666		struct scsi_mode_data *data)
1667{
1668	struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1669	int ret;
1670
1671	if (!sreq)
1672		return -1;
1673
1674	ret = __scsi_mode_sense(sreq, dbd, modepage, buffer, len,
1675				timeout, retries, data);
1676
1677	scsi_release_request(sreq);
1678
1679	return ret;
1680}
1681EXPORT_SYMBOL(scsi_mode_sense);
1682
1683int
1684scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1685{
1686	struct scsi_request *sreq;
1687	char cmd[] = {
1688		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1689	};
1690	int result;
1691
1692	sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1693	if (!sreq)
1694		return -ENOMEM;
1695
1696	sreq->sr_data_direction = DMA_NONE;
1697	scsi_wait_req(sreq, cmd, NULL, 0, timeout, retries);
1698
1699	if ((driver_byte(sreq->sr_result) & DRIVER_SENSE) && sdev->removable) {
1700		struct scsi_sense_hdr sshdr;
1701
1702		if ((scsi_request_normalize_sense(sreq, &sshdr)) &&
1703		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1704		     (sshdr.sense_key == NOT_READY))) {
1705			sdev->changed = 1;
1706			sreq->sr_result = 0;
1707		}
1708	}
1709	result = sreq->sr_result;
1710	scsi_release_request(sreq);
1711	return result;
1712}
1713EXPORT_SYMBOL(scsi_test_unit_ready);
1714
1715/**
1716 *	scsi_device_set_state - Take the given device through the device
1717 *		state model.
1718 *	@sdev:	scsi device to change the state of.
1719 *	@state:	state to change to.
1720 *
1721 *	Returns zero if unsuccessful or an error if the requested
1722 *	transition is illegal.
1723 **/
1724int
1725scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1726{
1727	enum scsi_device_state oldstate = sdev->sdev_state;
1728
1729	if (state == oldstate)
1730		return 0;
1731
1732	switch (state) {
1733	case SDEV_CREATED:
1734		/* There are no legal states that come back to
1735		 * created.  This is the manually initialised start
1736		 * state */
1737		goto illegal;
1738
1739	case SDEV_RUNNING:
1740		switch (oldstate) {
1741		case SDEV_CREATED:
1742		case SDEV_OFFLINE:
1743		case SDEV_QUIESCE:
1744		case SDEV_BLOCK:
1745			break;
1746		default:
1747			goto illegal;
1748		}
1749		break;
1750
1751	case SDEV_QUIESCE:
1752		switch (oldstate) {
1753		case SDEV_RUNNING:
1754		case SDEV_OFFLINE:
1755			break;
1756		default:
1757			goto illegal;
1758		}
1759		break;
1760
1761	case SDEV_OFFLINE:
1762		switch (oldstate) {
1763		case SDEV_CREATED:
1764		case SDEV_RUNNING:
1765		case SDEV_QUIESCE:
1766		case SDEV_BLOCK:
1767			break;
1768		default:
1769			goto illegal;
1770		}
1771		break;
1772
1773	case SDEV_BLOCK:
1774		switch (oldstate) {
1775		case SDEV_CREATED:
1776		case SDEV_RUNNING:
1777			break;
1778		default:
1779			goto illegal;
1780		}
1781		break;
1782
1783	case SDEV_CANCEL:
1784		switch (oldstate) {
1785		case SDEV_CREATED:
1786		case SDEV_RUNNING:
1787		case SDEV_OFFLINE:
1788		case SDEV_BLOCK:
1789			break;
1790		default:
1791			goto illegal;
1792		}
1793		break;
1794
1795	case SDEV_DEL:
1796		switch (oldstate) {
1797		case SDEV_CANCEL:
1798			break;
1799		default:
1800			goto illegal;
1801		}
1802		break;
1803
1804	}
1805	sdev->sdev_state = state;
1806	return 0;
1807
1808 illegal:
1809	SCSI_LOG_ERROR_RECOVERY(1,
1810				dev_printk(KERN_ERR, &sdev->sdev_gendev,
1811					   "Illegal state transition %s->%s\n",
1812					   scsi_device_state_name(oldstate),
1813					   scsi_device_state_name(state))
1814				);
1815	return -EINVAL;
1816}
1817EXPORT_SYMBOL(scsi_device_set_state);
1818
1819/**
1820 *	scsi_device_quiesce - Block user issued commands.
1821 *	@sdev:	scsi device to quiesce.
1822 *
1823 *	This works by trying to transition to the SDEV_QUIESCE state
1824 *	(which must be a legal transition).  When the device is in this
1825 *	state, only special requests will be accepted, all others will
1826 *	be deferred.  Since special requests may also be requeued requests,
1827 *	a successful return doesn't guarantee the device will be
1828 *	totally quiescent.
1829 *
1830 *	Must be called with user context, may sleep.
1831 *
1832 *	Returns zero if unsuccessful or an error if not.
1833 **/
1834int
1835scsi_device_quiesce(struct scsi_device *sdev)
1836{
1837	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1838	if (err)
1839		return err;
1840
1841	scsi_run_queue(sdev->request_queue);
1842	while (sdev->device_busy) {
1843		msleep_interruptible(200);
1844		scsi_run_queue(sdev->request_queue);
1845	}
1846	return 0;
1847}
1848EXPORT_SYMBOL(scsi_device_quiesce);
1849
1850/**
1851 *	scsi_device_resume - Restart user issued commands to a quiesced device.
1852 *	@sdev:	scsi device to resume.
1853 *
1854 *	Moves the device from quiesced back to running and restarts the
1855 *	queues.
1856 *
1857 *	Must be called with user context, may sleep.
1858 **/
1859void
1860scsi_device_resume(struct scsi_device *sdev)
1861{
1862	if(scsi_device_set_state(sdev, SDEV_RUNNING))
1863		return;
1864	scsi_run_queue(sdev->request_queue);
1865}
1866EXPORT_SYMBOL(scsi_device_resume);
1867
1868static void
1869device_quiesce_fn(struct scsi_device *sdev, void *data)
1870{
1871	scsi_device_quiesce(sdev);
1872}
1873
1874void
1875scsi_target_quiesce(struct scsi_target *starget)
1876{
1877	starget_for_each_device(starget, NULL, device_quiesce_fn);
1878}
1879EXPORT_SYMBOL(scsi_target_quiesce);
1880
1881static void
1882device_resume_fn(struct scsi_device *sdev, void *data)
1883{
1884	scsi_device_resume(sdev);
1885}
1886
1887void
1888scsi_target_resume(struct scsi_target *starget)
1889{
1890	starget_for_each_device(starget, NULL, device_resume_fn);
1891}
1892EXPORT_SYMBOL(scsi_target_resume);
1893
1894/**
1895 * scsi_internal_device_block - internal function to put a device
1896 *				temporarily into the SDEV_BLOCK state
1897 * @sdev:	device to block
1898 *
1899 * Block request made by scsi lld's to temporarily stop all
1900 * scsi commands on the specified device.  Called from interrupt
1901 * or normal process context.
1902 *
1903 * Returns zero if successful or error if not
1904 *
1905 * Notes:
1906 *	This routine transitions the device to the SDEV_BLOCK state
1907 *	(which must be a legal transition).  When the device is in this
1908 *	state, all commands are deferred until the scsi lld reenables
1909 *	the device with scsi_device_unblock or device_block_tmo fires.
1910 *	This routine assumes the host_lock is held on entry.
1911 **/
1912int
1913scsi_internal_device_block(struct scsi_device *sdev)
1914{
1915	request_queue_t *q = sdev->request_queue;
1916	unsigned long flags;
1917	int err = 0;
1918
1919	err = scsi_device_set_state(sdev, SDEV_BLOCK);
1920	if (err)
1921		return err;
1922
1923	/*
1924	 * The device has transitioned to SDEV_BLOCK.  Stop the
1925	 * block layer from calling the midlayer with this device's
1926	 * request queue.
1927	 */
1928	spin_lock_irqsave(q->queue_lock, flags);
1929	blk_stop_queue(q);
1930	spin_unlock_irqrestore(q->queue_lock, flags);
1931
1932	return 0;
1933}
1934EXPORT_SYMBOL_GPL(scsi_internal_device_block);
1935
1936/**
1937 * scsi_internal_device_unblock - resume a device after a block request
1938 * @sdev:	device to resume
1939 *
1940 * Called by scsi lld's or the midlayer to restart the device queue
1941 * for the previously suspended scsi device.  Called from interrupt or
1942 * normal process context.
1943 *
1944 * Returns zero if successful or error if not.
1945 *
1946 * Notes:
1947 *	This routine transitions the device to the SDEV_RUNNING state
1948 *	(which must be a legal transition) allowing the midlayer to
1949 *	goose the queue for this device.  This routine assumes the
1950 *	host_lock is held upon entry.
1951 **/
1952int
1953scsi_internal_device_unblock(struct scsi_device *sdev)
1954{
1955	request_queue_t *q = sdev->request_queue;
1956	int err;
1957	unsigned long flags;
1958
1959	/*
1960	 * Try to transition the scsi device to SDEV_RUNNING
1961	 * and goose the device queue if successful.
1962	 */
1963	err = scsi_device_set_state(sdev, SDEV_RUNNING);
1964	if (err)
1965		return err;
1966
1967	spin_lock_irqsave(q->queue_lock, flags);
1968	blk_start_queue(q);
1969	spin_unlock_irqrestore(q->queue_lock, flags);
1970
1971	return 0;
1972}
1973EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
1974
1975static void
1976device_block(struct scsi_device *sdev, void *data)
1977{
1978	scsi_internal_device_block(sdev);
1979}
1980
1981static int
1982target_block(struct device *dev, void *data)
1983{
1984	if (scsi_is_target_device(dev))
1985		starget_for_each_device(to_scsi_target(dev), NULL,
1986					device_block);
1987	return 0;
1988}
1989
1990void
1991scsi_target_block(struct device *dev)
1992{
1993	if (scsi_is_target_device(dev))
1994		starget_for_each_device(to_scsi_target(dev), NULL,
1995					device_block);
1996	else
1997		device_for_each_child(dev, NULL, target_block);
1998}
1999EXPORT_SYMBOL_GPL(scsi_target_block);
2000
2001static void
2002device_unblock(struct scsi_device *sdev, void *data)
2003{
2004	scsi_internal_device_unblock(sdev);
2005}
2006
2007static int
2008target_unblock(struct device *dev, void *data)
2009{
2010	if (scsi_is_target_device(dev))
2011		starget_for_each_device(to_scsi_target(dev), NULL,
2012					device_unblock);
2013	return 0;
2014}
2015
2016void
2017scsi_target_unblock(struct device *dev)
2018{
2019	if (scsi_is_target_device(dev))
2020		starget_for_each_device(to_scsi_target(dev), NULL,
2021					device_unblock);
2022	else
2023		device_for_each_child(dev, NULL, target_unblock);
2024}
2025EXPORT_SYMBOL_GPL(scsi_target_unblock);
2026