scsi_lib.c revision fa8e36c39b00a219d2c37250e493c3421e0e67e9
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68static struct kmem_cache *scsi_bidi_sdb_cache;
69
70static void scsi_run_queue(struct request_queue *q);
71
72/*
73 * Function:	scsi_unprep_request()
74 *
75 * Purpose:	Remove all preparation done for a request, including its
76 *		associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments:	req	- request to unprepare
79 *
80 * Lock status:	Assumed that no locks are held upon entry.
81 *
82 * Returns:	Nothing.
83 */
84static void scsi_unprep_request(struct request *req)
85{
86	struct scsi_cmnd *cmd = req->special;
87
88	req->cmd_flags &= ~REQ_DONTPREP;
89	req->special = NULL;
90
91	scsi_put_command(cmd);
92}
93
94/*
95 * Function:    scsi_queue_insert()
96 *
97 * Purpose:     Insert a command in the midlevel queue.
98 *
99 * Arguments:   cmd    - command that we are adding to queue.
100 *              reason - why we are inserting command to queue.
101 *
102 * Lock status: Assumed that lock is not held upon entry.
103 *
104 * Returns:     Nothing.
105 *
106 * Notes:       We do this for one of two cases.  Either the host is busy
107 *              and it cannot accept any more commands for the time being,
108 *              or the device returned QUEUE_FULL and can accept no more
109 *              commands.
110 * Notes:       This could be called either from an interrupt context or a
111 *              normal process context.
112 */
113int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114{
115	struct Scsi_Host *host = cmd->device->host;
116	struct scsi_device *device = cmd->device;
117	struct request_queue *q = device->request_queue;
118	unsigned long flags;
119
120	SCSI_LOG_MLQUEUE(1,
121		 printk("Inserting command %p into mlqueue\n", cmd));
122
123	/*
124	 * Set the appropriate busy bit for the device/host.
125	 *
126	 * If the host/device isn't busy, assume that something actually
127	 * completed, and that we should be able to queue a command now.
128	 *
129	 * Note that the prior mid-layer assumption that any host could
130	 * always queue at least one command is now broken.  The mid-layer
131	 * will implement a user specifiable stall (see
132	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133	 * if a command is requeued with no other commands outstanding
134	 * either for the device or for the host.
135	 */
136	if (reason == SCSI_MLQUEUE_HOST_BUSY)
137		host->host_blocked = host->max_host_blocked;
138	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139		device->device_blocked = device->max_device_blocked;
140
141	/*
142	 * Decrement the counters, since these commands are no longer
143	 * active on the host/device.
144	 */
145	scsi_device_unbusy(device);
146
147	/*
148	 * Requeue this command.  It will go before all other commands
149	 * that are already in the queue.
150	 *
151	 * NOTE: there is magic here about the way the queue is plugged if
152	 * we have no outstanding commands.
153	 *
154	 * Although we *don't* plug the queue, we call the request
155	 * function.  The SCSI request function detects the blocked condition
156	 * and plugs the queue appropriately.
157         */
158	spin_lock_irqsave(q->queue_lock, flags);
159	blk_requeue_request(q, cmd->request);
160	spin_unlock_irqrestore(q->queue_lock, flags);
161
162	scsi_run_queue(q);
163
164	return 0;
165}
166
167/**
168 * scsi_execute - insert request and wait for the result
169 * @sdev:	scsi device
170 * @cmd:	scsi command
171 * @data_direction: data direction
172 * @buffer:	data buffer
173 * @bufflen:	len of buffer
174 * @sense:	optional sense buffer
175 * @timeout:	request timeout in seconds
176 * @retries:	number of times to retry request
177 * @flags:	or into request flags;
178 *
179 * returns the req->errors value which is the scsi_cmnd result
180 * field.
181 */
182int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183		 int data_direction, void *buffer, unsigned bufflen,
184		 unsigned char *sense, int timeout, int retries, int flags)
185{
186	struct request *req;
187	int write = (data_direction == DMA_TO_DEVICE);
188	int ret = DRIVER_ERROR << 24;
189
190	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191
192	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
193					buffer, bufflen, __GFP_WAIT))
194		goto out;
195
196	req->cmd_len = COMMAND_SIZE(cmd[0]);
197	memcpy(req->cmd, cmd, req->cmd_len);
198	req->sense = sense;
199	req->sense_len = 0;
200	req->retries = retries;
201	req->timeout = timeout;
202	req->cmd_type = REQ_TYPE_BLOCK_PC;
203	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204
205	/*
206	 * head injection *required* here otherwise quiesce won't work
207	 */
208	blk_execute_rq(req->q, NULL, req, 1);
209
210	ret = req->errors;
211 out:
212	blk_put_request(req);
213
214	return ret;
215}
216EXPORT_SYMBOL(scsi_execute);
217
218
219int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
220		     int data_direction, void *buffer, unsigned bufflen,
221		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
222{
223	char *sense = NULL;
224	int result;
225
226	if (sshdr) {
227		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
228		if (!sense)
229			return DRIVER_ERROR << 24;
230	}
231	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
232			      sense, timeout, retries, 0);
233	if (sshdr)
234		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
235
236	kfree(sense);
237	return result;
238}
239EXPORT_SYMBOL(scsi_execute_req);
240
241struct scsi_io_context {
242	void *data;
243	void (*done)(void *data, char *sense, int result, int resid);
244	char sense[SCSI_SENSE_BUFFERSIZE];
245};
246
247static struct kmem_cache *scsi_io_context_cache;
248
249static void scsi_end_async(struct request *req, int uptodate)
250{
251	struct scsi_io_context *sioc = req->end_io_data;
252
253	if (sioc->done)
254		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
255
256	kmem_cache_free(scsi_io_context_cache, sioc);
257	__blk_put_request(req->q, req);
258}
259
260static int scsi_merge_bio(struct request *rq, struct bio *bio)
261{
262	struct request_queue *q = rq->q;
263
264	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
265	if (rq_data_dir(rq) == WRITE)
266		bio->bi_rw |= (1 << BIO_RW);
267	blk_queue_bounce(q, &bio);
268
269	return blk_rq_append_bio(q, rq, bio);
270}
271
272static void scsi_bi_endio(struct bio *bio, int error)
273{
274	bio_put(bio);
275}
276
277/**
278 * scsi_req_map_sg - map a scatterlist into a request
279 * @rq:		request to fill
280 * @sgl:	scatterlist
281 * @nsegs:	number of elements
282 * @bufflen:	len of buffer
283 * @gfp:	memory allocation flags
284 *
285 * scsi_req_map_sg maps a scatterlist into a request so that the
286 * request can be sent to the block layer. We do not trust the scatterlist
287 * sent to use, as some ULDs use that struct to only organize the pages.
288 */
289static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
290			   int nsegs, unsigned bufflen, gfp_t gfp)
291{
292	struct request_queue *q = rq->q;
293	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
294	unsigned int data_len = bufflen, len, bytes, off;
295	struct scatterlist *sg;
296	struct page *page;
297	struct bio *bio = NULL;
298	int i, err, nr_vecs = 0;
299
300	for_each_sg(sgl, sg, nsegs, i) {
301		page = sg_page(sg);
302		off = sg->offset;
303		len = sg->length;
304
305		while (len > 0 && data_len > 0) {
306			/*
307			 * sg sends a scatterlist that is larger than
308			 * the data_len it wants transferred for certain
309			 * IO sizes
310			 */
311			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
312			bytes = min(bytes, data_len);
313
314			if (!bio) {
315				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
316				nr_pages -= nr_vecs;
317
318				bio = bio_alloc(gfp, nr_vecs);
319				if (!bio) {
320					err = -ENOMEM;
321					goto free_bios;
322				}
323				bio->bi_end_io = scsi_bi_endio;
324			}
325
326			if (bio_add_pc_page(q, bio, page, bytes, off) !=
327			    bytes) {
328				bio_put(bio);
329				err = -EINVAL;
330				goto free_bios;
331			}
332
333			if (bio->bi_vcnt >= nr_vecs) {
334				err = scsi_merge_bio(rq, bio);
335				if (err) {
336					bio_endio(bio, 0);
337					goto free_bios;
338				}
339				bio = NULL;
340			}
341
342			page++;
343			len -= bytes;
344			data_len -=bytes;
345			off = 0;
346		}
347	}
348
349	rq->buffer = rq->data = NULL;
350	rq->data_len = bufflen;
351	return 0;
352
353free_bios:
354	while ((bio = rq->bio) != NULL) {
355		rq->bio = bio->bi_next;
356		/*
357		 * call endio instead of bio_put incase it was bounced
358		 */
359		bio_endio(bio, 0);
360	}
361
362	return err;
363}
364
365/**
366 * scsi_execute_async - insert request
367 * @sdev:	scsi device
368 * @cmd:	scsi command
369 * @cmd_len:	length of scsi cdb
370 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
371 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
372 * @bufflen:	len of buffer
373 * @use_sg:	if buffer is a scatterlist this is the number of elements
374 * @timeout:	request timeout in seconds
375 * @retries:	number of times to retry request
376 * @privdata:	data passed to done()
377 * @done:	callback function when done
378 * @gfp:	memory allocation flags
379 */
380int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
381		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
382		       int use_sg, int timeout, int retries, void *privdata,
383		       void (*done)(void *, char *, int, int), gfp_t gfp)
384{
385	struct request *req;
386	struct scsi_io_context *sioc;
387	int err = 0;
388	int write = (data_direction == DMA_TO_DEVICE);
389
390	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
391	if (!sioc)
392		return DRIVER_ERROR << 24;
393
394	req = blk_get_request(sdev->request_queue, write, gfp);
395	if (!req)
396		goto free_sense;
397	req->cmd_type = REQ_TYPE_BLOCK_PC;
398	req->cmd_flags |= REQ_QUIET;
399
400	if (use_sg)
401		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
402	else if (bufflen)
403		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
404
405	if (err)
406		goto free_req;
407
408	req->cmd_len = cmd_len;
409	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
410	memcpy(req->cmd, cmd, req->cmd_len);
411	req->sense = sioc->sense;
412	req->sense_len = 0;
413	req->timeout = timeout;
414	req->retries = retries;
415	req->end_io_data = sioc;
416
417	sioc->data = privdata;
418	sioc->done = done;
419
420	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
421	return 0;
422
423free_req:
424	blk_put_request(req);
425free_sense:
426	kmem_cache_free(scsi_io_context_cache, sioc);
427	return DRIVER_ERROR << 24;
428}
429EXPORT_SYMBOL_GPL(scsi_execute_async);
430
431/*
432 * Function:    scsi_init_cmd_errh()
433 *
434 * Purpose:     Initialize cmd fields related to error handling.
435 *
436 * Arguments:   cmd	- command that is ready to be queued.
437 *
438 * Notes:       This function has the job of initializing a number of
439 *              fields related to error handling.   Typically this will
440 *              be called once for each command, as required.
441 */
442static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
443{
444	cmd->serial_number = 0;
445	scsi_set_resid(cmd, 0);
446	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
447	if (cmd->cmd_len == 0)
448		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449}
450
451void scsi_device_unbusy(struct scsi_device *sdev)
452{
453	struct Scsi_Host *shost = sdev->host;
454	unsigned long flags;
455
456	spin_lock_irqsave(shost->host_lock, flags);
457	shost->host_busy--;
458	if (unlikely(scsi_host_in_recovery(shost) &&
459		     (shost->host_failed || shost->host_eh_scheduled)))
460		scsi_eh_wakeup(shost);
461	spin_unlock(shost->host_lock);
462	spin_lock(sdev->request_queue->queue_lock);
463	sdev->device_busy--;
464	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465}
466
467/*
468 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469 * and call blk_run_queue for all the scsi_devices on the target -
470 * including current_sdev first.
471 *
472 * Called with *no* scsi locks held.
473 */
474static void scsi_single_lun_run(struct scsi_device *current_sdev)
475{
476	struct Scsi_Host *shost = current_sdev->host;
477	struct scsi_device *sdev, *tmp;
478	struct scsi_target *starget = scsi_target(current_sdev);
479	unsigned long flags;
480
481	spin_lock_irqsave(shost->host_lock, flags);
482	starget->starget_sdev_user = NULL;
483	spin_unlock_irqrestore(shost->host_lock, flags);
484
485	/*
486	 * Call blk_run_queue for all LUNs on the target, starting with
487	 * current_sdev. We race with others (to set starget_sdev_user),
488	 * but in most cases, we will be first. Ideally, each LU on the
489	 * target would get some limited time or requests on the target.
490	 */
491	blk_run_queue(current_sdev->request_queue);
492
493	spin_lock_irqsave(shost->host_lock, flags);
494	if (starget->starget_sdev_user)
495		goto out;
496	list_for_each_entry_safe(sdev, tmp, &starget->devices,
497			same_target_siblings) {
498		if (sdev == current_sdev)
499			continue;
500		if (scsi_device_get(sdev))
501			continue;
502
503		spin_unlock_irqrestore(shost->host_lock, flags);
504		blk_run_queue(sdev->request_queue);
505		spin_lock_irqsave(shost->host_lock, flags);
506
507		scsi_device_put(sdev);
508	}
509 out:
510	spin_unlock_irqrestore(shost->host_lock, flags);
511}
512
513/*
514 * Function:	scsi_run_queue()
515 *
516 * Purpose:	Select a proper request queue to serve next
517 *
518 * Arguments:	q	- last request's queue
519 *
520 * Returns:     Nothing
521 *
522 * Notes:	The previous command was completely finished, start
523 *		a new one if possible.
524 */
525static void scsi_run_queue(struct request_queue *q)
526{
527	struct scsi_device *sdev = q->queuedata;
528	struct Scsi_Host *shost = sdev->host;
529	unsigned long flags;
530
531	if (scsi_target(sdev)->single_lun)
532		scsi_single_lun_run(sdev);
533
534	spin_lock_irqsave(shost->host_lock, flags);
535	while (!list_empty(&shost->starved_list) &&
536	       !shost->host_blocked && !shost->host_self_blocked &&
537		!((shost->can_queue > 0) &&
538		  (shost->host_busy >= shost->can_queue))) {
539		/*
540		 * As long as shost is accepting commands and we have
541		 * starved queues, call blk_run_queue. scsi_request_fn
542		 * drops the queue_lock and can add us back to the
543		 * starved_list.
544		 *
545		 * host_lock protects the starved_list and starved_entry.
546		 * scsi_request_fn must get the host_lock before checking
547		 * or modifying starved_list or starved_entry.
548		 */
549		sdev = list_entry(shost->starved_list.next,
550					  struct scsi_device, starved_entry);
551		list_del_init(&sdev->starved_entry);
552		spin_unlock_irqrestore(shost->host_lock, flags);
553
554
555		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
556		    !test_and_set_bit(QUEUE_FLAG_REENTER,
557				      &sdev->request_queue->queue_flags)) {
558			blk_run_queue(sdev->request_queue);
559			clear_bit(QUEUE_FLAG_REENTER,
560				  &sdev->request_queue->queue_flags);
561		} else
562			blk_run_queue(sdev->request_queue);
563
564		spin_lock_irqsave(shost->host_lock, flags);
565		if (unlikely(!list_empty(&sdev->starved_entry)))
566			/*
567			 * sdev lost a race, and was put back on the
568			 * starved list. This is unlikely but without this
569			 * in theory we could loop forever.
570			 */
571			break;
572	}
573	spin_unlock_irqrestore(shost->host_lock, flags);
574
575	blk_run_queue(q);
576}
577
578/*
579 * Function:	scsi_requeue_command()
580 *
581 * Purpose:	Handle post-processing of completed commands.
582 *
583 * Arguments:	q	- queue to operate on
584 *		cmd	- command that may need to be requeued.
585 *
586 * Returns:	Nothing
587 *
588 * Notes:	After command completion, there may be blocks left
589 *		over which weren't finished by the previous command
590 *		this can be for a number of reasons - the main one is
591 *		I/O errors in the middle of the request, in which case
592 *		we need to request the blocks that come after the bad
593 *		sector.
594 * Notes:	Upon return, cmd is a stale pointer.
595 */
596static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
597{
598	struct request *req = cmd->request;
599	unsigned long flags;
600
601	scsi_unprep_request(req);
602	spin_lock_irqsave(q->queue_lock, flags);
603	blk_requeue_request(q, req);
604	spin_unlock_irqrestore(q->queue_lock, flags);
605
606	scsi_run_queue(q);
607}
608
609void scsi_next_command(struct scsi_cmnd *cmd)
610{
611	struct scsi_device *sdev = cmd->device;
612	struct request_queue *q = sdev->request_queue;
613
614	/* need to hold a reference on the device before we let go of the cmd */
615	get_device(&sdev->sdev_gendev);
616
617	scsi_put_command(cmd);
618	scsi_run_queue(q);
619
620	/* ok to remove device now */
621	put_device(&sdev->sdev_gendev);
622}
623
624void scsi_run_host_queues(struct Scsi_Host *shost)
625{
626	struct scsi_device *sdev;
627
628	shost_for_each_device(sdev, shost)
629		scsi_run_queue(sdev->request_queue);
630}
631
632/*
633 * Function:    scsi_end_request()
634 *
635 * Purpose:     Post-processing of completed commands (usually invoked at end
636 *		of upper level post-processing and scsi_io_completion).
637 *
638 * Arguments:   cmd	 - command that is complete.
639 *              error    - 0 if I/O indicates success, < 0 for I/O error.
640 *              bytes    - number of bytes of completed I/O
641 *		requeue  - indicates whether we should requeue leftovers.
642 *
643 * Lock status: Assumed that lock is not held upon entry.
644 *
645 * Returns:     cmd if requeue required, NULL otherwise.
646 *
647 * Notes:       This is called for block device requests in order to
648 *              mark some number of sectors as complete.
649 *
650 *		We are guaranteeing that the request queue will be goosed
651 *		at some point during this call.
652 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
653 */
654static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
655					  int bytes, int requeue)
656{
657	struct request_queue *q = cmd->device->request_queue;
658	struct request *req = cmd->request;
659
660	/*
661	 * If there are blocks left over at the end, set up the command
662	 * to queue the remainder of them.
663	 */
664	if (blk_end_request(req, error, bytes)) {
665		int leftover = (req->hard_nr_sectors << 9);
666
667		if (blk_pc_request(req))
668			leftover = req->data_len;
669
670		/* kill remainder if no retrys */
671		if (error && blk_noretry_request(req))
672			blk_end_request(req, error, leftover);
673		else {
674			if (requeue) {
675				/*
676				 * Bleah.  Leftovers again.  Stick the
677				 * leftovers in the front of the
678				 * queue, and goose the queue again.
679				 */
680				scsi_requeue_command(q, cmd);
681				cmd = NULL;
682			}
683			return cmd;
684		}
685	}
686
687	/*
688	 * This will goose the queue request function at the end, so we don't
689	 * need to worry about launching another command.
690	 */
691	scsi_next_command(cmd);
692	return NULL;
693}
694
695static inline unsigned int scsi_sgtable_index(unsigned short nents)
696{
697	unsigned int index;
698
699	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
700
701	if (nents <= 8)
702		index = 0;
703	else
704		index = get_count_order(nents) - 3;
705
706	return index;
707}
708
709static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
710{
711	struct scsi_host_sg_pool *sgp;
712
713	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
714	mempool_free(sgl, sgp->pool);
715}
716
717static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
718{
719	struct scsi_host_sg_pool *sgp;
720
721	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
722	return mempool_alloc(sgp->pool, gfp_mask);
723}
724
725static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
726			      gfp_t gfp_mask)
727{
728	int ret;
729
730	BUG_ON(!nents);
731
732	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
733			       gfp_mask, scsi_sg_alloc);
734	if (unlikely(ret))
735		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
736				scsi_sg_free);
737
738	return ret;
739}
740
741static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
742{
743	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
744}
745
746/*
747 * Function:    scsi_release_buffers()
748 *
749 * Purpose:     Completion processing for block device I/O requests.
750 *
751 * Arguments:   cmd	- command that we are bailing.
752 *
753 * Lock status: Assumed that no lock is held upon entry.
754 *
755 * Returns:     Nothing
756 *
757 * Notes:       In the event that an upper level driver rejects a
758 *		command, we must release resources allocated during
759 *		the __init_io() function.  Primarily this would involve
760 *		the scatter-gather table, and potentially any bounce
761 *		buffers.
762 */
763void scsi_release_buffers(struct scsi_cmnd *cmd)
764{
765	if (cmd->sdb.table.nents)
766		scsi_free_sgtable(&cmd->sdb);
767
768	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
769
770	if (scsi_bidi_cmnd(cmd)) {
771		struct scsi_data_buffer *bidi_sdb =
772			cmd->request->next_rq->special;
773		scsi_free_sgtable(bidi_sdb);
774		kmem_cache_free(scsi_bidi_sdb_cache, bidi_sdb);
775		cmd->request->next_rq->special = NULL;
776	}
777}
778EXPORT_SYMBOL(scsi_release_buffers);
779
780/*
781 * Bidi commands Must be complete as a whole, both sides at once.
782 * If part of the bytes were written and lld returned
783 * scsi_in()->resid and/or scsi_out()->resid this information will be left
784 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
785 * decide what to do with this information.
786 */
787static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
788{
789	struct request *req = cmd->request;
790	unsigned int dlen = req->data_len;
791	unsigned int next_dlen = req->next_rq->data_len;
792
793	req->data_len = scsi_out(cmd)->resid;
794	req->next_rq->data_len = scsi_in(cmd)->resid;
795
796	/* The req and req->next_rq have not been completed */
797	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
798
799	scsi_release_buffers(cmd);
800
801	/*
802	 * This will goose the queue request function at the end, so we don't
803	 * need to worry about launching another command.
804	 */
805	scsi_next_command(cmd);
806}
807
808/*
809 * Function:    scsi_io_completion()
810 *
811 * Purpose:     Completion processing for block device I/O requests.
812 *
813 * Arguments:   cmd   - command that is finished.
814 *
815 * Lock status: Assumed that no lock is held upon entry.
816 *
817 * Returns:     Nothing
818 *
819 * Notes:       This function is matched in terms of capabilities to
820 *              the function that created the scatter-gather list.
821 *              In other words, if there are no bounce buffers
822 *              (the normal case for most drivers), we don't need
823 *              the logic to deal with cleaning up afterwards.
824 *
825 *		We must do one of several things here:
826 *
827 *		a) Call scsi_end_request.  This will finish off the
828 *		   specified number of sectors.  If we are done, the
829 *		   command block will be released, and the queue
830 *		   function will be goosed.  If we are not done, then
831 *		   scsi_end_request will directly goose the queue.
832 *
833 *		b) We can just use scsi_requeue_command() here.  This would
834 *		   be used if we just wanted to retry, for example.
835 */
836void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
837{
838	int result = cmd->result;
839	int this_count = scsi_bufflen(cmd);
840	struct request_queue *q = cmd->device->request_queue;
841	struct request *req = cmd->request;
842	int error = 0;
843	struct scsi_sense_hdr sshdr;
844	int sense_valid = 0;
845	int sense_deferred = 0;
846
847	if (result) {
848		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
849		if (sense_valid)
850			sense_deferred = scsi_sense_is_deferred(&sshdr);
851	}
852
853	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
854		req->errors = result;
855		if (result) {
856			if (sense_valid && req->sense) {
857				/*
858				 * SG_IO wants current and deferred errors
859				 */
860				int len = 8 + cmd->sense_buffer[7];
861
862				if (len > SCSI_SENSE_BUFFERSIZE)
863					len = SCSI_SENSE_BUFFERSIZE;
864				memcpy(req->sense, cmd->sense_buffer,  len);
865				req->sense_len = len;
866			}
867			if (!sense_deferred)
868				error = -EIO;
869		}
870		if (scsi_bidi_cmnd(cmd)) {
871			/* will also release_buffers */
872			scsi_end_bidi_request(cmd);
873			return;
874		}
875		req->data_len = scsi_get_resid(cmd);
876	}
877
878	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
879	scsi_release_buffers(cmd);
880
881	/*
882	 * Next deal with any sectors which we were able to correctly
883	 * handle.
884	 */
885	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
886				      "%d bytes done.\n",
887				      req->nr_sectors, good_bytes));
888
889	/* A number of bytes were successfully read.  If there
890	 * are leftovers and there is some kind of error
891	 * (result != 0), retry the rest.
892	 */
893	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
894		return;
895
896	/* good_bytes = 0, or (inclusive) there were leftovers and
897	 * result = 0, so scsi_end_request couldn't retry.
898	 */
899	if (sense_valid && !sense_deferred) {
900		switch (sshdr.sense_key) {
901		case UNIT_ATTENTION:
902			if (cmd->device->removable) {
903				/* Detected disc change.  Set a bit
904				 * and quietly refuse further access.
905				 */
906				cmd->device->changed = 1;
907				scsi_end_request(cmd, -EIO, this_count, 1);
908				return;
909			} else {
910				/* Must have been a power glitch, or a
911				 * bus reset.  Could not have been a
912				 * media change, so we just retry the
913				 * request and see what happens.
914				 */
915				scsi_requeue_command(q, cmd);
916				return;
917			}
918			break;
919		case ILLEGAL_REQUEST:
920			/* If we had an ILLEGAL REQUEST returned, then
921			 * we may have performed an unsupported
922			 * command.  The only thing this should be
923			 * would be a ten byte read where only a six
924			 * byte read was supported.  Also, on a system
925			 * where READ CAPACITY failed, we may have
926			 * read past the end of the disk.
927			 */
928			if ((cmd->device->use_10_for_rw &&
929			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
930			    (cmd->cmnd[0] == READ_10 ||
931			     cmd->cmnd[0] == WRITE_10)) {
932				cmd->device->use_10_for_rw = 0;
933				/* This will cause a retry with a
934				 * 6-byte command.
935				 */
936				scsi_requeue_command(q, cmd);
937				return;
938			} else {
939				scsi_end_request(cmd, -EIO, this_count, 1);
940				return;
941			}
942			break;
943		case NOT_READY:
944			/* If the device is in the process of becoming
945			 * ready, or has a temporary blockage, retry.
946			 */
947			if (sshdr.asc == 0x04) {
948				switch (sshdr.ascq) {
949				case 0x01: /* becoming ready */
950				case 0x04: /* format in progress */
951				case 0x05: /* rebuild in progress */
952				case 0x06: /* recalculation in progress */
953				case 0x07: /* operation in progress */
954				case 0x08: /* Long write in progress */
955				case 0x09: /* self test in progress */
956					scsi_requeue_command(q, cmd);
957					return;
958				default:
959					break;
960				}
961			}
962			if (!(req->cmd_flags & REQ_QUIET))
963				scsi_cmd_print_sense_hdr(cmd,
964							 "Device not ready",
965							 &sshdr);
966
967			scsi_end_request(cmd, -EIO, this_count, 1);
968			return;
969		case VOLUME_OVERFLOW:
970			if (!(req->cmd_flags & REQ_QUIET)) {
971				scmd_printk(KERN_INFO, cmd,
972					    "Volume overflow, CDB: ");
973				__scsi_print_command(cmd->cmnd);
974				scsi_print_sense("", cmd);
975			}
976			/* See SSC3rXX or current. */
977			scsi_end_request(cmd, -EIO, this_count, 1);
978			return;
979		default:
980			break;
981		}
982	}
983	if (host_byte(result) == DID_RESET) {
984		/* Third party bus reset or reset for error recovery
985		 * reasons.  Just retry the request and see what
986		 * happens.
987		 */
988		scsi_requeue_command(q, cmd);
989		return;
990	}
991	if (result) {
992		if (!(req->cmd_flags & REQ_QUIET)) {
993			scsi_print_result(cmd);
994			if (driver_byte(result) & DRIVER_SENSE)
995				scsi_print_sense("", cmd);
996		}
997	}
998	scsi_end_request(cmd, -EIO, this_count, !result);
999}
1000
1001static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1002			     gfp_t gfp_mask)
1003{
1004	int count;
1005
1006	/*
1007	 * If sg table allocation fails, requeue request later.
1008	 */
1009	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1010					gfp_mask))) {
1011		return BLKPREP_DEFER;
1012	}
1013
1014	req->buffer = NULL;
1015
1016	/*
1017	 * Next, walk the list, and fill in the addresses and sizes of
1018	 * each segment.
1019	 */
1020	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1021	BUG_ON(count > sdb->table.nents);
1022	sdb->table.nents = count;
1023	if (blk_pc_request(req))
1024		sdb->length = req->data_len;
1025	else
1026		sdb->length = req->nr_sectors << 9;
1027	return BLKPREP_OK;
1028}
1029
1030/*
1031 * Function:    scsi_init_io()
1032 *
1033 * Purpose:     SCSI I/O initialize function.
1034 *
1035 * Arguments:   cmd   - Command descriptor we wish to initialize
1036 *
1037 * Returns:     0 on success
1038 *		BLKPREP_DEFER if the failure is retryable
1039 *		BLKPREP_KILL if the failure is fatal
1040 */
1041int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1042{
1043	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1044	if (error)
1045		goto err_exit;
1046
1047	if (blk_bidi_rq(cmd->request)) {
1048		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1049			scsi_bidi_sdb_cache, GFP_ATOMIC);
1050		if (!bidi_sdb) {
1051			error = BLKPREP_DEFER;
1052			goto err_exit;
1053		}
1054
1055		cmd->request->next_rq->special = bidi_sdb;
1056		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1057								    GFP_ATOMIC);
1058		if (error)
1059			goto err_exit;
1060	}
1061
1062	return BLKPREP_OK ;
1063
1064err_exit:
1065	scsi_release_buffers(cmd);
1066	if (error == BLKPREP_KILL)
1067		scsi_put_command(cmd);
1068	else /* BLKPREP_DEFER */
1069		scsi_unprep_request(cmd->request);
1070
1071	return error;
1072}
1073EXPORT_SYMBOL(scsi_init_io);
1074
1075static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1076		struct request *req)
1077{
1078	struct scsi_cmnd *cmd;
1079
1080	if (!req->special) {
1081		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1082		if (unlikely(!cmd))
1083			return NULL;
1084		req->special = cmd;
1085	} else {
1086		cmd = req->special;
1087	}
1088
1089	/* pull a tag out of the request if we have one */
1090	cmd->tag = req->tag;
1091	cmd->request = req;
1092
1093	return cmd;
1094}
1095
1096int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1097{
1098	struct scsi_cmnd *cmd;
1099	int ret = scsi_prep_state_check(sdev, req);
1100
1101	if (ret != BLKPREP_OK)
1102		return ret;
1103
1104	cmd = scsi_get_cmd_from_req(sdev, req);
1105	if (unlikely(!cmd))
1106		return BLKPREP_DEFER;
1107
1108	/*
1109	 * BLOCK_PC requests may transfer data, in which case they must
1110	 * a bio attached to them.  Or they might contain a SCSI command
1111	 * that does not transfer data, in which case they may optionally
1112	 * submit a request without an attached bio.
1113	 */
1114	if (req->bio) {
1115		int ret;
1116
1117		BUG_ON(!req->nr_phys_segments);
1118
1119		ret = scsi_init_io(cmd, GFP_ATOMIC);
1120		if (unlikely(ret))
1121			return ret;
1122	} else {
1123		BUG_ON(req->data_len);
1124		BUG_ON(req->data);
1125
1126		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1127		req->buffer = NULL;
1128	}
1129
1130	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1131	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1132	cmd->cmd_len = req->cmd_len;
1133	if (!req->data_len)
1134		cmd->sc_data_direction = DMA_NONE;
1135	else if (rq_data_dir(req) == WRITE)
1136		cmd->sc_data_direction = DMA_TO_DEVICE;
1137	else
1138		cmd->sc_data_direction = DMA_FROM_DEVICE;
1139
1140	cmd->transfersize = req->data_len;
1141	cmd->allowed = req->retries;
1142	cmd->timeout_per_command = req->timeout;
1143	return BLKPREP_OK;
1144}
1145EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1146
1147/*
1148 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1149 * from filesystems that still need to be translated to SCSI CDBs from
1150 * the ULD.
1151 */
1152int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1153{
1154	struct scsi_cmnd *cmd;
1155	int ret = scsi_prep_state_check(sdev, req);
1156
1157	if (ret != BLKPREP_OK)
1158		return ret;
1159	/*
1160	 * Filesystem requests must transfer data.
1161	 */
1162	BUG_ON(!req->nr_phys_segments);
1163
1164	cmd = scsi_get_cmd_from_req(sdev, req);
1165	if (unlikely(!cmd))
1166		return BLKPREP_DEFER;
1167
1168	return scsi_init_io(cmd, GFP_ATOMIC);
1169}
1170EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1171
1172int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1173{
1174	int ret = BLKPREP_OK;
1175
1176	/*
1177	 * If the device is not in running state we will reject some
1178	 * or all commands.
1179	 */
1180	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1181		switch (sdev->sdev_state) {
1182		case SDEV_OFFLINE:
1183			/*
1184			 * If the device is offline we refuse to process any
1185			 * commands.  The device must be brought online
1186			 * before trying any recovery commands.
1187			 */
1188			sdev_printk(KERN_ERR, sdev,
1189				    "rejecting I/O to offline device\n");
1190			ret = BLKPREP_KILL;
1191			break;
1192		case SDEV_DEL:
1193			/*
1194			 * If the device is fully deleted, we refuse to
1195			 * process any commands as well.
1196			 */
1197			sdev_printk(KERN_ERR, sdev,
1198				    "rejecting I/O to dead device\n");
1199			ret = BLKPREP_KILL;
1200			break;
1201		case SDEV_QUIESCE:
1202		case SDEV_BLOCK:
1203			/*
1204			 * If the devices is blocked we defer normal commands.
1205			 */
1206			if (!(req->cmd_flags & REQ_PREEMPT))
1207				ret = BLKPREP_DEFER;
1208			break;
1209		default:
1210			/*
1211			 * For any other not fully online state we only allow
1212			 * special commands.  In particular any user initiated
1213			 * command is not allowed.
1214			 */
1215			if (!(req->cmd_flags & REQ_PREEMPT))
1216				ret = BLKPREP_KILL;
1217			break;
1218		}
1219	}
1220	return ret;
1221}
1222EXPORT_SYMBOL(scsi_prep_state_check);
1223
1224int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1225{
1226	struct scsi_device *sdev = q->queuedata;
1227
1228	switch (ret) {
1229	case BLKPREP_KILL:
1230		req->errors = DID_NO_CONNECT << 16;
1231		/* release the command and kill it */
1232		if (req->special) {
1233			struct scsi_cmnd *cmd = req->special;
1234			scsi_release_buffers(cmd);
1235			scsi_put_command(cmd);
1236			req->special = NULL;
1237		}
1238		break;
1239	case BLKPREP_DEFER:
1240		/*
1241		 * If we defer, the elv_next_request() returns NULL, but the
1242		 * queue must be restarted, so we plug here if no returning
1243		 * command will automatically do that.
1244		 */
1245		if (sdev->device_busy == 0)
1246			blk_plug_device(q);
1247		break;
1248	default:
1249		req->cmd_flags |= REQ_DONTPREP;
1250	}
1251
1252	return ret;
1253}
1254EXPORT_SYMBOL(scsi_prep_return);
1255
1256int scsi_prep_fn(struct request_queue *q, struct request *req)
1257{
1258	struct scsi_device *sdev = q->queuedata;
1259	int ret = BLKPREP_KILL;
1260
1261	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1262		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1263	return scsi_prep_return(q, req, ret);
1264}
1265
1266/*
1267 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1268 * return 0.
1269 *
1270 * Called with the queue_lock held.
1271 */
1272static inline int scsi_dev_queue_ready(struct request_queue *q,
1273				  struct scsi_device *sdev)
1274{
1275	if (sdev->device_busy >= sdev->queue_depth)
1276		return 0;
1277	if (sdev->device_busy == 0 && sdev->device_blocked) {
1278		/*
1279		 * unblock after device_blocked iterates to zero
1280		 */
1281		if (--sdev->device_blocked == 0) {
1282			SCSI_LOG_MLQUEUE(3,
1283				   sdev_printk(KERN_INFO, sdev,
1284				   "unblocking device at zero depth\n"));
1285		} else {
1286			blk_plug_device(q);
1287			return 0;
1288		}
1289	}
1290	if (sdev->device_blocked)
1291		return 0;
1292
1293	return 1;
1294}
1295
1296/*
1297 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1298 * return 0. We must end up running the queue again whenever 0 is
1299 * returned, else IO can hang.
1300 *
1301 * Called with host_lock held.
1302 */
1303static inline int scsi_host_queue_ready(struct request_queue *q,
1304				   struct Scsi_Host *shost,
1305				   struct scsi_device *sdev)
1306{
1307	if (scsi_host_in_recovery(shost))
1308		return 0;
1309	if (shost->host_busy == 0 && shost->host_blocked) {
1310		/*
1311		 * unblock after host_blocked iterates to zero
1312		 */
1313		if (--shost->host_blocked == 0) {
1314			SCSI_LOG_MLQUEUE(3,
1315				printk("scsi%d unblocking host at zero depth\n",
1316					shost->host_no));
1317		} else {
1318			blk_plug_device(q);
1319			return 0;
1320		}
1321	}
1322	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1323	    shost->host_blocked || shost->host_self_blocked) {
1324		if (list_empty(&sdev->starved_entry))
1325			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1326		return 0;
1327	}
1328
1329	/* We're OK to process the command, so we can't be starved */
1330	if (!list_empty(&sdev->starved_entry))
1331		list_del_init(&sdev->starved_entry);
1332
1333	return 1;
1334}
1335
1336/*
1337 * Kill a request for a dead device
1338 */
1339static void scsi_kill_request(struct request *req, struct request_queue *q)
1340{
1341	struct scsi_cmnd *cmd = req->special;
1342	struct scsi_device *sdev = cmd->device;
1343	struct Scsi_Host *shost = sdev->host;
1344
1345	blkdev_dequeue_request(req);
1346
1347	if (unlikely(cmd == NULL)) {
1348		printk(KERN_CRIT "impossible request in %s.\n",
1349				 __FUNCTION__);
1350		BUG();
1351	}
1352
1353	scsi_init_cmd_errh(cmd);
1354	cmd->result = DID_NO_CONNECT << 16;
1355	atomic_inc(&cmd->device->iorequest_cnt);
1356
1357	/*
1358	 * SCSI request completion path will do scsi_device_unbusy(),
1359	 * bump busy counts.  To bump the counters, we need to dance
1360	 * with the locks as normal issue path does.
1361	 */
1362	sdev->device_busy++;
1363	spin_unlock(sdev->request_queue->queue_lock);
1364	spin_lock(shost->host_lock);
1365	shost->host_busy++;
1366	spin_unlock(shost->host_lock);
1367	spin_lock(sdev->request_queue->queue_lock);
1368
1369	__scsi_done(cmd);
1370}
1371
1372static void scsi_softirq_done(struct request *rq)
1373{
1374	struct scsi_cmnd *cmd = rq->completion_data;
1375	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1376	int disposition;
1377
1378	INIT_LIST_HEAD(&cmd->eh_entry);
1379
1380	disposition = scsi_decide_disposition(cmd);
1381	if (disposition != SUCCESS &&
1382	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1383		sdev_printk(KERN_ERR, cmd->device,
1384			    "timing out command, waited %lus\n",
1385			    wait_for/HZ);
1386		disposition = SUCCESS;
1387	}
1388
1389	scsi_log_completion(cmd, disposition);
1390
1391	switch (disposition) {
1392		case SUCCESS:
1393			scsi_finish_command(cmd);
1394			break;
1395		case NEEDS_RETRY:
1396			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1397			break;
1398		case ADD_TO_MLQUEUE:
1399			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1400			break;
1401		default:
1402			if (!scsi_eh_scmd_add(cmd, 0))
1403				scsi_finish_command(cmd);
1404	}
1405}
1406
1407/*
1408 * Function:    scsi_request_fn()
1409 *
1410 * Purpose:     Main strategy routine for SCSI.
1411 *
1412 * Arguments:   q       - Pointer to actual queue.
1413 *
1414 * Returns:     Nothing
1415 *
1416 * Lock status: IO request lock assumed to be held when called.
1417 */
1418static void scsi_request_fn(struct request_queue *q)
1419{
1420	struct scsi_device *sdev = q->queuedata;
1421	struct Scsi_Host *shost;
1422	struct scsi_cmnd *cmd;
1423	struct request *req;
1424
1425	if (!sdev) {
1426		printk("scsi: killing requests for dead queue\n");
1427		while ((req = elv_next_request(q)) != NULL)
1428			scsi_kill_request(req, q);
1429		return;
1430	}
1431
1432	if(!get_device(&sdev->sdev_gendev))
1433		/* We must be tearing the block queue down already */
1434		return;
1435
1436	/*
1437	 * To start with, we keep looping until the queue is empty, or until
1438	 * the host is no longer able to accept any more requests.
1439	 */
1440	shost = sdev->host;
1441	while (!blk_queue_plugged(q)) {
1442		int rtn;
1443		/*
1444		 * get next queueable request.  We do this early to make sure
1445		 * that the request is fully prepared even if we cannot
1446		 * accept it.
1447		 */
1448		req = elv_next_request(q);
1449		if (!req || !scsi_dev_queue_ready(q, sdev))
1450			break;
1451
1452		if (unlikely(!scsi_device_online(sdev))) {
1453			sdev_printk(KERN_ERR, sdev,
1454				    "rejecting I/O to offline device\n");
1455			scsi_kill_request(req, q);
1456			continue;
1457		}
1458
1459
1460		/*
1461		 * Remove the request from the request list.
1462		 */
1463		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1464			blkdev_dequeue_request(req);
1465		sdev->device_busy++;
1466
1467		spin_unlock(q->queue_lock);
1468		cmd = req->special;
1469		if (unlikely(cmd == NULL)) {
1470			printk(KERN_CRIT "impossible request in %s.\n"
1471					 "please mail a stack trace to "
1472					 "linux-scsi@vger.kernel.org\n",
1473					 __FUNCTION__);
1474			blk_dump_rq_flags(req, "foo");
1475			BUG();
1476		}
1477		spin_lock(shost->host_lock);
1478
1479		if (!scsi_host_queue_ready(q, shost, sdev))
1480			goto not_ready;
1481		if (scsi_target(sdev)->single_lun) {
1482			if (scsi_target(sdev)->starget_sdev_user &&
1483			    scsi_target(sdev)->starget_sdev_user != sdev)
1484				goto not_ready;
1485			scsi_target(sdev)->starget_sdev_user = sdev;
1486		}
1487		shost->host_busy++;
1488
1489		/*
1490		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1491		 *		take the lock again.
1492		 */
1493		spin_unlock_irq(shost->host_lock);
1494
1495		/*
1496		 * Finally, initialize any error handling parameters, and set up
1497		 * the timers for timeouts.
1498		 */
1499		scsi_init_cmd_errh(cmd);
1500
1501		/*
1502		 * Dispatch the command to the low-level driver.
1503		 */
1504		rtn = scsi_dispatch_cmd(cmd);
1505		spin_lock_irq(q->queue_lock);
1506		if(rtn) {
1507			/* we're refusing the command; because of
1508			 * the way locks get dropped, we need to
1509			 * check here if plugging is required */
1510			if(sdev->device_busy == 0)
1511				blk_plug_device(q);
1512
1513			break;
1514		}
1515	}
1516
1517	goto out;
1518
1519 not_ready:
1520	spin_unlock_irq(shost->host_lock);
1521
1522	/*
1523	 * lock q, handle tag, requeue req, and decrement device_busy. We
1524	 * must return with queue_lock held.
1525	 *
1526	 * Decrementing device_busy without checking it is OK, as all such
1527	 * cases (host limits or settings) should run the queue at some
1528	 * later time.
1529	 */
1530	spin_lock_irq(q->queue_lock);
1531	blk_requeue_request(q, req);
1532	sdev->device_busy--;
1533	if(sdev->device_busy == 0)
1534		blk_plug_device(q);
1535 out:
1536	/* must be careful here...if we trigger the ->remove() function
1537	 * we cannot be holding the q lock */
1538	spin_unlock_irq(q->queue_lock);
1539	put_device(&sdev->sdev_gendev);
1540	spin_lock_irq(q->queue_lock);
1541}
1542
1543u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1544{
1545	struct device *host_dev;
1546	u64 bounce_limit = 0xffffffff;
1547
1548	if (shost->unchecked_isa_dma)
1549		return BLK_BOUNCE_ISA;
1550	/*
1551	 * Platforms with virtual-DMA translation
1552	 * hardware have no practical limit.
1553	 */
1554	if (!PCI_DMA_BUS_IS_PHYS)
1555		return BLK_BOUNCE_ANY;
1556
1557	host_dev = scsi_get_device(shost);
1558	if (host_dev && host_dev->dma_mask)
1559		bounce_limit = *host_dev->dma_mask;
1560
1561	return bounce_limit;
1562}
1563EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1564
1565struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1566					 request_fn_proc *request_fn)
1567{
1568	struct request_queue *q;
1569	struct device *dev = shost->shost_gendev.parent;
1570
1571	q = blk_init_queue(request_fn, NULL);
1572	if (!q)
1573		return NULL;
1574
1575	/*
1576	 * this limit is imposed by hardware restrictions
1577	 */
1578	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1579	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1580
1581	blk_queue_max_sectors(q, shost->max_sectors);
1582	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1583	blk_queue_segment_boundary(q, shost->dma_boundary);
1584	dma_set_seg_boundary(dev, shost->dma_boundary);
1585
1586	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1587
1588	if (!shost->use_clustering)
1589		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1590
1591	/*
1592	 * set a reasonable default alignment on word boundaries: the
1593	 * host and device may alter it using
1594	 * blk_queue_update_dma_alignment() later.
1595	 */
1596	blk_queue_dma_alignment(q, 0x03);
1597
1598	return q;
1599}
1600EXPORT_SYMBOL(__scsi_alloc_queue);
1601
1602struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1603{
1604	struct request_queue *q;
1605
1606	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1607	if (!q)
1608		return NULL;
1609
1610	blk_queue_prep_rq(q, scsi_prep_fn);
1611	blk_queue_softirq_done(q, scsi_softirq_done);
1612	return q;
1613}
1614
1615void scsi_free_queue(struct request_queue *q)
1616{
1617	blk_cleanup_queue(q);
1618}
1619
1620/*
1621 * Function:    scsi_block_requests()
1622 *
1623 * Purpose:     Utility function used by low-level drivers to prevent further
1624 *		commands from being queued to the device.
1625 *
1626 * Arguments:   shost       - Host in question
1627 *
1628 * Returns:     Nothing
1629 *
1630 * Lock status: No locks are assumed held.
1631 *
1632 * Notes:       There is no timer nor any other means by which the requests
1633 *		get unblocked other than the low-level driver calling
1634 *		scsi_unblock_requests().
1635 */
1636void scsi_block_requests(struct Scsi_Host *shost)
1637{
1638	shost->host_self_blocked = 1;
1639}
1640EXPORT_SYMBOL(scsi_block_requests);
1641
1642/*
1643 * Function:    scsi_unblock_requests()
1644 *
1645 * Purpose:     Utility function used by low-level drivers to allow further
1646 *		commands from being queued to the device.
1647 *
1648 * Arguments:   shost       - Host in question
1649 *
1650 * Returns:     Nothing
1651 *
1652 * Lock status: No locks are assumed held.
1653 *
1654 * Notes:       There is no timer nor any other means by which the requests
1655 *		get unblocked other than the low-level driver calling
1656 *		scsi_unblock_requests().
1657 *
1658 *		This is done as an API function so that changes to the
1659 *		internals of the scsi mid-layer won't require wholesale
1660 *		changes to drivers that use this feature.
1661 */
1662void scsi_unblock_requests(struct Scsi_Host *shost)
1663{
1664	shost->host_self_blocked = 0;
1665	scsi_run_host_queues(shost);
1666}
1667EXPORT_SYMBOL(scsi_unblock_requests);
1668
1669int __init scsi_init_queue(void)
1670{
1671	int i;
1672
1673	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1674					sizeof(struct scsi_io_context),
1675					0, 0, NULL);
1676	if (!scsi_io_context_cache) {
1677		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1678		return -ENOMEM;
1679	}
1680
1681	scsi_bidi_sdb_cache = kmem_cache_create("scsi_bidi_sdb",
1682					sizeof(struct scsi_data_buffer),
1683					0, 0, NULL);
1684	if (!scsi_bidi_sdb_cache) {
1685		printk(KERN_ERR "SCSI: can't init scsi bidi sdb cache\n");
1686		goto cleanup_io_context;
1687	}
1688
1689	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1690		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1691		int size = sgp->size * sizeof(struct scatterlist);
1692
1693		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1694				SLAB_HWCACHE_ALIGN, NULL);
1695		if (!sgp->slab) {
1696			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1697					sgp->name);
1698			goto cleanup_bidi_sdb;
1699		}
1700
1701		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1702						     sgp->slab);
1703		if (!sgp->pool) {
1704			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1705					sgp->name);
1706			goto cleanup_bidi_sdb;
1707		}
1708	}
1709
1710	return 0;
1711
1712cleanup_bidi_sdb:
1713	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1714		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1715		if (sgp->pool)
1716			mempool_destroy(sgp->pool);
1717		if (sgp->slab)
1718			kmem_cache_destroy(sgp->slab);
1719	}
1720	kmem_cache_destroy(scsi_bidi_sdb_cache);
1721cleanup_io_context:
1722	kmem_cache_destroy(scsi_io_context_cache);
1723
1724	return -ENOMEM;
1725}
1726
1727void scsi_exit_queue(void)
1728{
1729	int i;
1730
1731	kmem_cache_destroy(scsi_io_context_cache);
1732	kmem_cache_destroy(scsi_bidi_sdb_cache);
1733
1734	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1735		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1736		mempool_destroy(sgp->pool);
1737		kmem_cache_destroy(sgp->slab);
1738	}
1739}
1740
1741/**
1742 *	scsi_mode_select - issue a mode select
1743 *	@sdev:	SCSI device to be queried
1744 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1745 *	@sp:	Save page bit (0 == don't save, 1 == save)
1746 *	@modepage: mode page being requested
1747 *	@buffer: request buffer (may not be smaller than eight bytes)
1748 *	@len:	length of request buffer.
1749 *	@timeout: command timeout
1750 *	@retries: number of retries before failing
1751 *	@data: returns a structure abstracting the mode header data
1752 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1753 *		must be SCSI_SENSE_BUFFERSIZE big.
1754 *
1755 *	Returns zero if successful; negative error number or scsi
1756 *	status on error
1757 *
1758 */
1759int
1760scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1761		 unsigned char *buffer, int len, int timeout, int retries,
1762		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1763{
1764	unsigned char cmd[10];
1765	unsigned char *real_buffer;
1766	int ret;
1767
1768	memset(cmd, 0, sizeof(cmd));
1769	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1770
1771	if (sdev->use_10_for_ms) {
1772		if (len > 65535)
1773			return -EINVAL;
1774		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1775		if (!real_buffer)
1776			return -ENOMEM;
1777		memcpy(real_buffer + 8, buffer, len);
1778		len += 8;
1779		real_buffer[0] = 0;
1780		real_buffer[1] = 0;
1781		real_buffer[2] = data->medium_type;
1782		real_buffer[3] = data->device_specific;
1783		real_buffer[4] = data->longlba ? 0x01 : 0;
1784		real_buffer[5] = 0;
1785		real_buffer[6] = data->block_descriptor_length >> 8;
1786		real_buffer[7] = data->block_descriptor_length;
1787
1788		cmd[0] = MODE_SELECT_10;
1789		cmd[7] = len >> 8;
1790		cmd[8] = len;
1791	} else {
1792		if (len > 255 || data->block_descriptor_length > 255 ||
1793		    data->longlba)
1794			return -EINVAL;
1795
1796		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1797		if (!real_buffer)
1798			return -ENOMEM;
1799		memcpy(real_buffer + 4, buffer, len);
1800		len += 4;
1801		real_buffer[0] = 0;
1802		real_buffer[1] = data->medium_type;
1803		real_buffer[2] = data->device_specific;
1804		real_buffer[3] = data->block_descriptor_length;
1805
1806
1807		cmd[0] = MODE_SELECT;
1808		cmd[4] = len;
1809	}
1810
1811	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1812			       sshdr, timeout, retries);
1813	kfree(real_buffer);
1814	return ret;
1815}
1816EXPORT_SYMBOL_GPL(scsi_mode_select);
1817
1818/**
1819 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1820 *	@sdev:	SCSI device to be queried
1821 *	@dbd:	set if mode sense will allow block descriptors to be returned
1822 *	@modepage: mode page being requested
1823 *	@buffer: request buffer (may not be smaller than eight bytes)
1824 *	@len:	length of request buffer.
1825 *	@timeout: command timeout
1826 *	@retries: number of retries before failing
1827 *	@data: returns a structure abstracting the mode header data
1828 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1829 *		must be SCSI_SENSE_BUFFERSIZE big.
1830 *
1831 *	Returns zero if unsuccessful, or the header offset (either 4
1832 *	or 8 depending on whether a six or ten byte command was
1833 *	issued) if successful.
1834 */
1835int
1836scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1837		  unsigned char *buffer, int len, int timeout, int retries,
1838		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1839{
1840	unsigned char cmd[12];
1841	int use_10_for_ms;
1842	int header_length;
1843	int result;
1844	struct scsi_sense_hdr my_sshdr;
1845
1846	memset(data, 0, sizeof(*data));
1847	memset(&cmd[0], 0, 12);
1848	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1849	cmd[2] = modepage;
1850
1851	/* caller might not be interested in sense, but we need it */
1852	if (!sshdr)
1853		sshdr = &my_sshdr;
1854
1855 retry:
1856	use_10_for_ms = sdev->use_10_for_ms;
1857
1858	if (use_10_for_ms) {
1859		if (len < 8)
1860			len = 8;
1861
1862		cmd[0] = MODE_SENSE_10;
1863		cmd[8] = len;
1864		header_length = 8;
1865	} else {
1866		if (len < 4)
1867			len = 4;
1868
1869		cmd[0] = MODE_SENSE;
1870		cmd[4] = len;
1871		header_length = 4;
1872	}
1873
1874	memset(buffer, 0, len);
1875
1876	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1877				  sshdr, timeout, retries);
1878
1879	/* This code looks awful: what it's doing is making sure an
1880	 * ILLEGAL REQUEST sense return identifies the actual command
1881	 * byte as the problem.  MODE_SENSE commands can return
1882	 * ILLEGAL REQUEST if the code page isn't supported */
1883
1884	if (use_10_for_ms && !scsi_status_is_good(result) &&
1885	    (driver_byte(result) & DRIVER_SENSE)) {
1886		if (scsi_sense_valid(sshdr)) {
1887			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1888			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1889				/*
1890				 * Invalid command operation code
1891				 */
1892				sdev->use_10_for_ms = 0;
1893				goto retry;
1894			}
1895		}
1896	}
1897
1898	if(scsi_status_is_good(result)) {
1899		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1900			     (modepage == 6 || modepage == 8))) {
1901			/* Initio breakage? */
1902			header_length = 0;
1903			data->length = 13;
1904			data->medium_type = 0;
1905			data->device_specific = 0;
1906			data->longlba = 0;
1907			data->block_descriptor_length = 0;
1908		} else if(use_10_for_ms) {
1909			data->length = buffer[0]*256 + buffer[1] + 2;
1910			data->medium_type = buffer[2];
1911			data->device_specific = buffer[3];
1912			data->longlba = buffer[4] & 0x01;
1913			data->block_descriptor_length = buffer[6]*256
1914				+ buffer[7];
1915		} else {
1916			data->length = buffer[0] + 1;
1917			data->medium_type = buffer[1];
1918			data->device_specific = buffer[2];
1919			data->block_descriptor_length = buffer[3];
1920		}
1921		data->header_length = header_length;
1922	}
1923
1924	return result;
1925}
1926EXPORT_SYMBOL(scsi_mode_sense);
1927
1928/**
1929 *	scsi_test_unit_ready - test if unit is ready
1930 *	@sdev:	scsi device to change the state of.
1931 *	@timeout: command timeout
1932 *	@retries: number of retries before failing
1933 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1934 *		returning sense. Make sure that this is cleared before passing
1935 *		in.
1936 *
1937 *	Returns zero if unsuccessful or an error if TUR failed.  For
1938 *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1939 *	translated to success, with the ->changed flag updated.
1940 **/
1941int
1942scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1943		     struct scsi_sense_hdr *sshdr_external)
1944{
1945	char cmd[] = {
1946		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1947	};
1948	struct scsi_sense_hdr *sshdr;
1949	int result;
1950
1951	if (!sshdr_external)
1952		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1953	else
1954		sshdr = sshdr_external;
1955
1956	/* try to eat the UNIT_ATTENTION if there are enough retries */
1957	do {
1958		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1959					  timeout, retries);
1960	} while ((driver_byte(result) & DRIVER_SENSE) &&
1961		 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1962		 --retries);
1963
1964	if (!sshdr)
1965		/* could not allocate sense buffer, so can't process it */
1966		return result;
1967
1968	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1969
1970		if ((scsi_sense_valid(sshdr)) &&
1971		    ((sshdr->sense_key == UNIT_ATTENTION) ||
1972		     (sshdr->sense_key == NOT_READY))) {
1973			sdev->changed = 1;
1974			result = 0;
1975		}
1976	}
1977	if (!sshdr_external)
1978		kfree(sshdr);
1979	return result;
1980}
1981EXPORT_SYMBOL(scsi_test_unit_ready);
1982
1983/**
1984 *	scsi_device_set_state - Take the given device through the device state model.
1985 *	@sdev:	scsi device to change the state of.
1986 *	@state:	state to change to.
1987 *
1988 *	Returns zero if unsuccessful or an error if the requested
1989 *	transition is illegal.
1990 */
1991int
1992scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1993{
1994	enum scsi_device_state oldstate = sdev->sdev_state;
1995
1996	if (state == oldstate)
1997		return 0;
1998
1999	switch (state) {
2000	case SDEV_CREATED:
2001		/* There are no legal states that come back to
2002		 * created.  This is the manually initialised start
2003		 * state */
2004		goto illegal;
2005
2006	case SDEV_RUNNING:
2007		switch (oldstate) {
2008		case SDEV_CREATED:
2009		case SDEV_OFFLINE:
2010		case SDEV_QUIESCE:
2011		case SDEV_BLOCK:
2012			break;
2013		default:
2014			goto illegal;
2015		}
2016		break;
2017
2018	case SDEV_QUIESCE:
2019		switch (oldstate) {
2020		case SDEV_RUNNING:
2021		case SDEV_OFFLINE:
2022			break;
2023		default:
2024			goto illegal;
2025		}
2026		break;
2027
2028	case SDEV_OFFLINE:
2029		switch (oldstate) {
2030		case SDEV_CREATED:
2031		case SDEV_RUNNING:
2032		case SDEV_QUIESCE:
2033		case SDEV_BLOCK:
2034			break;
2035		default:
2036			goto illegal;
2037		}
2038		break;
2039
2040	case SDEV_BLOCK:
2041		switch (oldstate) {
2042		case SDEV_CREATED:
2043		case SDEV_RUNNING:
2044			break;
2045		default:
2046			goto illegal;
2047		}
2048		break;
2049
2050	case SDEV_CANCEL:
2051		switch (oldstate) {
2052		case SDEV_CREATED:
2053		case SDEV_RUNNING:
2054		case SDEV_QUIESCE:
2055		case SDEV_OFFLINE:
2056		case SDEV_BLOCK:
2057			break;
2058		default:
2059			goto illegal;
2060		}
2061		break;
2062
2063	case SDEV_DEL:
2064		switch (oldstate) {
2065		case SDEV_CREATED:
2066		case SDEV_RUNNING:
2067		case SDEV_OFFLINE:
2068		case SDEV_CANCEL:
2069			break;
2070		default:
2071			goto illegal;
2072		}
2073		break;
2074
2075	}
2076	sdev->sdev_state = state;
2077	return 0;
2078
2079 illegal:
2080	SCSI_LOG_ERROR_RECOVERY(1,
2081				sdev_printk(KERN_ERR, sdev,
2082					    "Illegal state transition %s->%s\n",
2083					    scsi_device_state_name(oldstate),
2084					    scsi_device_state_name(state))
2085				);
2086	return -EINVAL;
2087}
2088EXPORT_SYMBOL(scsi_device_set_state);
2089
2090/**
2091 * 	sdev_evt_emit - emit a single SCSI device uevent
2092 *	@sdev: associated SCSI device
2093 *	@evt: event to emit
2094 *
2095 *	Send a single uevent (scsi_event) to the associated scsi_device.
2096 */
2097static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2098{
2099	int idx = 0;
2100	char *envp[3];
2101
2102	switch (evt->evt_type) {
2103	case SDEV_EVT_MEDIA_CHANGE:
2104		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2105		break;
2106
2107	default:
2108		/* do nothing */
2109		break;
2110	}
2111
2112	envp[idx++] = NULL;
2113
2114	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2115}
2116
2117/**
2118 * 	sdev_evt_thread - send a uevent for each scsi event
2119 *	@work: work struct for scsi_device
2120 *
2121 *	Dispatch queued events to their associated scsi_device kobjects
2122 *	as uevents.
2123 */
2124void scsi_evt_thread(struct work_struct *work)
2125{
2126	struct scsi_device *sdev;
2127	LIST_HEAD(event_list);
2128
2129	sdev = container_of(work, struct scsi_device, event_work);
2130
2131	while (1) {
2132		struct scsi_event *evt;
2133		struct list_head *this, *tmp;
2134		unsigned long flags;
2135
2136		spin_lock_irqsave(&sdev->list_lock, flags);
2137		list_splice_init(&sdev->event_list, &event_list);
2138		spin_unlock_irqrestore(&sdev->list_lock, flags);
2139
2140		if (list_empty(&event_list))
2141			break;
2142
2143		list_for_each_safe(this, tmp, &event_list) {
2144			evt = list_entry(this, struct scsi_event, node);
2145			list_del(&evt->node);
2146			scsi_evt_emit(sdev, evt);
2147			kfree(evt);
2148		}
2149	}
2150}
2151
2152/**
2153 * 	sdev_evt_send - send asserted event to uevent thread
2154 *	@sdev: scsi_device event occurred on
2155 *	@evt: event to send
2156 *
2157 *	Assert scsi device event asynchronously.
2158 */
2159void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2160{
2161	unsigned long flags;
2162
2163#if 0
2164	/* FIXME: currently this check eliminates all media change events
2165	 * for polled devices.  Need to update to discriminate between AN
2166	 * and polled events */
2167	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2168		kfree(evt);
2169		return;
2170	}
2171#endif
2172
2173	spin_lock_irqsave(&sdev->list_lock, flags);
2174	list_add_tail(&evt->node, &sdev->event_list);
2175	schedule_work(&sdev->event_work);
2176	spin_unlock_irqrestore(&sdev->list_lock, flags);
2177}
2178EXPORT_SYMBOL_GPL(sdev_evt_send);
2179
2180/**
2181 * 	sdev_evt_alloc - allocate a new scsi event
2182 *	@evt_type: type of event to allocate
2183 *	@gfpflags: GFP flags for allocation
2184 *
2185 *	Allocates and returns a new scsi_event.
2186 */
2187struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2188				  gfp_t gfpflags)
2189{
2190	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2191	if (!evt)
2192		return NULL;
2193
2194	evt->evt_type = evt_type;
2195	INIT_LIST_HEAD(&evt->node);
2196
2197	/* evt_type-specific initialization, if any */
2198	switch (evt_type) {
2199	case SDEV_EVT_MEDIA_CHANGE:
2200	default:
2201		/* do nothing */
2202		break;
2203	}
2204
2205	return evt;
2206}
2207EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2208
2209/**
2210 * 	sdev_evt_send_simple - send asserted event to uevent thread
2211 *	@sdev: scsi_device event occurred on
2212 *	@evt_type: type of event to send
2213 *	@gfpflags: GFP flags for allocation
2214 *
2215 *	Assert scsi device event asynchronously, given an event type.
2216 */
2217void sdev_evt_send_simple(struct scsi_device *sdev,
2218			  enum scsi_device_event evt_type, gfp_t gfpflags)
2219{
2220	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2221	if (!evt) {
2222		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2223			    evt_type);
2224		return;
2225	}
2226
2227	sdev_evt_send(sdev, evt);
2228}
2229EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2230
2231/**
2232 *	scsi_device_quiesce - Block user issued commands.
2233 *	@sdev:	scsi device to quiesce.
2234 *
2235 *	This works by trying to transition to the SDEV_QUIESCE state
2236 *	(which must be a legal transition).  When the device is in this
2237 *	state, only special requests will be accepted, all others will
2238 *	be deferred.  Since special requests may also be requeued requests,
2239 *	a successful return doesn't guarantee the device will be
2240 *	totally quiescent.
2241 *
2242 *	Must be called with user context, may sleep.
2243 *
2244 *	Returns zero if unsuccessful or an error if not.
2245 */
2246int
2247scsi_device_quiesce(struct scsi_device *sdev)
2248{
2249	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2250	if (err)
2251		return err;
2252
2253	scsi_run_queue(sdev->request_queue);
2254	while (sdev->device_busy) {
2255		msleep_interruptible(200);
2256		scsi_run_queue(sdev->request_queue);
2257	}
2258	return 0;
2259}
2260EXPORT_SYMBOL(scsi_device_quiesce);
2261
2262/**
2263 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2264 *	@sdev:	scsi device to resume.
2265 *
2266 *	Moves the device from quiesced back to running and restarts the
2267 *	queues.
2268 *
2269 *	Must be called with user context, may sleep.
2270 */
2271void
2272scsi_device_resume(struct scsi_device *sdev)
2273{
2274	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2275		return;
2276	scsi_run_queue(sdev->request_queue);
2277}
2278EXPORT_SYMBOL(scsi_device_resume);
2279
2280static void
2281device_quiesce_fn(struct scsi_device *sdev, void *data)
2282{
2283	scsi_device_quiesce(sdev);
2284}
2285
2286void
2287scsi_target_quiesce(struct scsi_target *starget)
2288{
2289	starget_for_each_device(starget, NULL, device_quiesce_fn);
2290}
2291EXPORT_SYMBOL(scsi_target_quiesce);
2292
2293static void
2294device_resume_fn(struct scsi_device *sdev, void *data)
2295{
2296	scsi_device_resume(sdev);
2297}
2298
2299void
2300scsi_target_resume(struct scsi_target *starget)
2301{
2302	starget_for_each_device(starget, NULL, device_resume_fn);
2303}
2304EXPORT_SYMBOL(scsi_target_resume);
2305
2306/**
2307 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2308 * @sdev:	device to block
2309 *
2310 * Block request made by scsi lld's to temporarily stop all
2311 * scsi commands on the specified device.  Called from interrupt
2312 * or normal process context.
2313 *
2314 * Returns zero if successful or error if not
2315 *
2316 * Notes:
2317 *	This routine transitions the device to the SDEV_BLOCK state
2318 *	(which must be a legal transition).  When the device is in this
2319 *	state, all commands are deferred until the scsi lld reenables
2320 *	the device with scsi_device_unblock or device_block_tmo fires.
2321 *	This routine assumes the host_lock is held on entry.
2322 */
2323int
2324scsi_internal_device_block(struct scsi_device *sdev)
2325{
2326	struct request_queue *q = sdev->request_queue;
2327	unsigned long flags;
2328	int err = 0;
2329
2330	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2331	if (err)
2332		return err;
2333
2334	/*
2335	 * The device has transitioned to SDEV_BLOCK.  Stop the
2336	 * block layer from calling the midlayer with this device's
2337	 * request queue.
2338	 */
2339	spin_lock_irqsave(q->queue_lock, flags);
2340	blk_stop_queue(q);
2341	spin_unlock_irqrestore(q->queue_lock, flags);
2342
2343	return 0;
2344}
2345EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2346
2347/**
2348 * scsi_internal_device_unblock - resume a device after a block request
2349 * @sdev:	device to resume
2350 *
2351 * Called by scsi lld's or the midlayer to restart the device queue
2352 * for the previously suspended scsi device.  Called from interrupt or
2353 * normal process context.
2354 *
2355 * Returns zero if successful or error if not.
2356 *
2357 * Notes:
2358 *	This routine transitions the device to the SDEV_RUNNING state
2359 *	(which must be a legal transition) allowing the midlayer to
2360 *	goose the queue for this device.  This routine assumes the
2361 *	host_lock is held upon entry.
2362 */
2363int
2364scsi_internal_device_unblock(struct scsi_device *sdev)
2365{
2366	struct request_queue *q = sdev->request_queue;
2367	int err;
2368	unsigned long flags;
2369
2370	/*
2371	 * Try to transition the scsi device to SDEV_RUNNING
2372	 * and goose the device queue if successful.
2373	 */
2374	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2375	if (err)
2376		return err;
2377
2378	spin_lock_irqsave(q->queue_lock, flags);
2379	blk_start_queue(q);
2380	spin_unlock_irqrestore(q->queue_lock, flags);
2381
2382	return 0;
2383}
2384EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2385
2386static void
2387device_block(struct scsi_device *sdev, void *data)
2388{
2389	scsi_internal_device_block(sdev);
2390}
2391
2392static int
2393target_block(struct device *dev, void *data)
2394{
2395	if (scsi_is_target_device(dev))
2396		starget_for_each_device(to_scsi_target(dev), NULL,
2397					device_block);
2398	return 0;
2399}
2400
2401void
2402scsi_target_block(struct device *dev)
2403{
2404	if (scsi_is_target_device(dev))
2405		starget_for_each_device(to_scsi_target(dev), NULL,
2406					device_block);
2407	else
2408		device_for_each_child(dev, NULL, target_block);
2409}
2410EXPORT_SYMBOL_GPL(scsi_target_block);
2411
2412static void
2413device_unblock(struct scsi_device *sdev, void *data)
2414{
2415	scsi_internal_device_unblock(sdev);
2416}
2417
2418static int
2419target_unblock(struct device *dev, void *data)
2420{
2421	if (scsi_is_target_device(dev))
2422		starget_for_each_device(to_scsi_target(dev), NULL,
2423					device_unblock);
2424	return 0;
2425}
2426
2427void
2428scsi_target_unblock(struct device *dev)
2429{
2430	if (scsi_is_target_device(dev))
2431		starget_for_each_device(to_scsi_target(dev), NULL,
2432					device_unblock);
2433	else
2434		device_for_each_child(dev, NULL, target_unblock);
2435}
2436EXPORT_SYMBOL_GPL(scsi_target_unblock);
2437
2438/**
2439 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2440 * @sgl:	scatter-gather list
2441 * @sg_count:	number of segments in sg
2442 * @offset:	offset in bytes into sg, on return offset into the mapped area
2443 * @len:	bytes to map, on return number of bytes mapped
2444 *
2445 * Returns virtual address of the start of the mapped page
2446 */
2447void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2448			  size_t *offset, size_t *len)
2449{
2450	int i;
2451	size_t sg_len = 0, len_complete = 0;
2452	struct scatterlist *sg;
2453	struct page *page;
2454
2455	WARN_ON(!irqs_disabled());
2456
2457	for_each_sg(sgl, sg, sg_count, i) {
2458		len_complete = sg_len; /* Complete sg-entries */
2459		sg_len += sg->length;
2460		if (sg_len > *offset)
2461			break;
2462	}
2463
2464	if (unlikely(i == sg_count)) {
2465		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2466			"elements %d\n",
2467		       __FUNCTION__, sg_len, *offset, sg_count);
2468		WARN_ON(1);
2469		return NULL;
2470	}
2471
2472	/* Offset starting from the beginning of first page in this sg-entry */
2473	*offset = *offset - len_complete + sg->offset;
2474
2475	/* Assumption: contiguous pages can be accessed as "page + i" */
2476	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2477	*offset &= ~PAGE_MASK;
2478
2479	/* Bytes in this sg-entry from *offset to the end of the page */
2480	sg_len = PAGE_SIZE - *offset;
2481	if (*len > sg_len)
2482		*len = sg_len;
2483
2484	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2485}
2486EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2487
2488/**
2489 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2490 * @virt:	virtual address to be unmapped
2491 */
2492void scsi_kunmap_atomic_sg(void *virt)
2493{
2494	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2495}
2496EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2497