scsi_lib.c revision fd01a6632da253210c3dbc7814bc6eceda96623d
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22
23#include <scsi/scsi.h>
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_dbg.h>
26#include <scsi/scsi_device.h>
27#include <scsi/scsi_driver.h>
28#include <scsi/scsi_eh.h>
29#include <scsi/scsi_host.h>
30
31#include "scsi_priv.h"
32#include "scsi_logging.h"
33
34
35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36#define SG_MEMPOOL_SIZE		2
37
38struct scsi_host_sg_pool {
39	size_t		size;
40	char		*name;
41	struct kmem_cache	*slab;
42	mempool_t	*pool;
43};
44
45#define SP(x) { x, "sgpool-" __stringify(x) }
46#if (SCSI_MAX_SG_SEGMENTS < 32)
47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48#endif
49static struct scsi_host_sg_pool scsi_sg_pools[] = {
50	SP(8),
51	SP(16),
52#if (SCSI_MAX_SG_SEGMENTS > 32)
53	SP(32),
54#if (SCSI_MAX_SG_SEGMENTS > 64)
55	SP(64),
56#if (SCSI_MAX_SG_SEGMENTS > 128)
57	SP(128),
58#if (SCSI_MAX_SG_SEGMENTS > 256)
59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60#endif
61#endif
62#endif
63#endif
64	SP(SCSI_MAX_SG_SEGMENTS)
65};
66#undef SP
67
68struct kmem_cache *scsi_sdb_cache;
69
70static void scsi_run_queue(struct request_queue *q);
71
72/*
73 * Function:	scsi_unprep_request()
74 *
75 * Purpose:	Remove all preparation done for a request, including its
76 *		associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments:	req	- request to unprepare
79 *
80 * Lock status:	Assumed that no locks are held upon entry.
81 *
82 * Returns:	Nothing.
83 */
84static void scsi_unprep_request(struct request *req)
85{
86	struct scsi_cmnd *cmd = req->special;
87
88	blk_unprep_request(req);
89	req->special = NULL;
90
91	scsi_put_command(cmd);
92}
93
94/**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason:  The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
99 *
100 * This is a private queue insertion.  The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion.  This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
105 */
106static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107{
108	struct Scsi_Host *host = cmd->device->host;
109	struct scsi_device *device = cmd->device;
110	struct scsi_target *starget = scsi_target(device);
111	struct request_queue *q = device->request_queue;
112	unsigned long flags;
113
114	SCSI_LOG_MLQUEUE(1,
115		 printk("Inserting command %p into mlqueue\n", cmd));
116
117	/*
118	 * Set the appropriate busy bit for the device/host.
119	 *
120	 * If the host/device isn't busy, assume that something actually
121	 * completed, and that we should be able to queue a command now.
122	 *
123	 * Note that the prior mid-layer assumption that any host could
124	 * always queue at least one command is now broken.  The mid-layer
125	 * will implement a user specifiable stall (see
126	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127	 * if a command is requeued with no other commands outstanding
128	 * either for the device or for the host.
129	 */
130	switch (reason) {
131	case SCSI_MLQUEUE_HOST_BUSY:
132		host->host_blocked = host->max_host_blocked;
133		break;
134	case SCSI_MLQUEUE_DEVICE_BUSY:
135		device->device_blocked = device->max_device_blocked;
136		break;
137	case SCSI_MLQUEUE_TARGET_BUSY:
138		starget->target_blocked = starget->max_target_blocked;
139		break;
140	}
141
142	/*
143	 * Decrement the counters, since these commands are no longer
144	 * active on the host/device.
145	 */
146	if (unbusy)
147		scsi_device_unbusy(device);
148
149	/*
150	 * Requeue this command.  It will go before all other commands
151	 * that are already in the queue.
152	 *
153	 * NOTE: there is magic here about the way the queue is plugged if
154	 * we have no outstanding commands.
155	 *
156	 * Although we *don't* plug the queue, we call the request
157	 * function.  The SCSI request function detects the blocked condition
158	 * and plugs the queue appropriately.
159         */
160	spin_lock_irqsave(q->queue_lock, flags);
161	blk_requeue_request(q, cmd->request);
162	spin_unlock_irqrestore(q->queue_lock, flags);
163
164	scsi_run_queue(q);
165
166	return 0;
167}
168
169/*
170 * Function:    scsi_queue_insert()
171 *
172 * Purpose:     Insert a command in the midlevel queue.
173 *
174 * Arguments:   cmd    - command that we are adding to queue.
175 *              reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns:     Nothing.
180 *
181 * Notes:       We do this for one of two cases.  Either the host is busy
182 *              and it cannot accept any more commands for the time being,
183 *              or the device returned QUEUE_FULL and can accept no more
184 *              commands.
185 * Notes:       This could be called either from an interrupt context or a
186 *              normal process context.
187 */
188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189{
190	return __scsi_queue_insert(cmd, reason, 1);
191}
192/**
193 * scsi_execute - insert request and wait for the result
194 * @sdev:	scsi device
195 * @cmd:	scsi command
196 * @data_direction: data direction
197 * @buffer:	data buffer
198 * @bufflen:	len of buffer
199 * @sense:	optional sense buffer
200 * @timeout:	request timeout in seconds
201 * @retries:	number of times to retry request
202 * @flags:	or into request flags;
203 * @resid:	optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209		 int data_direction, void *buffer, unsigned bufflen,
210		 unsigned char *sense, int timeout, int retries, int flags,
211		 int *resid)
212{
213	struct request *req;
214	int write = (data_direction == DMA_TO_DEVICE);
215	int ret = DRIVER_ERROR << 24;
216
217	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218
219	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220					buffer, bufflen, __GFP_WAIT))
221		goto out;
222
223	req->cmd_len = COMMAND_SIZE(cmd[0]);
224	memcpy(req->cmd, cmd, req->cmd_len);
225	req->sense = sense;
226	req->sense_len = 0;
227	req->retries = retries;
228	req->timeout = timeout;
229	req->cmd_type = REQ_TYPE_BLOCK_PC;
230	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232	/*
233	 * head injection *required* here otherwise quiesce won't work
234	 */
235	blk_execute_rq(req->q, NULL, req, 1);
236
237	/*
238	 * Some devices (USB mass-storage in particular) may transfer
239	 * garbage data together with a residue indicating that the data
240	 * is invalid.  Prevent the garbage from being misinterpreted
241	 * and prevent security leaks by zeroing out the excess data.
242	 */
243	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246	if (resid)
247		*resid = req->resid_len;
248	ret = req->errors;
249 out:
250	blk_put_request(req);
251
252	return ret;
253}
254EXPORT_SYMBOL(scsi_execute);
255
256
257int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258		     int data_direction, void *buffer, unsigned bufflen,
259		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260		     int *resid)
261{
262	char *sense = NULL;
263	int result;
264
265	if (sshdr) {
266		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267		if (!sense)
268			return DRIVER_ERROR << 24;
269	}
270	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271			      sense, timeout, retries, 0, resid);
272	if (sshdr)
273		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275	kfree(sense);
276	return result;
277}
278EXPORT_SYMBOL(scsi_execute_req);
279
280/*
281 * Function:    scsi_init_cmd_errh()
282 *
283 * Purpose:     Initialize cmd fields related to error handling.
284 *
285 * Arguments:   cmd	- command that is ready to be queued.
286 *
287 * Notes:       This function has the job of initializing a number of
288 *              fields related to error handling.   Typically this will
289 *              be called once for each command, as required.
290 */
291static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292{
293	cmd->serial_number = 0;
294	scsi_set_resid(cmd, 0);
295	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296	if (cmd->cmd_len == 0)
297		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298}
299
300void scsi_device_unbusy(struct scsi_device *sdev)
301{
302	struct Scsi_Host *shost = sdev->host;
303	struct scsi_target *starget = scsi_target(sdev);
304	unsigned long flags;
305
306	spin_lock_irqsave(shost->host_lock, flags);
307	shost->host_busy--;
308	starget->target_busy--;
309	if (unlikely(scsi_host_in_recovery(shost) &&
310		     (shost->host_failed || shost->host_eh_scheduled)))
311		scsi_eh_wakeup(shost);
312	spin_unlock(shost->host_lock);
313	spin_lock(sdev->request_queue->queue_lock);
314	sdev->device_busy--;
315	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316}
317
318/*
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
322 *
323 * Called with *no* scsi locks held.
324 */
325static void scsi_single_lun_run(struct scsi_device *current_sdev)
326{
327	struct Scsi_Host *shost = current_sdev->host;
328	struct scsi_device *sdev, *tmp;
329	struct scsi_target *starget = scsi_target(current_sdev);
330	unsigned long flags;
331
332	spin_lock_irqsave(shost->host_lock, flags);
333	starget->starget_sdev_user = NULL;
334	spin_unlock_irqrestore(shost->host_lock, flags);
335
336	/*
337	 * Call blk_run_queue for all LUNs on the target, starting with
338	 * current_sdev. We race with others (to set starget_sdev_user),
339	 * but in most cases, we will be first. Ideally, each LU on the
340	 * target would get some limited time or requests on the target.
341	 */
342	blk_run_queue(current_sdev->request_queue);
343
344	spin_lock_irqsave(shost->host_lock, flags);
345	if (starget->starget_sdev_user)
346		goto out;
347	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348			same_target_siblings) {
349		if (sdev == current_sdev)
350			continue;
351		if (scsi_device_get(sdev))
352			continue;
353
354		spin_unlock_irqrestore(shost->host_lock, flags);
355		blk_run_queue(sdev->request_queue);
356		spin_lock_irqsave(shost->host_lock, flags);
357
358		scsi_device_put(sdev);
359	}
360 out:
361	spin_unlock_irqrestore(shost->host_lock, flags);
362}
363
364static inline int scsi_device_is_busy(struct scsi_device *sdev)
365{
366	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367		return 1;
368
369	return 0;
370}
371
372static inline int scsi_target_is_busy(struct scsi_target *starget)
373{
374	return ((starget->can_queue > 0 &&
375		 starget->target_busy >= starget->can_queue) ||
376		 starget->target_blocked);
377}
378
379static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380{
381	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382	    shost->host_blocked || shost->host_self_blocked)
383		return 1;
384
385	return 0;
386}
387
388/*
389 * Function:	scsi_run_queue()
390 *
391 * Purpose:	Select a proper request queue to serve next
392 *
393 * Arguments:	q	- last request's queue
394 *
395 * Returns:     Nothing
396 *
397 * Notes:	The previous command was completely finished, start
398 *		a new one if possible.
399 */
400static void scsi_run_queue(struct request_queue *q)
401{
402	struct scsi_device *sdev = q->queuedata;
403	struct Scsi_Host *shost = sdev->host;
404	LIST_HEAD(starved_list);
405	unsigned long flags;
406
407	if (scsi_target(sdev)->single_lun)
408		scsi_single_lun_run(sdev);
409
410	spin_lock_irqsave(shost->host_lock, flags);
411	list_splice_init(&shost->starved_list, &starved_list);
412
413	while (!list_empty(&starved_list)) {
414		int flagset;
415
416		/*
417		 * As long as shost is accepting commands and we have
418		 * starved queues, call blk_run_queue. scsi_request_fn
419		 * drops the queue_lock and can add us back to the
420		 * starved_list.
421		 *
422		 * host_lock protects the starved_list and starved_entry.
423		 * scsi_request_fn must get the host_lock before checking
424		 * or modifying starved_list or starved_entry.
425		 */
426		if (scsi_host_is_busy(shost))
427			break;
428
429		sdev = list_entry(starved_list.next,
430				  struct scsi_device, starved_entry);
431		list_del_init(&sdev->starved_entry);
432		if (scsi_target_is_busy(scsi_target(sdev))) {
433			list_move_tail(&sdev->starved_entry,
434				       &shost->starved_list);
435			continue;
436		}
437
438		spin_unlock(shost->host_lock);
439
440		spin_lock(sdev->request_queue->queue_lock);
441		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442				!test_bit(QUEUE_FLAG_REENTER,
443					&sdev->request_queue->queue_flags);
444		if (flagset)
445			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446		__blk_run_queue(sdev->request_queue);
447		if (flagset)
448			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449		spin_unlock(sdev->request_queue->queue_lock);
450
451		spin_lock(shost->host_lock);
452	}
453	/* put any unprocessed entries back */
454	list_splice(&starved_list, &shost->starved_list);
455	spin_unlock_irqrestore(shost->host_lock, flags);
456
457	blk_run_queue(q);
458}
459
460/*
461 * Function:	scsi_requeue_command()
462 *
463 * Purpose:	Handle post-processing of completed commands.
464 *
465 * Arguments:	q	- queue to operate on
466 *		cmd	- command that may need to be requeued.
467 *
468 * Returns:	Nothing
469 *
470 * Notes:	After command completion, there may be blocks left
471 *		over which weren't finished by the previous command
472 *		this can be for a number of reasons - the main one is
473 *		I/O errors in the middle of the request, in which case
474 *		we need to request the blocks that come after the bad
475 *		sector.
476 * Notes:	Upon return, cmd is a stale pointer.
477 */
478static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479{
480	struct request *req = cmd->request;
481	unsigned long flags;
482
483	spin_lock_irqsave(q->queue_lock, flags);
484	scsi_unprep_request(req);
485	blk_requeue_request(q, req);
486	spin_unlock_irqrestore(q->queue_lock, flags);
487
488	scsi_run_queue(q);
489}
490
491void scsi_next_command(struct scsi_cmnd *cmd)
492{
493	struct scsi_device *sdev = cmd->device;
494	struct request_queue *q = sdev->request_queue;
495
496	/* need to hold a reference on the device before we let go of the cmd */
497	get_device(&sdev->sdev_gendev);
498
499	scsi_put_command(cmd);
500	scsi_run_queue(q);
501
502	/* ok to remove device now */
503	put_device(&sdev->sdev_gendev);
504}
505
506void scsi_run_host_queues(struct Scsi_Host *shost)
507{
508	struct scsi_device *sdev;
509
510	shost_for_each_device(sdev, shost)
511		scsi_run_queue(sdev->request_queue);
512}
513
514static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516/*
517 * Function:    scsi_end_request()
518 *
519 * Purpose:     Post-processing of completed commands (usually invoked at end
520 *		of upper level post-processing and scsi_io_completion).
521 *
522 * Arguments:   cmd	 - command that is complete.
523 *              error    - 0 if I/O indicates success, < 0 for I/O error.
524 *              bytes    - number of bytes of completed I/O
525 *		requeue  - indicates whether we should requeue leftovers.
526 *
527 * Lock status: Assumed that lock is not held upon entry.
528 *
529 * Returns:     cmd if requeue required, NULL otherwise.
530 *
531 * Notes:       This is called for block device requests in order to
532 *              mark some number of sectors as complete.
533 *
534 *		We are guaranteeing that the request queue will be goosed
535 *		at some point during this call.
536 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537 */
538static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539					  int bytes, int requeue)
540{
541	struct request_queue *q = cmd->device->request_queue;
542	struct request *req = cmd->request;
543
544	/*
545	 * If there are blocks left over at the end, set up the command
546	 * to queue the remainder of them.
547	 */
548	if (blk_end_request(req, error, bytes)) {
549		/* kill remainder if no retrys */
550		if (error && scsi_noretry_cmd(cmd))
551			blk_end_request_all(req, error);
552		else {
553			if (requeue) {
554				/*
555				 * Bleah.  Leftovers again.  Stick the
556				 * leftovers in the front of the
557				 * queue, and goose the queue again.
558				 */
559				scsi_release_buffers(cmd);
560				scsi_requeue_command(q, cmd);
561				cmd = NULL;
562			}
563			return cmd;
564		}
565	}
566
567	/*
568	 * This will goose the queue request function at the end, so we don't
569	 * need to worry about launching another command.
570	 */
571	__scsi_release_buffers(cmd, 0);
572	scsi_next_command(cmd);
573	return NULL;
574}
575
576static inline unsigned int scsi_sgtable_index(unsigned short nents)
577{
578	unsigned int index;
579
580	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581
582	if (nents <= 8)
583		index = 0;
584	else
585		index = get_count_order(nents) - 3;
586
587	return index;
588}
589
590static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591{
592	struct scsi_host_sg_pool *sgp;
593
594	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595	mempool_free(sgl, sgp->pool);
596}
597
598static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599{
600	struct scsi_host_sg_pool *sgp;
601
602	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603	return mempool_alloc(sgp->pool, gfp_mask);
604}
605
606static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607			      gfp_t gfp_mask)
608{
609	int ret;
610
611	BUG_ON(!nents);
612
613	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614			       gfp_mask, scsi_sg_alloc);
615	if (unlikely(ret))
616		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617				scsi_sg_free);
618
619	return ret;
620}
621
622static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623{
624	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625}
626
627static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628{
629
630	if (cmd->sdb.table.nents)
631		scsi_free_sgtable(&cmd->sdb);
632
633	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634
635	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636		struct scsi_data_buffer *bidi_sdb =
637			cmd->request->next_rq->special;
638		scsi_free_sgtable(bidi_sdb);
639		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640		cmd->request->next_rq->special = NULL;
641	}
642
643	if (scsi_prot_sg_count(cmd))
644		scsi_free_sgtable(cmd->prot_sdb);
645}
646
647/*
648 * Function:    scsi_release_buffers()
649 *
650 * Purpose:     Completion processing for block device I/O requests.
651 *
652 * Arguments:   cmd	- command that we are bailing.
653 *
654 * Lock status: Assumed that no lock is held upon entry.
655 *
656 * Returns:     Nothing
657 *
658 * Notes:       In the event that an upper level driver rejects a
659 *		command, we must release resources allocated during
660 *		the __init_io() function.  Primarily this would involve
661 *		the scatter-gather table, and potentially any bounce
662 *		buffers.
663 */
664void scsi_release_buffers(struct scsi_cmnd *cmd)
665{
666	__scsi_release_buffers(cmd, 1);
667}
668EXPORT_SYMBOL(scsi_release_buffers);
669
670/*
671 * Function:    scsi_io_completion()
672 *
673 * Purpose:     Completion processing for block device I/O requests.
674 *
675 * Arguments:   cmd   - command that is finished.
676 *
677 * Lock status: Assumed that no lock is held upon entry.
678 *
679 * Returns:     Nothing
680 *
681 * Notes:       This function is matched in terms of capabilities to
682 *              the function that created the scatter-gather list.
683 *              In other words, if there are no bounce buffers
684 *              (the normal case for most drivers), we don't need
685 *              the logic to deal with cleaning up afterwards.
686 *
687 *		We must call scsi_end_request().  This will finish off
688 *		the specified number of sectors.  If we are done, the
689 *		command block will be released and the queue function
690 *		will be goosed.  If we are not done then we have to
691 *		figure out what to do next:
692 *
693 *		a) We can call scsi_requeue_command().  The request
694 *		   will be unprepared and put back on the queue.  Then
695 *		   a new command will be created for it.  This should
696 *		   be used if we made forward progress, or if we want
697 *		   to switch from READ(10) to READ(6) for example.
698 *
699 *		b) We can call scsi_queue_insert().  The request will
700 *		   be put back on the queue and retried using the same
701 *		   command as before, possibly after a delay.
702 *
703 *		c) We can call blk_end_request() with -EIO to fail
704 *		   the remainder of the request.
705 */
706void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
707{
708	int result = cmd->result;
709	struct request_queue *q = cmd->device->request_queue;
710	struct request *req = cmd->request;
711	int error = 0;
712	struct scsi_sense_hdr sshdr;
713	int sense_valid = 0;
714	int sense_deferred = 0;
715	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
716	      ACTION_DELAYED_RETRY} action;
717	char *description = NULL;
718
719	if (result) {
720		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
721		if (sense_valid)
722			sense_deferred = scsi_sense_is_deferred(&sshdr);
723	}
724
725	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
726		req->errors = result;
727		if (result) {
728			if (sense_valid && req->sense) {
729				/*
730				 * SG_IO wants current and deferred errors
731				 */
732				int len = 8 + cmd->sense_buffer[7];
733
734				if (len > SCSI_SENSE_BUFFERSIZE)
735					len = SCSI_SENSE_BUFFERSIZE;
736				memcpy(req->sense, cmd->sense_buffer,  len);
737				req->sense_len = len;
738			}
739			if (!sense_deferred)
740				error = -EIO;
741		}
742
743		req->resid_len = scsi_get_resid(cmd);
744
745		if (scsi_bidi_cmnd(cmd)) {
746			/*
747			 * Bidi commands Must be complete as a whole,
748			 * both sides at once.
749			 */
750			req->next_rq->resid_len = scsi_in(cmd)->resid;
751
752			scsi_release_buffers(cmd);
753			blk_end_request_all(req, 0);
754
755			scsi_next_command(cmd);
756			return;
757		}
758	}
759
760	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
761	BUG_ON(blk_bidi_rq(req));
762
763	/*
764	 * Next deal with any sectors which we were able to correctly
765	 * handle.
766	 */
767	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
768				      "%d bytes done.\n",
769				      blk_rq_sectors(req), good_bytes));
770
771	/*
772	 * Recovered errors need reporting, but they're always treated
773	 * as success, so fiddle the result code here.  For BLOCK_PC
774	 * we already took a copy of the original into rq->errors which
775	 * is what gets returned to the user
776	 */
777	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
778		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
779		 * print since caller wants ATA registers. Only occurs on
780		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
781		 */
782		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
783			;
784		else if (!(req->cmd_flags & REQ_QUIET))
785			scsi_print_sense("", cmd);
786		result = 0;
787		/* BLOCK_PC may have set error */
788		error = 0;
789	}
790
791	/*
792	 * A number of bytes were successfully read.  If there
793	 * are leftovers and there is some kind of error
794	 * (result != 0), retry the rest.
795	 */
796	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
797		return;
798
799	error = -EIO;
800
801	if (host_byte(result) == DID_RESET) {
802		/* Third party bus reset or reset for error recovery
803		 * reasons.  Just retry the command and see what
804		 * happens.
805		 */
806		action = ACTION_RETRY;
807	} else if (sense_valid && !sense_deferred) {
808		switch (sshdr.sense_key) {
809		case UNIT_ATTENTION:
810			if (cmd->device->removable) {
811				/* Detected disc change.  Set a bit
812				 * and quietly refuse further access.
813				 */
814				cmd->device->changed = 1;
815				description = "Media Changed";
816				action = ACTION_FAIL;
817			} else {
818				/* Must have been a power glitch, or a
819				 * bus reset.  Could not have been a
820				 * media change, so we just retry the
821				 * command and see what happens.
822				 */
823				action = ACTION_RETRY;
824			}
825			break;
826		case ILLEGAL_REQUEST:
827			/* If we had an ILLEGAL REQUEST returned, then
828			 * we may have performed an unsupported
829			 * command.  The only thing this should be
830			 * would be a ten byte read where only a six
831			 * byte read was supported.  Also, on a system
832			 * where READ CAPACITY failed, we may have
833			 * read past the end of the disk.
834			 */
835			if ((cmd->device->use_10_for_rw &&
836			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
837			    (cmd->cmnd[0] == READ_10 ||
838			     cmd->cmnd[0] == WRITE_10)) {
839				/* This will issue a new 6-byte command. */
840				cmd->device->use_10_for_rw = 0;
841				action = ACTION_REPREP;
842			} else if (sshdr.asc == 0x10) /* DIX */ {
843				description = "Host Data Integrity Failure";
844				action = ACTION_FAIL;
845				error = -EILSEQ;
846			} else
847				action = ACTION_FAIL;
848			break;
849		case ABORTED_COMMAND:
850			action = ACTION_FAIL;
851			if (sshdr.asc == 0x10) { /* DIF */
852				description = "Target Data Integrity Failure";
853				error = -EILSEQ;
854			}
855			break;
856		case NOT_READY:
857			/* If the device is in the process of becoming
858			 * ready, or has a temporary blockage, retry.
859			 */
860			if (sshdr.asc == 0x04) {
861				switch (sshdr.ascq) {
862				case 0x01: /* becoming ready */
863				case 0x04: /* format in progress */
864				case 0x05: /* rebuild in progress */
865				case 0x06: /* recalculation in progress */
866				case 0x07: /* operation in progress */
867				case 0x08: /* Long write in progress */
868				case 0x09: /* self test in progress */
869				case 0x14: /* space allocation in progress */
870					action = ACTION_DELAYED_RETRY;
871					break;
872				default:
873					description = "Device not ready";
874					action = ACTION_FAIL;
875					break;
876				}
877			} else {
878				description = "Device not ready";
879				action = ACTION_FAIL;
880			}
881			break;
882		case VOLUME_OVERFLOW:
883			/* See SSC3rXX or current. */
884			action = ACTION_FAIL;
885			break;
886		default:
887			description = "Unhandled sense code";
888			action = ACTION_FAIL;
889			break;
890		}
891	} else {
892		description = "Unhandled error code";
893		action = ACTION_FAIL;
894	}
895
896	switch (action) {
897	case ACTION_FAIL:
898		/* Give up and fail the remainder of the request */
899		scsi_release_buffers(cmd);
900		if (!(req->cmd_flags & REQ_QUIET)) {
901			if (description)
902				scmd_printk(KERN_INFO, cmd, "%s\n",
903					    description);
904			scsi_print_result(cmd);
905			if (driver_byte(result) & DRIVER_SENSE)
906				scsi_print_sense("", cmd);
907			scsi_print_command(cmd);
908		}
909		if (blk_end_request_err(req, error))
910			scsi_requeue_command(q, cmd);
911		else
912			scsi_next_command(cmd);
913		break;
914	case ACTION_REPREP:
915		/* Unprep the request and put it back at the head of the queue.
916		 * A new command will be prepared and issued.
917		 */
918		scsi_release_buffers(cmd);
919		scsi_requeue_command(q, cmd);
920		break;
921	case ACTION_RETRY:
922		/* Retry the same command immediately */
923		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
924		break;
925	case ACTION_DELAYED_RETRY:
926		/* Retry the same command after a delay */
927		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
928		break;
929	}
930}
931
932static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
933			     gfp_t gfp_mask)
934{
935	int count;
936
937	/*
938	 * If sg table allocation fails, requeue request later.
939	 */
940	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
941					gfp_mask))) {
942		return BLKPREP_DEFER;
943	}
944
945	req->buffer = NULL;
946
947	/*
948	 * Next, walk the list, and fill in the addresses and sizes of
949	 * each segment.
950	 */
951	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
952	BUG_ON(count > sdb->table.nents);
953	sdb->table.nents = count;
954	sdb->length = blk_rq_bytes(req);
955	return BLKPREP_OK;
956}
957
958/*
959 * Function:    scsi_init_io()
960 *
961 * Purpose:     SCSI I/O initialize function.
962 *
963 * Arguments:   cmd   - Command descriptor we wish to initialize
964 *
965 * Returns:     0 on success
966 *		BLKPREP_DEFER if the failure is retryable
967 *		BLKPREP_KILL if the failure is fatal
968 */
969int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
970{
971	struct request *rq = cmd->request;
972
973	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
974	if (error)
975		goto err_exit;
976
977	if (blk_bidi_rq(rq)) {
978		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
979			scsi_sdb_cache, GFP_ATOMIC);
980		if (!bidi_sdb) {
981			error = BLKPREP_DEFER;
982			goto err_exit;
983		}
984
985		rq->next_rq->special = bidi_sdb;
986		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
987		if (error)
988			goto err_exit;
989	}
990
991	if (blk_integrity_rq(rq)) {
992		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
993		int ivecs, count;
994
995		BUG_ON(prot_sdb == NULL);
996		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
997
998		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
999			error = BLKPREP_DEFER;
1000			goto err_exit;
1001		}
1002
1003		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1004						prot_sdb->table.sgl);
1005		BUG_ON(unlikely(count > ivecs));
1006		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1007
1008		cmd->prot_sdb = prot_sdb;
1009		cmd->prot_sdb->table.nents = count;
1010	}
1011
1012	return BLKPREP_OK ;
1013
1014err_exit:
1015	scsi_release_buffers(cmd);
1016	cmd->request->special = NULL;
1017	scsi_put_command(cmd);
1018	return error;
1019}
1020EXPORT_SYMBOL(scsi_init_io);
1021
1022static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1023		struct request *req)
1024{
1025	struct scsi_cmnd *cmd;
1026
1027	if (!req->special) {
1028		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1029		if (unlikely(!cmd))
1030			return NULL;
1031		req->special = cmd;
1032	} else {
1033		cmd = req->special;
1034	}
1035
1036	/* pull a tag out of the request if we have one */
1037	cmd->tag = req->tag;
1038	cmd->request = req;
1039
1040	cmd->cmnd = req->cmd;
1041
1042	return cmd;
1043}
1044
1045int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1046{
1047	struct scsi_cmnd *cmd;
1048	int ret = scsi_prep_state_check(sdev, req);
1049
1050	if (ret != BLKPREP_OK)
1051		return ret;
1052
1053	cmd = scsi_get_cmd_from_req(sdev, req);
1054	if (unlikely(!cmd))
1055		return BLKPREP_DEFER;
1056
1057	/*
1058	 * BLOCK_PC requests may transfer data, in which case they must
1059	 * a bio attached to them.  Or they might contain a SCSI command
1060	 * that does not transfer data, in which case they may optionally
1061	 * submit a request without an attached bio.
1062	 */
1063	if (req->bio) {
1064		int ret;
1065
1066		BUG_ON(!req->nr_phys_segments);
1067
1068		ret = scsi_init_io(cmd, GFP_ATOMIC);
1069		if (unlikely(ret))
1070			return ret;
1071	} else {
1072		BUG_ON(blk_rq_bytes(req));
1073
1074		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1075		req->buffer = NULL;
1076	}
1077
1078	cmd->cmd_len = req->cmd_len;
1079	if (!blk_rq_bytes(req))
1080		cmd->sc_data_direction = DMA_NONE;
1081	else if (rq_data_dir(req) == WRITE)
1082		cmd->sc_data_direction = DMA_TO_DEVICE;
1083	else
1084		cmd->sc_data_direction = DMA_FROM_DEVICE;
1085
1086	cmd->transfersize = blk_rq_bytes(req);
1087	cmd->allowed = req->retries;
1088	return BLKPREP_OK;
1089}
1090EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1091
1092/*
1093 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1094 * from filesystems that still need to be translated to SCSI CDBs from
1095 * the ULD.
1096 */
1097int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1098{
1099	struct scsi_cmnd *cmd;
1100	int ret = scsi_prep_state_check(sdev, req);
1101
1102	if (ret != BLKPREP_OK)
1103		return ret;
1104
1105	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1106			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1107		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1108		if (ret != BLKPREP_OK)
1109			return ret;
1110	}
1111
1112	/*
1113	 * Filesystem requests must transfer data.
1114	 */
1115	BUG_ON(!req->nr_phys_segments);
1116
1117	cmd = scsi_get_cmd_from_req(sdev, req);
1118	if (unlikely(!cmd))
1119		return BLKPREP_DEFER;
1120
1121	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1122	return scsi_init_io(cmd, GFP_ATOMIC);
1123}
1124EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1125
1126int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1127{
1128	int ret = BLKPREP_OK;
1129
1130	/*
1131	 * If the device is not in running state we will reject some
1132	 * or all commands.
1133	 */
1134	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1135		switch (sdev->sdev_state) {
1136		case SDEV_OFFLINE:
1137			/*
1138			 * If the device is offline we refuse to process any
1139			 * commands.  The device must be brought online
1140			 * before trying any recovery commands.
1141			 */
1142			sdev_printk(KERN_ERR, sdev,
1143				    "rejecting I/O to offline device\n");
1144			ret = BLKPREP_KILL;
1145			break;
1146		case SDEV_DEL:
1147			/*
1148			 * If the device is fully deleted, we refuse to
1149			 * process any commands as well.
1150			 */
1151			sdev_printk(KERN_ERR, sdev,
1152				    "rejecting I/O to dead device\n");
1153			ret = BLKPREP_KILL;
1154			break;
1155		case SDEV_QUIESCE:
1156		case SDEV_BLOCK:
1157		case SDEV_CREATED_BLOCK:
1158			/*
1159			 * If the devices is blocked we defer normal commands.
1160			 */
1161			if (!(req->cmd_flags & REQ_PREEMPT))
1162				ret = BLKPREP_DEFER;
1163			break;
1164		default:
1165			/*
1166			 * For any other not fully online state we only allow
1167			 * special commands.  In particular any user initiated
1168			 * command is not allowed.
1169			 */
1170			if (!(req->cmd_flags & REQ_PREEMPT))
1171				ret = BLKPREP_KILL;
1172			break;
1173		}
1174	}
1175	return ret;
1176}
1177EXPORT_SYMBOL(scsi_prep_state_check);
1178
1179int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1180{
1181	struct scsi_device *sdev = q->queuedata;
1182
1183	switch (ret) {
1184	case BLKPREP_KILL:
1185		req->errors = DID_NO_CONNECT << 16;
1186		/* release the command and kill it */
1187		if (req->special) {
1188			struct scsi_cmnd *cmd = req->special;
1189			scsi_release_buffers(cmd);
1190			scsi_put_command(cmd);
1191			req->special = NULL;
1192		}
1193		break;
1194	case BLKPREP_DEFER:
1195		/*
1196		 * If we defer, the blk_peek_request() returns NULL, but the
1197		 * queue must be restarted, so we plug here if no returning
1198		 * command will automatically do that.
1199		 */
1200		if (sdev->device_busy == 0)
1201			blk_plug_device(q);
1202		break;
1203	default:
1204		req->cmd_flags |= REQ_DONTPREP;
1205	}
1206
1207	return ret;
1208}
1209EXPORT_SYMBOL(scsi_prep_return);
1210
1211int scsi_prep_fn(struct request_queue *q, struct request *req)
1212{
1213	struct scsi_device *sdev = q->queuedata;
1214	int ret = BLKPREP_KILL;
1215
1216	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1217		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1218	return scsi_prep_return(q, req, ret);
1219}
1220EXPORT_SYMBOL(scsi_prep_fn);
1221
1222/*
1223 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1224 * return 0.
1225 *
1226 * Called with the queue_lock held.
1227 */
1228static inline int scsi_dev_queue_ready(struct request_queue *q,
1229				  struct scsi_device *sdev)
1230{
1231	if (sdev->device_busy == 0 && sdev->device_blocked) {
1232		/*
1233		 * unblock after device_blocked iterates to zero
1234		 */
1235		if (--sdev->device_blocked == 0) {
1236			SCSI_LOG_MLQUEUE(3,
1237				   sdev_printk(KERN_INFO, sdev,
1238				   "unblocking device at zero depth\n"));
1239		} else {
1240			blk_plug_device(q);
1241			return 0;
1242		}
1243	}
1244	if (scsi_device_is_busy(sdev))
1245		return 0;
1246
1247	return 1;
1248}
1249
1250
1251/*
1252 * scsi_target_queue_ready: checks if there we can send commands to target
1253 * @sdev: scsi device on starget to check.
1254 *
1255 * Called with the host lock held.
1256 */
1257static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1258					   struct scsi_device *sdev)
1259{
1260	struct scsi_target *starget = scsi_target(sdev);
1261
1262	if (starget->single_lun) {
1263		if (starget->starget_sdev_user &&
1264		    starget->starget_sdev_user != sdev)
1265			return 0;
1266		starget->starget_sdev_user = sdev;
1267	}
1268
1269	if (starget->target_busy == 0 && starget->target_blocked) {
1270		/*
1271		 * unblock after target_blocked iterates to zero
1272		 */
1273		if (--starget->target_blocked == 0) {
1274			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1275					 "unblocking target at zero depth\n"));
1276		} else
1277			return 0;
1278	}
1279
1280	if (scsi_target_is_busy(starget)) {
1281		if (list_empty(&sdev->starved_entry))
1282			list_add_tail(&sdev->starved_entry,
1283				      &shost->starved_list);
1284		return 0;
1285	}
1286
1287	/* We're OK to process the command, so we can't be starved */
1288	if (!list_empty(&sdev->starved_entry))
1289		list_del_init(&sdev->starved_entry);
1290	return 1;
1291}
1292
1293/*
1294 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1295 * return 0. We must end up running the queue again whenever 0 is
1296 * returned, else IO can hang.
1297 *
1298 * Called with host_lock held.
1299 */
1300static inline int scsi_host_queue_ready(struct request_queue *q,
1301				   struct Scsi_Host *shost,
1302				   struct scsi_device *sdev)
1303{
1304	if (scsi_host_in_recovery(shost))
1305		return 0;
1306	if (shost->host_busy == 0 && shost->host_blocked) {
1307		/*
1308		 * unblock after host_blocked iterates to zero
1309		 */
1310		if (--shost->host_blocked == 0) {
1311			SCSI_LOG_MLQUEUE(3,
1312				printk("scsi%d unblocking host at zero depth\n",
1313					shost->host_no));
1314		} else {
1315			return 0;
1316		}
1317	}
1318	if (scsi_host_is_busy(shost)) {
1319		if (list_empty(&sdev->starved_entry))
1320			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1321		return 0;
1322	}
1323
1324	/* We're OK to process the command, so we can't be starved */
1325	if (!list_empty(&sdev->starved_entry))
1326		list_del_init(&sdev->starved_entry);
1327
1328	return 1;
1329}
1330
1331/*
1332 * Busy state exporting function for request stacking drivers.
1333 *
1334 * For efficiency, no lock is taken to check the busy state of
1335 * shost/starget/sdev, since the returned value is not guaranteed and
1336 * may be changed after request stacking drivers call the function,
1337 * regardless of taking lock or not.
1338 *
1339 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1340 * (e.g. !sdev), scsi needs to return 'not busy'.
1341 * Otherwise, request stacking drivers may hold requests forever.
1342 */
1343static int scsi_lld_busy(struct request_queue *q)
1344{
1345	struct scsi_device *sdev = q->queuedata;
1346	struct Scsi_Host *shost;
1347	struct scsi_target *starget;
1348
1349	if (!sdev)
1350		return 0;
1351
1352	shost = sdev->host;
1353	starget = scsi_target(sdev);
1354
1355	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1356	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1357		return 1;
1358
1359	return 0;
1360}
1361
1362/*
1363 * Kill a request for a dead device
1364 */
1365static void scsi_kill_request(struct request *req, struct request_queue *q)
1366{
1367	struct scsi_cmnd *cmd = req->special;
1368	struct scsi_device *sdev;
1369	struct scsi_target *starget;
1370	struct Scsi_Host *shost;
1371
1372	blk_start_request(req);
1373
1374	sdev = cmd->device;
1375	starget = scsi_target(sdev);
1376	shost = sdev->host;
1377	scsi_init_cmd_errh(cmd);
1378	cmd->result = DID_NO_CONNECT << 16;
1379	atomic_inc(&cmd->device->iorequest_cnt);
1380
1381	/*
1382	 * SCSI request completion path will do scsi_device_unbusy(),
1383	 * bump busy counts.  To bump the counters, we need to dance
1384	 * with the locks as normal issue path does.
1385	 */
1386	sdev->device_busy++;
1387	spin_unlock(sdev->request_queue->queue_lock);
1388	spin_lock(shost->host_lock);
1389	shost->host_busy++;
1390	starget->target_busy++;
1391	spin_unlock(shost->host_lock);
1392	spin_lock(sdev->request_queue->queue_lock);
1393
1394	blk_complete_request(req);
1395}
1396
1397static void scsi_softirq_done(struct request *rq)
1398{
1399	struct scsi_cmnd *cmd = rq->special;
1400	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1401	int disposition;
1402
1403	INIT_LIST_HEAD(&cmd->eh_entry);
1404
1405	atomic_inc(&cmd->device->iodone_cnt);
1406	if (cmd->result)
1407		atomic_inc(&cmd->device->ioerr_cnt);
1408
1409	disposition = scsi_decide_disposition(cmd);
1410	if (disposition != SUCCESS &&
1411	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1412		sdev_printk(KERN_ERR, cmd->device,
1413			    "timing out command, waited %lus\n",
1414			    wait_for/HZ);
1415		disposition = SUCCESS;
1416	}
1417
1418	scsi_log_completion(cmd, disposition);
1419
1420	switch (disposition) {
1421		case SUCCESS:
1422			scsi_finish_command(cmd);
1423			break;
1424		case NEEDS_RETRY:
1425			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1426			break;
1427		case ADD_TO_MLQUEUE:
1428			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1429			break;
1430		default:
1431			if (!scsi_eh_scmd_add(cmd, 0))
1432				scsi_finish_command(cmd);
1433	}
1434}
1435
1436/*
1437 * Function:    scsi_request_fn()
1438 *
1439 * Purpose:     Main strategy routine for SCSI.
1440 *
1441 * Arguments:   q       - Pointer to actual queue.
1442 *
1443 * Returns:     Nothing
1444 *
1445 * Lock status: IO request lock assumed to be held when called.
1446 */
1447static void scsi_request_fn(struct request_queue *q)
1448{
1449	struct scsi_device *sdev = q->queuedata;
1450	struct Scsi_Host *shost;
1451	struct scsi_cmnd *cmd;
1452	struct request *req;
1453
1454	if (!sdev) {
1455		printk("scsi: killing requests for dead queue\n");
1456		while ((req = blk_peek_request(q)) != NULL)
1457			scsi_kill_request(req, q);
1458		return;
1459	}
1460
1461	if(!get_device(&sdev->sdev_gendev))
1462		/* We must be tearing the block queue down already */
1463		return;
1464
1465	/*
1466	 * To start with, we keep looping until the queue is empty, or until
1467	 * the host is no longer able to accept any more requests.
1468	 */
1469	shost = sdev->host;
1470	while (!blk_queue_plugged(q)) {
1471		int rtn;
1472		/*
1473		 * get next queueable request.  We do this early to make sure
1474		 * that the request is fully prepared even if we cannot
1475		 * accept it.
1476		 */
1477		req = blk_peek_request(q);
1478		if (!req || !scsi_dev_queue_ready(q, sdev))
1479			break;
1480
1481		if (unlikely(!scsi_device_online(sdev))) {
1482			sdev_printk(KERN_ERR, sdev,
1483				    "rejecting I/O to offline device\n");
1484			scsi_kill_request(req, q);
1485			continue;
1486		}
1487
1488
1489		/*
1490		 * Remove the request from the request list.
1491		 */
1492		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1493			blk_start_request(req);
1494		sdev->device_busy++;
1495
1496		spin_unlock(q->queue_lock);
1497		cmd = req->special;
1498		if (unlikely(cmd == NULL)) {
1499			printk(KERN_CRIT "impossible request in %s.\n"
1500					 "please mail a stack trace to "
1501					 "linux-scsi@vger.kernel.org\n",
1502					 __func__);
1503			blk_dump_rq_flags(req, "foo");
1504			BUG();
1505		}
1506		spin_lock(shost->host_lock);
1507
1508		/*
1509		 * We hit this when the driver is using a host wide
1510		 * tag map. For device level tag maps the queue_depth check
1511		 * in the device ready fn would prevent us from trying
1512		 * to allocate a tag. Since the map is a shared host resource
1513		 * we add the dev to the starved list so it eventually gets
1514		 * a run when a tag is freed.
1515		 */
1516		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1517			if (list_empty(&sdev->starved_entry))
1518				list_add_tail(&sdev->starved_entry,
1519					      &shost->starved_list);
1520			goto not_ready;
1521		}
1522
1523		if (!scsi_target_queue_ready(shost, sdev))
1524			goto not_ready;
1525
1526		if (!scsi_host_queue_ready(q, shost, sdev))
1527			goto not_ready;
1528
1529		scsi_target(sdev)->target_busy++;
1530		shost->host_busy++;
1531
1532		/*
1533		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1534		 *		take the lock again.
1535		 */
1536		spin_unlock_irq(shost->host_lock);
1537
1538		/*
1539		 * Finally, initialize any error handling parameters, and set up
1540		 * the timers for timeouts.
1541		 */
1542		scsi_init_cmd_errh(cmd);
1543
1544		/*
1545		 * Dispatch the command to the low-level driver.
1546		 */
1547		rtn = scsi_dispatch_cmd(cmd);
1548		spin_lock_irq(q->queue_lock);
1549		if(rtn) {
1550			/* we're refusing the command; because of
1551			 * the way locks get dropped, we need to
1552			 * check here if plugging is required */
1553			if(sdev->device_busy == 0)
1554				blk_plug_device(q);
1555
1556			break;
1557		}
1558	}
1559
1560	goto out;
1561
1562 not_ready:
1563	spin_unlock_irq(shost->host_lock);
1564
1565	/*
1566	 * lock q, handle tag, requeue req, and decrement device_busy. We
1567	 * must return with queue_lock held.
1568	 *
1569	 * Decrementing device_busy without checking it is OK, as all such
1570	 * cases (host limits or settings) should run the queue at some
1571	 * later time.
1572	 */
1573	spin_lock_irq(q->queue_lock);
1574	blk_requeue_request(q, req);
1575	sdev->device_busy--;
1576	if(sdev->device_busy == 0)
1577		blk_plug_device(q);
1578 out:
1579	/* must be careful here...if we trigger the ->remove() function
1580	 * we cannot be holding the q lock */
1581	spin_unlock_irq(q->queue_lock);
1582	put_device(&sdev->sdev_gendev);
1583	spin_lock_irq(q->queue_lock);
1584}
1585
1586u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1587{
1588	struct device *host_dev;
1589	u64 bounce_limit = 0xffffffff;
1590
1591	if (shost->unchecked_isa_dma)
1592		return BLK_BOUNCE_ISA;
1593	/*
1594	 * Platforms with virtual-DMA translation
1595	 * hardware have no practical limit.
1596	 */
1597	if (!PCI_DMA_BUS_IS_PHYS)
1598		return BLK_BOUNCE_ANY;
1599
1600	host_dev = scsi_get_device(shost);
1601	if (host_dev && host_dev->dma_mask)
1602		bounce_limit = *host_dev->dma_mask;
1603
1604	return bounce_limit;
1605}
1606EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1607
1608struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1609					 request_fn_proc *request_fn)
1610{
1611	struct request_queue *q;
1612	struct device *dev = shost->shost_gendev.parent;
1613
1614	q = blk_init_queue(request_fn, NULL);
1615	if (!q)
1616		return NULL;
1617
1618	/*
1619	 * this limit is imposed by hardware restrictions
1620	 */
1621	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1622					SCSI_MAX_SG_CHAIN_SEGMENTS));
1623
1624	if (scsi_host_prot_dma(shost)) {
1625		shost->sg_prot_tablesize =
1626			min_not_zero(shost->sg_prot_tablesize,
1627				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1628		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1629		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1630	}
1631
1632	blk_queue_max_hw_sectors(q, shost->max_sectors);
1633	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1634	blk_queue_segment_boundary(q, shost->dma_boundary);
1635	dma_set_seg_boundary(dev, shost->dma_boundary);
1636
1637	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1638
1639	/* New queue, no concurrency on queue_flags */
1640	if (!shost->use_clustering)
1641		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1642
1643	/*
1644	 * set a reasonable default alignment on word boundaries: the
1645	 * host and device may alter it using
1646	 * blk_queue_update_dma_alignment() later.
1647	 */
1648	blk_queue_dma_alignment(q, 0x03);
1649
1650	return q;
1651}
1652EXPORT_SYMBOL(__scsi_alloc_queue);
1653
1654struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1655{
1656	struct request_queue *q;
1657
1658	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1659	if (!q)
1660		return NULL;
1661
1662	blk_queue_prep_rq(q, scsi_prep_fn);
1663	blk_queue_softirq_done(q, scsi_softirq_done);
1664	blk_queue_rq_timed_out(q, scsi_times_out);
1665	blk_queue_lld_busy(q, scsi_lld_busy);
1666	return q;
1667}
1668
1669void scsi_free_queue(struct request_queue *q)
1670{
1671	blk_cleanup_queue(q);
1672}
1673
1674/*
1675 * Function:    scsi_block_requests()
1676 *
1677 * Purpose:     Utility function used by low-level drivers to prevent further
1678 *		commands from being queued to the device.
1679 *
1680 * Arguments:   shost       - Host in question
1681 *
1682 * Returns:     Nothing
1683 *
1684 * Lock status: No locks are assumed held.
1685 *
1686 * Notes:       There is no timer nor any other means by which the requests
1687 *		get unblocked other than the low-level driver calling
1688 *		scsi_unblock_requests().
1689 */
1690void scsi_block_requests(struct Scsi_Host *shost)
1691{
1692	shost->host_self_blocked = 1;
1693}
1694EXPORT_SYMBOL(scsi_block_requests);
1695
1696/*
1697 * Function:    scsi_unblock_requests()
1698 *
1699 * Purpose:     Utility function used by low-level drivers to allow further
1700 *		commands from being queued to the device.
1701 *
1702 * Arguments:   shost       - Host in question
1703 *
1704 * Returns:     Nothing
1705 *
1706 * Lock status: No locks are assumed held.
1707 *
1708 * Notes:       There is no timer nor any other means by which the requests
1709 *		get unblocked other than the low-level driver calling
1710 *		scsi_unblock_requests().
1711 *
1712 *		This is done as an API function so that changes to the
1713 *		internals of the scsi mid-layer won't require wholesale
1714 *		changes to drivers that use this feature.
1715 */
1716void scsi_unblock_requests(struct Scsi_Host *shost)
1717{
1718	shost->host_self_blocked = 0;
1719	scsi_run_host_queues(shost);
1720}
1721EXPORT_SYMBOL(scsi_unblock_requests);
1722
1723int __init scsi_init_queue(void)
1724{
1725	int i;
1726
1727	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1728					   sizeof(struct scsi_data_buffer),
1729					   0, 0, NULL);
1730	if (!scsi_sdb_cache) {
1731		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1732		return -ENOMEM;
1733	}
1734
1735	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1736		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1737		int size = sgp->size * sizeof(struct scatterlist);
1738
1739		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1740				SLAB_HWCACHE_ALIGN, NULL);
1741		if (!sgp->slab) {
1742			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1743					sgp->name);
1744			goto cleanup_sdb;
1745		}
1746
1747		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1748						     sgp->slab);
1749		if (!sgp->pool) {
1750			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1751					sgp->name);
1752			goto cleanup_sdb;
1753		}
1754	}
1755
1756	return 0;
1757
1758cleanup_sdb:
1759	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1760		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1761		if (sgp->pool)
1762			mempool_destroy(sgp->pool);
1763		if (sgp->slab)
1764			kmem_cache_destroy(sgp->slab);
1765	}
1766	kmem_cache_destroy(scsi_sdb_cache);
1767
1768	return -ENOMEM;
1769}
1770
1771void scsi_exit_queue(void)
1772{
1773	int i;
1774
1775	kmem_cache_destroy(scsi_sdb_cache);
1776
1777	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1778		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1779		mempool_destroy(sgp->pool);
1780		kmem_cache_destroy(sgp->slab);
1781	}
1782}
1783
1784/**
1785 *	scsi_mode_select - issue a mode select
1786 *	@sdev:	SCSI device to be queried
1787 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1788 *	@sp:	Save page bit (0 == don't save, 1 == save)
1789 *	@modepage: mode page being requested
1790 *	@buffer: request buffer (may not be smaller than eight bytes)
1791 *	@len:	length of request buffer.
1792 *	@timeout: command timeout
1793 *	@retries: number of retries before failing
1794 *	@data: returns a structure abstracting the mode header data
1795 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1796 *		must be SCSI_SENSE_BUFFERSIZE big.
1797 *
1798 *	Returns zero if successful; negative error number or scsi
1799 *	status on error
1800 *
1801 */
1802int
1803scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1804		 unsigned char *buffer, int len, int timeout, int retries,
1805		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1806{
1807	unsigned char cmd[10];
1808	unsigned char *real_buffer;
1809	int ret;
1810
1811	memset(cmd, 0, sizeof(cmd));
1812	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1813
1814	if (sdev->use_10_for_ms) {
1815		if (len > 65535)
1816			return -EINVAL;
1817		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1818		if (!real_buffer)
1819			return -ENOMEM;
1820		memcpy(real_buffer + 8, buffer, len);
1821		len += 8;
1822		real_buffer[0] = 0;
1823		real_buffer[1] = 0;
1824		real_buffer[2] = data->medium_type;
1825		real_buffer[3] = data->device_specific;
1826		real_buffer[4] = data->longlba ? 0x01 : 0;
1827		real_buffer[5] = 0;
1828		real_buffer[6] = data->block_descriptor_length >> 8;
1829		real_buffer[7] = data->block_descriptor_length;
1830
1831		cmd[0] = MODE_SELECT_10;
1832		cmd[7] = len >> 8;
1833		cmd[8] = len;
1834	} else {
1835		if (len > 255 || data->block_descriptor_length > 255 ||
1836		    data->longlba)
1837			return -EINVAL;
1838
1839		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1840		if (!real_buffer)
1841			return -ENOMEM;
1842		memcpy(real_buffer + 4, buffer, len);
1843		len += 4;
1844		real_buffer[0] = 0;
1845		real_buffer[1] = data->medium_type;
1846		real_buffer[2] = data->device_specific;
1847		real_buffer[3] = data->block_descriptor_length;
1848
1849
1850		cmd[0] = MODE_SELECT;
1851		cmd[4] = len;
1852	}
1853
1854	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1855			       sshdr, timeout, retries, NULL);
1856	kfree(real_buffer);
1857	return ret;
1858}
1859EXPORT_SYMBOL_GPL(scsi_mode_select);
1860
1861/**
1862 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1863 *	@sdev:	SCSI device to be queried
1864 *	@dbd:	set if mode sense will allow block descriptors to be returned
1865 *	@modepage: mode page being requested
1866 *	@buffer: request buffer (may not be smaller than eight bytes)
1867 *	@len:	length of request buffer.
1868 *	@timeout: command timeout
1869 *	@retries: number of retries before failing
1870 *	@data: returns a structure abstracting the mode header data
1871 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1872 *		must be SCSI_SENSE_BUFFERSIZE big.
1873 *
1874 *	Returns zero if unsuccessful, or the header offset (either 4
1875 *	or 8 depending on whether a six or ten byte command was
1876 *	issued) if successful.
1877 */
1878int
1879scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1880		  unsigned char *buffer, int len, int timeout, int retries,
1881		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1882{
1883	unsigned char cmd[12];
1884	int use_10_for_ms;
1885	int header_length;
1886	int result;
1887	struct scsi_sense_hdr my_sshdr;
1888
1889	memset(data, 0, sizeof(*data));
1890	memset(&cmd[0], 0, 12);
1891	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1892	cmd[2] = modepage;
1893
1894	/* caller might not be interested in sense, but we need it */
1895	if (!sshdr)
1896		sshdr = &my_sshdr;
1897
1898 retry:
1899	use_10_for_ms = sdev->use_10_for_ms;
1900
1901	if (use_10_for_ms) {
1902		if (len < 8)
1903			len = 8;
1904
1905		cmd[0] = MODE_SENSE_10;
1906		cmd[8] = len;
1907		header_length = 8;
1908	} else {
1909		if (len < 4)
1910			len = 4;
1911
1912		cmd[0] = MODE_SENSE;
1913		cmd[4] = len;
1914		header_length = 4;
1915	}
1916
1917	memset(buffer, 0, len);
1918
1919	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1920				  sshdr, timeout, retries, NULL);
1921
1922	/* This code looks awful: what it's doing is making sure an
1923	 * ILLEGAL REQUEST sense return identifies the actual command
1924	 * byte as the problem.  MODE_SENSE commands can return
1925	 * ILLEGAL REQUEST if the code page isn't supported */
1926
1927	if (use_10_for_ms && !scsi_status_is_good(result) &&
1928	    (driver_byte(result) & DRIVER_SENSE)) {
1929		if (scsi_sense_valid(sshdr)) {
1930			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1931			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1932				/*
1933				 * Invalid command operation code
1934				 */
1935				sdev->use_10_for_ms = 0;
1936				goto retry;
1937			}
1938		}
1939	}
1940
1941	if(scsi_status_is_good(result)) {
1942		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1943			     (modepage == 6 || modepage == 8))) {
1944			/* Initio breakage? */
1945			header_length = 0;
1946			data->length = 13;
1947			data->medium_type = 0;
1948			data->device_specific = 0;
1949			data->longlba = 0;
1950			data->block_descriptor_length = 0;
1951		} else if(use_10_for_ms) {
1952			data->length = buffer[0]*256 + buffer[1] + 2;
1953			data->medium_type = buffer[2];
1954			data->device_specific = buffer[3];
1955			data->longlba = buffer[4] & 0x01;
1956			data->block_descriptor_length = buffer[6]*256
1957				+ buffer[7];
1958		} else {
1959			data->length = buffer[0] + 1;
1960			data->medium_type = buffer[1];
1961			data->device_specific = buffer[2];
1962			data->block_descriptor_length = buffer[3];
1963		}
1964		data->header_length = header_length;
1965	}
1966
1967	return result;
1968}
1969EXPORT_SYMBOL(scsi_mode_sense);
1970
1971/**
1972 *	scsi_test_unit_ready - test if unit is ready
1973 *	@sdev:	scsi device to change the state of.
1974 *	@timeout: command timeout
1975 *	@retries: number of retries before failing
1976 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1977 *		returning sense. Make sure that this is cleared before passing
1978 *		in.
1979 *
1980 *	Returns zero if unsuccessful or an error if TUR failed.  For
1981 *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1982 *	translated to success, with the ->changed flag updated.
1983 **/
1984int
1985scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1986		     struct scsi_sense_hdr *sshdr_external)
1987{
1988	char cmd[] = {
1989		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1990	};
1991	struct scsi_sense_hdr *sshdr;
1992	int result;
1993
1994	if (!sshdr_external)
1995		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1996	else
1997		sshdr = sshdr_external;
1998
1999	/* try to eat the UNIT_ATTENTION if there are enough retries */
2000	do {
2001		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2002					  timeout, retries, NULL);
2003		if (sdev->removable && scsi_sense_valid(sshdr) &&
2004		    sshdr->sense_key == UNIT_ATTENTION)
2005			sdev->changed = 1;
2006	} while (scsi_sense_valid(sshdr) &&
2007		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2008
2009	if (!sshdr)
2010		/* could not allocate sense buffer, so can't process it */
2011		return result;
2012
2013	if (sdev->removable && scsi_sense_valid(sshdr) &&
2014	    (sshdr->sense_key == UNIT_ATTENTION ||
2015	     sshdr->sense_key == NOT_READY)) {
2016		sdev->changed = 1;
2017		result = 0;
2018	}
2019	if (!sshdr_external)
2020		kfree(sshdr);
2021	return result;
2022}
2023EXPORT_SYMBOL(scsi_test_unit_ready);
2024
2025/**
2026 *	scsi_device_set_state - Take the given device through the device state model.
2027 *	@sdev:	scsi device to change the state of.
2028 *	@state:	state to change to.
2029 *
2030 *	Returns zero if unsuccessful or an error if the requested
2031 *	transition is illegal.
2032 */
2033int
2034scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2035{
2036	enum scsi_device_state oldstate = sdev->sdev_state;
2037
2038	if (state == oldstate)
2039		return 0;
2040
2041	switch (state) {
2042	case SDEV_CREATED:
2043		switch (oldstate) {
2044		case SDEV_CREATED_BLOCK:
2045			break;
2046		default:
2047			goto illegal;
2048		}
2049		break;
2050
2051	case SDEV_RUNNING:
2052		switch (oldstate) {
2053		case SDEV_CREATED:
2054		case SDEV_OFFLINE:
2055		case SDEV_QUIESCE:
2056		case SDEV_BLOCK:
2057			break;
2058		default:
2059			goto illegal;
2060		}
2061		break;
2062
2063	case SDEV_QUIESCE:
2064		switch (oldstate) {
2065		case SDEV_RUNNING:
2066		case SDEV_OFFLINE:
2067			break;
2068		default:
2069			goto illegal;
2070		}
2071		break;
2072
2073	case SDEV_OFFLINE:
2074		switch (oldstate) {
2075		case SDEV_CREATED:
2076		case SDEV_RUNNING:
2077		case SDEV_QUIESCE:
2078		case SDEV_BLOCK:
2079			break;
2080		default:
2081			goto illegal;
2082		}
2083		break;
2084
2085	case SDEV_BLOCK:
2086		switch (oldstate) {
2087		case SDEV_RUNNING:
2088		case SDEV_CREATED_BLOCK:
2089			break;
2090		default:
2091			goto illegal;
2092		}
2093		break;
2094
2095	case SDEV_CREATED_BLOCK:
2096		switch (oldstate) {
2097		case SDEV_CREATED:
2098			break;
2099		default:
2100			goto illegal;
2101		}
2102		break;
2103
2104	case SDEV_CANCEL:
2105		switch (oldstate) {
2106		case SDEV_CREATED:
2107		case SDEV_RUNNING:
2108		case SDEV_QUIESCE:
2109		case SDEV_OFFLINE:
2110		case SDEV_BLOCK:
2111			break;
2112		default:
2113			goto illegal;
2114		}
2115		break;
2116
2117	case SDEV_DEL:
2118		switch (oldstate) {
2119		case SDEV_CREATED:
2120		case SDEV_RUNNING:
2121		case SDEV_OFFLINE:
2122		case SDEV_CANCEL:
2123			break;
2124		default:
2125			goto illegal;
2126		}
2127		break;
2128
2129	}
2130	sdev->sdev_state = state;
2131	return 0;
2132
2133 illegal:
2134	SCSI_LOG_ERROR_RECOVERY(1,
2135				sdev_printk(KERN_ERR, sdev,
2136					    "Illegal state transition %s->%s\n",
2137					    scsi_device_state_name(oldstate),
2138					    scsi_device_state_name(state))
2139				);
2140	return -EINVAL;
2141}
2142EXPORT_SYMBOL(scsi_device_set_state);
2143
2144/**
2145 * 	sdev_evt_emit - emit a single SCSI device uevent
2146 *	@sdev: associated SCSI device
2147 *	@evt: event to emit
2148 *
2149 *	Send a single uevent (scsi_event) to the associated scsi_device.
2150 */
2151static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2152{
2153	int idx = 0;
2154	char *envp[3];
2155
2156	switch (evt->evt_type) {
2157	case SDEV_EVT_MEDIA_CHANGE:
2158		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2159		break;
2160
2161	default:
2162		/* do nothing */
2163		break;
2164	}
2165
2166	envp[idx++] = NULL;
2167
2168	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2169}
2170
2171/**
2172 * 	sdev_evt_thread - send a uevent for each scsi event
2173 *	@work: work struct for scsi_device
2174 *
2175 *	Dispatch queued events to their associated scsi_device kobjects
2176 *	as uevents.
2177 */
2178void scsi_evt_thread(struct work_struct *work)
2179{
2180	struct scsi_device *sdev;
2181	LIST_HEAD(event_list);
2182
2183	sdev = container_of(work, struct scsi_device, event_work);
2184
2185	while (1) {
2186		struct scsi_event *evt;
2187		struct list_head *this, *tmp;
2188		unsigned long flags;
2189
2190		spin_lock_irqsave(&sdev->list_lock, flags);
2191		list_splice_init(&sdev->event_list, &event_list);
2192		spin_unlock_irqrestore(&sdev->list_lock, flags);
2193
2194		if (list_empty(&event_list))
2195			break;
2196
2197		list_for_each_safe(this, tmp, &event_list) {
2198			evt = list_entry(this, struct scsi_event, node);
2199			list_del(&evt->node);
2200			scsi_evt_emit(sdev, evt);
2201			kfree(evt);
2202		}
2203	}
2204}
2205
2206/**
2207 * 	sdev_evt_send - send asserted event to uevent thread
2208 *	@sdev: scsi_device event occurred on
2209 *	@evt: event to send
2210 *
2211 *	Assert scsi device event asynchronously.
2212 */
2213void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2214{
2215	unsigned long flags;
2216
2217#if 0
2218	/* FIXME: currently this check eliminates all media change events
2219	 * for polled devices.  Need to update to discriminate between AN
2220	 * and polled events */
2221	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2222		kfree(evt);
2223		return;
2224	}
2225#endif
2226
2227	spin_lock_irqsave(&sdev->list_lock, flags);
2228	list_add_tail(&evt->node, &sdev->event_list);
2229	schedule_work(&sdev->event_work);
2230	spin_unlock_irqrestore(&sdev->list_lock, flags);
2231}
2232EXPORT_SYMBOL_GPL(sdev_evt_send);
2233
2234/**
2235 * 	sdev_evt_alloc - allocate a new scsi event
2236 *	@evt_type: type of event to allocate
2237 *	@gfpflags: GFP flags for allocation
2238 *
2239 *	Allocates and returns a new scsi_event.
2240 */
2241struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2242				  gfp_t gfpflags)
2243{
2244	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2245	if (!evt)
2246		return NULL;
2247
2248	evt->evt_type = evt_type;
2249	INIT_LIST_HEAD(&evt->node);
2250
2251	/* evt_type-specific initialization, if any */
2252	switch (evt_type) {
2253	case SDEV_EVT_MEDIA_CHANGE:
2254	default:
2255		/* do nothing */
2256		break;
2257	}
2258
2259	return evt;
2260}
2261EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2262
2263/**
2264 * 	sdev_evt_send_simple - send asserted event to uevent thread
2265 *	@sdev: scsi_device event occurred on
2266 *	@evt_type: type of event to send
2267 *	@gfpflags: GFP flags for allocation
2268 *
2269 *	Assert scsi device event asynchronously, given an event type.
2270 */
2271void sdev_evt_send_simple(struct scsi_device *sdev,
2272			  enum scsi_device_event evt_type, gfp_t gfpflags)
2273{
2274	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2275	if (!evt) {
2276		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2277			    evt_type);
2278		return;
2279	}
2280
2281	sdev_evt_send(sdev, evt);
2282}
2283EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2284
2285/**
2286 *	scsi_device_quiesce - Block user issued commands.
2287 *	@sdev:	scsi device to quiesce.
2288 *
2289 *	This works by trying to transition to the SDEV_QUIESCE state
2290 *	(which must be a legal transition).  When the device is in this
2291 *	state, only special requests will be accepted, all others will
2292 *	be deferred.  Since special requests may also be requeued requests,
2293 *	a successful return doesn't guarantee the device will be
2294 *	totally quiescent.
2295 *
2296 *	Must be called with user context, may sleep.
2297 *
2298 *	Returns zero if unsuccessful or an error if not.
2299 */
2300int
2301scsi_device_quiesce(struct scsi_device *sdev)
2302{
2303	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2304	if (err)
2305		return err;
2306
2307	scsi_run_queue(sdev->request_queue);
2308	while (sdev->device_busy) {
2309		msleep_interruptible(200);
2310		scsi_run_queue(sdev->request_queue);
2311	}
2312	return 0;
2313}
2314EXPORT_SYMBOL(scsi_device_quiesce);
2315
2316/**
2317 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2318 *	@sdev:	scsi device to resume.
2319 *
2320 *	Moves the device from quiesced back to running and restarts the
2321 *	queues.
2322 *
2323 *	Must be called with user context, may sleep.
2324 */
2325void
2326scsi_device_resume(struct scsi_device *sdev)
2327{
2328	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2329		return;
2330	scsi_run_queue(sdev->request_queue);
2331}
2332EXPORT_SYMBOL(scsi_device_resume);
2333
2334static void
2335device_quiesce_fn(struct scsi_device *sdev, void *data)
2336{
2337	scsi_device_quiesce(sdev);
2338}
2339
2340void
2341scsi_target_quiesce(struct scsi_target *starget)
2342{
2343	starget_for_each_device(starget, NULL, device_quiesce_fn);
2344}
2345EXPORT_SYMBOL(scsi_target_quiesce);
2346
2347static void
2348device_resume_fn(struct scsi_device *sdev, void *data)
2349{
2350	scsi_device_resume(sdev);
2351}
2352
2353void
2354scsi_target_resume(struct scsi_target *starget)
2355{
2356	starget_for_each_device(starget, NULL, device_resume_fn);
2357}
2358EXPORT_SYMBOL(scsi_target_resume);
2359
2360/**
2361 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2362 * @sdev:	device to block
2363 *
2364 * Block request made by scsi lld's to temporarily stop all
2365 * scsi commands on the specified device.  Called from interrupt
2366 * or normal process context.
2367 *
2368 * Returns zero if successful or error if not
2369 *
2370 * Notes:
2371 *	This routine transitions the device to the SDEV_BLOCK state
2372 *	(which must be a legal transition).  When the device is in this
2373 *	state, all commands are deferred until the scsi lld reenables
2374 *	the device with scsi_device_unblock or device_block_tmo fires.
2375 *	This routine assumes the host_lock is held on entry.
2376 */
2377int
2378scsi_internal_device_block(struct scsi_device *sdev)
2379{
2380	struct request_queue *q = sdev->request_queue;
2381	unsigned long flags;
2382	int err = 0;
2383
2384	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2385	if (err) {
2386		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2387
2388		if (err)
2389			return err;
2390	}
2391
2392	/*
2393	 * The device has transitioned to SDEV_BLOCK.  Stop the
2394	 * block layer from calling the midlayer with this device's
2395	 * request queue.
2396	 */
2397	spin_lock_irqsave(q->queue_lock, flags);
2398	blk_stop_queue(q);
2399	spin_unlock_irqrestore(q->queue_lock, flags);
2400
2401	return 0;
2402}
2403EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2404
2405/**
2406 * scsi_internal_device_unblock - resume a device after a block request
2407 * @sdev:	device to resume
2408 *
2409 * Called by scsi lld's or the midlayer to restart the device queue
2410 * for the previously suspended scsi device.  Called from interrupt or
2411 * normal process context.
2412 *
2413 * Returns zero if successful or error if not.
2414 *
2415 * Notes:
2416 *	This routine transitions the device to the SDEV_RUNNING state
2417 *	(which must be a legal transition) allowing the midlayer to
2418 *	goose the queue for this device.  This routine assumes the
2419 *	host_lock is held upon entry.
2420 */
2421int
2422scsi_internal_device_unblock(struct scsi_device *sdev)
2423{
2424	struct request_queue *q = sdev->request_queue;
2425	unsigned long flags;
2426
2427	/*
2428	 * Try to transition the scsi device to SDEV_RUNNING
2429	 * and goose the device queue if successful.
2430	 */
2431	if (sdev->sdev_state == SDEV_BLOCK)
2432		sdev->sdev_state = SDEV_RUNNING;
2433	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2434		sdev->sdev_state = SDEV_CREATED;
2435	else if (sdev->sdev_state != SDEV_CANCEL &&
2436		 sdev->sdev_state != SDEV_OFFLINE)
2437		return -EINVAL;
2438
2439	spin_lock_irqsave(q->queue_lock, flags);
2440	blk_start_queue(q);
2441	spin_unlock_irqrestore(q->queue_lock, flags);
2442
2443	return 0;
2444}
2445EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2446
2447static void
2448device_block(struct scsi_device *sdev, void *data)
2449{
2450	scsi_internal_device_block(sdev);
2451}
2452
2453static int
2454target_block(struct device *dev, void *data)
2455{
2456	if (scsi_is_target_device(dev))
2457		starget_for_each_device(to_scsi_target(dev), NULL,
2458					device_block);
2459	return 0;
2460}
2461
2462void
2463scsi_target_block(struct device *dev)
2464{
2465	if (scsi_is_target_device(dev))
2466		starget_for_each_device(to_scsi_target(dev), NULL,
2467					device_block);
2468	else
2469		device_for_each_child(dev, NULL, target_block);
2470}
2471EXPORT_SYMBOL_GPL(scsi_target_block);
2472
2473static void
2474device_unblock(struct scsi_device *sdev, void *data)
2475{
2476	scsi_internal_device_unblock(sdev);
2477}
2478
2479static int
2480target_unblock(struct device *dev, void *data)
2481{
2482	if (scsi_is_target_device(dev))
2483		starget_for_each_device(to_scsi_target(dev), NULL,
2484					device_unblock);
2485	return 0;
2486}
2487
2488void
2489scsi_target_unblock(struct device *dev)
2490{
2491	if (scsi_is_target_device(dev))
2492		starget_for_each_device(to_scsi_target(dev), NULL,
2493					device_unblock);
2494	else
2495		device_for_each_child(dev, NULL, target_unblock);
2496}
2497EXPORT_SYMBOL_GPL(scsi_target_unblock);
2498
2499/**
2500 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2501 * @sgl:	scatter-gather list
2502 * @sg_count:	number of segments in sg
2503 * @offset:	offset in bytes into sg, on return offset into the mapped area
2504 * @len:	bytes to map, on return number of bytes mapped
2505 *
2506 * Returns virtual address of the start of the mapped page
2507 */
2508void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2509			  size_t *offset, size_t *len)
2510{
2511	int i;
2512	size_t sg_len = 0, len_complete = 0;
2513	struct scatterlist *sg;
2514	struct page *page;
2515
2516	WARN_ON(!irqs_disabled());
2517
2518	for_each_sg(sgl, sg, sg_count, i) {
2519		len_complete = sg_len; /* Complete sg-entries */
2520		sg_len += sg->length;
2521		if (sg_len > *offset)
2522			break;
2523	}
2524
2525	if (unlikely(i == sg_count)) {
2526		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2527			"elements %d\n",
2528		       __func__, sg_len, *offset, sg_count);
2529		WARN_ON(1);
2530		return NULL;
2531	}
2532
2533	/* Offset starting from the beginning of first page in this sg-entry */
2534	*offset = *offset - len_complete + sg->offset;
2535
2536	/* Assumption: contiguous pages can be accessed as "page + i" */
2537	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2538	*offset &= ~PAGE_MASK;
2539
2540	/* Bytes in this sg-entry from *offset to the end of the page */
2541	sg_len = PAGE_SIZE - *offset;
2542	if (*len > sg_len)
2543		*len = sg_len;
2544
2545	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2546}
2547EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2548
2549/**
2550 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2551 * @virt:	virtual address to be unmapped
2552 */
2553void scsi_kunmap_atomic_sg(void *virt)
2554{
2555	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2556}
2557EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2558