scsi_lib.c revision fd820f405574a30aacf9a859886e173d641f080b
1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20#include <linux/scatterlist.h>
21
22#include <scsi/scsi.h>
23#include <scsi/scsi_cmnd.h>
24#include <scsi/scsi_dbg.h>
25#include <scsi/scsi_device.h>
26#include <scsi/scsi_driver.h>
27#include <scsi/scsi_eh.h>
28#include <scsi/scsi_host.h>
29
30#include "scsi_priv.h"
31#include "scsi_logging.h"
32
33
34#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
35#define SG_MEMPOOL_SIZE		2
36
37/*
38 * The maximum number of SG segments that we will put inside a scatterlist
39 * (unless chaining is used). Should ideally fit inside a single page, to
40 * avoid a higher order allocation.
41 */
42#define SCSI_MAX_SG_SEGMENTS	128
43
44struct scsi_host_sg_pool {
45	size_t		size;
46	char		*name;
47	struct kmem_cache	*slab;
48	mempool_t	*pool;
49};
50
51#define SP(x) { x, "sgpool-" #x }
52static struct scsi_host_sg_pool scsi_sg_pools[] = {
53	SP(8),
54	SP(16),
55#if (SCSI_MAX_SG_SEGMENTS > 16)
56	SP(32),
57#if (SCSI_MAX_SG_SEGMENTS > 32)
58	SP(64),
59#if (SCSI_MAX_SG_SEGMENTS > 64)
60	SP(128),
61#endif
62#endif
63#endif
64};
65#undef SP
66
67static void scsi_run_queue(struct request_queue *q);
68
69/*
70 * Function:	scsi_unprep_request()
71 *
72 * Purpose:	Remove all preparation done for a request, including its
73 *		associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments:	req	- request to unprepare
76 *
77 * Lock status:	Assumed that no locks are held upon entry.
78 *
79 * Returns:	Nothing.
80 */
81static void scsi_unprep_request(struct request *req)
82{
83	struct scsi_cmnd *cmd = req->special;
84
85	req->cmd_flags &= ~REQ_DONTPREP;
86	req->special = NULL;
87
88	scsi_put_command(cmd);
89}
90
91/*
92 * Function:    scsi_queue_insert()
93 *
94 * Purpose:     Insert a command in the midlevel queue.
95 *
96 * Arguments:   cmd    - command that we are adding to queue.
97 *              reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns:     Nothing.
102 *
103 * Notes:       We do this for one of two cases.  Either the host is busy
104 *              and it cannot accept any more commands for the time being,
105 *              or the device returned QUEUE_FULL and can accept no more
106 *              commands.
107 * Notes:       This could be called either from an interrupt context or a
108 *              normal process context.
109 */
110int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111{
112	struct Scsi_Host *host = cmd->device->host;
113	struct scsi_device *device = cmd->device;
114	struct request_queue *q = device->request_queue;
115	unsigned long flags;
116
117	SCSI_LOG_MLQUEUE(1,
118		 printk("Inserting command %p into mlqueue\n", cmd));
119
120	/*
121	 * Set the appropriate busy bit for the device/host.
122	 *
123	 * If the host/device isn't busy, assume that something actually
124	 * completed, and that we should be able to queue a command now.
125	 *
126	 * Note that the prior mid-layer assumption that any host could
127	 * always queue at least one command is now broken.  The mid-layer
128	 * will implement a user specifiable stall (see
129	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130	 * if a command is requeued with no other commands outstanding
131	 * either for the device or for the host.
132	 */
133	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134		host->host_blocked = host->max_host_blocked;
135	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136		device->device_blocked = device->max_device_blocked;
137
138	/*
139	 * Decrement the counters, since these commands are no longer
140	 * active on the host/device.
141	 */
142	scsi_device_unbusy(device);
143
144	/*
145	 * Requeue this command.  It will go before all other commands
146	 * that are already in the queue.
147	 *
148	 * NOTE: there is magic here about the way the queue is plugged if
149	 * we have no outstanding commands.
150	 *
151	 * Although we *don't* plug the queue, we call the request
152	 * function.  The SCSI request function detects the blocked condition
153	 * and plugs the queue appropriately.
154         */
155	spin_lock_irqsave(q->queue_lock, flags);
156	blk_requeue_request(q, cmd->request);
157	spin_unlock_irqrestore(q->queue_lock, flags);
158
159	scsi_run_queue(q);
160
161	return 0;
162}
163
164/**
165 * scsi_execute - insert request and wait for the result
166 * @sdev:	scsi device
167 * @cmd:	scsi command
168 * @data_direction: data direction
169 * @buffer:	data buffer
170 * @bufflen:	len of buffer
171 * @sense:	optional sense buffer
172 * @timeout:	request timeout in seconds
173 * @retries:	number of times to retry request
174 * @flags:	or into request flags;
175 *
176 * returns the req->errors value which is the scsi_cmnd result
177 * field.
178 **/
179int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180		 int data_direction, void *buffer, unsigned bufflen,
181		 unsigned char *sense, int timeout, int retries, int flags)
182{
183	struct request *req;
184	int write = (data_direction == DMA_TO_DEVICE);
185	int ret = DRIVER_ERROR << 24;
186
187	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190					buffer, bufflen, __GFP_WAIT))
191		goto out;
192
193	req->cmd_len = COMMAND_SIZE(cmd[0]);
194	memcpy(req->cmd, cmd, req->cmd_len);
195	req->sense = sense;
196	req->sense_len = 0;
197	req->retries = retries;
198	req->timeout = timeout;
199	req->cmd_type = REQ_TYPE_BLOCK_PC;
200	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202	/*
203	 * head injection *required* here otherwise quiesce won't work
204	 */
205	blk_execute_rq(req->q, NULL, req, 1);
206
207	ret = req->errors;
208 out:
209	blk_put_request(req);
210
211	return ret;
212}
213EXPORT_SYMBOL(scsi_execute);
214
215
216int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217		     int data_direction, void *buffer, unsigned bufflen,
218		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219{
220	char *sense = NULL;
221	int result;
222
223	if (sshdr) {
224		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225		if (!sense)
226			return DRIVER_ERROR << 24;
227	}
228	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229			      sense, timeout, retries, 0);
230	if (sshdr)
231		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233	kfree(sense);
234	return result;
235}
236EXPORT_SYMBOL(scsi_execute_req);
237
238struct scsi_io_context {
239	void *data;
240	void (*done)(void *data, char *sense, int result, int resid);
241	char sense[SCSI_SENSE_BUFFERSIZE];
242};
243
244static struct kmem_cache *scsi_io_context_cache;
245
246static void scsi_end_async(struct request *req, int uptodate)
247{
248	struct scsi_io_context *sioc = req->end_io_data;
249
250	if (sioc->done)
251		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253	kmem_cache_free(scsi_io_context_cache, sioc);
254	__blk_put_request(req->q, req);
255}
256
257static int scsi_merge_bio(struct request *rq, struct bio *bio)
258{
259	struct request_queue *q = rq->q;
260
261	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262	if (rq_data_dir(rq) == WRITE)
263		bio->bi_rw |= (1 << BIO_RW);
264	blk_queue_bounce(q, &bio);
265
266	return blk_rq_append_bio(q, rq, bio);
267}
268
269static void scsi_bi_endio(struct bio *bio, int error)
270{
271	bio_put(bio);
272}
273
274/**
275 * scsi_req_map_sg - map a scatterlist into a request
276 * @rq:		request to fill
277 * @sg:		scatterlist
278 * @nsegs:	number of elements
279 * @bufflen:	len of buffer
280 * @gfp:	memory allocation flags
281 *
282 * scsi_req_map_sg maps a scatterlist into a request so that the
283 * request can be sent to the block layer. We do not trust the scatterlist
284 * sent to use, as some ULDs use that struct to only organize the pages.
285 */
286static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287			   int nsegs, unsigned bufflen, gfp_t gfp)
288{
289	struct request_queue *q = rq->q;
290	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291	unsigned int data_len = bufflen, len, bytes, off;
292	struct scatterlist *sg;
293	struct page *page;
294	struct bio *bio = NULL;
295	int i, err, nr_vecs = 0;
296
297	for_each_sg(sgl, sg, nsegs, i) {
298		page = sg->page;
299		off = sg->offset;
300		len = sg->length;
301 		data_len += len;
302
303		while (len > 0 && data_len > 0) {
304			/*
305			 * sg sends a scatterlist that is larger than
306			 * the data_len it wants transferred for certain
307			 * IO sizes
308			 */
309			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310			bytes = min(bytes, data_len);
311
312			if (!bio) {
313				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314				nr_pages -= nr_vecs;
315
316				bio = bio_alloc(gfp, nr_vecs);
317				if (!bio) {
318					err = -ENOMEM;
319					goto free_bios;
320				}
321				bio->bi_end_io = scsi_bi_endio;
322			}
323
324			if (bio_add_pc_page(q, bio, page, bytes, off) !=
325			    bytes) {
326				bio_put(bio);
327				err = -EINVAL;
328				goto free_bios;
329			}
330
331			if (bio->bi_vcnt >= nr_vecs) {
332				err = scsi_merge_bio(rq, bio);
333				if (err) {
334					bio_endio(bio, 0);
335					goto free_bios;
336				}
337				bio = NULL;
338			}
339
340			page++;
341			len -= bytes;
342			data_len -=bytes;
343			off = 0;
344		}
345	}
346
347	rq->buffer = rq->data = NULL;
348	rq->data_len = bufflen;
349	return 0;
350
351free_bios:
352	while ((bio = rq->bio) != NULL) {
353		rq->bio = bio->bi_next;
354		/*
355		 * call endio instead of bio_put incase it was bounced
356		 */
357		bio_endio(bio, 0);
358	}
359
360	return err;
361}
362
363/**
364 * scsi_execute_async - insert request
365 * @sdev:	scsi device
366 * @cmd:	scsi command
367 * @cmd_len:	length of scsi cdb
368 * @data_direction: data direction
369 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
370 * @bufflen:	len of buffer
371 * @use_sg:	if buffer is a scatterlist this is the number of elements
372 * @timeout:	request timeout in seconds
373 * @retries:	number of times to retry request
374 * @flags:	or into request flags
375 **/
376int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
377		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
378		       int use_sg, int timeout, int retries, void *privdata,
379		       void (*done)(void *, char *, int, int), gfp_t gfp)
380{
381	struct request *req;
382	struct scsi_io_context *sioc;
383	int err = 0;
384	int write = (data_direction == DMA_TO_DEVICE);
385
386	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
387	if (!sioc)
388		return DRIVER_ERROR << 24;
389
390	req = blk_get_request(sdev->request_queue, write, gfp);
391	if (!req)
392		goto free_sense;
393	req->cmd_type = REQ_TYPE_BLOCK_PC;
394	req->cmd_flags |= REQ_QUIET;
395
396	if (use_sg)
397		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
398	else if (bufflen)
399		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
400
401	if (err)
402		goto free_req;
403
404	req->cmd_len = cmd_len;
405	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
406	memcpy(req->cmd, cmd, req->cmd_len);
407	req->sense = sioc->sense;
408	req->sense_len = 0;
409	req->timeout = timeout;
410	req->retries = retries;
411	req->end_io_data = sioc;
412
413	sioc->data = privdata;
414	sioc->done = done;
415
416	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
417	return 0;
418
419free_req:
420	blk_put_request(req);
421free_sense:
422	kmem_cache_free(scsi_io_context_cache, sioc);
423	return DRIVER_ERROR << 24;
424}
425EXPORT_SYMBOL_GPL(scsi_execute_async);
426
427/*
428 * Function:    scsi_init_cmd_errh()
429 *
430 * Purpose:     Initialize cmd fields related to error handling.
431 *
432 * Arguments:   cmd	- command that is ready to be queued.
433 *
434 * Notes:       This function has the job of initializing a number of
435 *              fields related to error handling.   Typically this will
436 *              be called once for each command, as required.
437 */
438static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
439{
440	cmd->serial_number = 0;
441	cmd->resid = 0;
442	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
443	if (cmd->cmd_len == 0)
444		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
445}
446
447void scsi_device_unbusy(struct scsi_device *sdev)
448{
449	struct Scsi_Host *shost = sdev->host;
450	unsigned long flags;
451
452	spin_lock_irqsave(shost->host_lock, flags);
453	shost->host_busy--;
454	if (unlikely(scsi_host_in_recovery(shost) &&
455		     (shost->host_failed || shost->host_eh_scheduled)))
456		scsi_eh_wakeup(shost);
457	spin_unlock(shost->host_lock);
458	spin_lock(sdev->request_queue->queue_lock);
459	sdev->device_busy--;
460	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
461}
462
463/*
464 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
465 * and call blk_run_queue for all the scsi_devices on the target -
466 * including current_sdev first.
467 *
468 * Called with *no* scsi locks held.
469 */
470static void scsi_single_lun_run(struct scsi_device *current_sdev)
471{
472	struct Scsi_Host *shost = current_sdev->host;
473	struct scsi_device *sdev, *tmp;
474	struct scsi_target *starget = scsi_target(current_sdev);
475	unsigned long flags;
476
477	spin_lock_irqsave(shost->host_lock, flags);
478	starget->starget_sdev_user = NULL;
479	spin_unlock_irqrestore(shost->host_lock, flags);
480
481	/*
482	 * Call blk_run_queue for all LUNs on the target, starting with
483	 * current_sdev. We race with others (to set starget_sdev_user),
484	 * but in most cases, we will be first. Ideally, each LU on the
485	 * target would get some limited time or requests on the target.
486	 */
487	blk_run_queue(current_sdev->request_queue);
488
489	spin_lock_irqsave(shost->host_lock, flags);
490	if (starget->starget_sdev_user)
491		goto out;
492	list_for_each_entry_safe(sdev, tmp, &starget->devices,
493			same_target_siblings) {
494		if (sdev == current_sdev)
495			continue;
496		if (scsi_device_get(sdev))
497			continue;
498
499		spin_unlock_irqrestore(shost->host_lock, flags);
500		blk_run_queue(sdev->request_queue);
501		spin_lock_irqsave(shost->host_lock, flags);
502
503		scsi_device_put(sdev);
504	}
505 out:
506	spin_unlock_irqrestore(shost->host_lock, flags);
507}
508
509/*
510 * Function:	scsi_run_queue()
511 *
512 * Purpose:	Select a proper request queue to serve next
513 *
514 * Arguments:	q	- last request's queue
515 *
516 * Returns:     Nothing
517 *
518 * Notes:	The previous command was completely finished, start
519 *		a new one if possible.
520 */
521static void scsi_run_queue(struct request_queue *q)
522{
523	struct scsi_device *sdev = q->queuedata;
524	struct Scsi_Host *shost = sdev->host;
525	unsigned long flags;
526
527	if (sdev->single_lun)
528		scsi_single_lun_run(sdev);
529
530	spin_lock_irqsave(shost->host_lock, flags);
531	while (!list_empty(&shost->starved_list) &&
532	       !shost->host_blocked && !shost->host_self_blocked &&
533		!((shost->can_queue > 0) &&
534		  (shost->host_busy >= shost->can_queue))) {
535		/*
536		 * As long as shost is accepting commands and we have
537		 * starved queues, call blk_run_queue. scsi_request_fn
538		 * drops the queue_lock and can add us back to the
539		 * starved_list.
540		 *
541		 * host_lock protects the starved_list and starved_entry.
542		 * scsi_request_fn must get the host_lock before checking
543		 * or modifying starved_list or starved_entry.
544		 */
545		sdev = list_entry(shost->starved_list.next,
546					  struct scsi_device, starved_entry);
547		list_del_init(&sdev->starved_entry);
548		spin_unlock_irqrestore(shost->host_lock, flags);
549
550
551		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
552		    !test_and_set_bit(QUEUE_FLAG_REENTER,
553				      &sdev->request_queue->queue_flags)) {
554			blk_run_queue(sdev->request_queue);
555			clear_bit(QUEUE_FLAG_REENTER,
556				  &sdev->request_queue->queue_flags);
557		} else
558			blk_run_queue(sdev->request_queue);
559
560		spin_lock_irqsave(shost->host_lock, flags);
561		if (unlikely(!list_empty(&sdev->starved_entry)))
562			/*
563			 * sdev lost a race, and was put back on the
564			 * starved list. This is unlikely but without this
565			 * in theory we could loop forever.
566			 */
567			break;
568	}
569	spin_unlock_irqrestore(shost->host_lock, flags);
570
571	blk_run_queue(q);
572}
573
574/*
575 * Function:	scsi_requeue_command()
576 *
577 * Purpose:	Handle post-processing of completed commands.
578 *
579 * Arguments:	q	- queue to operate on
580 *		cmd	- command that may need to be requeued.
581 *
582 * Returns:	Nothing
583 *
584 * Notes:	After command completion, there may be blocks left
585 *		over which weren't finished by the previous command
586 *		this can be for a number of reasons - the main one is
587 *		I/O errors in the middle of the request, in which case
588 *		we need to request the blocks that come after the bad
589 *		sector.
590 * Notes:	Upon return, cmd is a stale pointer.
591 */
592static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
593{
594	struct request *req = cmd->request;
595	unsigned long flags;
596
597	scsi_unprep_request(req);
598	spin_lock_irqsave(q->queue_lock, flags);
599	blk_requeue_request(q, req);
600	spin_unlock_irqrestore(q->queue_lock, flags);
601
602	scsi_run_queue(q);
603}
604
605void scsi_next_command(struct scsi_cmnd *cmd)
606{
607	struct scsi_device *sdev = cmd->device;
608	struct request_queue *q = sdev->request_queue;
609
610	/* need to hold a reference on the device before we let go of the cmd */
611	get_device(&sdev->sdev_gendev);
612
613	scsi_put_command(cmd);
614	scsi_run_queue(q);
615
616	/* ok to remove device now */
617	put_device(&sdev->sdev_gendev);
618}
619
620void scsi_run_host_queues(struct Scsi_Host *shost)
621{
622	struct scsi_device *sdev;
623
624	shost_for_each_device(sdev, shost)
625		scsi_run_queue(sdev->request_queue);
626}
627
628/*
629 * Function:    scsi_end_request()
630 *
631 * Purpose:     Post-processing of completed commands (usually invoked at end
632 *		of upper level post-processing and scsi_io_completion).
633 *
634 * Arguments:   cmd	 - command that is complete.
635 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
636 *              bytes    - number of bytes of completed I/O
637 *		requeue  - indicates whether we should requeue leftovers.
638 *
639 * Lock status: Assumed that lock is not held upon entry.
640 *
641 * Returns:     cmd if requeue required, NULL otherwise.
642 *
643 * Notes:       This is called for block device requests in order to
644 *              mark some number of sectors as complete.
645 *
646 *		We are guaranteeing that the request queue will be goosed
647 *		at some point during this call.
648 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
649 */
650static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
651					  int bytes, int requeue)
652{
653	struct request_queue *q = cmd->device->request_queue;
654	struct request *req = cmd->request;
655	unsigned long flags;
656
657	/*
658	 * If there are blocks left over at the end, set up the command
659	 * to queue the remainder of them.
660	 */
661	if (end_that_request_chunk(req, uptodate, bytes)) {
662		int leftover = (req->hard_nr_sectors << 9);
663
664		if (blk_pc_request(req))
665			leftover = req->data_len;
666
667		/* kill remainder if no retrys */
668		if (!uptodate && blk_noretry_request(req))
669			end_that_request_chunk(req, 0, leftover);
670		else {
671			if (requeue) {
672				/*
673				 * Bleah.  Leftovers again.  Stick the
674				 * leftovers in the front of the
675				 * queue, and goose the queue again.
676				 */
677				scsi_requeue_command(q, cmd);
678				cmd = NULL;
679			}
680			return cmd;
681		}
682	}
683
684	add_disk_randomness(req->rq_disk);
685
686	spin_lock_irqsave(q->queue_lock, flags);
687	if (blk_rq_tagged(req))
688		blk_queue_end_tag(q, req);
689	end_that_request_last(req, uptodate);
690	spin_unlock_irqrestore(q->queue_lock, flags);
691
692	/*
693	 * This will goose the queue request function at the end, so we don't
694	 * need to worry about launching another command.
695	 */
696	scsi_next_command(cmd);
697	return NULL;
698}
699
700/*
701 * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
702 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
703 */
704#define SCSI_MAX_SG_CHAIN_SEGMENTS	2048
705
706static inline unsigned int scsi_sgtable_index(unsigned short nents)
707{
708	unsigned int index;
709
710	switch (nents) {
711	case 1 ... 8:
712		index = 0;
713		break;
714	case 9 ... 16:
715		index = 1;
716		break;
717#if (SCSI_MAX_SG_SEGMENTS > 16)
718	case 17 ... 32:
719		index = 2;
720		break;
721#if (SCSI_MAX_SG_SEGMENTS > 32)
722	case 33 ... 64:
723		index = 3;
724		break;
725#if (SCSI_MAX_SG_SEGMENTS > 64)
726	case 65 ... 128:
727		index = 4;
728		break;
729#endif
730#endif
731#endif
732	default:
733		printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
734		BUG();
735	}
736
737	return index;
738}
739
740struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
741{
742	struct scsi_host_sg_pool *sgp;
743	struct scatterlist *sgl, *prev, *ret;
744	unsigned int index;
745	int this, left;
746
747	BUG_ON(!cmd->use_sg);
748
749	left = cmd->use_sg;
750	ret = prev = NULL;
751	do {
752		this = left;
753		if (this > SCSI_MAX_SG_SEGMENTS) {
754			this = SCSI_MAX_SG_SEGMENTS - 1;
755			index = SG_MEMPOOL_NR - 1;
756		} else
757			index = scsi_sgtable_index(this);
758
759		left -= this;
760
761		sgp = scsi_sg_pools + index;
762
763		sgl = mempool_alloc(sgp->pool, gfp_mask);
764		if (unlikely(!sgl))
765			goto enomem;
766
767		memset(sgl, 0, sizeof(*sgl) * sgp->size);
768
769		/*
770		 * first loop through, set initial index and return value
771		 */
772		if (!ret) {
773			cmd->sglist_len = index;
774			ret = sgl;
775		}
776
777		/*
778		 * chain previous sglist, if any. we know the previous
779		 * sglist must be the biggest one, or we would not have
780		 * ended up doing another loop.
781		 */
782		if (prev)
783			sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
784
785		/*
786		 * don't allow subsequent mempool allocs to sleep, it would
787		 * violate the mempool principle.
788		 */
789		gfp_mask &= ~__GFP_WAIT;
790		gfp_mask |= __GFP_HIGH;
791		prev = sgl;
792	} while (left);
793
794	/*
795	 * ->use_sg may get modified after dma mapping has potentially
796	 * shrunk the number of segments, so keep a copy of it for free.
797	 */
798	cmd->__use_sg = cmd->use_sg;
799	return ret;
800enomem:
801	if (ret) {
802		/*
803		 * Free entries chained off ret. Since we were trying to
804		 * allocate another sglist, we know that all entries are of
805		 * the max size.
806		 */
807		sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
808		prev = ret;
809		ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
810
811		while ((sgl = sg_chain_ptr(ret)) != NULL) {
812			ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
813			mempool_free(sgl, sgp->pool);
814		}
815
816		mempool_free(prev, sgp->pool);
817	}
818	return NULL;
819}
820
821EXPORT_SYMBOL(scsi_alloc_sgtable);
822
823void scsi_free_sgtable(struct scsi_cmnd *cmd)
824{
825	struct scatterlist *sgl = cmd->request_buffer;
826	struct scsi_host_sg_pool *sgp;
827
828	BUG_ON(cmd->sglist_len >= SG_MEMPOOL_NR);
829
830	/*
831	 * if this is the biggest size sglist, check if we have
832	 * chained parts we need to free
833	 */
834	if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
835		unsigned short this, left;
836		struct scatterlist *next;
837		unsigned int index;
838
839		left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
840		next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
841		while (left && next) {
842			sgl = next;
843			this = left;
844			if (this > SCSI_MAX_SG_SEGMENTS) {
845				this = SCSI_MAX_SG_SEGMENTS - 1;
846				index = SG_MEMPOOL_NR - 1;
847			} else
848				index = scsi_sgtable_index(this);
849
850			left -= this;
851
852			sgp = scsi_sg_pools + index;
853
854			if (left)
855				next = sg_chain_ptr(&sgl[sgp->size - 1]);
856
857			mempool_free(sgl, sgp->pool);
858		}
859
860		/*
861		 * Restore original, will be freed below
862		 */
863		sgl = cmd->request_buffer;
864	}
865
866	sgp = scsi_sg_pools + cmd->sglist_len;
867	mempool_free(sgl, sgp->pool);
868}
869
870EXPORT_SYMBOL(scsi_free_sgtable);
871
872/*
873 * Function:    scsi_release_buffers()
874 *
875 * Purpose:     Completion processing for block device I/O requests.
876 *
877 * Arguments:   cmd	- command that we are bailing.
878 *
879 * Lock status: Assumed that no lock is held upon entry.
880 *
881 * Returns:     Nothing
882 *
883 * Notes:       In the event that an upper level driver rejects a
884 *		command, we must release resources allocated during
885 *		the __init_io() function.  Primarily this would involve
886 *		the scatter-gather table, and potentially any bounce
887 *		buffers.
888 */
889static void scsi_release_buffers(struct scsi_cmnd *cmd)
890{
891	if (cmd->use_sg)
892		scsi_free_sgtable(cmd);
893
894	/*
895	 * Zero these out.  They now point to freed memory, and it is
896	 * dangerous to hang onto the pointers.
897	 */
898	cmd->request_buffer = NULL;
899	cmd->request_bufflen = 0;
900}
901
902/*
903 * Function:    scsi_io_completion()
904 *
905 * Purpose:     Completion processing for block device I/O requests.
906 *
907 * Arguments:   cmd   - command that is finished.
908 *
909 * Lock status: Assumed that no lock is held upon entry.
910 *
911 * Returns:     Nothing
912 *
913 * Notes:       This function is matched in terms of capabilities to
914 *              the function that created the scatter-gather list.
915 *              In other words, if there are no bounce buffers
916 *              (the normal case for most drivers), we don't need
917 *              the logic to deal with cleaning up afterwards.
918 *
919 *		We must do one of several things here:
920 *
921 *		a) Call scsi_end_request.  This will finish off the
922 *		   specified number of sectors.  If we are done, the
923 *		   command block will be released, and the queue
924 *		   function will be goosed.  If we are not done, then
925 *		   scsi_end_request will directly goose the queue.
926 *
927 *		b) We can just use scsi_requeue_command() here.  This would
928 *		   be used if we just wanted to retry, for example.
929 */
930void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
931{
932	int result = cmd->result;
933	int this_count = cmd->request_bufflen;
934	struct request_queue *q = cmd->device->request_queue;
935	struct request *req = cmd->request;
936	int clear_errors = 1;
937	struct scsi_sense_hdr sshdr;
938	int sense_valid = 0;
939	int sense_deferred = 0;
940
941	scsi_release_buffers(cmd);
942
943	if (result) {
944		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
945		if (sense_valid)
946			sense_deferred = scsi_sense_is_deferred(&sshdr);
947	}
948
949	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
950		req->errors = result;
951		if (result) {
952			clear_errors = 0;
953			if (sense_valid && req->sense) {
954				/*
955				 * SG_IO wants current and deferred errors
956				 */
957				int len = 8 + cmd->sense_buffer[7];
958
959				if (len > SCSI_SENSE_BUFFERSIZE)
960					len = SCSI_SENSE_BUFFERSIZE;
961				memcpy(req->sense, cmd->sense_buffer,  len);
962				req->sense_len = len;
963			}
964		}
965		req->data_len = cmd->resid;
966	}
967
968	/*
969	 * Next deal with any sectors which we were able to correctly
970	 * handle.
971	 */
972	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
973				      "%d bytes done.\n",
974				      req->nr_sectors, good_bytes));
975	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
976
977	if (clear_errors)
978		req->errors = 0;
979
980	/* A number of bytes were successfully read.  If there
981	 * are leftovers and there is some kind of error
982	 * (result != 0), retry the rest.
983	 */
984	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
985		return;
986
987	/* good_bytes = 0, or (inclusive) there were leftovers and
988	 * result = 0, so scsi_end_request couldn't retry.
989	 */
990	if (sense_valid && !sense_deferred) {
991		switch (sshdr.sense_key) {
992		case UNIT_ATTENTION:
993			if (cmd->device->removable) {
994				/* Detected disc change.  Set a bit
995				 * and quietly refuse further access.
996				 */
997				cmd->device->changed = 1;
998				scsi_end_request(cmd, 0, this_count, 1);
999				return;
1000			} else {
1001				/* Must have been a power glitch, or a
1002				 * bus reset.  Could not have been a
1003				 * media change, so we just retry the
1004				 * request and see what happens.
1005				 */
1006				scsi_requeue_command(q, cmd);
1007				return;
1008			}
1009			break;
1010		case ILLEGAL_REQUEST:
1011			/* If we had an ILLEGAL REQUEST returned, then
1012			 * we may have performed an unsupported
1013			 * command.  The only thing this should be
1014			 * would be a ten byte read where only a six
1015			 * byte read was supported.  Also, on a system
1016			 * where READ CAPACITY failed, we may have
1017			 * read past the end of the disk.
1018			 */
1019			if ((cmd->device->use_10_for_rw &&
1020			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1021			    (cmd->cmnd[0] == READ_10 ||
1022			     cmd->cmnd[0] == WRITE_10)) {
1023				cmd->device->use_10_for_rw = 0;
1024				/* This will cause a retry with a
1025				 * 6-byte command.
1026				 */
1027				scsi_requeue_command(q, cmd);
1028				return;
1029			} else {
1030				scsi_end_request(cmd, 0, this_count, 1);
1031				return;
1032			}
1033			break;
1034		case NOT_READY:
1035			/* If the device is in the process of becoming
1036			 * ready, or has a temporary blockage, retry.
1037			 */
1038			if (sshdr.asc == 0x04) {
1039				switch (sshdr.ascq) {
1040				case 0x01: /* becoming ready */
1041				case 0x04: /* format in progress */
1042				case 0x05: /* rebuild in progress */
1043				case 0x06: /* recalculation in progress */
1044				case 0x07: /* operation in progress */
1045				case 0x08: /* Long write in progress */
1046				case 0x09: /* self test in progress */
1047					scsi_requeue_command(q, cmd);
1048					return;
1049				default:
1050					break;
1051				}
1052			}
1053			if (!(req->cmd_flags & REQ_QUIET))
1054				scsi_cmd_print_sense_hdr(cmd,
1055							 "Device not ready",
1056							 &sshdr);
1057
1058			scsi_end_request(cmd, 0, this_count, 1);
1059			return;
1060		case VOLUME_OVERFLOW:
1061			if (!(req->cmd_flags & REQ_QUIET)) {
1062				scmd_printk(KERN_INFO, cmd,
1063					    "Volume overflow, CDB: ");
1064				__scsi_print_command(cmd->cmnd);
1065				scsi_print_sense("", cmd);
1066			}
1067			/* See SSC3rXX or current. */
1068			scsi_end_request(cmd, 0, this_count, 1);
1069			return;
1070		default:
1071			break;
1072		}
1073	}
1074	if (host_byte(result) == DID_RESET) {
1075		/* Third party bus reset or reset for error recovery
1076		 * reasons.  Just retry the request and see what
1077		 * happens.
1078		 */
1079		scsi_requeue_command(q, cmd);
1080		return;
1081	}
1082	if (result) {
1083		if (!(req->cmd_flags & REQ_QUIET)) {
1084			scsi_print_result(cmd);
1085			if (driver_byte(result) & DRIVER_SENSE)
1086				scsi_print_sense("", cmd);
1087		}
1088	}
1089	scsi_end_request(cmd, 0, this_count, !result);
1090}
1091
1092/*
1093 * Function:    scsi_init_io()
1094 *
1095 * Purpose:     SCSI I/O initialize function.
1096 *
1097 * Arguments:   cmd   - Command descriptor we wish to initialize
1098 *
1099 * Returns:     0 on success
1100 *		BLKPREP_DEFER if the failure is retryable
1101 *		BLKPREP_KILL if the failure is fatal
1102 */
1103static int scsi_init_io(struct scsi_cmnd *cmd)
1104{
1105	struct request     *req = cmd->request;
1106	int		   count;
1107
1108	/*
1109	 * We used to not use scatter-gather for single segment request,
1110	 * but now we do (it makes highmem I/O easier to support without
1111	 * kmapping pages)
1112	 */
1113	cmd->use_sg = req->nr_phys_segments;
1114
1115	/*
1116	 * If sg table allocation fails, requeue request later.
1117	 */
1118	cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1119	if (unlikely(!cmd->request_buffer)) {
1120		scsi_unprep_request(req);
1121		return BLKPREP_DEFER;
1122	}
1123
1124	req->buffer = NULL;
1125	if (blk_pc_request(req))
1126		cmd->request_bufflen = req->data_len;
1127	else
1128		cmd->request_bufflen = req->nr_sectors << 9;
1129
1130	/*
1131	 * Next, walk the list, and fill in the addresses and sizes of
1132	 * each segment.
1133	 */
1134	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1135	if (likely(count <= cmd->use_sg)) {
1136		cmd->use_sg = count;
1137		return BLKPREP_OK;
1138	}
1139
1140	printk(KERN_ERR "Incorrect number of segments after building list\n");
1141	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1142	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1143			req->current_nr_sectors);
1144
1145	return BLKPREP_KILL;
1146}
1147
1148static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1149		struct request *req)
1150{
1151	struct scsi_cmnd *cmd;
1152
1153	if (!req->special) {
1154		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1155		if (unlikely(!cmd))
1156			return NULL;
1157		req->special = cmd;
1158	} else {
1159		cmd = req->special;
1160	}
1161
1162	/* pull a tag out of the request if we have one */
1163	cmd->tag = req->tag;
1164	cmd->request = req;
1165
1166	return cmd;
1167}
1168
1169int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1170{
1171	struct scsi_cmnd *cmd;
1172	int ret = scsi_prep_state_check(sdev, req);
1173
1174	if (ret != BLKPREP_OK)
1175		return ret;
1176
1177	cmd = scsi_get_cmd_from_req(sdev, req);
1178	if (unlikely(!cmd))
1179		return BLKPREP_DEFER;
1180
1181	/*
1182	 * BLOCK_PC requests may transfer data, in which case they must
1183	 * a bio attached to them.  Or they might contain a SCSI command
1184	 * that does not transfer data, in which case they may optionally
1185	 * submit a request without an attached bio.
1186	 */
1187	if (req->bio) {
1188		int ret;
1189
1190		BUG_ON(!req->nr_phys_segments);
1191
1192		ret = scsi_init_io(cmd);
1193		if (unlikely(ret))
1194			return ret;
1195	} else {
1196		BUG_ON(req->data_len);
1197		BUG_ON(req->data);
1198
1199		cmd->request_bufflen = 0;
1200		cmd->request_buffer = NULL;
1201		cmd->use_sg = 0;
1202		req->buffer = NULL;
1203	}
1204
1205	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1206	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1207	cmd->cmd_len = req->cmd_len;
1208	if (!req->data_len)
1209		cmd->sc_data_direction = DMA_NONE;
1210	else if (rq_data_dir(req) == WRITE)
1211		cmd->sc_data_direction = DMA_TO_DEVICE;
1212	else
1213		cmd->sc_data_direction = DMA_FROM_DEVICE;
1214
1215	cmd->transfersize = req->data_len;
1216	cmd->allowed = req->retries;
1217	cmd->timeout_per_command = req->timeout;
1218	return BLKPREP_OK;
1219}
1220EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1221
1222/*
1223 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1224 * from filesystems that still need to be translated to SCSI CDBs from
1225 * the ULD.
1226 */
1227int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1228{
1229	struct scsi_cmnd *cmd;
1230	int ret = scsi_prep_state_check(sdev, req);
1231
1232	if (ret != BLKPREP_OK)
1233		return ret;
1234	/*
1235	 * Filesystem requests must transfer data.
1236	 */
1237	BUG_ON(!req->nr_phys_segments);
1238
1239	cmd = scsi_get_cmd_from_req(sdev, req);
1240	if (unlikely(!cmd))
1241		return BLKPREP_DEFER;
1242
1243	return scsi_init_io(cmd);
1244}
1245EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1246
1247int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1248{
1249	int ret = BLKPREP_OK;
1250
1251	/*
1252	 * If the device is not in running state we will reject some
1253	 * or all commands.
1254	 */
1255	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1256		switch (sdev->sdev_state) {
1257		case SDEV_OFFLINE:
1258			/*
1259			 * If the device is offline we refuse to process any
1260			 * commands.  The device must be brought online
1261			 * before trying any recovery commands.
1262			 */
1263			sdev_printk(KERN_ERR, sdev,
1264				    "rejecting I/O to offline device\n");
1265			ret = BLKPREP_KILL;
1266			break;
1267		case SDEV_DEL:
1268			/*
1269			 * If the device is fully deleted, we refuse to
1270			 * process any commands as well.
1271			 */
1272			sdev_printk(KERN_ERR, sdev,
1273				    "rejecting I/O to dead device\n");
1274			ret = BLKPREP_KILL;
1275			break;
1276		case SDEV_QUIESCE:
1277		case SDEV_BLOCK:
1278			/*
1279			 * If the devices is blocked we defer normal commands.
1280			 */
1281			if (!(req->cmd_flags & REQ_PREEMPT))
1282				ret = BLKPREP_DEFER;
1283			break;
1284		default:
1285			/*
1286			 * For any other not fully online state we only allow
1287			 * special commands.  In particular any user initiated
1288			 * command is not allowed.
1289			 */
1290			if (!(req->cmd_flags & REQ_PREEMPT))
1291				ret = BLKPREP_KILL;
1292			break;
1293		}
1294	}
1295	return ret;
1296}
1297EXPORT_SYMBOL(scsi_prep_state_check);
1298
1299int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1300{
1301	struct scsi_device *sdev = q->queuedata;
1302
1303	switch (ret) {
1304	case BLKPREP_KILL:
1305		req->errors = DID_NO_CONNECT << 16;
1306		/* release the command and kill it */
1307		if (req->special) {
1308			struct scsi_cmnd *cmd = req->special;
1309			scsi_release_buffers(cmd);
1310			scsi_put_command(cmd);
1311			req->special = NULL;
1312		}
1313		break;
1314	case BLKPREP_DEFER:
1315		/*
1316		 * If we defer, the elv_next_request() returns NULL, but the
1317		 * queue must be restarted, so we plug here if no returning
1318		 * command will automatically do that.
1319		 */
1320		if (sdev->device_busy == 0)
1321			blk_plug_device(q);
1322		break;
1323	default:
1324		req->cmd_flags |= REQ_DONTPREP;
1325	}
1326
1327	return ret;
1328}
1329EXPORT_SYMBOL(scsi_prep_return);
1330
1331static int scsi_prep_fn(struct request_queue *q, struct request *req)
1332{
1333	struct scsi_device *sdev = q->queuedata;
1334	int ret = BLKPREP_KILL;
1335
1336	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1337		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1338	return scsi_prep_return(q, req, ret);
1339}
1340
1341/*
1342 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1343 * return 0.
1344 *
1345 * Called with the queue_lock held.
1346 */
1347static inline int scsi_dev_queue_ready(struct request_queue *q,
1348				  struct scsi_device *sdev)
1349{
1350	if (sdev->device_busy >= sdev->queue_depth)
1351		return 0;
1352	if (sdev->device_busy == 0 && sdev->device_blocked) {
1353		/*
1354		 * unblock after device_blocked iterates to zero
1355		 */
1356		if (--sdev->device_blocked == 0) {
1357			SCSI_LOG_MLQUEUE(3,
1358				   sdev_printk(KERN_INFO, sdev,
1359				   "unblocking device at zero depth\n"));
1360		} else {
1361			blk_plug_device(q);
1362			return 0;
1363		}
1364	}
1365	if (sdev->device_blocked)
1366		return 0;
1367
1368	return 1;
1369}
1370
1371/*
1372 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1373 * return 0. We must end up running the queue again whenever 0 is
1374 * returned, else IO can hang.
1375 *
1376 * Called with host_lock held.
1377 */
1378static inline int scsi_host_queue_ready(struct request_queue *q,
1379				   struct Scsi_Host *shost,
1380				   struct scsi_device *sdev)
1381{
1382	if (scsi_host_in_recovery(shost))
1383		return 0;
1384	if (shost->host_busy == 0 && shost->host_blocked) {
1385		/*
1386		 * unblock after host_blocked iterates to zero
1387		 */
1388		if (--shost->host_blocked == 0) {
1389			SCSI_LOG_MLQUEUE(3,
1390				printk("scsi%d unblocking host at zero depth\n",
1391					shost->host_no));
1392		} else {
1393			blk_plug_device(q);
1394			return 0;
1395		}
1396	}
1397	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1398	    shost->host_blocked || shost->host_self_blocked) {
1399		if (list_empty(&sdev->starved_entry))
1400			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1401		return 0;
1402	}
1403
1404	/* We're OK to process the command, so we can't be starved */
1405	if (!list_empty(&sdev->starved_entry))
1406		list_del_init(&sdev->starved_entry);
1407
1408	return 1;
1409}
1410
1411/*
1412 * Kill a request for a dead device
1413 */
1414static void scsi_kill_request(struct request *req, struct request_queue *q)
1415{
1416	struct scsi_cmnd *cmd = req->special;
1417	struct scsi_device *sdev = cmd->device;
1418	struct Scsi_Host *shost = sdev->host;
1419
1420	blkdev_dequeue_request(req);
1421
1422	if (unlikely(cmd == NULL)) {
1423		printk(KERN_CRIT "impossible request in %s.\n",
1424				 __FUNCTION__);
1425		BUG();
1426	}
1427
1428	scsi_init_cmd_errh(cmd);
1429	cmd->result = DID_NO_CONNECT << 16;
1430	atomic_inc(&cmd->device->iorequest_cnt);
1431
1432	/*
1433	 * SCSI request completion path will do scsi_device_unbusy(),
1434	 * bump busy counts.  To bump the counters, we need to dance
1435	 * with the locks as normal issue path does.
1436	 */
1437	sdev->device_busy++;
1438	spin_unlock(sdev->request_queue->queue_lock);
1439	spin_lock(shost->host_lock);
1440	shost->host_busy++;
1441	spin_unlock(shost->host_lock);
1442	spin_lock(sdev->request_queue->queue_lock);
1443
1444	__scsi_done(cmd);
1445}
1446
1447static void scsi_softirq_done(struct request *rq)
1448{
1449	struct scsi_cmnd *cmd = rq->completion_data;
1450	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1451	int disposition;
1452
1453	INIT_LIST_HEAD(&cmd->eh_entry);
1454
1455	disposition = scsi_decide_disposition(cmd);
1456	if (disposition != SUCCESS &&
1457	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1458		sdev_printk(KERN_ERR, cmd->device,
1459			    "timing out command, waited %lus\n",
1460			    wait_for/HZ);
1461		disposition = SUCCESS;
1462	}
1463
1464	scsi_log_completion(cmd, disposition);
1465
1466	switch (disposition) {
1467		case SUCCESS:
1468			scsi_finish_command(cmd);
1469			break;
1470		case NEEDS_RETRY:
1471			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1472			break;
1473		case ADD_TO_MLQUEUE:
1474			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1475			break;
1476		default:
1477			if (!scsi_eh_scmd_add(cmd, 0))
1478				scsi_finish_command(cmd);
1479	}
1480}
1481
1482/*
1483 * Function:    scsi_request_fn()
1484 *
1485 * Purpose:     Main strategy routine for SCSI.
1486 *
1487 * Arguments:   q       - Pointer to actual queue.
1488 *
1489 * Returns:     Nothing
1490 *
1491 * Lock status: IO request lock assumed to be held when called.
1492 */
1493static void scsi_request_fn(struct request_queue *q)
1494{
1495	struct scsi_device *sdev = q->queuedata;
1496	struct Scsi_Host *shost;
1497	struct scsi_cmnd *cmd;
1498	struct request *req;
1499
1500	if (!sdev) {
1501		printk("scsi: killing requests for dead queue\n");
1502		while ((req = elv_next_request(q)) != NULL)
1503			scsi_kill_request(req, q);
1504		return;
1505	}
1506
1507	if(!get_device(&sdev->sdev_gendev))
1508		/* We must be tearing the block queue down already */
1509		return;
1510
1511	/*
1512	 * To start with, we keep looping until the queue is empty, or until
1513	 * the host is no longer able to accept any more requests.
1514	 */
1515	shost = sdev->host;
1516	while (!blk_queue_plugged(q)) {
1517		int rtn;
1518		/*
1519		 * get next queueable request.  We do this early to make sure
1520		 * that the request is fully prepared even if we cannot
1521		 * accept it.
1522		 */
1523		req = elv_next_request(q);
1524		if (!req || !scsi_dev_queue_ready(q, sdev))
1525			break;
1526
1527		if (unlikely(!scsi_device_online(sdev))) {
1528			sdev_printk(KERN_ERR, sdev,
1529				    "rejecting I/O to offline device\n");
1530			scsi_kill_request(req, q);
1531			continue;
1532		}
1533
1534
1535		/*
1536		 * Remove the request from the request list.
1537		 */
1538		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1539			blkdev_dequeue_request(req);
1540		sdev->device_busy++;
1541
1542		spin_unlock(q->queue_lock);
1543		cmd = req->special;
1544		if (unlikely(cmd == NULL)) {
1545			printk(KERN_CRIT "impossible request in %s.\n"
1546					 "please mail a stack trace to "
1547					 "linux-scsi@vger.kernel.org\n",
1548					 __FUNCTION__);
1549			blk_dump_rq_flags(req, "foo");
1550			BUG();
1551		}
1552		spin_lock(shost->host_lock);
1553
1554		if (!scsi_host_queue_ready(q, shost, sdev))
1555			goto not_ready;
1556		if (sdev->single_lun) {
1557			if (scsi_target(sdev)->starget_sdev_user &&
1558			    scsi_target(sdev)->starget_sdev_user != sdev)
1559				goto not_ready;
1560			scsi_target(sdev)->starget_sdev_user = sdev;
1561		}
1562		shost->host_busy++;
1563
1564		/*
1565		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1566		 *		take the lock again.
1567		 */
1568		spin_unlock_irq(shost->host_lock);
1569
1570		/*
1571		 * Finally, initialize any error handling parameters, and set up
1572		 * the timers for timeouts.
1573		 */
1574		scsi_init_cmd_errh(cmd);
1575
1576		/*
1577		 * Dispatch the command to the low-level driver.
1578		 */
1579		rtn = scsi_dispatch_cmd(cmd);
1580		spin_lock_irq(q->queue_lock);
1581		if(rtn) {
1582			/* we're refusing the command; because of
1583			 * the way locks get dropped, we need to
1584			 * check here if plugging is required */
1585			if(sdev->device_busy == 0)
1586				blk_plug_device(q);
1587
1588			break;
1589		}
1590	}
1591
1592	goto out;
1593
1594 not_ready:
1595	spin_unlock_irq(shost->host_lock);
1596
1597	/*
1598	 * lock q, handle tag, requeue req, and decrement device_busy. We
1599	 * must return with queue_lock held.
1600	 *
1601	 * Decrementing device_busy without checking it is OK, as all such
1602	 * cases (host limits or settings) should run the queue at some
1603	 * later time.
1604	 */
1605	spin_lock_irq(q->queue_lock);
1606	blk_requeue_request(q, req);
1607	sdev->device_busy--;
1608	if(sdev->device_busy == 0)
1609		blk_plug_device(q);
1610 out:
1611	/* must be careful here...if we trigger the ->remove() function
1612	 * we cannot be holding the q lock */
1613	spin_unlock_irq(q->queue_lock);
1614	put_device(&sdev->sdev_gendev);
1615	spin_lock_irq(q->queue_lock);
1616}
1617
1618u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1619{
1620	struct device *host_dev;
1621	u64 bounce_limit = 0xffffffff;
1622
1623	if (shost->unchecked_isa_dma)
1624		return BLK_BOUNCE_ISA;
1625	/*
1626	 * Platforms with virtual-DMA translation
1627	 * hardware have no practical limit.
1628	 */
1629	if (!PCI_DMA_BUS_IS_PHYS)
1630		return BLK_BOUNCE_ANY;
1631
1632	host_dev = scsi_get_device(shost);
1633	if (host_dev && host_dev->dma_mask)
1634		bounce_limit = *host_dev->dma_mask;
1635
1636	return bounce_limit;
1637}
1638EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1639
1640struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1641					 request_fn_proc *request_fn)
1642{
1643	struct request_queue *q;
1644
1645	q = blk_init_queue(request_fn, NULL);
1646	if (!q)
1647		return NULL;
1648
1649	/*
1650	 * this limit is imposed by hardware restrictions
1651	 */
1652	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1653
1654	/*
1655	 * In the future, sg chaining support will be mandatory and this
1656	 * ifdef can then go away. Right now we don't have all archs
1657	 * converted, so better keep it safe.
1658	 */
1659#ifdef ARCH_HAS_SG_CHAIN
1660	if (shost->use_sg_chaining)
1661		blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1662	else
1663		blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1664#else
1665	blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1666#endif
1667
1668	blk_queue_max_sectors(q, shost->max_sectors);
1669	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1670	blk_queue_segment_boundary(q, shost->dma_boundary);
1671
1672	if (!shost->use_clustering)
1673		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1674	return q;
1675}
1676EXPORT_SYMBOL(__scsi_alloc_queue);
1677
1678struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1679{
1680	struct request_queue *q;
1681
1682	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1683	if (!q)
1684		return NULL;
1685
1686	blk_queue_prep_rq(q, scsi_prep_fn);
1687	blk_queue_softirq_done(q, scsi_softirq_done);
1688	return q;
1689}
1690
1691void scsi_free_queue(struct request_queue *q)
1692{
1693	blk_cleanup_queue(q);
1694}
1695
1696/*
1697 * Function:    scsi_block_requests()
1698 *
1699 * Purpose:     Utility function used by low-level drivers to prevent further
1700 *		commands from being queued to the device.
1701 *
1702 * Arguments:   shost       - Host in question
1703 *
1704 * Returns:     Nothing
1705 *
1706 * Lock status: No locks are assumed held.
1707 *
1708 * Notes:       There is no timer nor any other means by which the requests
1709 *		get unblocked other than the low-level driver calling
1710 *		scsi_unblock_requests().
1711 */
1712void scsi_block_requests(struct Scsi_Host *shost)
1713{
1714	shost->host_self_blocked = 1;
1715}
1716EXPORT_SYMBOL(scsi_block_requests);
1717
1718/*
1719 * Function:    scsi_unblock_requests()
1720 *
1721 * Purpose:     Utility function used by low-level drivers to allow further
1722 *		commands from being queued to the device.
1723 *
1724 * Arguments:   shost       - Host in question
1725 *
1726 * Returns:     Nothing
1727 *
1728 * Lock status: No locks are assumed held.
1729 *
1730 * Notes:       There is no timer nor any other means by which the requests
1731 *		get unblocked other than the low-level driver calling
1732 *		scsi_unblock_requests().
1733 *
1734 *		This is done as an API function so that changes to the
1735 *		internals of the scsi mid-layer won't require wholesale
1736 *		changes to drivers that use this feature.
1737 */
1738void scsi_unblock_requests(struct Scsi_Host *shost)
1739{
1740	shost->host_self_blocked = 0;
1741	scsi_run_host_queues(shost);
1742}
1743EXPORT_SYMBOL(scsi_unblock_requests);
1744
1745int __init scsi_init_queue(void)
1746{
1747	int i;
1748
1749	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1750					sizeof(struct scsi_io_context),
1751					0, 0, NULL);
1752	if (!scsi_io_context_cache) {
1753		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1754		return -ENOMEM;
1755	}
1756
1757	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1758		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1759		int size = sgp->size * sizeof(struct scatterlist);
1760
1761		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1762				SLAB_HWCACHE_ALIGN, NULL);
1763		if (!sgp->slab) {
1764			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1765					sgp->name);
1766		}
1767
1768		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1769						     sgp->slab);
1770		if (!sgp->pool) {
1771			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1772					sgp->name);
1773		}
1774	}
1775
1776	return 0;
1777}
1778
1779void scsi_exit_queue(void)
1780{
1781	int i;
1782
1783	kmem_cache_destroy(scsi_io_context_cache);
1784
1785	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1786		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1787		mempool_destroy(sgp->pool);
1788		kmem_cache_destroy(sgp->slab);
1789	}
1790}
1791
1792/**
1793 *	scsi_mode_select - issue a mode select
1794 *	@sdev:	SCSI device to be queried
1795 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1796 *	@sp:	Save page bit (0 == don't save, 1 == save)
1797 *	@modepage: mode page being requested
1798 *	@buffer: request buffer (may not be smaller than eight bytes)
1799 *	@len:	length of request buffer.
1800 *	@timeout: command timeout
1801 *	@retries: number of retries before failing
1802 *	@data: returns a structure abstracting the mode header data
1803 *	@sense: place to put sense data (or NULL if no sense to be collected).
1804 *		must be SCSI_SENSE_BUFFERSIZE big.
1805 *
1806 *	Returns zero if successful; negative error number or scsi
1807 *	status on error
1808 *
1809 */
1810int
1811scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1812		 unsigned char *buffer, int len, int timeout, int retries,
1813		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1814{
1815	unsigned char cmd[10];
1816	unsigned char *real_buffer;
1817	int ret;
1818
1819	memset(cmd, 0, sizeof(cmd));
1820	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1821
1822	if (sdev->use_10_for_ms) {
1823		if (len > 65535)
1824			return -EINVAL;
1825		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1826		if (!real_buffer)
1827			return -ENOMEM;
1828		memcpy(real_buffer + 8, buffer, len);
1829		len += 8;
1830		real_buffer[0] = 0;
1831		real_buffer[1] = 0;
1832		real_buffer[2] = data->medium_type;
1833		real_buffer[3] = data->device_specific;
1834		real_buffer[4] = data->longlba ? 0x01 : 0;
1835		real_buffer[5] = 0;
1836		real_buffer[6] = data->block_descriptor_length >> 8;
1837		real_buffer[7] = data->block_descriptor_length;
1838
1839		cmd[0] = MODE_SELECT_10;
1840		cmd[7] = len >> 8;
1841		cmd[8] = len;
1842	} else {
1843		if (len > 255 || data->block_descriptor_length > 255 ||
1844		    data->longlba)
1845			return -EINVAL;
1846
1847		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1848		if (!real_buffer)
1849			return -ENOMEM;
1850		memcpy(real_buffer + 4, buffer, len);
1851		len += 4;
1852		real_buffer[0] = 0;
1853		real_buffer[1] = data->medium_type;
1854		real_buffer[2] = data->device_specific;
1855		real_buffer[3] = data->block_descriptor_length;
1856
1857
1858		cmd[0] = MODE_SELECT;
1859		cmd[4] = len;
1860	}
1861
1862	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1863			       sshdr, timeout, retries);
1864	kfree(real_buffer);
1865	return ret;
1866}
1867EXPORT_SYMBOL_GPL(scsi_mode_select);
1868
1869/**
1870 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1871 *		six bytes if necessary.
1872 *	@sdev:	SCSI device to be queried
1873 *	@dbd:	set if mode sense will allow block descriptors to be returned
1874 *	@modepage: mode page being requested
1875 *	@buffer: request buffer (may not be smaller than eight bytes)
1876 *	@len:	length of request buffer.
1877 *	@timeout: command timeout
1878 *	@retries: number of retries before failing
1879 *	@data: returns a structure abstracting the mode header data
1880 *	@sense: place to put sense data (or NULL if no sense to be collected).
1881 *		must be SCSI_SENSE_BUFFERSIZE big.
1882 *
1883 *	Returns zero if unsuccessful, or the header offset (either 4
1884 *	or 8 depending on whether a six or ten byte command was
1885 *	issued) if successful.
1886 **/
1887int
1888scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1889		  unsigned char *buffer, int len, int timeout, int retries,
1890		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1891{
1892	unsigned char cmd[12];
1893	int use_10_for_ms;
1894	int header_length;
1895	int result;
1896	struct scsi_sense_hdr my_sshdr;
1897
1898	memset(data, 0, sizeof(*data));
1899	memset(&cmd[0], 0, 12);
1900	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1901	cmd[2] = modepage;
1902
1903	/* caller might not be interested in sense, but we need it */
1904	if (!sshdr)
1905		sshdr = &my_sshdr;
1906
1907 retry:
1908	use_10_for_ms = sdev->use_10_for_ms;
1909
1910	if (use_10_for_ms) {
1911		if (len < 8)
1912			len = 8;
1913
1914		cmd[0] = MODE_SENSE_10;
1915		cmd[8] = len;
1916		header_length = 8;
1917	} else {
1918		if (len < 4)
1919			len = 4;
1920
1921		cmd[0] = MODE_SENSE;
1922		cmd[4] = len;
1923		header_length = 4;
1924	}
1925
1926	memset(buffer, 0, len);
1927
1928	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1929				  sshdr, timeout, retries);
1930
1931	/* This code looks awful: what it's doing is making sure an
1932	 * ILLEGAL REQUEST sense return identifies the actual command
1933	 * byte as the problem.  MODE_SENSE commands can return
1934	 * ILLEGAL REQUEST if the code page isn't supported */
1935
1936	if (use_10_for_ms && !scsi_status_is_good(result) &&
1937	    (driver_byte(result) & DRIVER_SENSE)) {
1938		if (scsi_sense_valid(sshdr)) {
1939			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1940			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1941				/*
1942				 * Invalid command operation code
1943				 */
1944				sdev->use_10_for_ms = 0;
1945				goto retry;
1946			}
1947		}
1948	}
1949
1950	if(scsi_status_is_good(result)) {
1951		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1952			     (modepage == 6 || modepage == 8))) {
1953			/* Initio breakage? */
1954			header_length = 0;
1955			data->length = 13;
1956			data->medium_type = 0;
1957			data->device_specific = 0;
1958			data->longlba = 0;
1959			data->block_descriptor_length = 0;
1960		} else if(use_10_for_ms) {
1961			data->length = buffer[0]*256 + buffer[1] + 2;
1962			data->medium_type = buffer[2];
1963			data->device_specific = buffer[3];
1964			data->longlba = buffer[4] & 0x01;
1965			data->block_descriptor_length = buffer[6]*256
1966				+ buffer[7];
1967		} else {
1968			data->length = buffer[0] + 1;
1969			data->medium_type = buffer[1];
1970			data->device_specific = buffer[2];
1971			data->block_descriptor_length = buffer[3];
1972		}
1973		data->header_length = header_length;
1974	}
1975
1976	return result;
1977}
1978EXPORT_SYMBOL(scsi_mode_sense);
1979
1980int
1981scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1982{
1983	char cmd[] = {
1984		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1985	};
1986	struct scsi_sense_hdr sshdr;
1987	int result;
1988
1989	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1990				  timeout, retries);
1991
1992	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1993
1994		if ((scsi_sense_valid(&sshdr)) &&
1995		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1996		     (sshdr.sense_key == NOT_READY))) {
1997			sdev->changed = 1;
1998			result = 0;
1999		}
2000	}
2001	return result;
2002}
2003EXPORT_SYMBOL(scsi_test_unit_ready);
2004
2005/**
2006 *	scsi_device_set_state - Take the given device through the device
2007 *		state model.
2008 *	@sdev:	scsi device to change the state of.
2009 *	@state:	state to change to.
2010 *
2011 *	Returns zero if unsuccessful or an error if the requested
2012 *	transition is illegal.
2013 **/
2014int
2015scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2016{
2017	enum scsi_device_state oldstate = sdev->sdev_state;
2018
2019	if (state == oldstate)
2020		return 0;
2021
2022	switch (state) {
2023	case SDEV_CREATED:
2024		/* There are no legal states that come back to
2025		 * created.  This is the manually initialised start
2026		 * state */
2027		goto illegal;
2028
2029	case SDEV_RUNNING:
2030		switch (oldstate) {
2031		case SDEV_CREATED:
2032		case SDEV_OFFLINE:
2033		case SDEV_QUIESCE:
2034		case SDEV_BLOCK:
2035			break;
2036		default:
2037			goto illegal;
2038		}
2039		break;
2040
2041	case SDEV_QUIESCE:
2042		switch (oldstate) {
2043		case SDEV_RUNNING:
2044		case SDEV_OFFLINE:
2045			break;
2046		default:
2047			goto illegal;
2048		}
2049		break;
2050
2051	case SDEV_OFFLINE:
2052		switch (oldstate) {
2053		case SDEV_CREATED:
2054		case SDEV_RUNNING:
2055		case SDEV_QUIESCE:
2056		case SDEV_BLOCK:
2057			break;
2058		default:
2059			goto illegal;
2060		}
2061		break;
2062
2063	case SDEV_BLOCK:
2064		switch (oldstate) {
2065		case SDEV_CREATED:
2066		case SDEV_RUNNING:
2067			break;
2068		default:
2069			goto illegal;
2070		}
2071		break;
2072
2073	case SDEV_CANCEL:
2074		switch (oldstate) {
2075		case SDEV_CREATED:
2076		case SDEV_RUNNING:
2077		case SDEV_QUIESCE:
2078		case SDEV_OFFLINE:
2079		case SDEV_BLOCK:
2080			break;
2081		default:
2082			goto illegal;
2083		}
2084		break;
2085
2086	case SDEV_DEL:
2087		switch (oldstate) {
2088		case SDEV_CREATED:
2089		case SDEV_RUNNING:
2090		case SDEV_OFFLINE:
2091		case SDEV_CANCEL:
2092			break;
2093		default:
2094			goto illegal;
2095		}
2096		break;
2097
2098	}
2099	sdev->sdev_state = state;
2100	return 0;
2101
2102 illegal:
2103	SCSI_LOG_ERROR_RECOVERY(1,
2104				sdev_printk(KERN_ERR, sdev,
2105					    "Illegal state transition %s->%s\n",
2106					    scsi_device_state_name(oldstate),
2107					    scsi_device_state_name(state))
2108				);
2109	return -EINVAL;
2110}
2111EXPORT_SYMBOL(scsi_device_set_state);
2112
2113/**
2114 *	scsi_device_quiesce - Block user issued commands.
2115 *	@sdev:	scsi device to quiesce.
2116 *
2117 *	This works by trying to transition to the SDEV_QUIESCE state
2118 *	(which must be a legal transition).  When the device is in this
2119 *	state, only special requests will be accepted, all others will
2120 *	be deferred.  Since special requests may also be requeued requests,
2121 *	a successful return doesn't guarantee the device will be
2122 *	totally quiescent.
2123 *
2124 *	Must be called with user context, may sleep.
2125 *
2126 *	Returns zero if unsuccessful or an error if not.
2127 **/
2128int
2129scsi_device_quiesce(struct scsi_device *sdev)
2130{
2131	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2132	if (err)
2133		return err;
2134
2135	scsi_run_queue(sdev->request_queue);
2136	while (sdev->device_busy) {
2137		msleep_interruptible(200);
2138		scsi_run_queue(sdev->request_queue);
2139	}
2140	return 0;
2141}
2142EXPORT_SYMBOL(scsi_device_quiesce);
2143
2144/**
2145 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2146 *	@sdev:	scsi device to resume.
2147 *
2148 *	Moves the device from quiesced back to running and restarts the
2149 *	queues.
2150 *
2151 *	Must be called with user context, may sleep.
2152 **/
2153void
2154scsi_device_resume(struct scsi_device *sdev)
2155{
2156	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2157		return;
2158	scsi_run_queue(sdev->request_queue);
2159}
2160EXPORT_SYMBOL(scsi_device_resume);
2161
2162static void
2163device_quiesce_fn(struct scsi_device *sdev, void *data)
2164{
2165	scsi_device_quiesce(sdev);
2166}
2167
2168void
2169scsi_target_quiesce(struct scsi_target *starget)
2170{
2171	starget_for_each_device(starget, NULL, device_quiesce_fn);
2172}
2173EXPORT_SYMBOL(scsi_target_quiesce);
2174
2175static void
2176device_resume_fn(struct scsi_device *sdev, void *data)
2177{
2178	scsi_device_resume(sdev);
2179}
2180
2181void
2182scsi_target_resume(struct scsi_target *starget)
2183{
2184	starget_for_each_device(starget, NULL, device_resume_fn);
2185}
2186EXPORT_SYMBOL(scsi_target_resume);
2187
2188/**
2189 * scsi_internal_device_block - internal function to put a device
2190 *				temporarily into the SDEV_BLOCK state
2191 * @sdev:	device to block
2192 *
2193 * Block request made by scsi lld's to temporarily stop all
2194 * scsi commands on the specified device.  Called from interrupt
2195 * or normal process context.
2196 *
2197 * Returns zero if successful or error if not
2198 *
2199 * Notes:
2200 *	This routine transitions the device to the SDEV_BLOCK state
2201 *	(which must be a legal transition).  When the device is in this
2202 *	state, all commands are deferred until the scsi lld reenables
2203 *	the device with scsi_device_unblock or device_block_tmo fires.
2204 *	This routine assumes the host_lock is held on entry.
2205 **/
2206int
2207scsi_internal_device_block(struct scsi_device *sdev)
2208{
2209	struct request_queue *q = sdev->request_queue;
2210	unsigned long flags;
2211	int err = 0;
2212
2213	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2214	if (err)
2215		return err;
2216
2217	/*
2218	 * The device has transitioned to SDEV_BLOCK.  Stop the
2219	 * block layer from calling the midlayer with this device's
2220	 * request queue.
2221	 */
2222	spin_lock_irqsave(q->queue_lock, flags);
2223	blk_stop_queue(q);
2224	spin_unlock_irqrestore(q->queue_lock, flags);
2225
2226	return 0;
2227}
2228EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2229
2230/**
2231 * scsi_internal_device_unblock - resume a device after a block request
2232 * @sdev:	device to resume
2233 *
2234 * Called by scsi lld's or the midlayer to restart the device queue
2235 * for the previously suspended scsi device.  Called from interrupt or
2236 * normal process context.
2237 *
2238 * Returns zero if successful or error if not.
2239 *
2240 * Notes:
2241 *	This routine transitions the device to the SDEV_RUNNING state
2242 *	(which must be a legal transition) allowing the midlayer to
2243 *	goose the queue for this device.  This routine assumes the
2244 *	host_lock is held upon entry.
2245 **/
2246int
2247scsi_internal_device_unblock(struct scsi_device *sdev)
2248{
2249	struct request_queue *q = sdev->request_queue;
2250	int err;
2251	unsigned long flags;
2252
2253	/*
2254	 * Try to transition the scsi device to SDEV_RUNNING
2255	 * and goose the device queue if successful.
2256	 */
2257	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2258	if (err)
2259		return err;
2260
2261	spin_lock_irqsave(q->queue_lock, flags);
2262	blk_start_queue(q);
2263	spin_unlock_irqrestore(q->queue_lock, flags);
2264
2265	return 0;
2266}
2267EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2268
2269static void
2270device_block(struct scsi_device *sdev, void *data)
2271{
2272	scsi_internal_device_block(sdev);
2273}
2274
2275static int
2276target_block(struct device *dev, void *data)
2277{
2278	if (scsi_is_target_device(dev))
2279		starget_for_each_device(to_scsi_target(dev), NULL,
2280					device_block);
2281	return 0;
2282}
2283
2284void
2285scsi_target_block(struct device *dev)
2286{
2287	if (scsi_is_target_device(dev))
2288		starget_for_each_device(to_scsi_target(dev), NULL,
2289					device_block);
2290	else
2291		device_for_each_child(dev, NULL, target_block);
2292}
2293EXPORT_SYMBOL_GPL(scsi_target_block);
2294
2295static void
2296device_unblock(struct scsi_device *sdev, void *data)
2297{
2298	scsi_internal_device_unblock(sdev);
2299}
2300
2301static int
2302target_unblock(struct device *dev, void *data)
2303{
2304	if (scsi_is_target_device(dev))
2305		starget_for_each_device(to_scsi_target(dev), NULL,
2306					device_unblock);
2307	return 0;
2308}
2309
2310void
2311scsi_target_unblock(struct device *dev)
2312{
2313	if (scsi_is_target_device(dev))
2314		starget_for_each_device(to_scsi_target(dev), NULL,
2315					device_unblock);
2316	else
2317		device_for_each_child(dev, NULL, target_unblock);
2318}
2319EXPORT_SYMBOL_GPL(scsi_target_unblock);
2320
2321/**
2322 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2323 * @sg:		scatter-gather list
2324 * @sg_count:	number of segments in sg
2325 * @offset:	offset in bytes into sg, on return offset into the mapped area
2326 * @len:	bytes to map, on return number of bytes mapped
2327 *
2328 * Returns virtual address of the start of the mapped page
2329 */
2330void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2331			  size_t *offset, size_t *len)
2332{
2333	int i;
2334	size_t sg_len = 0, len_complete = 0;
2335	struct scatterlist *sg;
2336	struct page *page;
2337
2338	WARN_ON(!irqs_disabled());
2339
2340	for_each_sg(sgl, sg, sg_count, i) {
2341		len_complete = sg_len; /* Complete sg-entries */
2342		sg_len += sg->length;
2343		if (sg_len > *offset)
2344			break;
2345	}
2346
2347	if (unlikely(i == sg_count)) {
2348		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2349			"elements %d\n",
2350		       __FUNCTION__, sg_len, *offset, sg_count);
2351		WARN_ON(1);
2352		return NULL;
2353	}
2354
2355	/* Offset starting from the beginning of first page in this sg-entry */
2356	*offset = *offset - len_complete + sg->offset;
2357
2358	/* Assumption: contiguous pages can be accessed as "page + i" */
2359	page = nth_page(sg->page, (*offset >> PAGE_SHIFT));
2360	*offset &= ~PAGE_MASK;
2361
2362	/* Bytes in this sg-entry from *offset to the end of the page */
2363	sg_len = PAGE_SIZE - *offset;
2364	if (*len > sg_len)
2365		*len = sg_len;
2366
2367	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2368}
2369EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2370
2371/**
2372 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2373 *			   mapped with scsi_kmap_atomic_sg
2374 * @virt:	virtual address to be unmapped
2375 */
2376void scsi_kunmap_atomic_sg(void *virt)
2377{
2378	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2379}
2380EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2381