1/*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4 *
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 *   http://www.agere.com
8 *
9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10 *
11 *------------------------------------------------------------------------------
12 *
13 * SOFTWARE LICENSE
14 *
15 * This software is provided subject to the following terms and conditions,
16 * which you should read carefully before using the software.  Using this
17 * software indicates your acceptance of these terms and conditions.  If you do
18 * not agree with these terms and conditions, do not use the software.
19 *
20 * Copyright © 2005 Agere Systems Inc.
21 * All rights reserved.
22 *
23 * Redistribution and use in source or binary forms, with or without
24 * modifications, are permitted provided that the following conditions are met:
25 *
26 * . Redistributions of source code must retain the above copyright notice, this
27 *    list of conditions and the following Disclaimer as comments in the code as
28 *    well as in the documentation and/or other materials provided with the
29 *    distribution.
30 *
31 * . Redistributions in binary form must reproduce the above copyright notice,
32 *    this list of conditions and the following Disclaimer in the documentation
33 *    and/or other materials provided with the distribution.
34 *
35 * . Neither the name of Agere Systems Inc. nor the names of the contributors
36 *    may be used to endorse or promote products derived from this software
37 *    without specific prior written permission.
38 *
39 * Disclaimer
40 *
41 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
44 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52 * DAMAGE.
53 *
54 */
55
56#include <linux/pci.h>
57#include <linux/init.h>
58#include <linux/module.h>
59#include <linux/types.h>
60#include <linux/kernel.h>
61
62#include <linux/sched.h>
63#include <linux/ptrace.h>
64#include <linux/slab.h>
65#include <linux/ctype.h>
66#include <linux/string.h>
67#include <linux/timer.h>
68#include <linux/interrupt.h>
69#include <linux/in.h>
70#include <linux/delay.h>
71#include <linux/bitops.h>
72#include <linux/io.h>
73
74#include <linux/netdevice.h>
75#include <linux/etherdevice.h>
76#include <linux/skbuff.h>
77#include <linux/if_arp.h>
78#include <linux/ioport.h>
79#include <linux/crc32.h>
80#include <linux/random.h>
81#include <linux/phy.h>
82
83#include "et131x.h"
84
85MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
86MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
87MODULE_LICENSE("Dual BSD/GPL");
88MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
89		   "for the ET1310 by Agere Systems");
90
91/* EEPROM defines */
92#define MAX_NUM_REGISTER_POLLS          1000
93#define MAX_NUM_WRITE_RETRIES           2
94
95/* MAC defines */
96#define COUNTER_WRAP_16_BIT 0x10000
97#define COUNTER_WRAP_12_BIT 0x1000
98
99/* PCI defines */
100#define INTERNAL_MEM_SIZE       0x400	/* 1024 of internal memory */
101#define INTERNAL_MEM_RX_OFFSET  0x1FF	/* 50%   Tx, 50%   Rx */
102
103/* ISR defines */
104/*
105 * For interrupts, normal running is:
106 *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
107 *       watchdog_interrupt & txdma_xfer_done
108 *
109 * In both cases, when flow control is enabled for either Tx or bi-direction,
110 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
111 * buffer rings are running low.
112 */
113#define INT_MASK_DISABLE            0xffffffff
114
115/* NOTE: Masking out MAC_STAT Interrupt for now...
116 * #define INT_MASK_ENABLE             0xfff6bf17
117 * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
118 */
119#define INT_MASK_ENABLE             0xfffebf17
120#define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
121
122/* General defines */
123/* Packet and header sizes */
124#define NIC_MIN_PACKET_SIZE	60
125
126/* Multicast list size */
127#define NIC_MAX_MCAST_LIST	128
128
129/* Supported Filters */
130#define ET131X_PACKET_TYPE_DIRECTED		0x0001
131#define ET131X_PACKET_TYPE_MULTICAST		0x0002
132#define ET131X_PACKET_TYPE_BROADCAST		0x0004
133#define ET131X_PACKET_TYPE_PROMISCUOUS		0x0008
134#define ET131X_PACKET_TYPE_ALL_MULTICAST	0x0010
135
136/* Tx Timeout */
137#define ET131X_TX_TIMEOUT	(1 * HZ)
138#define NIC_SEND_HANG_THRESHOLD	0
139
140/* MP_TCB flags */
141#define fMP_DEST_MULTI			0x00000001
142#define fMP_DEST_BROAD			0x00000002
143
144/* MP_ADAPTER flags */
145#define fMP_ADAPTER_RECV_LOOKASIDE	0x00000004
146#define fMP_ADAPTER_INTERRUPT_IN_USE	0x00000008
147
148/* MP_SHARED flags */
149#define fMP_ADAPTER_LOWER_POWER		0x00200000
150
151#define fMP_ADAPTER_NON_RECOVER_ERROR	0x00800000
152#define fMP_ADAPTER_HARDWARE_ERROR	0x04000000
153
154#define fMP_ADAPTER_FAIL_SEND_MASK	0x3ff00000
155
156/* Some offsets in PCI config space that are actually used. */
157#define ET1310_PCI_MAC_ADDRESS		0xA4
158#define ET1310_PCI_EEPROM_STATUS	0xB2
159#define ET1310_PCI_ACK_NACK		0xC0
160#define ET1310_PCI_REPLAY		0xC2
161#define ET1310_PCI_L0L1LATENCY		0xCF
162
163/* PCI Product IDs */
164#define ET131X_PCI_DEVICE_ID_GIG	0xED00	/* ET1310 1000 Base-T 8 */
165#define ET131X_PCI_DEVICE_ID_FAST	0xED01	/* ET1310 100  Base-T */
166
167/* Define order of magnitude converter */
168#define NANO_IN_A_MICRO	1000
169
170#define PARM_RX_NUM_BUFS_DEF    4
171#define PARM_RX_TIME_INT_DEF    10
172#define PARM_RX_MEM_END_DEF     0x2bc
173#define PARM_TX_TIME_INT_DEF    40
174#define PARM_TX_NUM_BUFS_DEF    4
175#define PARM_DMA_CACHE_DEF      0
176
177/* RX defines */
178#define USE_FBR0 1
179#define FBR_CHUNKS 32
180#define MAX_DESC_PER_RING_RX         1024
181
182/* number of RFDs - default and min */
183#ifdef USE_FBR0
184#define RFD_LOW_WATER_MARK	40
185#define NIC_DEFAULT_NUM_RFD	1024
186#define NUM_FBRS		2
187#else
188#define RFD_LOW_WATER_MARK	20
189#define NIC_DEFAULT_NUM_RFD	256
190#define NUM_FBRS		1
191#endif
192
193#define NIC_MIN_NUM_RFD		64
194#define NUM_PACKETS_HANDLED	256
195
196#define ALCATEL_MULTICAST_PKT	0x01000000
197#define ALCATEL_BROADCAST_PKT	0x02000000
198
199/* typedefs for Free Buffer Descriptors */
200struct fbr_desc {
201	u32 addr_lo;
202	u32 addr_hi;
203	u32 word2;		/* Bits 10-31 reserved, 0-9 descriptor */
204};
205
206/* Packet Status Ring Descriptors
207 *
208 * Word 0:
209 *
210 * top 16 bits are from the Alcatel Status Word as enumerated in
211 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
212 *
213 * 0: hp			hash pass
214 * 1: ipa			IP checksum assist
215 * 2: ipp			IP checksum pass
216 * 3: tcpa			TCP checksum assist
217 * 4: tcpp			TCP checksum pass
218 * 5: wol			WOL Event
219 * 6: rxmac_error		RXMAC Error Indicator
220 * 7: drop			Drop packet
221 * 8: ft			Frame Truncated
222 * 9: jp			Jumbo Packet
223 * 10: vp			VLAN Packet
224 * 11-15: unused
225 * 16: asw_prev_pkt_dropped	e.g. IFG too small on previous
226 * 17: asw_RX_DV_event		short receive event detected
227 * 18: asw_false_carrier_event	bad carrier since last good packet
228 * 19: asw_code_err		one or more nibbles signalled as errors
229 * 20: asw_CRC_err		CRC error
230 * 21: asw_len_chk_err		frame length field incorrect
231 * 22: asw_too_long		frame length > 1518 bytes
232 * 23: asw_OK			valid CRC + no code error
233 * 24: asw_multicast		has a multicast address
234 * 25: asw_broadcast		has a broadcast address
235 * 26: asw_dribble_nibble	spurious bits after EOP
236 * 27: asw_control_frame	is a control frame
237 * 28: asw_pause_frame		is a pause frame
238 * 29: asw_unsupported_op	unsupported OP code
239 * 30: asw_VLAN_tag		VLAN tag detected
240 * 31: asw_long_evt		Rx long event
241 *
242 * Word 1:
243 * 0-15: length			length in bytes
244 * 16-25: bi			Buffer Index
245 * 26-27: ri			Ring Index
246 * 28-31: reserved
247 */
248
249struct pkt_stat_desc {
250	u32 word0;
251	u32 word1;
252};
253
254/* Typedefs for the RX DMA status word */
255
256/*
257 * rx status word 0 holds part of the status bits of the Rx DMA engine
258 * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
259 * which contains the Free Buffer ring 0 and 1 available offset.
260 *
261 * bit 0-9 FBR1 offset
262 * bit 10 Wrap flag for FBR1
263 * bit 16-25 FBR0 offset
264 * bit 26 Wrap flag for FBR0
265 */
266
267/*
268 * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
269 * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
270 * which contains the Packet Status Ring available offset.
271 *
272 * bit 0-15 reserved
273 * bit 16-27 PSRoffset
274 * bit 28 PSRwrap
275 * bit 29-31 unused
276 */
277
278/*
279 * struct rx_status_block is a structure representing the status of the Rx
280 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
281 */
282struct rx_status_block {
283	u32 word0;
284	u32 word1;
285};
286
287/*
288 * Structure for look-up table holding free buffer ring pointers, addresses
289 * and state.
290 */
291struct fbr_lookup {
292	void		*virt[MAX_DESC_PER_RING_RX];
293	void		*buffer1[MAX_DESC_PER_RING_RX];
294	void		*buffer2[MAX_DESC_PER_RING_RX];
295	u32		 bus_high[MAX_DESC_PER_RING_RX];
296	u32		 bus_low[MAX_DESC_PER_RING_RX];
297	void		*ring_virtaddr;
298	dma_addr_t	 ring_physaddr;
299	void		*mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
300	dma_addr_t	 mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
301	u64		 real_physaddr;
302	u64		 offset;
303	u32		 local_full;
304	u32		 num_entries;
305	u32		 buffsize;
306};
307
308/*
309 * struct rx_ring is the sructure representing the adaptor's local
310 * reference(s) to the rings
311 *
312 ******************************************************************************
313 * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
314 *			and index 1 to refer to FRB0
315 ******************************************************************************
316 */
317struct rx_ring {
318	struct fbr_lookup *fbr[NUM_FBRS];
319	void *ps_ring_virtaddr;
320	dma_addr_t ps_ring_physaddr;
321	u32 local_psr_full;
322	u32 psr_num_entries;
323
324	struct rx_status_block *rx_status_block;
325	dma_addr_t rx_status_bus;
326
327	/* RECV */
328	struct list_head recv_list;
329	u32 num_ready_recv;
330
331	u32 num_rfd;
332
333	bool unfinished_receives;
334
335	/* lookaside lists */
336	struct kmem_cache *recv_lookaside;
337};
338
339/* TX defines */
340/*
341 * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
342 *
343 * 0-15: length of packet
344 * 16-27: VLAN tag
345 * 28: VLAN CFI
346 * 29-31: VLAN priority
347 *
348 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
349 *
350 * 0: last packet in the sequence
351 * 1: first packet in the sequence
352 * 2: interrupt the processor when this pkt sent
353 * 3: Control word - no packet data
354 * 4: Issue half-duplex backpressure : XON/XOFF
355 * 5: send pause frame
356 * 6: Tx frame has error
357 * 7: append CRC
358 * 8: MAC override
359 * 9: pad packet
360 * 10: Packet is a Huge packet
361 * 11: append VLAN tag
362 * 12: IP checksum assist
363 * 13: TCP checksum assist
364 * 14: UDP checksum assist
365 */
366
367/* struct tx_desc represents each descriptor on the ring */
368struct tx_desc {
369	u32 addr_hi;
370	u32 addr_lo;
371	u32 len_vlan;	/* control words how to xmit the */
372	u32 flags;	/* data (detailed above) */
373};
374
375/*
376 * The status of the Tx DMA engine it sits in free memory, and is pointed to
377 * by 0x101c / 0x1020. This is a DMA10 type
378 */
379
380/* TCB (Transmit Control Block: Host Side) */
381struct tcb {
382	struct tcb *next;	/* Next entry in ring */
383	u32 flags;		/* Our flags for the packet */
384	u32 count;		/* Used to spot stuck/lost packets */
385	u32 stale;		/* Used to spot stuck/lost packets */
386	struct sk_buff *skb;	/* Network skb we are tied to */
387	u32 index;		/* Ring indexes */
388	u32 index_start;
389};
390
391/* Structure representing our local reference(s) to the ring */
392struct tx_ring {
393	/* TCB (Transmit Control Block) memory and lists */
394	struct tcb *tcb_ring;
395
396	/* List of TCBs that are ready to be used */
397	struct tcb *tcb_qhead;
398	struct tcb *tcb_qtail;
399
400	/* list of TCBs that are currently being sent.  NOTE that access to all
401	 * three of these (including used) are controlled via the
402	 * TCBSendQLock.  This lock should be secured prior to incementing /
403	 * decrementing used, or any queue manipulation on send_head /
404	 * tail
405	 */
406	struct tcb *send_head;
407	struct tcb *send_tail;
408	int used;
409
410	/* The actual descriptor ring */
411	struct tx_desc *tx_desc_ring;
412	dma_addr_t tx_desc_ring_pa;
413
414	/* send_idx indicates where we last wrote to in the descriptor ring. */
415	u32 send_idx;
416
417	/* The location of the write-back status block */
418	u32 *tx_status;
419	dma_addr_t tx_status_pa;
420
421	/* Packets since the last IRQ: used for interrupt coalescing */
422	int since_irq;
423};
424
425/*
426 * Do not change these values: if changed, then change also in respective
427 * TXdma and Rxdma engines
428 */
429#define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
430#define NUM_TCB                      64
431
432/*
433 * These values are all superseded by registry entries to facilitate tuning.
434 * Once the desired performance has been achieved, the optimal registry values
435 * should be re-populated to these #defines:
436 */
437#define TX_ERROR_PERIOD             1000
438
439#define LO_MARK_PERCENT_FOR_PSR     15
440#define LO_MARK_PERCENT_FOR_RX      15
441
442/* RFD (Receive Frame Descriptor) */
443struct rfd {
444	struct list_head list_node;
445	struct sk_buff *skb;
446	u32 len;	/* total size of receive frame */
447	u16 bufferindex;
448	u8 ringindex;
449};
450
451/* Flow Control */
452#define FLOW_BOTH	0
453#define FLOW_TXONLY	1
454#define FLOW_RXONLY	2
455#define FLOW_NONE	3
456
457/* Struct to define some device statistics */
458struct ce_stats {
459	/* MIB II variables
460	 *
461	 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
462	 * MUST have 32, then we'll need another way to perform atomic
463	 * operations
464	 */
465	u32		unicast_pkts_rcvd;
466	atomic_t	unicast_pkts_xmtd;
467	u32		multicast_pkts_rcvd;
468	atomic_t	multicast_pkts_xmtd;
469	u32		broadcast_pkts_rcvd;
470	atomic_t	broadcast_pkts_xmtd;
471	u32		rcvd_pkts_dropped;
472
473	/* Tx Statistics. */
474	u32		tx_underflows;
475
476	u32		tx_collisions;
477	u32		tx_excessive_collisions;
478	u32		tx_first_collisions;
479	u32		tx_late_collisions;
480	u32		tx_max_pkt_errs;
481	u32		tx_deferred;
482
483	/* Rx Statistics. */
484	u32		rx_overflows;
485
486	u32		rx_length_errs;
487	u32		rx_align_errs;
488	u32		rx_crc_errs;
489	u32		rx_code_violations;
490	u32		rx_other_errs;
491
492	u32		synchronous_iterations;
493	u32		interrupt_status;
494};
495
496/* The private adapter structure */
497struct et131x_adapter {
498	struct net_device *netdev;
499	struct pci_dev *pdev;
500	struct mii_bus *mii_bus;
501	struct phy_device *phydev;
502	struct work_struct task;
503
504	/* Flags that indicate current state of the adapter */
505	u32 flags;
506
507	/* local link state, to determine if a state change has occurred */
508	int link;
509
510	/* Configuration  */
511	u8 rom_addr[ETH_ALEN];
512	u8 addr[ETH_ALEN];
513	bool has_eeprom;
514	u8 eeprom_data[2];
515
516	/* Spinlocks */
517	spinlock_t lock;
518
519	spinlock_t tcb_send_qlock;
520	spinlock_t tcb_ready_qlock;
521	spinlock_t send_hw_lock;
522
523	spinlock_t rcv_lock;
524	spinlock_t rcv_pend_lock;
525	spinlock_t fbr_lock;
526
527	spinlock_t phy_lock;
528
529	/* Packet Filter and look ahead size */
530	u32 packet_filter;
531
532	/* multicast list */
533	u32 multicast_addr_count;
534	u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
535
536	/* Pointer to the device's PCI register space */
537	struct address_map __iomem *regs;
538
539	/* Registry parameters */
540	u8 wanted_flow;		/* Flow we want for 802.3x flow control */
541	u32 registry_jumbo_packet;	/* Max supported ethernet packet size */
542
543	/* Derived from the registry: */
544	u8 flowcontrol;		/* flow control validated by the far-end */
545
546	/* Minimize init-time */
547	struct timer_list error_timer;
548
549	/* variable putting the phy into coma mode when boot up with no cable
550	 * plugged in after 5 seconds
551	 */
552	u8 boot_coma;
553
554	/* Next two used to save power information at power down. This
555	 * information will be used during power up to set up parts of Power
556	 * Management in JAGCore
557	 */
558	u16 pdown_speed;
559	u8 pdown_duplex;
560
561	/* Tx Memory Variables */
562	struct tx_ring tx_ring;
563
564	/* Rx Memory Variables */
565	struct rx_ring rx_ring;
566
567	/* Stats */
568	struct ce_stats stats;
569
570	struct net_device_stats net_stats;
571};
572
573static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
574{
575	u32 reg;
576	int i;
577
578	/*
579	 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
580	 *    bits 7,1:0 both equal to 1, at least once after reset.
581	 *    Subsequent operations need only to check that bits 1:0 are equal
582	 *    to 1 prior to starting a single byte read/write
583	 */
584
585	for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
586		/* Read registers grouped in DWORD1 */
587		if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
588			return -EIO;
589
590		/* I2C idle and Phy Queue Avail both true */
591		if ((reg & 0x3000) == 0x3000) {
592			if (status)
593				*status = reg;
594			return reg & 0xFF;
595		}
596	}
597	return -ETIMEDOUT;
598}
599
600
601/**
602 * eeprom_write - Write a byte to the ET1310's EEPROM
603 * @adapter: pointer to our private adapter structure
604 * @addr: the address to write
605 * @data: the value to write
606 *
607 * Returns 1 for a successful write.
608 */
609static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
610{
611	struct pci_dev *pdev = adapter->pdev;
612	int index = 0;
613	int retries;
614	int err = 0;
615	int i2c_wack = 0;
616	int writeok = 0;
617	u32 status;
618	u32 val = 0;
619
620	/*
621	 * For an EEPROM, an I2C single byte write is defined as a START
622	 * condition followed by the device address, EEPROM address, one byte
623	 * of data and a STOP condition.  The STOP condition will trigger the
624	 * EEPROM's internally timed write cycle to the nonvolatile memory.
625	 * All inputs are disabled during this write cycle and the EEPROM will
626	 * not respond to any access until the internal write is complete.
627	 */
628
629	err = eeprom_wait_ready(pdev, NULL);
630	if (err)
631		return err;
632
633	 /*
634	 * 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
635	 *    and bits 1:0 both =0.  Bit 5 should be set according to the
636	 *    type of EEPROM being accessed (1=two byte addressing, 0=one
637	 *    byte addressing).
638	 */
639	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
640			LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
641		return -EIO;
642
643	i2c_wack = 1;
644
645	/* Prepare EEPROM address for Step 3 */
646
647	for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
648		/* Write the address to the LBCIF Address Register */
649		if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
650			break;
651		/*
652		 * Write the data to the LBCIF Data Register (the I2C write
653		 * will begin).
654		 */
655		if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
656			break;
657		/*
658		 * Monitor bit 1:0 of the LBCIF Status Register.  When bits
659		 * 1:0 are both equal to 1, the I2C write has completed and the
660		 * internal write cycle of the EEPROM is about to start.
661		 * (bits 1:0 = 01 is a legal state while waiting from both
662		 * equal to 1, but bits 1:0 = 10 is invalid and implies that
663		 * something is broken).
664		 */
665		err = eeprom_wait_ready(pdev, &status);
666		if (err < 0)
667			return 0;
668
669		/*
670		 * Check bit 3 of the LBCIF Status Register.  If  equal to 1,
671		 * an error has occurred.Don't break here if we are revision
672		 * 1, this is so we do a blind write for load bug.
673		 */
674		if ((status & LBCIF_STATUS_GENERAL_ERROR)
675			&& adapter->pdev->revision == 0)
676			break;
677
678		/*
679		 * Check bit 2 of the LBCIF Status Register.  If equal to 1 an
680		 * ACK error has occurred on the address phase of the write.
681		 * This could be due to an actual hardware failure or the
682		 * EEPROM may still be in its internal write cycle from a
683		 * previous write. This write operation was ignored and must be
684		  *repeated later.
685		 */
686		if (status & LBCIF_STATUS_ACK_ERROR) {
687			/*
688			 * This could be due to an actual hardware failure
689			 * or the EEPROM may still be in its internal write
690			 * cycle from a previous write. This write operation
691			 * was ignored and must be repeated later.
692			 */
693			udelay(10);
694			continue;
695		}
696
697		writeok = 1;
698		break;
699	}
700
701	/*
702	 * Set bit 6 of the LBCIF Control Register = 0.
703	 */
704	udelay(10);
705
706	while (i2c_wack) {
707		if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
708			LBCIF_CONTROL_LBCIF_ENABLE))
709			writeok = 0;
710
711		/* Do read until internal ACK_ERROR goes away meaning write
712		 * completed
713		 */
714		do {
715			pci_write_config_dword(pdev,
716					       LBCIF_ADDRESS_REGISTER,
717					       addr);
718			do {
719				pci_read_config_dword(pdev,
720					LBCIF_DATA_REGISTER, &val);
721			} while ((val & 0x00010000) == 0);
722		} while (val & 0x00040000);
723
724		if ((val & 0xFF00) != 0xC000 || index == 10000)
725			break;
726		index++;
727	}
728	return writeok ? 0 : -EIO;
729}
730
731/**
732 * eeprom_read - Read a byte from the ET1310's EEPROM
733 * @adapter: pointer to our private adapter structure
734 * @addr: the address from which to read
735 * @pdata: a pointer to a byte in which to store the value of the read
736 * @eeprom_id: the ID of the EEPROM
737 * @addrmode: how the EEPROM is to be accessed
738 *
739 * Returns 1 for a successful read
740 */
741static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
742{
743	struct pci_dev *pdev = adapter->pdev;
744	int err;
745	u32 status;
746
747	/*
748	 * A single byte read is similar to the single byte write, with the
749	 * exception of the data flow:
750	 */
751
752	err = eeprom_wait_ready(pdev, NULL);
753	if (err)
754		return err;
755	/*
756	 * Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
757	 * and bits 1:0 both =0.  Bit 5 should be set according to the type
758	 * of EEPROM being accessed (1=two byte addressing, 0=one byte
759	 * addressing).
760	 */
761	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
762				  LBCIF_CONTROL_LBCIF_ENABLE))
763		return -EIO;
764	/*
765	 * Write the address to the LBCIF Address Register (I2C read will
766	 * begin).
767	 */
768	if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
769		return -EIO;
770	/*
771	 * Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
772	 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
773	 * has occurred).
774	 */
775	err = eeprom_wait_ready(pdev, &status);
776	if (err < 0)
777		return err;
778	/*
779	 * Regardless of error status, read data byte from LBCIF Data
780	 * Register.
781	 */
782	*pdata = err;
783	/*
784	 * Check bit 2 of the LBCIF Status Register.  If = 1,
785	 * then an error has occurred.
786	 */
787	return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
788}
789
790static int et131x_init_eeprom(struct et131x_adapter *adapter)
791{
792	struct pci_dev *pdev = adapter->pdev;
793	u8 eestatus;
794
795	/* We first need to check the EEPROM Status code located at offset
796	 * 0xB2 of config space
797	 */
798	pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
799				      &eestatus);
800
801	/* THIS IS A WORKAROUND:
802	 * I need to call this function twice to get my card in a
803	 * LG M1 Express Dual running. I tried also a msleep before this
804	 * function, because I thought there could be some time condidions
805	 * but it didn't work. Call the whole function twice also work.
806	 */
807	if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
808		dev_err(&pdev->dev,
809		       "Could not read PCI config space for EEPROM Status\n");
810		return -EIO;
811	}
812
813	/* Determine if the error(s) we care about are present. If they are
814	 * present we need to fail.
815	 */
816	if (eestatus & 0x4C) {
817		int write_failed = 0;
818		if (pdev->revision == 0x01) {
819			int	i;
820			static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
821
822			/* Re-write the first 4 bytes if we have an eeprom
823			 * present and the revision id is 1, this fixes the
824			 * corruption seen with 1310 B Silicon
825			 */
826			for (i = 0; i < 3; i++)
827				if (eeprom_write(adapter, i, eedata[i]) < 0)
828					write_failed = 1;
829		}
830		if (pdev->revision  != 0x01 || write_failed) {
831			dev_err(&pdev->dev,
832			    "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
833
834			/* This error could mean that there was an error
835			 * reading the eeprom or that the eeprom doesn't exist.
836			 * We will treat each case the same and not try to
837			 * gather additional information that normally would
838			 * come from the eeprom, like MAC Address
839			 */
840			adapter->has_eeprom = 0;
841			return -EIO;
842		}
843	}
844	adapter->has_eeprom = 1;
845
846	/* Read the EEPROM for information regarding LED behavior. Refer to
847	 * ET1310_phy.c, et131x_xcvr_init(), for its use.
848	 */
849	eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
850	eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
851
852	if (adapter->eeprom_data[0] != 0xcd)
853		/* Disable all optional features */
854		adapter->eeprom_data[1] = 0x00;
855
856	return 0;
857}
858
859/**
860 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
861 * @adapter: pointer to our adapter structure
862 */
863static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
864{
865	/* Setup the receive dma configuration register for normal operation */
866	u32 csr =  0x2000;	/* FBR1 enable */
867
868	if (adapter->rx_ring.fbr[0]->buffsize == 4096)
869		csr |= 0x0800;
870	else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
871		csr |= 0x1000;
872	else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
873		csr |= 0x1800;
874#ifdef USE_FBR0
875	csr |= 0x0400;		/* FBR0 enable */
876	if (adapter->rx_ring.fbr[1]->buffsize == 256)
877		csr |= 0x0100;
878	else if (adapter->rx_ring.fbr[1]->buffsize == 512)
879		csr |= 0x0200;
880	else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
881		csr |= 0x0300;
882#endif
883	writel(csr, &adapter->regs->rxdma.csr);
884
885	csr = readl(&adapter->regs->rxdma.csr);
886	if ((csr & 0x00020000) != 0) {
887		udelay(5);
888		csr = readl(&adapter->regs->rxdma.csr);
889		if ((csr & 0x00020000) != 0) {
890			dev_err(&adapter->pdev->dev,
891			    "RX Dma failed to exit halt state.  CSR 0x%08x\n",
892				csr);
893		}
894	}
895}
896
897/**
898 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
899 * @adapter: pointer to our adapter structure
900 */
901static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
902{
903	u32 csr;
904	/* Setup the receive dma configuration register */
905	writel(0x00002001, &adapter->regs->rxdma.csr);
906	csr = readl(&adapter->regs->rxdma.csr);
907	if ((csr & 0x00020000) == 0) {	/* Check halt status (bit 17) */
908		udelay(5);
909		csr = readl(&adapter->regs->rxdma.csr);
910		if ((csr & 0x00020000) == 0)
911			dev_err(&adapter->pdev->dev,
912			"RX Dma failed to enter halt state. CSR 0x%08x\n",
913				csr);
914	}
915}
916
917/**
918 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
919 * @adapter: pointer to our adapter structure
920 *
921 * Mainly used after a return to the D0 (full-power) state from a lower state.
922 */
923static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
924{
925	/* Setup the transmit dma configuration register for normal
926	 * operation
927	 */
928	writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
929					&adapter->regs->txdma.csr);
930}
931
932static inline void add_10bit(u32 *v, int n)
933{
934	*v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
935}
936
937static inline void add_12bit(u32 *v, int n)
938{
939	*v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
940}
941
942/**
943 * et1310_config_mac_regs1 - Initialize the first part of MAC regs
944 * @adapter: pointer to our adapter structure
945 */
946static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
947{
948	struct mac_regs __iomem *macregs = &adapter->regs->mac;
949	u32 station1;
950	u32 station2;
951	u32 ipg;
952
953	/* First we need to reset everything.  Write to MAC configuration
954	 * register 1 to perform reset.
955	 */
956	writel(0xC00F0000, &macregs->cfg1);
957
958	/* Next lets configure the MAC Inter-packet gap register */
959	ipg = 0x38005860;		/* IPG1 0x38 IPG2 0x58 B2B 0x60 */
960	ipg |= 0x50 << 8;		/* ifg enforce 0x50 */
961	writel(ipg, &macregs->ipg);
962
963	/* Next lets configure the MAC Half Duplex register */
964	/* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
965	writel(0x00A1F037, &macregs->hfdp);
966
967	/* Next lets configure the MAC Interface Control register */
968	writel(0, &macregs->if_ctrl);
969
970	/* Let's move on to setting up the mii management configuration */
971	writel(0x07, &macregs->mii_mgmt_cfg);	/* Clock reset 0x7 */
972
973	/* Next lets configure the MAC Station Address register.  These
974	 * values are read from the EEPROM during initialization and stored
975	 * in the adapter structure.  We write what is stored in the adapter
976	 * structure to the MAC Station Address registers high and low.  This
977	 * station address is used for generating and checking pause control
978	 * packets.
979	 */
980	station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
981		   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
982	station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
983		   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
984		   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
985		    adapter->addr[2];
986	writel(station1, &macregs->station_addr_1);
987	writel(station2, &macregs->station_addr_2);
988
989	/* Max ethernet packet in bytes that will be passed by the mac without
990	 * being truncated.  Allow the MAC to pass 4 more than our max packet
991	 * size.  This is 4 for the Ethernet CRC.
992	 *
993	 * Packets larger than (registry_jumbo_packet) that do not contain a
994	 * VLAN ID will be dropped by the Rx function.
995	 */
996	writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
997
998	/* clear out MAC config reset */
999	writel(0, &macregs->cfg1);
1000}
1001
1002/**
1003 * et1310_config_mac_regs2 - Initialize the second part of MAC regs
1004 * @adapter: pointer to our adapter structure
1005 */
1006static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
1007{
1008	int32_t delay = 0;
1009	struct mac_regs __iomem *mac = &adapter->regs->mac;
1010	struct phy_device *phydev = adapter->phydev;
1011	u32 cfg1;
1012	u32 cfg2;
1013	u32 ifctrl;
1014	u32 ctl;
1015
1016	ctl = readl(&adapter->regs->txmac.ctl);
1017	cfg1 = readl(&mac->cfg1);
1018	cfg2 = readl(&mac->cfg2);
1019	ifctrl = readl(&mac->if_ctrl);
1020
1021	/* Set up the if mode bits */
1022	cfg2 &= ~0x300;
1023	if (phydev && phydev->speed == SPEED_1000) {
1024		cfg2 |= 0x200;
1025		/* Phy mode bit */
1026		ifctrl &= ~(1 << 24);
1027	} else {
1028		cfg2 |= 0x100;
1029		ifctrl |= (1 << 24);
1030	}
1031
1032	/* We need to enable Rx/Tx */
1033	cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
1034	/* Initialize loop back to off */
1035	cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
1036	if (adapter->flowcontrol == FLOW_RXONLY ||
1037				adapter->flowcontrol == FLOW_BOTH)
1038		cfg1 |= CFG1_RX_FLOW;
1039	writel(cfg1, &mac->cfg1);
1040
1041	/* Now we need to initialize the MAC Configuration 2 register */
1042	/* preamble 7, check length, huge frame off, pad crc, crc enable
1043	   full duplex off */
1044	cfg2 |= 0x7016;
1045	cfg2 &= ~0x0021;
1046
1047	/* Turn on duplex if needed */
1048	if (phydev && phydev->duplex == DUPLEX_FULL)
1049		cfg2 |= 0x01;
1050
1051	ifctrl &= ~(1 << 26);
1052	if (phydev && phydev->duplex == DUPLEX_HALF)
1053		ifctrl |= (1<<26);	/* Enable ghd */
1054
1055	writel(ifctrl, &mac->if_ctrl);
1056	writel(cfg2, &mac->cfg2);
1057
1058	do {
1059		udelay(10);
1060		delay++;
1061		cfg1 = readl(&mac->cfg1);
1062	} while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
1063
1064	if (delay == 100) {
1065		dev_warn(&adapter->pdev->dev,
1066		    "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1067			cfg1);
1068	}
1069
1070	/* Enable txmac */
1071	ctl |= 0x09;	/* TX mac enable, FC disable */
1072	writel(ctl, &adapter->regs->txmac.ctl);
1073
1074	/* Ready to start the RXDMA/TXDMA engine */
1075	if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1076		et131x_rx_dma_enable(adapter);
1077		et131x_tx_dma_enable(adapter);
1078	}
1079}
1080
1081/**
1082 * et1310_in_phy_coma - check if the device is in phy coma
1083 * @adapter: pointer to our adapter structure
1084 *
1085 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1086 */
1087static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1088{
1089	u32 pmcsr;
1090
1091	pmcsr = readl(&adapter->regs->global.pm_csr);
1092
1093	return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1094}
1095
1096static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1097{
1098	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1099	u32 hash1 = 0;
1100	u32 hash2 = 0;
1101	u32 hash3 = 0;
1102	u32 hash4 = 0;
1103	u32 pm_csr;
1104
1105	/* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1106	 * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
1107	 * specified) then we should pass NO multi-cast addresses to the
1108	 * driver.
1109	 */
1110	if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1111		int i;
1112
1113		/* Loop through our multicast array and set up the device */
1114		for (i = 0; i < adapter->multicast_addr_count; i++) {
1115			u32 result;
1116
1117			result = ether_crc(6, adapter->multicast_list[i]);
1118
1119			result = (result & 0x3F800000) >> 23;
1120
1121			if (result < 32) {
1122				hash1 |= (1 << result);
1123			} else if ((31 < result) && (result < 64)) {
1124				result -= 32;
1125				hash2 |= (1 << result);
1126			} else if ((63 < result) && (result < 96)) {
1127				result -= 64;
1128				hash3 |= (1 << result);
1129			} else {
1130				result -= 96;
1131				hash4 |= (1 << result);
1132			}
1133		}
1134	}
1135
1136	/* Write out the new hash to the device */
1137	pm_csr = readl(&adapter->regs->global.pm_csr);
1138	if (!et1310_in_phy_coma(adapter)) {
1139		writel(hash1, &rxmac->multi_hash1);
1140		writel(hash2, &rxmac->multi_hash2);
1141		writel(hash3, &rxmac->multi_hash3);
1142		writel(hash4, &rxmac->multi_hash4);
1143	}
1144}
1145
1146static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1147{
1148	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1149	u32 uni_pf1;
1150	u32 uni_pf2;
1151	u32 uni_pf3;
1152	u32 pm_csr;
1153
1154	/* Set up unicast packet filter reg 3 to be the first two octets of
1155	 * the MAC address for both address
1156	 *
1157	 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1158	 * MAC address for second address
1159	 *
1160	 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1161	 * MAC address for first address
1162	 */
1163	uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1164		  (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1165		  (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1166		   adapter->addr[1];
1167
1168	uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1169		  (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1170		  (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1171		   adapter->addr[5];
1172
1173	uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1174		  (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1175		  (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1176		   adapter->addr[5];
1177
1178	pm_csr = readl(&adapter->regs->global.pm_csr);
1179	if (!et1310_in_phy_coma(adapter)) {
1180		writel(uni_pf1, &rxmac->uni_pf_addr1);
1181		writel(uni_pf2, &rxmac->uni_pf_addr2);
1182		writel(uni_pf3, &rxmac->uni_pf_addr3);
1183	}
1184}
1185
1186static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1187{
1188	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1189	struct phy_device *phydev = adapter->phydev;
1190	u32 sa_lo;
1191	u32 sa_hi = 0;
1192	u32 pf_ctrl = 0;
1193
1194	/* Disable the MAC while it is being configured (also disable WOL) */
1195	writel(0x8, &rxmac->ctrl);
1196
1197	/* Initialize WOL to disabled. */
1198	writel(0, &rxmac->crc0);
1199	writel(0, &rxmac->crc12);
1200	writel(0, &rxmac->crc34);
1201
1202	/* We need to set the WOL mask0 - mask4 next.  We initialize it to
1203	 * its default Values of 0x00000000 because there are not WOL masks
1204	 * as of this time.
1205	 */
1206	writel(0, &rxmac->mask0_word0);
1207	writel(0, &rxmac->mask0_word1);
1208	writel(0, &rxmac->mask0_word2);
1209	writel(0, &rxmac->mask0_word3);
1210
1211	writel(0, &rxmac->mask1_word0);
1212	writel(0, &rxmac->mask1_word1);
1213	writel(0, &rxmac->mask1_word2);
1214	writel(0, &rxmac->mask1_word3);
1215
1216	writel(0, &rxmac->mask2_word0);
1217	writel(0, &rxmac->mask2_word1);
1218	writel(0, &rxmac->mask2_word2);
1219	writel(0, &rxmac->mask2_word3);
1220
1221	writel(0, &rxmac->mask3_word0);
1222	writel(0, &rxmac->mask3_word1);
1223	writel(0, &rxmac->mask3_word2);
1224	writel(0, &rxmac->mask3_word3);
1225
1226	writel(0, &rxmac->mask4_word0);
1227	writel(0, &rxmac->mask4_word1);
1228	writel(0, &rxmac->mask4_word2);
1229	writel(0, &rxmac->mask4_word3);
1230
1231	/* Lets setup the WOL Source Address */
1232	sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1233		(adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1234		(adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1235		 adapter->addr[5];
1236	writel(sa_lo, &rxmac->sa_lo);
1237
1238	sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1239		       adapter->addr[1];
1240	writel(sa_hi, &rxmac->sa_hi);
1241
1242	/* Disable all Packet Filtering */
1243	writel(0, &rxmac->pf_ctrl);
1244
1245	/* Let's initialize the Unicast Packet filtering address */
1246	if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1247		et1310_setup_device_for_unicast(adapter);
1248		pf_ctrl |= 4;	/* Unicast filter */
1249	} else {
1250		writel(0, &rxmac->uni_pf_addr1);
1251		writel(0, &rxmac->uni_pf_addr2);
1252		writel(0, &rxmac->uni_pf_addr3);
1253	}
1254
1255	/* Let's initialize the Multicast hash */
1256	if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1257		pf_ctrl |= 2;	/* Multicast filter */
1258		et1310_setup_device_for_multicast(adapter);
1259	}
1260
1261	/* Runt packet filtering.  Didn't work in version A silicon. */
1262	pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1263	pf_ctrl |= 8;	/* Fragment filter */
1264
1265	if (adapter->registry_jumbo_packet > 8192)
1266		/* In order to transmit jumbo packets greater than 8k, the
1267		 * FIFO between RxMAC and RxDMA needs to be reduced in size
1268		 * to (16k - Jumbo packet size).  In order to implement this,
1269		 * we must use "cut through" mode in the RxMAC, which chops
1270		 * packets down into segments which are (max_size * 16).  In
1271		 * this case we selected 256 bytes, since this is the size of
1272		 * the PCI-Express TLP's that the 1310 uses.
1273		 *
1274		 * seg_en on, fc_en off, size 0x10
1275		 */
1276		writel(0x41, &rxmac->mcif_ctrl_max_seg);
1277	else
1278		writel(0, &rxmac->mcif_ctrl_max_seg);
1279
1280	/* Initialize the MCIF water marks */
1281	writel(0, &rxmac->mcif_water_mark);
1282
1283	/*  Initialize the MIF control */
1284	writel(0, &rxmac->mif_ctrl);
1285
1286	/* Initialize the Space Available Register */
1287	writel(0, &rxmac->space_avail);
1288
1289	/* Initialize the the mif_ctrl register
1290	 * bit 3:  Receive code error. One or more nibbles were signaled as
1291	 *	   errors  during the reception of the packet.  Clear this
1292	 *	   bit in Gigabit, set it in 100Mbit.  This was derived
1293	 *	   experimentally at UNH.
1294	 * bit 4:  Receive CRC error. The packet's CRC did not match the
1295	 *	   internally generated CRC.
1296	 * bit 5:  Receive length check error. Indicates that frame length
1297	 *	   field value in the packet does not match the actual data
1298	 *	   byte length and is not a type field.
1299	 * bit 16: Receive frame truncated.
1300	 * bit 17: Drop packet enable
1301	 */
1302	if (phydev && phydev->speed == SPEED_100)
1303		writel(0x30038, &rxmac->mif_ctrl);
1304	else
1305		writel(0x30030, &rxmac->mif_ctrl);
1306
1307	/* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1308	 * filter is always enabled since it is where the runt packets are
1309	 * supposed to be dropped.  For version A silicon, runt packet
1310	 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1311	 * but we still leave the packet filter on.
1312	 */
1313	writel(pf_ctrl, &rxmac->pf_ctrl);
1314	writel(0x9, &rxmac->ctrl);
1315}
1316
1317static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1318{
1319	struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1320
1321	/* We need to update the Control Frame Parameters
1322	 * cfpt - control frame pause timer set to 64 (0x40)
1323	 * cfep - control frame extended pause timer set to 0x0
1324	 */
1325	if (adapter->flowcontrol == FLOW_NONE)
1326		writel(0, &txmac->cf_param);
1327	else
1328		writel(0x40, &txmac->cf_param);
1329}
1330
1331static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1332{
1333	struct macstat_regs __iomem *macstat =
1334		&adapter->regs->macstat;
1335
1336	/* Next we need to initialize all the macstat registers to zero on
1337	 * the device.
1338	 */
1339	writel(0, &macstat->txrx_0_64_byte_frames);
1340	writel(0, &macstat->txrx_65_127_byte_frames);
1341	writel(0, &macstat->txrx_128_255_byte_frames);
1342	writel(0, &macstat->txrx_256_511_byte_frames);
1343	writel(0, &macstat->txrx_512_1023_byte_frames);
1344	writel(0, &macstat->txrx_1024_1518_byte_frames);
1345	writel(0, &macstat->txrx_1519_1522_gvln_frames);
1346
1347	writel(0, &macstat->rx_bytes);
1348	writel(0, &macstat->rx_packets);
1349	writel(0, &macstat->rx_fcs_errs);
1350	writel(0, &macstat->rx_multicast_packets);
1351	writel(0, &macstat->rx_broadcast_packets);
1352	writel(0, &macstat->rx_control_frames);
1353	writel(0, &macstat->rx_pause_frames);
1354	writel(0, &macstat->rx_unknown_opcodes);
1355	writel(0, &macstat->rx_align_errs);
1356	writel(0, &macstat->rx_frame_len_errs);
1357	writel(0, &macstat->rx_code_errs);
1358	writel(0, &macstat->rx_carrier_sense_errs);
1359	writel(0, &macstat->rx_undersize_packets);
1360	writel(0, &macstat->rx_oversize_packets);
1361	writel(0, &macstat->rx_fragment_packets);
1362	writel(0, &macstat->rx_jabbers);
1363	writel(0, &macstat->rx_drops);
1364
1365	writel(0, &macstat->tx_bytes);
1366	writel(0, &macstat->tx_packets);
1367	writel(0, &macstat->tx_multicast_packets);
1368	writel(0, &macstat->tx_broadcast_packets);
1369	writel(0, &macstat->tx_pause_frames);
1370	writel(0, &macstat->tx_deferred);
1371	writel(0, &macstat->tx_excessive_deferred);
1372	writel(0, &macstat->tx_single_collisions);
1373	writel(0, &macstat->tx_multiple_collisions);
1374	writel(0, &macstat->tx_late_collisions);
1375	writel(0, &macstat->tx_excessive_collisions);
1376	writel(0, &macstat->tx_total_collisions);
1377	writel(0, &macstat->tx_pause_honored_frames);
1378	writel(0, &macstat->tx_drops);
1379	writel(0, &macstat->tx_jabbers);
1380	writel(0, &macstat->tx_fcs_errs);
1381	writel(0, &macstat->tx_control_frames);
1382	writel(0, &macstat->tx_oversize_frames);
1383	writel(0, &macstat->tx_undersize_frames);
1384	writel(0, &macstat->tx_fragments);
1385	writel(0, &macstat->carry_reg1);
1386	writel(0, &macstat->carry_reg2);
1387
1388	/* Unmask any counters that we want to track the overflow of.
1389	 * Initially this will be all counters.  It may become clear later
1390	 * that we do not need to track all counters.
1391	 */
1392	writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1393	writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1394}
1395
1396/**
1397 * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1398 * @adapter: pointer to our private adapter structure
1399 * @addr: the address of the transceiver
1400 * @reg: the register to read
1401 * @value: pointer to a 16-bit value in which the value will be stored
1402 *
1403 * Returns 0 on success, errno on failure (as defined in errno.h)
1404 */
1405static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1406	      u8 reg, u16 *value)
1407{
1408	struct mac_regs __iomem *mac = &adapter->regs->mac;
1409	int status = 0;
1410	u32 delay = 0;
1411	u32 mii_addr;
1412	u32 mii_cmd;
1413	u32 mii_indicator;
1414
1415	/* Save a local copy of the registers we are dealing with so we can
1416	 * set them back
1417	 */
1418	mii_addr = readl(&mac->mii_mgmt_addr);
1419	mii_cmd = readl(&mac->mii_mgmt_cmd);
1420
1421	/* Stop the current operation */
1422	writel(0, &mac->mii_mgmt_cmd);
1423
1424	/* Set up the register we need to read from on the correct PHY */
1425	writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1426
1427	writel(0x1, &mac->mii_mgmt_cmd);
1428
1429	do {
1430		udelay(50);
1431		delay++;
1432		mii_indicator = readl(&mac->mii_mgmt_indicator);
1433	} while ((mii_indicator & MGMT_WAIT) && delay < 50);
1434
1435	/* If we hit the max delay, we could not read the register */
1436	if (delay == 50) {
1437		dev_warn(&adapter->pdev->dev,
1438			    "reg 0x%08x could not be read\n", reg);
1439		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1440			    mii_indicator);
1441
1442		status = -EIO;
1443	}
1444
1445	/* If we hit here we were able to read the register and we need to
1446	 * return the value to the caller */
1447	*value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1448
1449	/* Stop the read operation */
1450	writel(0, &mac->mii_mgmt_cmd);
1451
1452	/* set the registers we touched back to the state at which we entered
1453	 * this function
1454	 */
1455	writel(mii_addr, &mac->mii_mgmt_addr);
1456	writel(mii_cmd, &mac->mii_mgmt_cmd);
1457
1458	return status;
1459}
1460
1461static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1462{
1463	struct phy_device *phydev = adapter->phydev;
1464
1465	if (!phydev)
1466		return -EIO;
1467
1468	return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1469}
1470
1471/**
1472 * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1473 * @adapter: pointer to our private adapter structure
1474 * @reg: the register to read
1475 * @value: 16-bit value to write
1476 *
1477 * FIXME: one caller in netdev still
1478 *
1479 * Return 0 on success, errno on failure (as defined in errno.h)
1480 */
1481static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1482{
1483	struct mac_regs __iomem *mac = &adapter->regs->mac;
1484	struct phy_device *phydev = adapter->phydev;
1485	int status = 0;
1486	u8 addr;
1487	u32 delay = 0;
1488	u32 mii_addr;
1489	u32 mii_cmd;
1490	u32 mii_indicator;
1491
1492	if (!phydev)
1493		return -EIO;
1494
1495	addr = phydev->addr;
1496
1497	/* Save a local copy of the registers we are dealing with so we can
1498	 * set them back
1499	 */
1500	mii_addr = readl(&mac->mii_mgmt_addr);
1501	mii_cmd = readl(&mac->mii_mgmt_cmd);
1502
1503	/* Stop the current operation */
1504	writel(0, &mac->mii_mgmt_cmd);
1505
1506	/* Set up the register we need to write to on the correct PHY */
1507	writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1508
1509	/* Add the value to write to the registers to the mac */
1510	writel(value, &mac->mii_mgmt_ctrl);
1511
1512	do {
1513		udelay(50);
1514		delay++;
1515		mii_indicator = readl(&mac->mii_mgmt_indicator);
1516	} while ((mii_indicator & MGMT_BUSY) && delay < 100);
1517
1518	/* If we hit the max delay, we could not write the register */
1519	if (delay == 100) {
1520		u16 tmp;
1521
1522		dev_warn(&adapter->pdev->dev,
1523		    "reg 0x%08x could not be written", reg);
1524		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1525			    mii_indicator);
1526		dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1527			    readl(&mac->mii_mgmt_cmd));
1528
1529		et131x_mii_read(adapter, reg, &tmp);
1530
1531		status = -EIO;
1532	}
1533	/* Stop the write operation */
1534	writel(0, &mac->mii_mgmt_cmd);
1535
1536	/*
1537	 * set the registers we touched back to the state at which we entered
1538	 * this function
1539	 */
1540	writel(mii_addr, &mac->mii_mgmt_addr);
1541	writel(mii_cmd, &mac->mii_mgmt_cmd);
1542
1543	return status;
1544}
1545
1546/* Still used from _mac for BIT_READ */
1547static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
1548				      u16 action, u16 regnum, u16 bitnum,
1549				      u8 *value)
1550{
1551	u16 reg;
1552	u16 mask = 0x0001 << bitnum;
1553
1554	/* Read the requested register */
1555	et131x_mii_read(adapter, regnum, &reg);
1556
1557	switch (action) {
1558	case TRUEPHY_BIT_READ:
1559		*value = (reg & mask) >> bitnum;
1560		break;
1561
1562	case TRUEPHY_BIT_SET:
1563		et131x_mii_write(adapter, regnum, reg | mask);
1564		break;
1565
1566	case TRUEPHY_BIT_CLEAR:
1567		et131x_mii_write(adapter, regnum, reg & ~mask);
1568		break;
1569
1570	default:
1571		break;
1572	}
1573}
1574
1575static void et1310_config_flow_control(struct et131x_adapter *adapter)
1576{
1577	struct phy_device *phydev = adapter->phydev;
1578
1579	if (phydev->duplex == DUPLEX_HALF) {
1580		adapter->flowcontrol = FLOW_NONE;
1581	} else {
1582		char remote_pause, remote_async_pause;
1583
1584		et1310_phy_access_mii_bit(adapter,
1585				TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1586		et1310_phy_access_mii_bit(adapter,
1587				TRUEPHY_BIT_READ, 5, 11,
1588				&remote_async_pause);
1589
1590		if ((remote_pause == TRUEPHY_BIT_SET) &&
1591		    (remote_async_pause == TRUEPHY_BIT_SET)) {
1592			adapter->flowcontrol = adapter->wanted_flow;
1593		} else if ((remote_pause == TRUEPHY_BIT_SET) &&
1594			   (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1595			if (adapter->wanted_flow == FLOW_BOTH)
1596				adapter->flowcontrol = FLOW_BOTH;
1597			else
1598				adapter->flowcontrol = FLOW_NONE;
1599		} else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1600			   (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1601			adapter->flowcontrol = FLOW_NONE;
1602		} else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1603			       remote_async_pause == TRUEPHY_SET_BIT) */
1604			if (adapter->wanted_flow == FLOW_BOTH)
1605				adapter->flowcontrol = FLOW_RXONLY;
1606			else
1607				adapter->flowcontrol = FLOW_NONE;
1608		}
1609	}
1610}
1611
1612/**
1613 * et1310_update_macstat_host_counters - Update the local copy of the statistics
1614 * @adapter: pointer to the adapter structure
1615 */
1616static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1617{
1618	struct ce_stats *stats = &adapter->stats;
1619	struct macstat_regs __iomem *macstat =
1620		&adapter->regs->macstat;
1621
1622	stats->tx_collisions	       += readl(&macstat->tx_total_collisions);
1623	stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1624	stats->tx_deferred	       += readl(&macstat->tx_deferred);
1625	stats->tx_excessive_collisions +=
1626				readl(&macstat->tx_multiple_collisions);
1627	stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1628	stats->tx_underflows	       += readl(&macstat->tx_undersize_frames);
1629	stats->tx_max_pkt_errs	       += readl(&macstat->tx_oversize_frames);
1630
1631	stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1632	stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1633	stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1634	stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1635	stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1636	stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1637	stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1638}
1639
1640/**
1641 * et1310_handle_macstat_interrupt
1642 * @adapter: pointer to the adapter structure
1643 *
1644 * One of the MACSTAT counters has wrapped.  Update the local copy of
1645 * the statistics held in the adapter structure, checking the "wrap"
1646 * bit for each counter.
1647 */
1648static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1649{
1650	u32 carry_reg1;
1651	u32 carry_reg2;
1652
1653	/* Read the interrupt bits from the register(s).  These are Clear On
1654	 * Write.
1655	 */
1656	carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1657	carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1658
1659	writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1660	writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1661
1662	/* We need to do update the host copy of all the MAC_STAT counters.
1663	 * For each counter, check it's overflow bit.  If the overflow bit is
1664	 * set, then increment the host version of the count by one complete
1665	 * revolution of the counter.  This routine is called when the counter
1666	 * block indicates that one of the counters has wrapped.
1667	 */
1668	if (carry_reg1 & (1 << 14))
1669		adapter->stats.rx_code_violations	+= COUNTER_WRAP_16_BIT;
1670	if (carry_reg1 & (1 << 8))
1671		adapter->stats.rx_align_errs	+= COUNTER_WRAP_12_BIT;
1672	if (carry_reg1 & (1 << 7))
1673		adapter->stats.rx_length_errs	+= COUNTER_WRAP_16_BIT;
1674	if (carry_reg1 & (1 << 2))
1675		adapter->stats.rx_other_errs	+= COUNTER_WRAP_16_BIT;
1676	if (carry_reg1 & (1 << 6))
1677		adapter->stats.rx_crc_errs	+= COUNTER_WRAP_16_BIT;
1678	if (carry_reg1 & (1 << 3))
1679		adapter->stats.rx_overflows	+= COUNTER_WRAP_16_BIT;
1680	if (carry_reg1 & (1 << 0))
1681		adapter->stats.rcvd_pkts_dropped	+= COUNTER_WRAP_16_BIT;
1682	if (carry_reg2 & (1 << 16))
1683		adapter->stats.tx_max_pkt_errs	+= COUNTER_WRAP_12_BIT;
1684	if (carry_reg2 & (1 << 15))
1685		adapter->stats.tx_underflows	+= COUNTER_WRAP_12_BIT;
1686	if (carry_reg2 & (1 << 6))
1687		adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1688	if (carry_reg2 & (1 << 8))
1689		adapter->stats.tx_deferred	+= COUNTER_WRAP_12_BIT;
1690	if (carry_reg2 & (1 << 5))
1691		adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1692	if (carry_reg2 & (1 << 4))
1693		adapter->stats.tx_late_collisions	+= COUNTER_WRAP_12_BIT;
1694	if (carry_reg2 & (1 << 2))
1695		adapter->stats.tx_collisions	+= COUNTER_WRAP_12_BIT;
1696}
1697
1698static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1699{
1700	struct net_device *netdev = bus->priv;
1701	struct et131x_adapter *adapter = netdev_priv(netdev);
1702	u16 value;
1703	int ret;
1704
1705	ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1706
1707	if (ret < 0)
1708		return ret;
1709	else
1710		return value;
1711}
1712
1713static int et131x_mdio_write(struct mii_bus *bus, int phy_addr, int reg, u16 value)
1714{
1715	struct net_device *netdev = bus->priv;
1716	struct et131x_adapter *adapter = netdev_priv(netdev);
1717
1718	return et131x_mii_write(adapter, reg, value);
1719}
1720
1721static int et131x_mdio_reset(struct mii_bus *bus)
1722{
1723	struct net_device *netdev = bus->priv;
1724	struct et131x_adapter *adapter = netdev_priv(netdev);
1725
1726	et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1727
1728	return 0;
1729}
1730
1731/**
1732 *	et1310_phy_power_down	-	PHY power control
1733 *	@adapter: device to control
1734 *	@down: true for off/false for back on
1735 *
1736 *	one hundred, ten, one thousand megs
1737 *	How would you like to have your LAN accessed
1738 *	Can't you see that this code processed
1739 *	Phy power, phy power..
1740 */
1741static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1742{
1743	u16 data;
1744
1745	et131x_mii_read(adapter, MII_BMCR, &data);
1746	data &= ~BMCR_PDOWN;
1747	if (down)
1748		data |= BMCR_PDOWN;
1749	et131x_mii_write(adapter, MII_BMCR, data);
1750}
1751
1752/**
1753 * et131x_xcvr_init - Init the phy if we are setting it into force mode
1754 * @adapter: pointer to our private adapter structure
1755 *
1756 */
1757static void et131x_xcvr_init(struct et131x_adapter *adapter)
1758{
1759	u16 imr;
1760	u16 isr;
1761	u16 lcr2;
1762
1763	et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1764	et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1765
1766	/* Set the link status interrupt only.  Bad behavior when link status
1767	 * and auto neg are set, we run into a nested interrupt problem
1768	 */
1769	imr |= (ET_PHY_INT_MASK_AUTONEGSTAT &
1770		ET_PHY_INT_MASK_LINKSTAT &
1771		ET_PHY_INT_MASK_ENABLE);
1772
1773	et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1774
1775	/* Set the LED behavior such that LED 1 indicates speed (off =
1776	 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1777	 * link and activity (on for link, blink off for activity).
1778	 *
1779	 * NOTE: Some customizations have been added here for specific
1780	 * vendors; The LED behavior is now determined by vendor data in the
1781	 * EEPROM. However, the above description is the default.
1782	 */
1783	if ((adapter->eeprom_data[1] & 0x4) == 0) {
1784		et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1785
1786		lcr2 &= (ET_LED2_LED_100TX & ET_LED2_LED_1000T);
1787		lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1788
1789		if ((adapter->eeprom_data[1] & 0x8) == 0)
1790			lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1791		else
1792			lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1793
1794		et131x_mii_write(adapter, PHY_LED_2, lcr2);
1795	}
1796}
1797
1798/**
1799 * et131x_configure_global_regs	-	configure JAGCore global regs
1800 * @adapter: pointer to our adapter structure
1801 *
1802 * Used to configure the global registers on the JAGCore
1803 */
1804static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1805{
1806	struct global_regs __iomem *regs = &adapter->regs->global;
1807
1808	writel(0, &regs->rxq_start_addr);
1809	writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1810
1811	if (adapter->registry_jumbo_packet < 2048) {
1812		/* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1813		 * block of RAM that the driver can split between Tx
1814		 * and Rx as it desires.  Our default is to split it
1815		 * 50/50:
1816		 */
1817		writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1818		writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1819	} else if (adapter->registry_jumbo_packet < 8192) {
1820		/* For jumbo packets > 2k but < 8k, split 50-50. */
1821		writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1822		writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1823	} else {
1824		/* 9216 is the only packet size greater than 8k that
1825		 * is available. The Tx buffer has to be big enough
1826		 * for one whole packet on the Tx side. We'll make
1827		 * the Tx 9408, and give the rest to Rx
1828		 */
1829		writel(0x01b3, &regs->rxq_end_addr);
1830		writel(0x01b4, &regs->txq_start_addr);
1831	}
1832
1833	/* Initialize the loopback register. Disable all loopbacks. */
1834	writel(0, &regs->loopback);
1835
1836	/* MSI Register */
1837	writel(0, &regs->msi_config);
1838
1839	/* By default, disable the watchdog timer.  It will be enabled when
1840	 * a packet is queued.
1841	 */
1842	writel(0, &regs->watchdog_timer);
1843}
1844
1845/**
1846 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1847 * @adapter: pointer to our adapter structure
1848 */
1849static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1850{
1851	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1852	struct rx_ring *rx_local = &adapter->rx_ring;
1853	struct fbr_desc *fbr_entry;
1854	u32 entry;
1855	u32 psr_num_des;
1856	unsigned long flags;
1857
1858	/* Halt RXDMA to perform the reconfigure.  */
1859	et131x_rx_dma_disable(adapter);
1860
1861	/* Load the completion writeback physical address
1862	 *
1863	 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1864	 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1865	 * are ever returned, make sure the high part is retrieved here
1866	 * before storing the adjusted address.
1867	 */
1868	writel((u32) ((u64)rx_local->rx_status_bus >> 32),
1869	       &rx_dma->dma_wb_base_hi);
1870	writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
1871
1872	memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1873
1874	/* Set the address and parameters of the packet status ring into the
1875	 * 1310's registers
1876	 */
1877	writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
1878	       &rx_dma->psr_base_hi);
1879	writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
1880	writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1881	writel(0, &rx_dma->psr_full_offset);
1882
1883	psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
1884	writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1885	       &rx_dma->psr_min_des);
1886
1887	spin_lock_irqsave(&adapter->rcv_lock, flags);
1888
1889	/* These local variables track the PSR in the adapter structure */
1890	rx_local->local_psr_full = 0;
1891
1892	/* Now's the best time to initialize FBR1 contents */
1893	fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
1894	for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
1895		fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
1896		fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
1897		fbr_entry->word2 = entry;
1898		fbr_entry++;
1899	}
1900
1901	/* Set the address and parameters of Free buffer ring 1 (and 0 if
1902	 * required) into the 1310's registers
1903	 */
1904	writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
1905	       &rx_dma->fbr1_base_hi);
1906	writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
1907	writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
1908	writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
1909
1910	/* This variable tracks the free buffer ring 1 full position, so it
1911	 * has to match the above.
1912	 */
1913	rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
1914	writel(
1915	   ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1916	   &rx_dma->fbr1_min_des);
1917
1918#ifdef USE_FBR0
1919	/* Now's the best time to initialize FBR0 contents */
1920	fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
1921	for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
1922		fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
1923		fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
1924		fbr_entry->word2 = entry;
1925		fbr_entry++;
1926	}
1927
1928	writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
1929	       &rx_dma->fbr0_base_hi);
1930	writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
1931	writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
1932	writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
1933
1934	/* This variable tracks the free buffer ring 0 full position, so it
1935	 * has to match the above.
1936	 */
1937	rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
1938	writel(
1939	   ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1940	   &rx_dma->fbr0_min_des);
1941#endif
1942
1943	/* Program the number of packets we will receive before generating an
1944	 * interrupt.
1945	 * For version B silicon, this value gets updated once autoneg is
1946	 *complete.
1947	 */
1948	writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1949
1950	/* The "time_done" is not working correctly to coalesce interrupts
1951	 * after a given time period, but rather is giving us an interrupt
1952	 * regardless of whether we have received packets.
1953	 * This value gets updated once autoneg is complete.
1954	 */
1955	writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1956
1957	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1958}
1959
1960/**
1961 * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1962 * @adapter: pointer to our private adapter structure
1963 *
1964 * Configure the transmit engine with the ring buffers we have created
1965 * and prepare it for use.
1966 */
1967static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1968{
1969	struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1970
1971	/* Load the hardware with the start of the transmit descriptor ring. */
1972	writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
1973	       &txdma->pr_base_hi);
1974	writel((u32) adapter->tx_ring.tx_desc_ring_pa,
1975	       &txdma->pr_base_lo);
1976
1977	/* Initialise the transmit DMA engine */
1978	writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1979
1980	/* Load the completion writeback physical address */
1981	writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
1982						&txdma->dma_wb_base_hi);
1983	writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
1984
1985	*adapter->tx_ring.tx_status = 0;
1986
1987	writel(0, &txdma->service_request);
1988	adapter->tx_ring.send_idx = 0;
1989}
1990
1991/**
1992 * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1993 * @adapter: pointer to our private adapter structure
1994 *
1995 * Returns 0 on success, errno on failure (as defined in errno.h)
1996 */
1997static void et131x_adapter_setup(struct et131x_adapter *adapter)
1998{
1999	/* Configure the JAGCore */
2000	et131x_configure_global_regs(adapter);
2001
2002	et1310_config_mac_regs1(adapter);
2003
2004	/* Configure the MMC registers */
2005	/* All we need to do is initialize the Memory Control Register */
2006	writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
2007
2008	et1310_config_rxmac_regs(adapter);
2009	et1310_config_txmac_regs(adapter);
2010
2011	et131x_config_rx_dma_regs(adapter);
2012	et131x_config_tx_dma_regs(adapter);
2013
2014	et1310_config_macstat_regs(adapter);
2015
2016	et1310_phy_power_down(adapter, 0);
2017	et131x_xcvr_init(adapter);
2018}
2019
2020/**
2021 * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2022 * @adapter: pointer to our private adapter structure
2023 */
2024static void et131x_soft_reset(struct et131x_adapter *adapter)
2025{
2026	/* Disable MAC Core */
2027	writel(0xc00f0000, &adapter->regs->mac.cfg1);
2028
2029	/* Set everything to a reset value */
2030	writel(0x7F, &adapter->regs->global.sw_reset);
2031	writel(0x000f0000, &adapter->regs->mac.cfg1);
2032	writel(0x00000000, &adapter->regs->mac.cfg1);
2033}
2034
2035/**
2036 *	et131x_enable_interrupts	-	enable interrupt
2037 *	@adapter: et131x device
2038 *
2039 *	Enable the appropriate interrupts on the ET131x according to our
2040 *	configuration
2041 */
2042static void et131x_enable_interrupts(struct et131x_adapter *adapter)
2043{
2044	u32 mask;
2045
2046	/* Enable all global interrupts */
2047	if (adapter->flowcontrol == FLOW_TXONLY ||
2048			    adapter->flowcontrol == FLOW_BOTH)
2049		mask = INT_MASK_ENABLE;
2050	else
2051		mask = INT_MASK_ENABLE_NO_FLOW;
2052
2053	writel(mask, &adapter->regs->global.int_mask);
2054}
2055
2056/**
2057 *	et131x_disable_interrupts	-	interrupt disable
2058 *	@adapter: et131x device
2059 *
2060 *	Block all interrupts from the et131x device at the device itself
2061 */
2062static void et131x_disable_interrupts(struct et131x_adapter *adapter)
2063{
2064	/* Disable all global interrupts */
2065	writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2066}
2067
2068/**
2069 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2070 * @adapter: pointer to our adapter structure
2071 */
2072static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2073{
2074	/* Setup the tramsmit dma configuration register */
2075	writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
2076					&adapter->regs->txdma.csr);
2077}
2078
2079/**
2080 * et131x_enable_txrx - Enable tx/rx queues
2081 * @netdev: device to be enabled
2082 */
2083static void et131x_enable_txrx(struct net_device *netdev)
2084{
2085	struct et131x_adapter *adapter = netdev_priv(netdev);
2086
2087	/* Enable the Tx and Rx DMA engines (if not already enabled) */
2088	et131x_rx_dma_enable(adapter);
2089	et131x_tx_dma_enable(adapter);
2090
2091	/* Enable device interrupts */
2092	if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2093		et131x_enable_interrupts(adapter);
2094
2095	/* We're ready to move some data, so start the queue */
2096	netif_start_queue(netdev);
2097}
2098
2099/**
2100 * et131x_disable_txrx - Disable tx/rx queues
2101 * @netdev: device to be disabled
2102 */
2103static void et131x_disable_txrx(struct net_device *netdev)
2104{
2105	struct et131x_adapter *adapter = netdev_priv(netdev);
2106
2107	/* First thing is to stop the queue */
2108	netif_stop_queue(netdev);
2109
2110	/* Stop the Tx and Rx DMA engines */
2111	et131x_rx_dma_disable(adapter);
2112	et131x_tx_dma_disable(adapter);
2113
2114	/* Disable device interrupts */
2115	et131x_disable_interrupts(adapter);
2116}
2117
2118/**
2119 * et131x_init_send - Initialize send data structures
2120 * @adapter: pointer to our private adapter structure
2121 */
2122static void et131x_init_send(struct et131x_adapter *adapter)
2123{
2124	struct tcb *tcb;
2125	u32 ct;
2126	struct tx_ring *tx_ring;
2127
2128	/* Setup some convenience pointers */
2129	tx_ring = &adapter->tx_ring;
2130	tcb = adapter->tx_ring.tcb_ring;
2131
2132	tx_ring->tcb_qhead = tcb;
2133
2134	memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2135
2136	/* Go through and set up each TCB */
2137	for (ct = 0; ct++ < NUM_TCB; tcb++)
2138		/* Set the link pointer in HW TCB to the next TCB in the
2139		 * chain
2140		 */
2141		tcb->next = tcb + 1;
2142
2143	/* Set the  tail pointer */
2144	tcb--;
2145	tx_ring->tcb_qtail = tcb;
2146	tcb->next = NULL;
2147	/* Curr send queue should now be empty */
2148	tx_ring->send_head = NULL;
2149	tx_ring->send_tail = NULL;
2150}
2151
2152/**
2153 * et1310_enable_phy_coma - called when network cable is unplugged
2154 * @adapter: pointer to our adapter structure
2155 *
2156 * driver receive an phy status change interrupt while in D0 and check that
2157 * phy_status is down.
2158 *
2159 *          -- gate off JAGCore;
2160 *          -- set gigE PHY in Coma mode
2161 *          -- wake on phy_interrupt; Perform software reset JAGCore,
2162 *             re-initialize jagcore and gigE PHY
2163 *
2164 *      Add D0-ASPM-PhyLinkDown Support:
2165 *          -- while in D0, when there is a phy_interrupt indicating phy link
2166 *             down status, call the MPSetPhyComa routine to enter this active
2167 *             state power saving mode
2168 *          -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2169 *       indicating linkup status, call the MPDisablePhyComa routine to
2170 *             restore JAGCore and gigE PHY
2171 */
2172static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2173{
2174	unsigned long flags;
2175	u32 pmcsr;
2176
2177	pmcsr = readl(&adapter->regs->global.pm_csr);
2178
2179	/* Save the GbE PHY speed and duplex modes. Need to restore this
2180	 * when cable is plugged back in
2181	 */
2182	/*
2183	 * TODO - when PM is re-enabled, check if we need to
2184	 * perform a similar task as this -
2185	 * adapter->pdown_speed = adapter->ai_force_speed;
2186	 * adapter->pdown_duplex = adapter->ai_force_duplex;
2187	 */
2188
2189	/* Stop sending packets. */
2190	spin_lock_irqsave(&adapter->send_hw_lock, flags);
2191	adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2192	spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2193
2194	/* Wait for outstanding Receive packets */
2195
2196	et131x_disable_txrx(adapter->netdev);
2197
2198	/* Gate off JAGCore 3 clock domains */
2199	pmcsr &= ~ET_PMCSR_INIT;
2200	writel(pmcsr, &adapter->regs->global.pm_csr);
2201
2202	/* Program gigE PHY in to Coma mode */
2203	pmcsr |= ET_PM_PHY_SW_COMA;
2204	writel(pmcsr, &adapter->regs->global.pm_csr);
2205}
2206
2207/**
2208 * et1310_disable_phy_coma - Disable the Phy Coma Mode
2209 * @adapter: pointer to our adapter structure
2210 */
2211static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2212{
2213	u32 pmcsr;
2214
2215	pmcsr = readl(&adapter->regs->global.pm_csr);
2216
2217	/* Disable phy_sw_coma register and re-enable JAGCore clocks */
2218	pmcsr |= ET_PMCSR_INIT;
2219	pmcsr &= ~ET_PM_PHY_SW_COMA;
2220	writel(pmcsr, &adapter->regs->global.pm_csr);
2221
2222	/* Restore the GbE PHY speed and duplex modes;
2223	 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2224	 */
2225	/* TODO - when PM is re-enabled, check if we need to
2226	 * perform a similar task as this -
2227	 * adapter->ai_force_speed = adapter->pdown_speed;
2228	 * adapter->ai_force_duplex = adapter->pdown_duplex;
2229	 */
2230
2231	/* Re-initialize the send structures */
2232	et131x_init_send(adapter);
2233
2234	/* Bring the device back to the state it was during init prior to
2235	 * autonegotiation being complete.  This way, when we get the auto-neg
2236	 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2237	 */
2238	et131x_soft_reset(adapter);
2239
2240	/* setup et1310 as per the documentation ?? */
2241	et131x_adapter_setup(adapter);
2242
2243	/* Allow Tx to restart */
2244	adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2245
2246	et131x_enable_txrx(adapter->netdev);
2247}
2248
2249static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2250{
2251	u32 tmp_free_buff_ring = *free_buff_ring;
2252	tmp_free_buff_ring++;
2253	/* This works for all cases where limit < 1024. The 1023 case
2254	   works because 1023++ is 1024 which means the if condition is not
2255	   taken but the carry of the bit into the wrap bit toggles the wrap
2256	   value correctly */
2257	if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2258		tmp_free_buff_ring &= ~ET_DMA10_MASK;
2259		tmp_free_buff_ring ^= ET_DMA10_WRAP;
2260	}
2261	/* For the 1023 case */
2262	tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2263	*free_buff_ring = tmp_free_buff_ring;
2264	return tmp_free_buff_ring;
2265}
2266
2267/**
2268 * et131x_align_allocated_memory - Align allocated memory on a given boundary
2269 * @adapter: pointer to our adapter structure
2270 * @phys_addr: pointer to Physical address
2271 * @offset: pointer to the offset variable
2272 * @mask: correct mask
2273 */
2274static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
2275					  u64 *phys_addr, u64 *offset,
2276					  u64 mask)
2277{
2278	u64 new_addr = *phys_addr & ~mask;
2279
2280	*offset = 0;
2281
2282	if (new_addr != *phys_addr) {
2283		/* Move to next aligned block */
2284		new_addr += mask + 1;
2285		/* Return offset for adjusting virt addr */
2286		*offset = new_addr - *phys_addr;
2287		/* Return new physical address */
2288		*phys_addr = new_addr;
2289	}
2290}
2291
2292/**
2293 * et131x_rx_dma_memory_alloc
2294 * @adapter: pointer to our private adapter structure
2295 *
2296 * Returns 0 on success and errno on failure (as defined in errno.h)
2297 *
2298 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2299 * and the Packet Status Ring.
2300 */
2301static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2302{
2303	u32 i, j;
2304	u32 bufsize;
2305	u32 pktstat_ringsize, fbr_chunksize;
2306	struct rx_ring *rx_ring;
2307
2308	/* Setup some convenience pointers */
2309	rx_ring = &adapter->rx_ring;
2310
2311	/* Alloc memory for the lookup table */
2312#ifdef USE_FBR0
2313	rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2314#endif
2315	rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2316
2317	/* The first thing we will do is configure the sizes of the buffer
2318	 * rings. These will change based on jumbo packet support.  Larger
2319	 * jumbo packets increases the size of each entry in FBR0, and the
2320	 * number of entries in FBR0, while at the same time decreasing the
2321	 * number of entries in FBR1.
2322	 *
2323	 * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
2324	 * entries are huge in order to accommodate a "jumbo" frame, then it
2325	 * will have less entries.  Conversely, FBR1 will now be relied upon
2326	 * to carry more "normal" frames, thus it's entry size also increases
2327	 * and the number of entries goes up too (since it now carries
2328	 * "small" + "regular" packets.
2329	 *
2330	 * In this scheme, we try to maintain 512 entries between the two
2331	 * rings. Also, FBR1 remains a constant size - when it's size doubles
2332	 * the number of entries halves.  FBR0 increases in size, however.
2333	 */
2334
2335	if (adapter->registry_jumbo_packet < 2048) {
2336#ifdef USE_FBR0
2337		rx_ring->fbr[1]->buffsize = 256;
2338		rx_ring->fbr[1]->num_entries = 512;
2339#endif
2340		rx_ring->fbr[0]->buffsize = 2048;
2341		rx_ring->fbr[0]->num_entries = 512;
2342	} else if (adapter->registry_jumbo_packet < 4096) {
2343#ifdef USE_FBR0
2344		rx_ring->fbr[1]->buffsize = 512;
2345		rx_ring->fbr[1]->num_entries = 1024;
2346#endif
2347		rx_ring->fbr[0]->buffsize = 4096;
2348		rx_ring->fbr[0]->num_entries = 512;
2349	} else {
2350#ifdef USE_FBR0
2351		rx_ring->fbr[1]->buffsize = 1024;
2352		rx_ring->fbr[1]->num_entries = 768;
2353#endif
2354		rx_ring->fbr[0]->buffsize = 16384;
2355		rx_ring->fbr[0]->num_entries = 128;
2356	}
2357
2358#ifdef USE_FBR0
2359	adapter->rx_ring.psr_num_entries =
2360				adapter->rx_ring.fbr[1]->num_entries +
2361				adapter->rx_ring.fbr[0]->num_entries;
2362#else
2363	adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
2364#endif
2365
2366	/* Allocate an area of memory for Free Buffer Ring 1 */
2367	bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2368									0xfff;
2369	rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2370					bufsize,
2371					&rx_ring->fbr[0]->ring_physaddr,
2372					GFP_KERNEL);
2373	if (!rx_ring->fbr[0]->ring_virtaddr) {
2374		dev_err(&adapter->pdev->dev,
2375			  "Cannot alloc memory for Free Buffer Ring 1\n");
2376		return -ENOMEM;
2377	}
2378
2379	/* Save physical address
2380	 *
2381	 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2382	 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2383	 * are ever returned, make sure the high part is retrieved here
2384	 * before storing the adjusted address.
2385	 */
2386	rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
2387
2388	/* Align Free Buffer Ring 1 on a 4K boundary */
2389	et131x_align_allocated_memory(adapter,
2390				      &rx_ring->fbr[0]->real_physaddr,
2391				      &rx_ring->fbr[0]->offset, 0x0FFF);
2392
2393	rx_ring->fbr[0]->ring_virtaddr =
2394			(void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
2395			rx_ring->fbr[0]->offset);
2396
2397#ifdef USE_FBR0
2398	/* Allocate an area of memory for Free Buffer Ring 0 */
2399	bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2400									0xfff;
2401	rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2402						bufsize,
2403						&rx_ring->fbr[1]->ring_physaddr,
2404						GFP_KERNEL);
2405	if (!rx_ring->fbr[1]->ring_virtaddr) {
2406		dev_err(&adapter->pdev->dev,
2407			  "Cannot alloc memory for Free Buffer Ring 0\n");
2408		return -ENOMEM;
2409	}
2410
2411	/* Save physical address
2412	 *
2413	 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2414	 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2415	 * are ever returned, make sure the high part is retrieved here before
2416	 * storing the adjusted address.
2417	 */
2418	rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
2419
2420	/* Align Free Buffer Ring 0 on a 4K boundary */
2421	et131x_align_allocated_memory(adapter,
2422				      &rx_ring->fbr[1]->real_physaddr,
2423				      &rx_ring->fbr[1]->offset, 0x0FFF);
2424
2425	rx_ring->fbr[1]->ring_virtaddr =
2426			(void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2427			rx_ring->fbr[1]->offset);
2428#endif
2429	for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
2430		u64 fbr1_tmp_physaddr;
2431		u64 fbr1_offset;
2432		u32 fbr1_align;
2433
2434		/* This code allocates an area of memory big enough for N
2435		 * free buffers + (buffer_size - 1) so that the buffers can
2436		 * be aligned on 4k boundaries.  If each buffer were aligned
2437		 * to a buffer_size boundary, the effect would be to double
2438		 * the size of FBR0.  By allocating N buffers at once, we
2439		 * reduce this overhead.
2440		 */
2441		if (rx_ring->fbr[0]->buffsize > 4096)
2442			fbr1_align = 4096;
2443		else
2444			fbr1_align = rx_ring->fbr[0]->buffsize;
2445
2446		fbr_chunksize =
2447		    (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
2448		rx_ring->fbr[0]->mem_virtaddrs[i] =
2449		    dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2450				       &rx_ring->fbr[0]->mem_physaddrs[i],
2451				       GFP_KERNEL);
2452
2453		if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
2454			dev_err(&adapter->pdev->dev,
2455				"Could not alloc memory\n");
2456			return -ENOMEM;
2457		}
2458
2459		/* See NOTE in "Save Physical Address" comment above */
2460		fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
2461
2462		et131x_align_allocated_memory(adapter,
2463					      &fbr1_tmp_physaddr,
2464					      &fbr1_offset, (fbr1_align - 1));
2465
2466		for (j = 0; j < FBR_CHUNKS; j++) {
2467			u32 index = (i * FBR_CHUNKS) + j;
2468
2469			/* Save the Virtual address of this index for quick
2470			 * access later
2471			 */
2472			rx_ring->fbr[0]->virt[index] =
2473			    (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
2474			    (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
2475
2476			/* now store the physical address in the descriptor
2477			 * so the device can access it
2478			 */
2479			rx_ring->fbr[0]->bus_high[index] =
2480			    (u32) (fbr1_tmp_physaddr >> 32);
2481			rx_ring->fbr[0]->bus_low[index] =
2482			    (u32) fbr1_tmp_physaddr;
2483
2484			fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
2485
2486			rx_ring->fbr[0]->buffer1[index] =
2487			    rx_ring->fbr[0]->virt[index];
2488			rx_ring->fbr[0]->buffer2[index] =
2489			    rx_ring->fbr[0]->virt[index] - 4;
2490		}
2491	}
2492
2493#ifdef USE_FBR0
2494	/* Same for FBR0 (if in use) */
2495	for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2496		u64 fbr0_tmp_physaddr;
2497		u64 fbr0_offset;
2498
2499		fbr_chunksize =
2500		    ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2501		rx_ring->fbr[1]->mem_virtaddrs[i] =
2502		    dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2503				       &rx_ring->fbr[1]->mem_physaddrs[i],
2504				       GFP_KERNEL);
2505
2506		if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2507			dev_err(&adapter->pdev->dev,
2508				"Could not alloc memory\n");
2509			return -ENOMEM;
2510		}
2511
2512		/* See NOTE in "Save Physical Address" comment above */
2513		fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2514
2515		et131x_align_allocated_memory(adapter,
2516					      &fbr0_tmp_physaddr,
2517					      &fbr0_offset,
2518					      rx_ring->fbr[1]->buffsize - 1);
2519
2520		for (j = 0; j < FBR_CHUNKS; j++) {
2521			u32 index = (i * FBR_CHUNKS) + j;
2522
2523			rx_ring->fbr[1]->virt[index] =
2524			    (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2525			    (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2526
2527			rx_ring->fbr[1]->bus_high[index] =
2528			    (u32) (fbr0_tmp_physaddr >> 32);
2529			rx_ring->fbr[1]->bus_low[index] =
2530			    (u32) fbr0_tmp_physaddr;
2531
2532			fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2533
2534			rx_ring->fbr[1]->buffer1[index] =
2535			    rx_ring->fbr[1]->virt[index];
2536			rx_ring->fbr[1]->buffer2[index] =
2537			    rx_ring->fbr[1]->virt[index] - 4;
2538		}
2539	}
2540#endif
2541
2542	/* Allocate an area of memory for FIFO of Packet Status ring entries */
2543	pktstat_ringsize =
2544	    sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2545
2546	rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2547						  pktstat_ringsize,
2548						  &rx_ring->ps_ring_physaddr,
2549						  GFP_KERNEL);
2550
2551	if (!rx_ring->ps_ring_virtaddr) {
2552		dev_err(&adapter->pdev->dev,
2553			  "Cannot alloc memory for Packet Status Ring\n");
2554		return -ENOMEM;
2555	}
2556	printk(KERN_INFO "Packet Status Ring %lx\n",
2557	    (unsigned long) rx_ring->ps_ring_physaddr);
2558
2559	/*
2560	 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2561	 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2562	 * are ever returned, make sure the high part is retrieved here before
2563	 * storing the adjusted address.
2564	 */
2565
2566	/* Allocate an area of memory for writeback of status information */
2567	rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2568					    sizeof(struct rx_status_block),
2569					    &rx_ring->rx_status_bus,
2570					    GFP_KERNEL);
2571	if (!rx_ring->rx_status_block) {
2572		dev_err(&adapter->pdev->dev,
2573			  "Cannot alloc memory for Status Block\n");
2574		return -ENOMEM;
2575	}
2576	rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2577	printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
2578
2579	/* Recv
2580	 * kmem_cache_create initializes a lookaside list. After successful
2581	 * creation, nonpaged fixed-size blocks can be allocated from and
2582	 * freed to the lookaside list.
2583	 * RFDs will be allocated from this pool.
2584	 */
2585	rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2586						   sizeof(struct rfd),
2587						   0,
2588						   SLAB_CACHE_DMA |
2589						   SLAB_HWCACHE_ALIGN,
2590						   NULL);
2591
2592	adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2593
2594	/* The RFDs are going to be put on lists later on, so initialize the
2595	 * lists now.
2596	 */
2597	INIT_LIST_HEAD(&rx_ring->recv_list);
2598	return 0;
2599}
2600
2601/**
2602 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2603 * @adapter: pointer to our private adapter structure
2604 */
2605static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2606{
2607	u32 index;
2608	u32 bufsize;
2609	u32 pktstat_ringsize;
2610	struct rfd *rfd;
2611	struct rx_ring *rx_ring;
2612
2613	/* Setup some convenience pointers */
2614	rx_ring = &adapter->rx_ring;
2615
2616	/* Free RFDs and associated packet descriptors */
2617	WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2618
2619	while (!list_empty(&rx_ring->recv_list)) {
2620		rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2621				struct rfd, list_node);
2622
2623		list_del(&rfd->list_node);
2624		rfd->skb = NULL;
2625		kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2626	}
2627
2628	/* Free Free Buffer Ring 1 */
2629	if (rx_ring->fbr[0]->ring_virtaddr) {
2630		/* First the packet memory */
2631		for (index = 0; index <
2632		     (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2633			if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
2634				u32 fbr1_align;
2635
2636				if (rx_ring->fbr[0]->buffsize > 4096)
2637					fbr1_align = 4096;
2638				else
2639					fbr1_align = rx_ring->fbr[0]->buffsize;
2640
2641				bufsize =
2642				    (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2643				    fbr1_align - 1;
2644
2645				dma_free_coherent(&adapter->pdev->dev,
2646					bufsize,
2647					rx_ring->fbr[0]->mem_virtaddrs[index],
2648					rx_ring->fbr[0]->mem_physaddrs[index]);
2649
2650				rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
2651			}
2652		}
2653
2654		/* Now the FIFO itself */
2655		rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2656		    rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
2657
2658		bufsize =
2659		    (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2660									0xfff;
2661
2662		dma_free_coherent(&adapter->pdev->dev, bufsize,
2663				    rx_ring->fbr[0]->ring_virtaddr,
2664				    rx_ring->fbr[0]->ring_physaddr);
2665
2666		rx_ring->fbr[0]->ring_virtaddr = NULL;
2667	}
2668
2669#ifdef USE_FBR0
2670	/* Now the same for Free Buffer Ring 0 */
2671	if (rx_ring->fbr[1]->ring_virtaddr) {
2672		/* First the packet memory */
2673		for (index = 0; index <
2674		     (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2675			if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2676				bufsize =
2677				    (rx_ring->fbr[1]->buffsize *
2678				     (FBR_CHUNKS + 1)) - 1;
2679
2680				dma_free_coherent(&adapter->pdev->dev,
2681					bufsize,
2682					rx_ring->fbr[1]->mem_virtaddrs[index],
2683					rx_ring->fbr[1]->mem_physaddrs[index]);
2684
2685				rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2686			}
2687		}
2688
2689		/* Now the FIFO itself */
2690		rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2691		    rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2692
2693		bufsize =
2694		    (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2695									0xfff;
2696
2697		dma_free_coherent(&adapter->pdev->dev,
2698				  bufsize,
2699				  rx_ring->fbr[1]->ring_virtaddr,
2700				  rx_ring->fbr[1]->ring_physaddr);
2701
2702		rx_ring->fbr[1]->ring_virtaddr = NULL;
2703	}
2704#endif
2705
2706	/* Free Packet Status Ring */
2707	if (rx_ring->ps_ring_virtaddr) {
2708		pktstat_ringsize =
2709		    sizeof(struct pkt_stat_desc) *
2710		    adapter->rx_ring.psr_num_entries;
2711
2712		dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2713				    rx_ring->ps_ring_virtaddr,
2714				    rx_ring->ps_ring_physaddr);
2715
2716		rx_ring->ps_ring_virtaddr = NULL;
2717	}
2718
2719	/* Free area of memory for the writeback of status information */
2720	if (rx_ring->rx_status_block) {
2721		dma_free_coherent(&adapter->pdev->dev,
2722			sizeof(struct rx_status_block),
2723			rx_ring->rx_status_block, rx_ring->rx_status_bus);
2724		rx_ring->rx_status_block = NULL;
2725	}
2726
2727	/* Destroy the lookaside (RFD) pool */
2728	if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2729		kmem_cache_destroy(rx_ring->recv_lookaside);
2730		adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2731	}
2732
2733	/* Free the FBR Lookup Table */
2734#ifdef USE_FBR0
2735	kfree(rx_ring->fbr[1]);
2736#endif
2737
2738	kfree(rx_ring->fbr[0]);
2739
2740	/* Reset Counters */
2741	rx_ring->num_ready_recv = 0;
2742}
2743
2744/**
2745 * et131x_init_recv - Initialize receive data structures.
2746 * @adapter: pointer to our private adapter structure
2747 *
2748 * Returns 0 on success and errno on failure (as defined in errno.h)
2749 */
2750static int et131x_init_recv(struct et131x_adapter *adapter)
2751{
2752	int status = -ENOMEM;
2753	struct rfd *rfd = NULL;
2754	u32 rfdct;
2755	u32 numrfd = 0;
2756	struct rx_ring *rx_ring;
2757
2758	/* Setup some convenience pointers */
2759	rx_ring = &adapter->rx_ring;
2760
2761	/* Setup each RFD */
2762	for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2763		rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2764						     GFP_ATOMIC | GFP_DMA);
2765
2766		if (!rfd) {
2767			dev_err(&adapter->pdev->dev,
2768				  "Couldn't alloc RFD out of kmem_cache\n");
2769			status = -ENOMEM;
2770			continue;
2771		}
2772
2773		rfd->skb = NULL;
2774
2775		/* Add this RFD to the recv_list */
2776		list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2777
2778		/* Increment both the available RFD's, and the total RFD's. */
2779		rx_ring->num_ready_recv++;
2780		numrfd++;
2781	}
2782
2783	if (numrfd > NIC_MIN_NUM_RFD)
2784		status = 0;
2785
2786	rx_ring->num_rfd = numrfd;
2787
2788	if (status != 0) {
2789		kmem_cache_free(rx_ring->recv_lookaside, rfd);
2790		dev_err(&adapter->pdev->dev,
2791			  "Allocation problems in et131x_init_recv\n");
2792	}
2793	return status;
2794}
2795
2796/**
2797 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2798 * @adapter: pointer to our adapter structure
2799 */
2800static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2801{
2802	struct phy_device *phydev = adapter->phydev;
2803
2804	if (!phydev)
2805		return;
2806
2807	/* For version B silicon, we do not use the RxDMA timer for 10 and 100
2808	 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2809	 */
2810	if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2811		writel(0, &adapter->regs->rxdma.max_pkt_time);
2812		writel(1, &adapter->regs->rxdma.num_pkt_done);
2813	}
2814}
2815
2816/**
2817 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2818 * @adapter: pointer to our adapter
2819 * @rfd: pointer to the RFD
2820 */
2821static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2822{
2823	struct rx_ring *rx_local = &adapter->rx_ring;
2824	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2825	u16 buff_index = rfd->bufferindex;
2826	u8 ring_index = rfd->ringindex;
2827	unsigned long flags;
2828
2829	/* We don't use any of the OOB data besides status. Otherwise, we
2830	 * need to clean up OOB data
2831	 */
2832	if (
2833#ifdef USE_FBR0
2834	    (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
2835#endif
2836	    (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
2837		spin_lock_irqsave(&adapter->fbr_lock, flags);
2838
2839		if (ring_index == 1) {
2840			struct fbr_desc *next = (struct fbr_desc *)
2841					(rx_local->fbr[0]->ring_virtaddr) +
2842					INDEX10(rx_local->fbr[0]->local_full);
2843
2844			/* Handle the Free Buffer Ring advancement here. Write
2845			 * the PA / Buffer Index for the returned buffer into
2846			 * the oldest (next to be freed)FBR entry
2847			 */
2848			next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2849			next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
2850			next->word2 = buff_index;
2851
2852			writel(bump_free_buff_ring(
2853					&rx_local->fbr[0]->local_full,
2854					rx_local->fbr[0]->num_entries - 1),
2855					&rx_dma->fbr1_full_offset);
2856		}
2857#ifdef USE_FBR0
2858		else {
2859			struct fbr_desc *next = (struct fbr_desc *)
2860				rx_local->fbr[1]->ring_virtaddr +
2861				    INDEX10(rx_local->fbr[1]->local_full);
2862
2863			/* Handle the Free Buffer Ring advancement here. Write
2864			 * the PA / Buffer Index for the returned buffer into
2865			 * the oldest (next to be freed) FBR entry
2866			 */
2867			next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2868			next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
2869			next->word2 = buff_index;
2870
2871			writel(bump_free_buff_ring(
2872					&rx_local->fbr[1]->local_full,
2873					rx_local->fbr[1]->num_entries - 1),
2874			       &rx_dma->fbr0_full_offset);
2875		}
2876#endif
2877		spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2878	} else {
2879		dev_err(&adapter->pdev->dev,
2880			  "%s illegal Buffer Index returned\n", __func__);
2881	}
2882
2883	/* The processing on this RFD is done, so put it back on the tail of
2884	 * our list
2885	 */
2886	spin_lock_irqsave(&adapter->rcv_lock, flags);
2887	list_add_tail(&rfd->list_node, &rx_local->recv_list);
2888	rx_local->num_ready_recv++;
2889	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2890
2891	WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2892}
2893
2894/**
2895 * nic_rx_pkts - Checks the hardware for available packets
2896 * @adapter: pointer to our adapter
2897 *
2898 * Returns rfd, a pointer to our MPRFD.
2899 *
2900 * Checks the hardware for available packets, using completion ring
2901 * If packets are available, it gets an RFD from the recv_list, attaches
2902 * the packet to it, puts the RFD in the RecvPendList, and also returns
2903 * the pointer to the RFD.
2904 */
2905static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2906{
2907	struct rx_ring *rx_local = &adapter->rx_ring;
2908	struct rx_status_block *status;
2909	struct pkt_stat_desc *psr;
2910	struct rfd *rfd;
2911	u32 i;
2912	u8 *buf;
2913	unsigned long flags;
2914	struct list_head *element;
2915	u8 ring_index;
2916	u16 buff_index;
2917	u32 len;
2918	u32 word0;
2919	u32 word1;
2920
2921	/* RX Status block is written by the DMA engine prior to every
2922	 * interrupt. It contains the next to be used entry in the Packet
2923	 * Status Ring, and also the two Free Buffer rings.
2924	 */
2925	status = rx_local->rx_status_block;
2926	word1 = status->word1 >> 16;	/* Get the useful bits */
2927
2928	/* Check the PSR and wrap bits do not match */
2929	if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2930		/* Looks like this ring is not updated yet */
2931		return NULL;
2932
2933	/* The packet status ring indicates that data is available. */
2934	psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2935			(rx_local->local_psr_full & 0xFFF);
2936
2937	/* Grab any information that is required once the PSR is
2938	 * advanced, since we can no longer rely on the memory being
2939	 * accurate
2940	 */
2941	len = psr->word1 & 0xFFFF;
2942	ring_index = (psr->word1 >> 26) & 0x03;
2943	buff_index = (psr->word1 >> 16) & 0x3FF;
2944	word0 = psr->word0;
2945
2946	/* Indicate that we have used this PSR entry. */
2947	/* FIXME wrap 12 */
2948	add_12bit(&rx_local->local_psr_full, 1);
2949	if (
2950	  (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2951		/* Clear psr full and toggle the wrap bit */
2952		rx_local->local_psr_full &=  ~0xFFF;
2953		rx_local->local_psr_full ^= 0x1000;
2954	}
2955
2956	writel(rx_local->local_psr_full,
2957	       &adapter->regs->rxdma.psr_full_offset);
2958
2959#ifndef USE_FBR0
2960	if (ring_index != 1)
2961		return NULL;
2962#endif
2963
2964#ifdef USE_FBR0
2965	if (ring_index > 1 ||
2966		(ring_index == 0 &&
2967		buff_index > rx_local->fbr[1]->num_entries - 1) ||
2968		(ring_index == 1 &&
2969		buff_index > rx_local->fbr[0]->num_entries - 1))
2970#else
2971	if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1)
2972#endif
2973	{
2974		/* Illegal buffer or ring index cannot be used by S/W*/
2975		dev_err(&adapter->pdev->dev,
2976			  "NICRxPkts PSR Entry %d indicates "
2977			  "length of %d and/or bad bi(%d)\n",
2978			  rx_local->local_psr_full & 0xFFF,
2979			  len, buff_index);
2980		return NULL;
2981	}
2982
2983	/* Get and fill the RFD. */
2984	spin_lock_irqsave(&adapter->rcv_lock, flags);
2985
2986	rfd = NULL;
2987	element = rx_local->recv_list.next;
2988	rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2989
2990	if (rfd == NULL) {
2991		spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2992		return NULL;
2993	}
2994
2995	list_del(&rfd->list_node);
2996	rx_local->num_ready_recv--;
2997
2998	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2999
3000	rfd->bufferindex = buff_index;
3001	rfd->ringindex = ring_index;
3002
3003	/* In V1 silicon, there is a bug which screws up filtering of
3004	 * runt packets.  Therefore runt packet filtering is disabled
3005	 * in the MAC and the packets are dropped here.  They are
3006	 * also counted here.
3007	 */
3008	if (len < (NIC_MIN_PACKET_SIZE + 4)) {
3009		adapter->stats.rx_other_errs++;
3010		len = 0;
3011	}
3012
3013	if (len) {
3014		/* Determine if this is a multicast packet coming in */
3015		if ((word0 & ALCATEL_MULTICAST_PKT) &&
3016		    !(word0 & ALCATEL_BROADCAST_PKT)) {
3017			/* Promiscuous mode and Multicast mode are
3018			 * not mutually exclusive as was first
3019			 * thought.  I guess Promiscuous is just
3020			 * considered a super-set of the other
3021			 * filters. Generally filter is 0x2b when in
3022			 * promiscuous mode.
3023			 */
3024			if ((adapter->packet_filter &
3025					ET131X_PACKET_TYPE_MULTICAST)
3026			    && !(adapter->packet_filter &
3027					ET131X_PACKET_TYPE_PROMISCUOUS)
3028			    && !(adapter->packet_filter &
3029					ET131X_PACKET_TYPE_ALL_MULTICAST)) {
3030				/*
3031				 * Note - ring_index for fbr[] array is reversed
3032				 * 1 for FBR0 etc
3033				 */
3034				buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
3035						virt[buff_index];
3036
3037				/* Loop through our list to see if the
3038				 * destination address of this packet
3039				 * matches one in our list.
3040				 */
3041				for (i = 0; i < adapter->multicast_addr_count;
3042				     i++) {
3043					if (buf[0] ==
3044						adapter->multicast_list[i][0]
3045					    && buf[1] ==
3046						adapter->multicast_list[i][1]
3047					    && buf[2] ==
3048						adapter->multicast_list[i][2]
3049					    && buf[3] ==
3050						adapter->multicast_list[i][3]
3051					    && buf[4] ==
3052						adapter->multicast_list[i][4]
3053					    && buf[5] ==
3054						adapter->multicast_list[i][5]) {
3055						break;
3056					}
3057				}
3058
3059				/* If our index is equal to the number
3060				 * of Multicast address we have, then
3061				 * this means we did not find this
3062				 * packet's matching address in our
3063				 * list.  Set the len to zero,
3064				 * so we free our RFD when we return
3065				 * from this function.
3066				 */
3067				if (i == adapter->multicast_addr_count)
3068					len = 0;
3069			}
3070
3071			if (len > 0)
3072				adapter->stats.multicast_pkts_rcvd++;
3073		} else if (word0 & ALCATEL_BROADCAST_PKT)
3074			adapter->stats.broadcast_pkts_rcvd++;
3075		else
3076			/* Not sure what this counter measures in
3077			 * promiscuous mode. Perhaps we should check
3078			 * the MAC address to see if it is directed
3079			 * to us in promiscuous mode.
3080			 */
3081			adapter->stats.unicast_pkts_rcvd++;
3082	}
3083
3084	if (len > 0) {
3085		struct sk_buff *skb = NULL;
3086
3087		/*rfd->len = len - 4; */
3088		rfd->len = len;
3089
3090		skb = dev_alloc_skb(rfd->len + 2);
3091		if (!skb) {
3092			dev_err(&adapter->pdev->dev,
3093				  "Couldn't alloc an SKB for Rx\n");
3094			return NULL;
3095		}
3096
3097		adapter->net_stats.rx_bytes += rfd->len;
3098
3099		/*
3100		 * Note - ring_index for fbr[] array is reversed,
3101		 * 1 for FBR0 etc
3102		 */
3103		memcpy(skb_put(skb, rfd->len),
3104		    rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
3105		    rfd->len);
3106
3107		skb->dev = adapter->netdev;
3108		skb->protocol = eth_type_trans(skb, adapter->netdev);
3109		skb->ip_summed = CHECKSUM_NONE;
3110
3111		netif_rx_ni(skb);
3112	} else {
3113		rfd->len = 0;
3114	}
3115
3116	nic_return_rfd(adapter, rfd);
3117	return rfd;
3118}
3119
3120/**
3121 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3122 * @adapter: pointer to our adapter
3123 *
3124 * Assumption, Rcv spinlock has been acquired.
3125 */
3126static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
3127{
3128	struct rfd *rfd = NULL;
3129	u32 count = 0;
3130	bool done = true;
3131
3132	/* Process up to available RFD's */
3133	while (count < NUM_PACKETS_HANDLED) {
3134		if (list_empty(&adapter->rx_ring.recv_list)) {
3135			WARN_ON(adapter->rx_ring.num_ready_recv != 0);
3136			done = false;
3137			break;
3138		}
3139
3140		rfd = nic_rx_pkts(adapter);
3141
3142		if (rfd == NULL)
3143			break;
3144
3145		/* Do not receive any packets until a filter has been set.
3146		 * Do not receive any packets until we have link.
3147		 * If length is zero, return the RFD in order to advance the
3148		 * Free buffer ring.
3149		 */
3150		if (!adapter->packet_filter ||
3151		    !netif_carrier_ok(adapter->netdev) ||
3152		    rfd->len == 0)
3153			continue;
3154
3155		/* Increment the number of packets we received */
3156		adapter->net_stats.rx_packets++;
3157
3158		/* Set the status on the packet, either resources or success */
3159		if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
3160			dev_warn(&adapter->pdev->dev,
3161				    "RFD's are running out\n");
3162		}
3163		count++;
3164	}
3165
3166	if (count == NUM_PACKETS_HANDLED || !done) {
3167		adapter->rx_ring.unfinished_receives = true;
3168		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3169		       &adapter->regs->global.watchdog_timer);
3170	} else
3171		/* Watchdog timer will disable itself if appropriate. */
3172		adapter->rx_ring.unfinished_receives = false;
3173}
3174
3175/**
3176 * et131x_tx_dma_memory_alloc
3177 * @adapter: pointer to our private adapter structure
3178 *
3179 * Returns 0 on success and errno on failure (as defined in errno.h).
3180 *
3181 * Allocates memory that will be visible both to the device and to the CPU.
3182 * The OS will pass us packets, pointers to which we will insert in the Tx
3183 * Descriptor queue. The device will read this queue to find the packets in
3184 * memory. The device will update the "status" in memory each time it xmits a
3185 * packet.
3186 */
3187static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
3188{
3189	int desc_size = 0;
3190	struct tx_ring *tx_ring = &adapter->tx_ring;
3191
3192	/* Allocate memory for the TCB's (Transmit Control Block) */
3193	adapter->tx_ring.tcb_ring =
3194		kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
3195	if (!adapter->tx_ring.tcb_ring) {
3196		dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
3197		return -ENOMEM;
3198	}
3199
3200	/* Allocate enough memory for the Tx descriptor ring, and allocate
3201	 * some extra so that the ring can be aligned on a 4k boundary.
3202	 */
3203	desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
3204	tx_ring->tx_desc_ring =
3205	    (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
3206						  desc_size,
3207						  &tx_ring->tx_desc_ring_pa,
3208						  GFP_KERNEL);
3209	if (!adapter->tx_ring.tx_desc_ring) {
3210		dev_err(&adapter->pdev->dev,
3211			"Cannot alloc memory for Tx Ring\n");
3212		return -ENOMEM;
3213	}
3214
3215	/* Save physical address
3216	 *
3217	 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3218	 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3219	 * are ever returned, make sure the high part is retrieved here before
3220	 * storing the adjusted address.
3221	 */
3222	/* Allocate memory for the Tx status block */
3223	tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
3224						    sizeof(u32),
3225						    &tx_ring->tx_status_pa,
3226						    GFP_KERNEL);
3227	if (!adapter->tx_ring.tx_status_pa) {
3228		dev_err(&adapter->pdev->dev,
3229				  "Cannot alloc memory for Tx status block\n");
3230		return -ENOMEM;
3231	}
3232	return 0;
3233}
3234
3235/**
3236 * et131x_tx_dma_memory_free - Free all memory allocated within this module
3237 * @adapter: pointer to our private adapter structure
3238 *
3239 * Returns 0 on success and errno on failure (as defined in errno.h).
3240 */
3241static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3242{
3243	int desc_size = 0;
3244
3245	if (adapter->tx_ring.tx_desc_ring) {
3246		/* Free memory relating to Tx rings here */
3247		desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3248								+ 4096 - 1;
3249		dma_free_coherent(&adapter->pdev->dev,
3250				    desc_size,
3251				    adapter->tx_ring.tx_desc_ring,
3252				    adapter->tx_ring.tx_desc_ring_pa);
3253		adapter->tx_ring.tx_desc_ring = NULL;
3254	}
3255
3256	/* Free memory for the Tx status block */
3257	if (adapter->tx_ring.tx_status) {
3258		dma_free_coherent(&adapter->pdev->dev,
3259				    sizeof(u32),
3260				    adapter->tx_ring.tx_status,
3261				    adapter->tx_ring.tx_status_pa);
3262
3263		adapter->tx_ring.tx_status = NULL;
3264	}
3265	/* Free the memory for the tcb structures */
3266	kfree(adapter->tx_ring.tcb_ring);
3267}
3268
3269/**
3270 * nic_send_packet - NIC specific send handler for version B silicon.
3271 * @adapter: pointer to our adapter
3272 * @tcb: pointer to struct tcb
3273 *
3274 * Returns 0 or errno.
3275 */
3276static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3277{
3278	u32 i;
3279	struct tx_desc desc[24];	/* 24 x 16 byte */
3280	u32 frag = 0;
3281	u32 thiscopy, remainder;
3282	struct sk_buff *skb = tcb->skb;
3283	u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3284	struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3285	unsigned long flags;
3286	struct phy_device *phydev = adapter->phydev;
3287
3288	/* Part of the optimizations of this send routine restrict us to
3289	 * sending 24 fragments at a pass.  In practice we should never see
3290	 * more than 5 fragments.
3291	 *
3292	 * NOTE: The older version of this function (below) can handle any
3293	 * number of fragments. If needed, we can call this function,
3294	 * although it is less efficient.
3295	 */
3296	if (nr_frags > 23)
3297		return -EIO;
3298
3299	memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3300
3301	for (i = 0; i < nr_frags; i++) {
3302		/* If there is something in this element, lets get a
3303		 * descriptor from the ring and get the necessary data
3304		 */
3305		if (i == 0) {
3306			/* If the fragments are smaller than a standard MTU,
3307			 * then map them to a single descriptor in the Tx
3308			 * Desc ring. However, if they're larger, as is
3309			 * possible with support for jumbo packets, then
3310			 * split them each across 2 descriptors.
3311			 *
3312			 * This will work until we determine why the hardware
3313			 * doesn't seem to like large fragments.
3314			 */
3315			if ((skb->len - skb->data_len) <= 1514) {
3316				desc[frag].addr_hi = 0;
3317				/* Low 16bits are length, high is vlan and
3318				   unused currently so zero */
3319				desc[frag].len_vlan =
3320					skb->len - skb->data_len;
3321
3322				/* NOTE: Here, the dma_addr_t returned from
3323				 * dma_map_single() is implicitly cast as a
3324				 * u32. Although dma_addr_t can be
3325				 * 64-bit, the address returned by
3326				 * dma_map_single() is always 32-bit
3327				 * addressable (as defined by the pci/dma
3328				 * subsystem)
3329				 */
3330				desc[frag++].addr_lo =
3331				    dma_map_single(&adapter->pdev->dev,
3332						   skb->data,
3333						   skb->len -
3334						   skb->data_len,
3335						   DMA_TO_DEVICE);
3336			} else {
3337				desc[frag].addr_hi = 0;
3338				desc[frag].len_vlan =
3339				    (skb->len - skb->data_len) / 2;
3340
3341				/* NOTE: Here, the dma_addr_t returned from
3342				 * dma_map_single() is implicitly cast as a
3343				 * u32. Although dma_addr_t can be
3344				 * 64-bit, the address returned by
3345				 * dma_map_single() is always 32-bit
3346				 * addressable (as defined by the pci/dma
3347				 * subsystem)
3348				 */
3349				desc[frag++].addr_lo =
3350				    dma_map_single(&adapter->pdev->dev,
3351						   skb->data,
3352						   ((skb->len -
3353						     skb->data_len) / 2),
3354						   DMA_TO_DEVICE);
3355				desc[frag].addr_hi = 0;
3356
3357				desc[frag].len_vlan =
3358				    (skb->len - skb->data_len) / 2;
3359
3360				/* NOTE: Here, the dma_addr_t returned from
3361				 * dma_map_single() is implicitly cast as a
3362				 * u32. Although dma_addr_t can be
3363				 * 64-bit, the address returned by
3364				 * dma_map_single() is always 32-bit
3365				 * addressable (as defined by the pci/dma
3366				 * subsystem)
3367				 */
3368				desc[frag++].addr_lo =
3369				    dma_map_single(&adapter->pdev->dev,
3370						   skb->data +
3371						   ((skb->len -
3372						     skb->data_len) / 2),
3373						   ((skb->len -
3374						     skb->data_len) / 2),
3375						   DMA_TO_DEVICE);
3376			}
3377		} else {
3378			desc[frag].addr_hi = 0;
3379			desc[frag].len_vlan =
3380					frags[i - 1].size;
3381
3382			/* NOTE: Here, the dma_addr_t returned from
3383			 * dma_map_page() is implicitly cast as a u32.
3384			 * Although dma_addr_t can be 64-bit, the address
3385			 * returned by dma_map_page() is always 32-bit
3386			 * addressable (as defined by the pci/dma subsystem)
3387			 */
3388			desc[frag++].addr_lo = skb_frag_dma_map(
3389							&adapter->pdev->dev,
3390							&frags[i - 1],
3391							0,
3392							frags[i - 1].size,
3393							DMA_TO_DEVICE);
3394		}
3395	}
3396
3397	if (phydev && phydev->speed == SPEED_1000) {
3398		if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3399			/* Last element & Interrupt flag */
3400			desc[frag - 1].flags = 0x5;
3401			adapter->tx_ring.since_irq = 0;
3402		} else { /* Last element */
3403			desc[frag - 1].flags = 0x1;
3404		}
3405	} else
3406		desc[frag - 1].flags = 0x5;
3407
3408	desc[0].flags |= 2;	/* First element flag */
3409
3410	tcb->index_start = adapter->tx_ring.send_idx;
3411	tcb->stale = 0;
3412
3413	spin_lock_irqsave(&adapter->send_hw_lock, flags);
3414
3415	thiscopy = NUM_DESC_PER_RING_TX -
3416				INDEX10(adapter->tx_ring.send_idx);
3417
3418	if (thiscopy >= frag) {
3419		remainder = 0;
3420		thiscopy = frag;
3421	} else {
3422		remainder = frag - thiscopy;
3423	}
3424
3425	memcpy(adapter->tx_ring.tx_desc_ring +
3426	       INDEX10(adapter->tx_ring.send_idx), desc,
3427	       sizeof(struct tx_desc) * thiscopy);
3428
3429	add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3430
3431	if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3432		  INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3433		adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3434		adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3435	}
3436
3437	if (remainder) {
3438		memcpy(adapter->tx_ring.tx_desc_ring,
3439		       desc + thiscopy,
3440		       sizeof(struct tx_desc) * remainder);
3441
3442		add_10bit(&adapter->tx_ring.send_idx, remainder);
3443	}
3444
3445	if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3446		if (adapter->tx_ring.send_idx)
3447			tcb->index = NUM_DESC_PER_RING_TX - 1;
3448		else
3449			tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3450	} else
3451		tcb->index = adapter->tx_ring.send_idx - 1;
3452
3453	spin_lock(&adapter->tcb_send_qlock);
3454
3455	if (adapter->tx_ring.send_tail)
3456		adapter->tx_ring.send_tail->next = tcb;
3457	else
3458		adapter->tx_ring.send_head = tcb;
3459
3460	adapter->tx_ring.send_tail = tcb;
3461
3462	WARN_ON(tcb->next != NULL);
3463
3464	adapter->tx_ring.used++;
3465
3466	spin_unlock(&adapter->tcb_send_qlock);
3467
3468	/* Write the new write pointer back to the device. */
3469	writel(adapter->tx_ring.send_idx,
3470	       &adapter->regs->txdma.service_request);
3471
3472	/* For Gig only, we use Tx Interrupt coalescing.  Enable the software
3473	 * timer to wake us up if this packet isn't followed by N more.
3474	 */
3475	if (phydev && phydev->speed == SPEED_1000) {
3476		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3477		       &adapter->regs->global.watchdog_timer);
3478	}
3479	spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3480
3481	return 0;
3482}
3483
3484/**
3485 * send_packet - Do the work to send a packet
3486 * @skb: the packet(s) to send
3487 * @adapter: a pointer to the device's private adapter structure
3488 *
3489 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3490 *
3491 * Assumption: Send spinlock has been acquired
3492 */
3493static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3494{
3495	int status;
3496	struct tcb *tcb = NULL;
3497	u16 *shbufva;
3498	unsigned long flags;
3499
3500	/* All packets must have at least a MAC address and a protocol type */
3501	if (skb->len < ETH_HLEN)
3502		return -EIO;
3503
3504	/* Get a TCB for this packet */
3505	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3506
3507	tcb = adapter->tx_ring.tcb_qhead;
3508
3509	if (tcb == NULL) {
3510		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3511		return -ENOMEM;
3512	}
3513
3514	adapter->tx_ring.tcb_qhead = tcb->next;
3515
3516	if (adapter->tx_ring.tcb_qhead == NULL)
3517		adapter->tx_ring.tcb_qtail = NULL;
3518
3519	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3520
3521	tcb->skb = skb;
3522
3523	if (skb->data != NULL && skb->len - skb->data_len >= 6) {
3524		shbufva = (u16 *) skb->data;
3525
3526		if ((shbufva[0] == 0xffff) &&
3527		    (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3528			tcb->flags |= fMP_DEST_BROAD;
3529		} else if ((shbufva[0] & 0x3) == 0x0001) {
3530			tcb->flags |=  fMP_DEST_MULTI;
3531		}
3532	}
3533
3534	tcb->next = NULL;
3535
3536	/* Call the NIC specific send handler. */
3537	status = nic_send_packet(adapter, tcb);
3538
3539	if (status != 0) {
3540		spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3541
3542		if (adapter->tx_ring.tcb_qtail)
3543			adapter->tx_ring.tcb_qtail->next = tcb;
3544		else
3545			/* Apparently ready Q is empty. */
3546			adapter->tx_ring.tcb_qhead = tcb;
3547
3548		adapter->tx_ring.tcb_qtail = tcb;
3549		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3550		return status;
3551	}
3552	WARN_ON(adapter->tx_ring.used > NUM_TCB);
3553	return 0;
3554}
3555
3556/**
3557 * et131x_send_packets - This function is called by the OS to send packets
3558 * @skb: the packet(s) to send
3559 * @netdev:device on which to TX the above packet(s)
3560 *
3561 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3562 */
3563static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3564{
3565	int status = 0;
3566	struct et131x_adapter *adapter = netdev_priv(netdev);
3567
3568	/* Send these packets
3569	 *
3570	 * NOTE: The Linux Tx entry point is only given one packet at a time
3571	 * to Tx, so the PacketCount and it's array used makes no sense here
3572	 */
3573
3574	/* TCB is not available */
3575	if (adapter->tx_ring.used >= NUM_TCB) {
3576		/* NOTE: If there's an error on send, no need to queue the
3577		 * packet under Linux; if we just send an error up to the
3578		 * netif layer, it will resend the skb to us.
3579		 */
3580		status = -ENOMEM;
3581	} else {
3582		/* We need to see if the link is up; if it's not, make the
3583		 * netif layer think we're good and drop the packet
3584		 */
3585		if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3586					!netif_carrier_ok(netdev)) {
3587			dev_kfree_skb_any(skb);
3588			skb = NULL;
3589
3590			adapter->net_stats.tx_dropped++;
3591		} else {
3592			status = send_packet(skb, adapter);
3593			if (status != 0 && status != -ENOMEM) {
3594				/* On any other error, make netif think we're
3595				 * OK and drop the packet
3596				 */
3597				dev_kfree_skb_any(skb);
3598				skb = NULL;
3599				adapter->net_stats.tx_dropped++;
3600			}
3601		}
3602	}
3603	return status;
3604}
3605
3606/**
3607 * free_send_packet - Recycle a struct tcb
3608 * @adapter: pointer to our adapter
3609 * @tcb: pointer to struct tcb
3610 *
3611 * Complete the packet if necessary
3612 * Assumption - Send spinlock has been acquired
3613 */
3614static inline void free_send_packet(struct et131x_adapter *adapter,
3615						struct tcb *tcb)
3616{
3617	unsigned long flags;
3618	struct tx_desc *desc = NULL;
3619	struct net_device_stats *stats = &adapter->net_stats;
3620
3621	if (tcb->flags & fMP_DEST_BROAD)
3622		atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3623	else if (tcb->flags & fMP_DEST_MULTI)
3624		atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3625	else
3626		atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3627
3628	if (tcb->skb) {
3629		stats->tx_bytes += tcb->skb->len;
3630
3631		/* Iterate through the TX descriptors on the ring
3632		 * corresponding to this packet and umap the fragments
3633		 * they point to
3634		 */
3635		do {
3636			desc = (struct tx_desc *)
3637				    (adapter->tx_ring.tx_desc_ring +
3638						INDEX10(tcb->index_start));
3639
3640			dma_unmap_single(&adapter->pdev->dev,
3641					 desc->addr_lo,
3642					 desc->len_vlan, DMA_TO_DEVICE);
3643
3644			add_10bit(&tcb->index_start, 1);
3645			if (INDEX10(tcb->index_start) >=
3646							NUM_DESC_PER_RING_TX) {
3647				tcb->index_start &= ~ET_DMA10_MASK;
3648				tcb->index_start ^= ET_DMA10_WRAP;
3649			}
3650		} while (desc != (adapter->tx_ring.tx_desc_ring +
3651				INDEX10(tcb->index)));
3652
3653		dev_kfree_skb_any(tcb->skb);
3654	}
3655
3656	memset(tcb, 0, sizeof(struct tcb));
3657
3658	/* Add the TCB to the Ready Q */
3659	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3660
3661	adapter->net_stats.tx_packets++;
3662
3663	if (adapter->tx_ring.tcb_qtail)
3664		adapter->tx_ring.tcb_qtail->next = tcb;
3665	else
3666		/* Apparently ready Q is empty. */
3667		adapter->tx_ring.tcb_qhead = tcb;
3668
3669	adapter->tx_ring.tcb_qtail = tcb;
3670
3671	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3672	WARN_ON(adapter->tx_ring.used < 0);
3673}
3674
3675/**
3676 * et131x_free_busy_send_packets - Free and complete the stopped active sends
3677 * @adapter: pointer to our adapter
3678 *
3679 * Assumption - Send spinlock has been acquired
3680 */
3681static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3682{
3683	struct tcb *tcb;
3684	unsigned long flags;
3685	u32 freed = 0;
3686
3687	/* Any packets being sent? Check the first TCB on the send list */
3688	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3689
3690	tcb = adapter->tx_ring.send_head;
3691
3692	while (tcb != NULL && freed < NUM_TCB) {
3693		struct tcb *next = tcb->next;
3694
3695		adapter->tx_ring.send_head = next;
3696
3697		if (next == NULL)
3698			adapter->tx_ring.send_tail = NULL;
3699
3700		adapter->tx_ring.used--;
3701
3702		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3703
3704		freed++;
3705		free_send_packet(adapter, tcb);
3706
3707		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3708
3709		tcb = adapter->tx_ring.send_head;
3710	}
3711
3712	WARN_ON(freed == NUM_TCB);
3713
3714	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3715
3716	adapter->tx_ring.used = 0;
3717}
3718
3719/**
3720 * et131x_handle_send_interrupt - Interrupt handler for sending processing
3721 * @adapter: pointer to our adapter
3722 *
3723 * Re-claim the send resources, complete sends and get more to send from
3724 * the send wait queue.
3725 *
3726 * Assumption - Send spinlock has been acquired
3727 */
3728static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3729{
3730	unsigned long flags;
3731	u32 serviced;
3732	struct tcb *tcb;
3733	u32 index;
3734
3735	serviced = readl(&adapter->regs->txdma.new_service_complete);
3736	index = INDEX10(serviced);
3737
3738	/* Has the ring wrapped?  Process any descriptors that do not have
3739	 * the same "wrap" indicator as the current completion indicator
3740	 */
3741	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3742
3743	tcb = adapter->tx_ring.send_head;
3744
3745	while (tcb &&
3746	       ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3747	       index < INDEX10(tcb->index)) {
3748		adapter->tx_ring.used--;
3749		adapter->tx_ring.send_head = tcb->next;
3750		if (tcb->next == NULL)
3751			adapter->tx_ring.send_tail = NULL;
3752
3753		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3754		free_send_packet(adapter, tcb);
3755		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3756
3757		/* Goto the next packet */
3758		tcb = adapter->tx_ring.send_head;
3759	}
3760	while (tcb &&
3761	       !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3762	       && index > (tcb->index & ET_DMA10_MASK)) {
3763		adapter->tx_ring.used--;
3764		adapter->tx_ring.send_head = tcb->next;
3765		if (tcb->next == NULL)
3766			adapter->tx_ring.send_tail = NULL;
3767
3768		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3769		free_send_packet(adapter, tcb);
3770		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3771
3772		/* Goto the next packet */
3773		tcb = adapter->tx_ring.send_head;
3774	}
3775
3776	/* Wake up the queue when we hit a low-water mark */
3777	if (adapter->tx_ring.used <= NUM_TCB / 3)
3778		netif_wake_queue(adapter->netdev);
3779
3780	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3781}
3782
3783static int et131x_get_settings(struct net_device *netdev,
3784			       struct ethtool_cmd *cmd)
3785{
3786	struct et131x_adapter *adapter = netdev_priv(netdev);
3787
3788	return phy_ethtool_gset(adapter->phydev, cmd);
3789}
3790
3791static int et131x_set_settings(struct net_device *netdev,
3792			       struct ethtool_cmd *cmd)
3793{
3794	struct et131x_adapter *adapter = netdev_priv(netdev);
3795
3796	return phy_ethtool_sset(adapter->phydev, cmd);
3797}
3798
3799static int et131x_get_regs_len(struct net_device *netdev)
3800{
3801#define ET131X_REGS_LEN 256
3802	return ET131X_REGS_LEN * sizeof(u32);
3803}
3804
3805static void et131x_get_regs(struct net_device *netdev,
3806			    struct ethtool_regs *regs, void *regs_data)
3807{
3808	struct et131x_adapter *adapter = netdev_priv(netdev);
3809	struct address_map __iomem *aregs = adapter->regs;
3810	u32 *regs_buff = regs_data;
3811	u32 num = 0;
3812
3813	memset(regs_data, 0, et131x_get_regs_len(netdev));
3814
3815	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3816			adapter->pdev->device;
3817
3818	/* PHY regs */
3819	et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3820	et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3821	et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3822	et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3823	et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3824	et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3825	et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3826	/* Autoneg next page transmit reg */
3827	et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3828	/* Link partner next page reg */
3829	et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3830	et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3831	et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3832	et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3833	et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3834	et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3835	et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3836			(u16 *)&regs_buff[num++]);
3837	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3838			(u16 *)&regs_buff[num++]);
3839	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3840			(u16 *)&regs_buff[num++]);
3841	et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3842			(u16 *)&regs_buff[num++]);
3843	et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3844	et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3845	et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3846	et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3847			(u16 *)&regs_buff[num++]);
3848	et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3849	et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3850	et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3851
3852	/* Global regs */
3853	regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3854	regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3855	regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3856	regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3857	regs_buff[num++] = readl(&aregs->global.pm_csr);
3858	regs_buff[num++] = adapter->stats.interrupt_status;
3859	regs_buff[num++] = readl(&aregs->global.int_mask);
3860	regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3861	regs_buff[num++] = readl(&aregs->global.int_status_alias);
3862	regs_buff[num++] = readl(&aregs->global.sw_reset);
3863	regs_buff[num++] = readl(&aregs->global.slv_timer);
3864	regs_buff[num++] = readl(&aregs->global.msi_config);
3865	regs_buff[num++] = readl(&aregs->global.loopback);
3866	regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3867
3868	/* TXDMA regs */
3869	regs_buff[num++] = readl(&aregs->txdma.csr);
3870	regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3871	regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3872	regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3873	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3874	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3875	regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3876	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3877	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3878	regs_buff[num++] = readl(&aregs->txdma.service_request);
3879	regs_buff[num++] = readl(&aregs->txdma.service_complete);
3880	regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3881	regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3882	regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3883	regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3884	regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3885	regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3886	regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3887	regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3888	regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3889	regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3890	regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3891	regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3892	regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3893	regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3894	regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3895
3896	/* RXDMA regs */
3897	regs_buff[num++] = readl(&aregs->rxdma.csr);
3898	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3899	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3900	regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3901	regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3902	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3903	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3904	regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3905	regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3906	regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3907	regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3908	regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3909	regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3910	regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3911	regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3912	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3913	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3914	regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3915	regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3916	regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3917	regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3918	regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3919	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3920	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3921	regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3922	regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3923	regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3924	regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3925	regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3926}
3927
3928#define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3929static void et131x_get_drvinfo(struct net_device *netdev,
3930			       struct ethtool_drvinfo *info)
3931{
3932	struct et131x_adapter *adapter = netdev_priv(netdev);
3933
3934	strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3935	strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3936	strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3937}
3938
3939static struct ethtool_ops et131x_ethtool_ops = {
3940	.get_settings	= et131x_get_settings,
3941	.set_settings	= et131x_set_settings,
3942	.get_drvinfo	= et131x_get_drvinfo,
3943	.get_regs_len	= et131x_get_regs_len,
3944	.get_regs	= et131x_get_regs,
3945	.get_link = ethtool_op_get_link,
3946};
3947
3948static void et131x_set_ethtool_ops(struct net_device *netdev)
3949{
3950	SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
3951}
3952
3953/**
3954 * et131x_hwaddr_init - set up the MAC Address on the ET1310
3955 * @adapter: pointer to our private adapter structure
3956 */
3957static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3958{
3959	/* If have our default mac from init and no mac address from
3960	 * EEPROM then we need to generate the last octet and set it on the
3961	 * device
3962	 */
3963	if (adapter->rom_addr[0] == 0x00 &&
3964	    adapter->rom_addr[1] == 0x00 &&
3965	    adapter->rom_addr[2] == 0x00 &&
3966	    adapter->rom_addr[3] == 0x00 &&
3967	    adapter->rom_addr[4] == 0x00 &&
3968	    adapter->rom_addr[5] == 0x00) {
3969		/*
3970		 * We need to randomly generate the last octet so we
3971		 * decrease our chances of setting the mac address to
3972		 * same as another one of our cards in the system
3973		 */
3974		get_random_bytes(&adapter->addr[5], 1);
3975		/*
3976		 * We have the default value in the register we are
3977		 * working with so we need to copy the current
3978		 * address into the permanent address
3979		 */
3980		memcpy(adapter->rom_addr,
3981			adapter->addr, ETH_ALEN);
3982	} else {
3983		/* We do not have an override address, so set the
3984		 * current address to the permanent address and add
3985		 * it to the device
3986		 */
3987		memcpy(adapter->addr,
3988		       adapter->rom_addr, ETH_ALEN);
3989	}
3990}
3991
3992/**
3993 * et131x_pci_init	 - initial PCI setup
3994 * @adapter: pointer to our private adapter structure
3995 * @pdev: our PCI device
3996 *
3997 * Perform the initial setup of PCI registers and if possible initialise
3998 * the MAC address. At this point the I/O registers have yet to be mapped
3999 */
4000static int et131x_pci_init(struct et131x_adapter *adapter,
4001						struct pci_dev *pdev)
4002{
4003	int cap = pci_pcie_cap(pdev);
4004	u16 max_payload;
4005	u16 ctl;
4006	int i, rc;
4007
4008	rc = et131x_init_eeprom(adapter);
4009	if (rc < 0)
4010		goto out;
4011
4012	if (!cap) {
4013		dev_err(&pdev->dev, "Missing PCIe capabilities\n");
4014		goto err_out;
4015	}
4016
4017	/* Let's set up the PORT LOGIC Register.  First we need to know what
4018	 * the max_payload_size is
4019	 */
4020	if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCAP, &max_payload)) {
4021		dev_err(&pdev->dev,
4022		    "Could not read PCI config space for Max Payload Size\n");
4023		goto err_out;
4024	}
4025
4026	/* Program the Ack/Nak latency and replay timers */
4027	max_payload &= 0x07;
4028
4029	if (max_payload < 2) {
4030		static const u16 acknak[2] = { 0x76, 0xD0 };
4031		static const u16 replay[2] = { 0x1E0, 0x2ED };
4032
4033		if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
4034					       acknak[max_payload])) {
4035			dev_err(&pdev->dev,
4036			  "Could not write PCI config space for ACK/NAK\n");
4037			goto err_out;
4038		}
4039		if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
4040					       replay[max_payload])) {
4041			dev_err(&pdev->dev,
4042			  "Could not write PCI config space for Replay Timer\n");
4043			goto err_out;
4044		}
4045	}
4046
4047	/* l0s and l1 latency timers.  We are using default values.
4048	 * Representing 001 for L0s and 010 for L1
4049	 */
4050	if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
4051		dev_err(&pdev->dev,
4052		  "Could not write PCI config space for Latency Timers\n");
4053		goto err_out;
4054	}
4055
4056	/* Change the max read size to 2k */
4057	if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl)) {
4058		dev_err(&pdev->dev,
4059			"Could not read PCI config space for Max read size\n");
4060		goto err_out;
4061	}
4062
4063	ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | ( 0x04 << 12);
4064
4065	if (pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl)) {
4066		dev_err(&pdev->dev,
4067		      "Could not write PCI config space for Max read size\n");
4068		goto err_out;
4069	}
4070
4071	/* Get MAC address from config space if an eeprom exists, otherwise
4072	 * the MAC address there will not be valid
4073	 */
4074	if (!adapter->has_eeprom) {
4075		et131x_hwaddr_init(adapter);
4076		return 0;
4077	}
4078
4079	for (i = 0; i < ETH_ALEN; i++) {
4080		if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
4081					adapter->rom_addr + i)) {
4082			dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
4083			goto err_out;
4084		}
4085	}
4086	memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
4087out:
4088	return rc;
4089err_out:
4090	rc = -EIO;
4091	goto out;
4092}
4093
4094/**
4095 * et131x_error_timer_handler
4096 * @data: timer-specific variable; here a pointer to our adapter structure
4097 *
4098 * The routine called when the error timer expires, to track the number of
4099 * recurring errors.
4100 */
4101static void et131x_error_timer_handler(unsigned long data)
4102{
4103	struct et131x_adapter *adapter = (struct et131x_adapter *) data;
4104	struct phy_device *phydev = adapter->phydev;
4105
4106	if (et1310_in_phy_coma(adapter)) {
4107		/* Bring the device immediately out of coma, to
4108		 * prevent it from sleeping indefinitely, this
4109		 * mechanism could be improved! */
4110		et1310_disable_phy_coma(adapter);
4111		adapter->boot_coma = 20;
4112	} else {
4113		et1310_update_macstat_host_counters(adapter);
4114	}
4115
4116	if (!phydev->link && adapter->boot_coma < 11)
4117		adapter->boot_coma++;
4118
4119	if (adapter->boot_coma == 10) {
4120		if (!phydev->link) {
4121			if (!et1310_in_phy_coma(adapter)) {
4122				/* NOTE - This was originally a 'sync with
4123				 *  interrupt'. How to do that under Linux?
4124				 */
4125				et131x_enable_interrupts(adapter);
4126				et1310_enable_phy_coma(adapter);
4127			}
4128		}
4129	}
4130
4131	/* This is a periodic timer, so reschedule */
4132	mod_timer(&adapter->error_timer, jiffies +
4133					  TX_ERROR_PERIOD * HZ / 1000);
4134}
4135
4136/**
4137 * et131x_adapter_memory_alloc
4138 * @adapter: pointer to our private adapter structure
4139 *
4140 * Returns 0 on success, errno on failure (as defined in errno.h).
4141 *
4142 * Allocate all the memory blocks for send, receive and others.
4143 */
4144static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4145{
4146	int status;
4147
4148	/* Allocate memory for the Tx Ring */
4149	status = et131x_tx_dma_memory_alloc(adapter);
4150	if (status != 0) {
4151		dev_err(&adapter->pdev->dev,
4152			  "et131x_tx_dma_memory_alloc FAILED\n");
4153		return status;
4154	}
4155	/* Receive buffer memory allocation */
4156	status = et131x_rx_dma_memory_alloc(adapter);
4157	if (status != 0) {
4158		dev_err(&adapter->pdev->dev,
4159			  "et131x_rx_dma_memory_alloc FAILED\n");
4160		et131x_tx_dma_memory_free(adapter);
4161		return status;
4162	}
4163
4164	/* Init receive data structures */
4165	status = et131x_init_recv(adapter);
4166	if (status != 0) {
4167		dev_err(&adapter->pdev->dev,
4168			"et131x_init_recv FAILED\n");
4169		et131x_tx_dma_memory_free(adapter);
4170		et131x_rx_dma_memory_free(adapter);
4171	}
4172	return status;
4173}
4174
4175/**
4176 * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4177 * @adapter: pointer to our private adapter structure
4178 */
4179static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4180{
4181	/* Free DMA memory */
4182	et131x_tx_dma_memory_free(adapter);
4183	et131x_rx_dma_memory_free(adapter);
4184}
4185
4186static void et131x_adjust_link(struct net_device *netdev)
4187{
4188	struct et131x_adapter *adapter = netdev_priv(netdev);
4189	struct  phy_device *phydev = adapter->phydev;
4190
4191	if (netif_carrier_ok(netdev)) {
4192		adapter->boot_coma = 20;
4193
4194		if (phydev && phydev->speed == SPEED_10) {
4195			/*
4196			 * NOTE - Is there a way to query this without
4197			 * TruePHY?
4198			 * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4199			 * EMI_TRUEPHY_A13O) {
4200			 */
4201			u16 register18;
4202
4203			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4204					 &register18);
4205			et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4206					 register18 | 0x4);
4207			et131x_mii_write(adapter, PHY_INDEX_REG,
4208					 register18 | 0x8402);
4209			et131x_mii_write(adapter, PHY_DATA_REG,
4210					 register18 | 511);
4211			et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4212					 register18);
4213		}
4214
4215		et1310_config_flow_control(adapter);
4216
4217		if (phydev && phydev->speed == SPEED_1000 &&
4218				adapter->registry_jumbo_packet > 2048) {
4219			u16 reg;
4220
4221			et131x_mii_read(adapter, PHY_CONFIG, &reg);
4222			reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4223			reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4224			et131x_mii_write(adapter, PHY_CONFIG, reg);
4225		}
4226
4227		et131x_set_rx_dma_timer(adapter);
4228		et1310_config_mac_regs2(adapter);
4229	}
4230
4231	if (phydev && phydev->link != adapter->link) {
4232		/*
4233		 * Check to see if we are in coma mode and if
4234		 * so, disable it because we will not be able
4235		 * to read PHY values until we are out.
4236		 */
4237		if (et1310_in_phy_coma(adapter))
4238			et1310_disable_phy_coma(adapter);
4239
4240		if (phydev->link) {
4241			adapter->boot_coma = 20;
4242		} else {
4243			dev_warn(&adapter->pdev->dev,
4244			    "Link down - cable problem ?\n");
4245			adapter->boot_coma = 0;
4246
4247			if (phydev->speed == SPEED_10) {
4248				/* NOTE - Is there a way to query this without
4249				 * TruePHY?
4250				 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4251				 * EMI_TRUEPHY_A13O)
4252				 */
4253				u16 register18;
4254
4255				et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4256						 &register18);
4257				et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4258						 register18 | 0x4);
4259				et131x_mii_write(adapter, PHY_INDEX_REG,
4260						 register18 | 0x8402);
4261				et131x_mii_write(adapter, PHY_DATA_REG,
4262						 register18 | 511);
4263				et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4264						 register18);
4265			}
4266
4267			/* Free the packets being actively sent & stopped */
4268			et131x_free_busy_send_packets(adapter);
4269
4270			/* Re-initialize the send structures */
4271			et131x_init_send(adapter);
4272
4273			/*
4274			 * Bring the device back to the state it was during
4275			 * init prior to autonegotiation being complete. This
4276			 * way, when we get the auto-neg complete interrupt,
4277			 * we can complete init by calling config_mac_regs2.
4278			 */
4279			et131x_soft_reset(adapter);
4280
4281			/* Setup ET1310 as per the documentation */
4282			et131x_adapter_setup(adapter);
4283
4284			/* perform reset of tx/rx */
4285			et131x_disable_txrx(netdev);
4286			et131x_enable_txrx(netdev);
4287		}
4288
4289		adapter->link = phydev->link;
4290
4291		phy_print_status(phydev);
4292	}
4293}
4294
4295static int et131x_mii_probe(struct net_device *netdev)
4296{
4297	struct et131x_adapter *adapter = netdev_priv(netdev);
4298	struct  phy_device *phydev = NULL;
4299
4300	phydev = phy_find_first(adapter->mii_bus);
4301	if (!phydev) {
4302		dev_err(&adapter->pdev->dev, "no PHY found\n");
4303		return -ENODEV;
4304	}
4305
4306	phydev = phy_connect(netdev, dev_name(&phydev->dev),
4307			&et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4308
4309	if (IS_ERR(phydev)) {
4310		dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4311		return PTR_ERR(phydev);
4312	}
4313
4314	phydev->supported &= (SUPPORTED_10baseT_Half
4315				| SUPPORTED_10baseT_Full
4316				| SUPPORTED_100baseT_Half
4317				| SUPPORTED_100baseT_Full
4318				| SUPPORTED_Autoneg
4319				| SUPPORTED_MII
4320				| SUPPORTED_TP);
4321
4322	if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4323		phydev->supported |= SUPPORTED_1000baseT_Full;
4324
4325	phydev->advertising = phydev->supported;
4326	adapter->phydev = phydev;
4327
4328	dev_info(&adapter->pdev->dev, "attached PHY driver [%s] "
4329		 "(mii_bus:phy_addr=%s)\n",
4330		 phydev->drv->name, dev_name(&phydev->dev));
4331
4332	return 0;
4333}
4334
4335/**
4336 * et131x_adapter_init
4337 * @adapter: pointer to the private adapter struct
4338 * @pdev: pointer to the PCI device
4339 *
4340 * Initialize the data structures for the et131x_adapter object and link
4341 * them together with the platform provided device structures.
4342 */
4343static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4344		struct pci_dev *pdev)
4345{
4346	static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4347
4348	struct et131x_adapter *adapter;
4349
4350	/* Allocate private adapter struct and copy in relevant information */
4351	adapter = netdev_priv(netdev);
4352	adapter->pdev = pci_dev_get(pdev);
4353	adapter->netdev = netdev;
4354
4355	/* Initialize spinlocks here */
4356	spin_lock_init(&adapter->lock);
4357	spin_lock_init(&adapter->tcb_send_qlock);
4358	spin_lock_init(&adapter->tcb_ready_qlock);
4359	spin_lock_init(&adapter->send_hw_lock);
4360	spin_lock_init(&adapter->rcv_lock);
4361	spin_lock_init(&adapter->rcv_pend_lock);
4362	spin_lock_init(&adapter->fbr_lock);
4363	spin_lock_init(&adapter->phy_lock);
4364
4365	adapter->registry_jumbo_packet = 1514;	/* 1514-9216 */
4366
4367	/* Set the MAC address to a default */
4368	memcpy(adapter->addr, default_mac, ETH_ALEN);
4369
4370	return adapter;
4371}
4372
4373/**
4374 * et131x_pci_remove
4375 * @pdev: a pointer to the device's pci_dev structure
4376 *
4377 * Registered in the pci_driver structure, this function is called when the
4378 * PCI subsystem detects that a PCI device which matches the information
4379 * contained in the pci_device_id table has been removed.
4380 */
4381static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4382{
4383	struct net_device *netdev = pci_get_drvdata(pdev);
4384	struct et131x_adapter *adapter = netdev_priv(netdev);
4385
4386	unregister_netdev(netdev);
4387	phy_disconnect(adapter->phydev);
4388	mdiobus_unregister(adapter->mii_bus);
4389	kfree(adapter->mii_bus->irq);
4390	mdiobus_free(adapter->mii_bus);
4391
4392	et131x_adapter_memory_free(adapter);
4393	iounmap(adapter->regs);
4394	pci_dev_put(pdev);
4395
4396	free_netdev(netdev);
4397	pci_release_regions(pdev);
4398	pci_disable_device(pdev);
4399}
4400
4401/**
4402 * et131x_up - Bring up a device for use.
4403 * @netdev: device to be opened
4404 */
4405static void et131x_up(struct net_device *netdev)
4406{
4407	struct et131x_adapter *adapter = netdev_priv(netdev);
4408
4409	et131x_enable_txrx(netdev);
4410	phy_start(adapter->phydev);
4411}
4412
4413/**
4414 * et131x_down - Bring down the device
4415 * @netdev: device to be brought down
4416 */
4417static void et131x_down(struct net_device *netdev)
4418{
4419	struct et131x_adapter *adapter = netdev_priv(netdev);
4420
4421	/* Save the timestamp for the TX watchdog, prevent a timeout */
4422	netdev->trans_start = jiffies;
4423
4424	phy_stop(adapter->phydev);
4425	et131x_disable_txrx(netdev);
4426}
4427
4428#ifdef CONFIG_PM_SLEEP
4429static int et131x_suspend(struct device *dev)
4430{
4431	struct pci_dev *pdev = to_pci_dev(dev);
4432	struct net_device *netdev = pci_get_drvdata(pdev);
4433
4434	if (netif_running(netdev)) {
4435		netif_device_detach(netdev);
4436		et131x_down(netdev);
4437		pci_save_state(pdev);
4438	}
4439
4440	return 0;
4441}
4442
4443static int et131x_resume(struct device *dev)
4444{
4445	struct pci_dev *pdev = to_pci_dev(dev);
4446	struct net_device *netdev = pci_get_drvdata(pdev);
4447
4448	if (netif_running(netdev)) {
4449		pci_restore_state(pdev);
4450		et131x_up(netdev);
4451		netif_device_attach(netdev);
4452	}
4453
4454	return 0;
4455}
4456
4457static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4458#define ET131X_PM_OPS (&et131x_pm_ops)
4459#else
4460#define ET131X_PM_OPS NULL
4461#endif
4462
4463/**
4464 * et131x_isr - The Interrupt Service Routine for the driver.
4465 * @irq: the IRQ on which the interrupt was received.
4466 * @dev_id: device-specific info (here a pointer to a net_device struct)
4467 *
4468 * Returns a value indicating if the interrupt was handled.
4469 */
4470irqreturn_t et131x_isr(int irq, void *dev_id)
4471{
4472	bool handled = true;
4473	struct net_device *netdev = (struct net_device *)dev_id;
4474	struct et131x_adapter *adapter = NULL;
4475	u32 status;
4476
4477	if (!netif_device_present(netdev)) {
4478		handled = false;
4479		goto out;
4480	}
4481
4482	adapter = netdev_priv(netdev);
4483
4484	/* If the adapter is in low power state, then it should not
4485	 * recognize any interrupt
4486	 */
4487
4488	/* Disable Device Interrupts */
4489	et131x_disable_interrupts(adapter);
4490
4491	/* Get a copy of the value in the interrupt status register
4492	 * so we can process the interrupting section
4493	 */
4494	status = readl(&adapter->regs->global.int_status);
4495
4496	if (adapter->flowcontrol == FLOW_TXONLY ||
4497	    adapter->flowcontrol == FLOW_BOTH) {
4498		status &= ~INT_MASK_ENABLE;
4499	} else {
4500		status &= ~INT_MASK_ENABLE_NO_FLOW;
4501	}
4502
4503	/* Make sure this is our interrupt */
4504	if (!status) {
4505		handled = false;
4506		et131x_enable_interrupts(adapter);
4507		goto out;
4508	}
4509
4510	/* This is our interrupt, so process accordingly */
4511
4512	if (status & ET_INTR_WATCHDOG) {
4513		struct tcb *tcb = adapter->tx_ring.send_head;
4514
4515		if (tcb)
4516			if (++tcb->stale > 1)
4517				status |= ET_INTR_TXDMA_ISR;
4518
4519		if (adapter->rx_ring.unfinished_receives)
4520			status |= ET_INTR_RXDMA_XFR_DONE;
4521		else if (tcb == NULL)
4522			writel(0, &adapter->regs->global.watchdog_timer);
4523
4524		status &= ~ET_INTR_WATCHDOG;
4525	}
4526
4527	if (status == 0) {
4528		/* This interrupt has in some way been "handled" by
4529		 * the ISR. Either it was a spurious Rx interrupt, or
4530		 * it was a Tx interrupt that has been filtered by
4531		 * the ISR.
4532		 */
4533		et131x_enable_interrupts(adapter);
4534		goto out;
4535	}
4536
4537	/* We need to save the interrupt status value for use in our
4538	 * DPC. We will clear the software copy of that in that
4539	 * routine.
4540	 */
4541	adapter->stats.interrupt_status = status;
4542
4543	/* Schedule the ISR handler as a bottom-half task in the
4544	 * kernel's tq_immediate queue, and mark the queue for
4545	 * execution
4546	 */
4547	schedule_work(&adapter->task);
4548out:
4549	return IRQ_RETVAL(handled);
4550}
4551
4552/**
4553 * et131x_isr_handler - The ISR handler
4554 * @p_adapter, a pointer to the device's private adapter structure
4555 *
4556 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4557 * work actually gets done.
4558 */
4559static void et131x_isr_handler(struct work_struct *work)
4560{
4561	struct et131x_adapter *adapter =
4562		container_of(work, struct et131x_adapter, task);
4563	u32 status = adapter->stats.interrupt_status;
4564	struct address_map __iomem *iomem = adapter->regs;
4565
4566	/*
4567	 * These first two are by far the most common.  Once handled, we clear
4568	 * their two bits in the status word.  If the word is now zero, we
4569	 * exit.
4570	 */
4571	/* Handle all the completed Transmit interrupts */
4572	if (status & ET_INTR_TXDMA_ISR)
4573		et131x_handle_send_interrupt(adapter);
4574
4575	/* Handle all the completed Receives interrupts */
4576	if (status & ET_INTR_RXDMA_XFR_DONE)
4577		et131x_handle_recv_interrupt(adapter);
4578
4579	status &= 0xffffffd7;
4580
4581	if (status) {
4582		/* Handle the TXDMA Error interrupt */
4583		if (status & ET_INTR_TXDMA_ERR) {
4584			u32 txdma_err;
4585
4586			/* Following read also clears the register (COR) */
4587			txdma_err = readl(&iomem->txdma.tx_dma_error);
4588
4589			dev_warn(&adapter->pdev->dev,
4590				    "TXDMA_ERR interrupt, error = %d\n",
4591				    txdma_err);
4592		}
4593
4594		/* Handle Free Buffer Ring 0 and 1 Low interrupt */
4595		if (status &
4596		    (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4597			/*
4598			 * This indicates the number of unused buffers in
4599			 * RXDMA free buffer ring 0 is <= the limit you
4600			 * programmed. Free buffer resources need to be
4601			 * returned.  Free buffers are consumed as packets
4602			 * are passed from the network to the host. The host
4603			 * becomes aware of the packets from the contents of
4604			 * the packet status ring. This ring is queried when
4605			 * the packet done interrupt occurs. Packets are then
4606			 * passed to the OS. When the OS is done with the
4607			 * packets the resources can be returned to the
4608			 * ET1310 for re-use. This interrupt is one method of
4609			 * returning resources.
4610			 */
4611
4612			/* If the user has flow control on, then we will
4613			 * send a pause packet, otherwise just exit
4614			 */
4615			if (adapter->flowcontrol == FLOW_TXONLY ||
4616			    adapter->flowcontrol == FLOW_BOTH) {
4617				u32 pm_csr;
4618
4619				/* Tell the device to send a pause packet via
4620				 * the back pressure register (bp req  and
4621				 * bp xon/xoff)
4622				 */
4623				pm_csr = readl(&iomem->global.pm_csr);
4624				if (!et1310_in_phy_coma(adapter))
4625					writel(3, &iomem->txmac.bp_ctrl);
4626			}
4627		}
4628
4629		/* Handle Packet Status Ring Low Interrupt */
4630		if (status & ET_INTR_RXDMA_STAT_LOW) {
4631
4632			/*
4633			 * Same idea as with the two Free Buffer Rings.
4634			 * Packets going from the network to the host each
4635			 * consume a free buffer resource and a packet status
4636			 * resource.  These resoures are passed to the OS.
4637			 * When the OS is done with the resources, they need
4638			 * to be returned to the ET1310. This is one method
4639			 * of returning the resources.
4640			 */
4641		}
4642
4643		/* Handle RXDMA Error Interrupt */
4644		if (status & ET_INTR_RXDMA_ERR) {
4645			/*
4646			 * The rxdma_error interrupt is sent when a time-out
4647			 * on a request issued by the JAGCore has occurred or
4648			 * a completion is returned with an un-successful
4649			 * status.  In both cases the request is considered
4650			 * complete. The JAGCore will automatically re-try the
4651			 * request in question. Normally information on events
4652			 * like these are sent to the host using the "Advanced
4653			 * Error Reporting" capability. This interrupt is
4654			 * another way of getting similar information. The
4655			 * only thing required is to clear the interrupt by
4656			 * reading the ISR in the global resources. The
4657			 * JAGCore will do a re-try on the request.  Normally
4658			 * you should never see this interrupt. If you start
4659			 * to see this interrupt occurring frequently then
4660			 * something bad has occurred. A reset might be the
4661			 * thing to do.
4662			 */
4663			/* TRAP();*/
4664
4665			dev_warn(&adapter->pdev->dev,
4666				    "RxDMA_ERR interrupt, error %x\n",
4667				    readl(&iomem->txmac.tx_test));
4668		}
4669
4670		/* Handle the Wake on LAN Event */
4671		if (status & ET_INTR_WOL) {
4672			/*
4673			 * This is a secondary interrupt for wake on LAN.
4674			 * The driver should never see this, if it does,
4675			 * something serious is wrong. We will TRAP the
4676			 * message when we are in DBG mode, otherwise we
4677			 * will ignore it.
4678			 */
4679			dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4680		}
4681
4682		/* Let's move on to the TxMac */
4683		if (status & ET_INTR_TXMAC) {
4684			u32 err = readl(&iomem->txmac.err);
4685
4686			/*
4687			 * When any of the errors occur and TXMAC generates
4688			 * an interrupt to report these errors, it usually
4689			 * means that TXMAC has detected an error in the data
4690			 * stream retrieved from the on-chip Tx Q. All of
4691			 * these errors are catastrophic and TXMAC won't be
4692			 * able to recover data when these errors occur.  In
4693			 * a nutshell, the whole Tx path will have to be reset
4694			 * and re-configured afterwards.
4695			 */
4696			dev_warn(&adapter->pdev->dev,
4697				    "TXMAC interrupt, error 0x%08x\n",
4698				    err);
4699
4700			/* If we are debugging, we want to see this error,
4701			 * otherwise we just want the device to be reset and
4702			 * continue
4703			 */
4704		}
4705
4706		/* Handle RXMAC Interrupt */
4707		if (status & ET_INTR_RXMAC) {
4708			/*
4709			 * These interrupts are catastrophic to the device,
4710			 * what we need to do is disable the interrupts and
4711			 * set the flag to cause us to reset so we can solve
4712			 * this issue.
4713			 */
4714			/* MP_SET_FLAG( adapter,
4715						fMP_ADAPTER_HARDWARE_ERROR); */
4716
4717			dev_warn(&adapter->pdev->dev,
4718			  "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
4719				    readl(&iomem->rxmac.err_reg));
4720
4721			dev_warn(&adapter->pdev->dev,
4722				    "Enable 0x%08x, Diag 0x%08x\n",
4723				    readl(&iomem->rxmac.ctrl),
4724				    readl(&iomem->rxmac.rxq_diag));
4725
4726			/*
4727			 * If we are debugging, we want to see this error,
4728			 * otherwise we just want the device to be reset and
4729			 * continue
4730			 */
4731		}
4732
4733		/* Handle MAC_STAT Interrupt */
4734		if (status & ET_INTR_MAC_STAT) {
4735			/*
4736			 * This means at least one of the un-masked counters
4737			 * in the MAC_STAT block has rolled over.  Use this
4738			 * to maintain the top, software managed bits of the
4739			 * counter(s).
4740			 */
4741			et1310_handle_macstat_interrupt(adapter);
4742		}
4743
4744		/* Handle SLV Timeout Interrupt */
4745		if (status & ET_INTR_SLV_TIMEOUT) {
4746			/*
4747			 * This means a timeout has occurred on a read or
4748			 * write request to one of the JAGCore registers. The
4749			 * Global Resources block has terminated the request
4750			 * and on a read request, returned a "fake" value.
4751			 * The most likely reasons are: Bad Address or the
4752			 * addressed module is in a power-down state and
4753			 * can't respond.
4754			 */
4755		}
4756	}
4757	et131x_enable_interrupts(adapter);
4758}
4759
4760/**
4761 * et131x_stats - Return the current device statistics.
4762 * @netdev: device whose stats are being queried
4763 *
4764 * Returns 0 on success, errno on failure (as defined in errno.h)
4765 */
4766static struct net_device_stats *et131x_stats(struct net_device *netdev)
4767{
4768	struct et131x_adapter *adapter = netdev_priv(netdev);
4769	struct net_device_stats *stats = &adapter->net_stats;
4770	struct ce_stats *devstat = &adapter->stats;
4771
4772	stats->rx_errors = devstat->rx_length_errs +
4773			   devstat->rx_align_errs +
4774			   devstat->rx_crc_errs +
4775			   devstat->rx_code_violations +
4776			   devstat->rx_other_errs;
4777	stats->tx_errors = devstat->tx_max_pkt_errs;
4778	stats->multicast = devstat->multicast_pkts_rcvd;
4779	stats->collisions = devstat->tx_collisions;
4780
4781	stats->rx_length_errors = devstat->rx_length_errs;
4782	stats->rx_over_errors = devstat->rx_overflows;
4783	stats->rx_crc_errors = devstat->rx_crc_errs;
4784
4785	/* NOTE: These stats don't have corresponding values in CE_STATS,
4786	 * so we're going to have to update these directly from within the
4787	 * TX/RX code
4788	 */
4789	/* stats->rx_bytes            = 20; devstat->; */
4790	/* stats->tx_bytes            = 20;  devstat->; */
4791	/* stats->rx_dropped          = devstat->; */
4792	/* stats->tx_dropped          = devstat->; */
4793
4794	/*  NOTE: Not used, can't find analogous statistics */
4795	/* stats->rx_frame_errors     = devstat->; */
4796	/* stats->rx_fifo_errors      = devstat->; */
4797	/* stats->rx_missed_errors    = devstat->; */
4798
4799	/* stats->tx_aborted_errors   = devstat->; */
4800	/* stats->tx_carrier_errors   = devstat->; */
4801	/* stats->tx_fifo_errors      = devstat->; */
4802	/* stats->tx_heartbeat_errors = devstat->; */
4803	/* stats->tx_window_errors    = devstat->; */
4804	return stats;
4805}
4806
4807/**
4808 * et131x_open - Open the device for use.
4809 * @netdev: device to be opened
4810 *
4811 * Returns 0 on success, errno on failure (as defined in errno.h)
4812 */
4813static int et131x_open(struct net_device *netdev)
4814{
4815	struct et131x_adapter *adapter = netdev_priv(netdev);
4816	struct pci_dev *pdev = adapter->pdev;
4817	unsigned int irq = pdev->irq;
4818	int result;
4819
4820	/* Start the timer to track NIC errors */
4821	init_timer(&adapter->error_timer);
4822	adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4823	adapter->error_timer.function = et131x_error_timer_handler;
4824	adapter->error_timer.data = (unsigned long)adapter;
4825	add_timer(&adapter->error_timer);
4826
4827	result = request_irq(irq, et131x_isr, IRQF_SHARED, netdev->name, netdev);
4828	if (result) {
4829		dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4830		return result;
4831	}
4832
4833	adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4834
4835	et131x_up(netdev);
4836
4837	return result;
4838}
4839
4840/**
4841 * et131x_close - Close the device
4842 * @netdev: device to be closed
4843 *
4844 * Returns 0 on success, errno on failure (as defined in errno.h)
4845 */
4846static int et131x_close(struct net_device *netdev)
4847{
4848	struct et131x_adapter *adapter = netdev_priv(netdev);
4849
4850	et131x_down(netdev);
4851
4852	adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
4853	free_irq(adapter->pdev->irq, netdev);
4854
4855	/* Stop the error timer */
4856	return del_timer_sync(&adapter->error_timer);
4857}
4858
4859/**
4860 * et131x_ioctl - The I/O Control handler for the driver
4861 * @netdev: device on which the control request is being made
4862 * @reqbuf: a pointer to the IOCTL request buffer
4863 * @cmd: the IOCTL command code
4864 *
4865 * Returns 0 on success, errno on failure (as defined in errno.h)
4866 */
4867static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4868			int cmd)
4869{
4870	struct et131x_adapter *adapter = netdev_priv(netdev);
4871
4872	if (!adapter->phydev)
4873		return -EINVAL;
4874
4875	return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4876}
4877
4878/**
4879 * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4880 * @adapter: pointer to our private adapter structure
4881 *
4882 * FIXME: lot of dups with MAC code
4883 *
4884 * Returns 0 on success, errno on failure
4885 */
4886static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4887{
4888	int filter = adapter->packet_filter;
4889	int status = 0;
4890	u32 ctrl;
4891	u32 pf_ctrl;
4892
4893	ctrl = readl(&adapter->regs->rxmac.ctrl);
4894	pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4895
4896	/* Default to disabled packet filtering.  Enable it in the individual
4897	 * case statements that require the device to filter something
4898	 */
4899	ctrl |= 0x04;
4900
4901	/* Set us to be in promiscuous mode so we receive everything, this
4902	 * is also true when we get a packet filter of 0
4903	 */
4904	if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4905		pf_ctrl &= ~7;	/* Clear filter bits */
4906	else {
4907		/*
4908		 * Set us up with Multicast packet filtering.  Three cases are
4909		 * possible - (1) we have a multi-cast list, (2) we receive ALL
4910		 * multicast entries or (3) we receive none.
4911		 */
4912		if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4913			pf_ctrl &= ~2;	/* Multicast filter bit */
4914		else {
4915			et1310_setup_device_for_multicast(adapter);
4916			pf_ctrl |= 2;
4917			ctrl &= ~0x04;
4918		}
4919
4920		/* Set us up with Unicast packet filtering */
4921		if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4922			et1310_setup_device_for_unicast(adapter);
4923			pf_ctrl |= 4;
4924			ctrl &= ~0x04;
4925		}
4926
4927		/* Set us up with Broadcast packet filtering */
4928		if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4929			pf_ctrl |= 1;	/* Broadcast filter bit */
4930			ctrl &= ~0x04;
4931		} else
4932			pf_ctrl &= ~1;
4933
4934		/* Setup the receive mac configuration registers - Packet
4935		 * Filter control + the enable / disable for packet filter
4936		 * in the control reg.
4937		 */
4938		writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4939		writel(ctrl, &adapter->regs->rxmac.ctrl);
4940	}
4941	return status;
4942}
4943
4944/**
4945 * et131x_multicast - The handler to configure multicasting on the interface
4946 * @netdev: a pointer to a net_device struct representing the device
4947 */
4948static void et131x_multicast(struct net_device *netdev)
4949{
4950	struct et131x_adapter *adapter = netdev_priv(netdev);
4951	int packet_filter;
4952	unsigned long flags;
4953	struct netdev_hw_addr *ha;
4954	int i;
4955
4956	spin_lock_irqsave(&adapter->lock, flags);
4957
4958	/* Before we modify the platform-independent filter flags, store them
4959	 * locally. This allows us to determine if anything's changed and if
4960	 * we even need to bother the hardware
4961	 */
4962	packet_filter = adapter->packet_filter;
4963
4964	/* Clear the 'multicast' flag locally; because we only have a single
4965	 * flag to check multicast, and multiple multicast addresses can be
4966	 * set, this is the easiest way to determine if more than one
4967	 * multicast address is being set.
4968	 */
4969	packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4970
4971	/* Check the net_device flags and set the device independent flags
4972	 * accordingly
4973	 */
4974
4975	if (netdev->flags & IFF_PROMISC)
4976		adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4977	else
4978		adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4979
4980	if (netdev->flags & IFF_ALLMULTI)
4981		adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4982
4983	if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4984		adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4985
4986	if (netdev_mc_count(netdev) < 1) {
4987		adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4988		adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4989	} else
4990		adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4991
4992	/* Set values in the private adapter struct */
4993	i = 0;
4994	netdev_for_each_mc_addr(ha, netdev) {
4995		if (i == NIC_MAX_MCAST_LIST)
4996			break;
4997		memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4998	}
4999	adapter->multicast_addr_count = i;
5000
5001	/* Are the new flags different from the previous ones? If not, then no
5002	 * action is required
5003	 *
5004	 * NOTE - This block will always update the multicast_list with the
5005	 *        hardware, even if the addresses aren't the same.
5006	 */
5007	if (packet_filter != adapter->packet_filter) {
5008		/* Call the device's filter function */
5009		et131x_set_packet_filter(adapter);
5010	}
5011	spin_unlock_irqrestore(&adapter->lock, flags);
5012}
5013
5014/**
5015 * et131x_tx - The handler to tx a packet on the device
5016 * @skb: data to be Tx'd
5017 * @netdev: device on which data is to be Tx'd
5018 *
5019 * Returns 0 on success, errno on failure (as defined in errno.h)
5020 */
5021static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
5022{
5023	int status = 0;
5024	struct et131x_adapter *adapter = netdev_priv(netdev);
5025
5026	/* stop the queue if it's getting full */
5027	if (adapter->tx_ring.used >= NUM_TCB - 1 &&
5028	    !netif_queue_stopped(netdev))
5029		netif_stop_queue(netdev);
5030
5031	/* Save the timestamp for the TX timeout watchdog */
5032	netdev->trans_start = jiffies;
5033
5034	/* Call the device-specific data Tx routine */
5035	status = et131x_send_packets(skb, netdev);
5036
5037	/* Check status and manage the netif queue if necessary */
5038	if (status != 0) {
5039		if (status == -ENOMEM)
5040			status = NETDEV_TX_BUSY;
5041		else
5042			status = NETDEV_TX_OK;
5043	}
5044	return status;
5045}
5046
5047/**
5048 * et131x_tx_timeout - Timeout handler
5049 * @netdev: a pointer to a net_device struct representing the device
5050 *
5051 * The handler called when a Tx request times out. The timeout period is
5052 * specified by the 'tx_timeo" element in the net_device structure (see
5053 * et131x_alloc_device() to see how this value is set).
5054 */
5055static void et131x_tx_timeout(struct net_device *netdev)
5056{
5057	struct et131x_adapter *adapter = netdev_priv(netdev);
5058	struct tcb *tcb;
5059	unsigned long flags;
5060
5061	/* If the device is closed, ignore the timeout */
5062	if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
5063		return;
5064
5065	/* Any nonrecoverable hardware error?
5066	 * Checks adapter->flags for any failure in phy reading
5067	 */
5068	if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
5069		return;
5070
5071	/* Hardware failure? */
5072	if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
5073		dev_err(&adapter->pdev->dev, "hardware error - reset\n");
5074		return;
5075	}
5076
5077	/* Is send stuck? */
5078	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
5079
5080	tcb = adapter->tx_ring.send_head;
5081
5082	if (tcb != NULL) {
5083		tcb->count++;
5084
5085		if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
5086			spin_unlock_irqrestore(&adapter->tcb_send_qlock,
5087					       flags);
5088
5089			dev_warn(&adapter->pdev->dev,
5090				"Send stuck - reset.  tcb->WrIndex %x, flags 0x%08x\n",
5091				tcb->index,
5092				tcb->flags);
5093
5094			adapter->net_stats.tx_errors++;
5095
5096			/* perform reset of tx/rx */
5097			et131x_disable_txrx(netdev);
5098			et131x_enable_txrx(netdev);
5099			return;
5100		}
5101	}
5102
5103	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
5104}
5105
5106/**
5107 * et131x_change_mtu - The handler called to change the MTU for the device
5108 * @netdev: device whose MTU is to be changed
5109 * @new_mtu: the desired MTU
5110 *
5111 * Returns 0 on success, errno on failure (as defined in errno.h)
5112 */
5113static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
5114{
5115	int result = 0;
5116	struct et131x_adapter *adapter = netdev_priv(netdev);
5117
5118	/* Make sure the requested MTU is valid */
5119	if (new_mtu < 64 || new_mtu > 9216)
5120		return -EINVAL;
5121
5122	et131x_disable_txrx(netdev);
5123	et131x_handle_send_interrupt(adapter);
5124	et131x_handle_recv_interrupt(adapter);
5125
5126	/* Set the new MTU */
5127	netdev->mtu = new_mtu;
5128
5129	/* Free Rx DMA memory */
5130	et131x_adapter_memory_free(adapter);
5131
5132	/* Set the config parameter for Jumbo Packet support */
5133	adapter->registry_jumbo_packet = new_mtu + 14;
5134	et131x_soft_reset(adapter);
5135
5136	/* Alloc and init Rx DMA memory */
5137	result = et131x_adapter_memory_alloc(adapter);
5138	if (result != 0) {
5139		dev_warn(&adapter->pdev->dev,
5140			"Change MTU failed; couldn't re-alloc DMA memory\n");
5141		return result;
5142	}
5143
5144	et131x_init_send(adapter);
5145
5146	et131x_hwaddr_init(adapter);
5147	memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5148
5149	/* Init the device with the new settings */
5150	et131x_adapter_setup(adapter);
5151
5152	et131x_enable_txrx(netdev);
5153
5154	return result;
5155}
5156
5157/**
5158 * et131x_set_mac_addr - handler to change the MAC address for the device
5159 * @netdev: device whose MAC is to be changed
5160 * @new_mac: the desired MAC address
5161 *
5162 * Returns 0 on success, errno on failure (as defined in errno.h)
5163 *
5164 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5165 */
5166static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5167{
5168	int result = 0;
5169	struct et131x_adapter *adapter = netdev_priv(netdev);
5170	struct sockaddr *address = new_mac;
5171
5172	/* begin blux */
5173
5174	if (adapter == NULL)
5175		return -ENODEV;
5176
5177	/* Make sure the requested MAC is valid */
5178	if (!is_valid_ether_addr(address->sa_data))
5179		return -EADDRNOTAVAIL;
5180
5181	et131x_disable_txrx(netdev);
5182	et131x_handle_send_interrupt(adapter);
5183	et131x_handle_recv_interrupt(adapter);
5184
5185	/* Set the new MAC */
5186	/* netdev->set_mac_address  = &new_mac; */
5187
5188	memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5189
5190	printk(KERN_INFO "%s: Setting MAC address to %pM\n",
5191			netdev->name, netdev->dev_addr);
5192
5193	/* Free Rx DMA memory */
5194	et131x_adapter_memory_free(adapter);
5195
5196	et131x_soft_reset(adapter);
5197
5198	/* Alloc and init Rx DMA memory */
5199	result = et131x_adapter_memory_alloc(adapter);
5200	if (result != 0) {
5201		dev_err(&adapter->pdev->dev,
5202			"Change MAC failed; couldn't re-alloc DMA memory\n");
5203		return result;
5204	}
5205
5206	et131x_init_send(adapter);
5207
5208	et131x_hwaddr_init(adapter);
5209
5210	/* Init the device with the new settings */
5211	et131x_adapter_setup(adapter);
5212
5213	et131x_enable_txrx(netdev);
5214
5215	return result;
5216}
5217
5218static const struct net_device_ops et131x_netdev_ops = {
5219	.ndo_open		= et131x_open,
5220	.ndo_stop		= et131x_close,
5221	.ndo_start_xmit		= et131x_tx,
5222	.ndo_set_rx_mode	= et131x_multicast,
5223	.ndo_tx_timeout		= et131x_tx_timeout,
5224	.ndo_change_mtu		= et131x_change_mtu,
5225	.ndo_set_mac_address	= et131x_set_mac_addr,
5226	.ndo_validate_addr	= eth_validate_addr,
5227	.ndo_get_stats		= et131x_stats,
5228	.ndo_do_ioctl		= et131x_ioctl,
5229};
5230
5231/**
5232 * et131x_pci_setup - Perform device initialization
5233 * @pdev: a pointer to the device's pci_dev structure
5234 * @ent: this device's entry in the pci_device_id table
5235 *
5236 * Returns 0 on success, errno on failure (as defined in errno.h)
5237 *
5238 * Registered in the pci_driver structure, this function is called when the
5239 * PCI subsystem finds a new PCI device which matches the information
5240 * contained in the pci_device_id table. This routine is the equivalent to
5241 * a device insertion routine.
5242 */
5243static int __devinit et131x_pci_setup(struct pci_dev *pdev,
5244			       const struct pci_device_id *ent)
5245{
5246	struct net_device *netdev;
5247	struct et131x_adapter *adapter;
5248	int rc;
5249	int ii;
5250
5251	rc = pci_enable_device(pdev);
5252	if (rc < 0) {
5253		dev_err(&pdev->dev, "pci_enable_device() failed\n");
5254		goto out;
5255	}
5256
5257	/* Perform some basic PCI checks */
5258	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5259		dev_err(&pdev->dev, "Can't find PCI device's base address\n");
5260		rc = -ENODEV;
5261		goto err_disable;
5262	}
5263
5264	rc = pci_request_regions(pdev, DRIVER_NAME);
5265	if (rc < 0) {
5266		dev_err(&pdev->dev, "Can't get PCI resources\n");
5267		goto err_disable;
5268	}
5269
5270	pci_set_master(pdev);
5271
5272	/* Check the DMA addressing support of this device */
5273	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
5274		rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5275		if (rc < 0) {
5276			dev_err(&pdev->dev,
5277			  "Unable to obtain 64 bit DMA for consistent allocations\n");
5278			goto err_release_res;
5279		}
5280	} else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
5281		rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
5282		if (rc < 0) {
5283			dev_err(&pdev->dev,
5284			  "Unable to obtain 32 bit DMA for consistent allocations\n");
5285			goto err_release_res;
5286		}
5287	} else {
5288		dev_err(&pdev->dev, "No usable DMA addressing method\n");
5289		rc = -EIO;
5290		goto err_release_res;
5291	}
5292
5293	/* Allocate netdev and private adapter structs */
5294	netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5295	if (!netdev) {
5296		dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
5297		rc = -ENOMEM;
5298		goto err_release_res;
5299	}
5300
5301	netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5302	netdev->netdev_ops     = &et131x_netdev_ops;
5303
5304	SET_NETDEV_DEV(netdev, &pdev->dev);
5305	et131x_set_ethtool_ops(netdev);
5306
5307	adapter = et131x_adapter_init(netdev, pdev);
5308
5309	rc = et131x_pci_init(adapter, pdev);
5310	if (rc < 0)
5311		goto err_free_dev;
5312
5313	/* Map the bus-relative registers to system virtual memory */
5314	adapter->regs = pci_ioremap_bar(pdev, 0);
5315	if (!adapter->regs) {
5316		dev_err(&pdev->dev, "Cannot map device registers\n");
5317		rc = -ENOMEM;
5318		goto err_free_dev;
5319	}
5320
5321	/* If Phy COMA mode was enabled when we went down, disable it here. */
5322	writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
5323
5324	/* Issue a global reset to the et1310 */
5325	et131x_soft_reset(adapter);
5326
5327	/* Disable all interrupts (paranoid) */
5328	et131x_disable_interrupts(adapter);
5329
5330	/* Allocate DMA memory */
5331	rc = et131x_adapter_memory_alloc(adapter);
5332	if (rc < 0) {
5333		dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
5334		goto err_iounmap;
5335	}
5336
5337	/* Init send data structures */
5338	et131x_init_send(adapter);
5339
5340	/* Set up the task structure for the ISR's deferred handler */
5341	INIT_WORK(&adapter->task, et131x_isr_handler);
5342
5343	/* Copy address into the net_device struct */
5344	memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5345
5346	/* Init variable for counting how long we do not have link status */
5347	adapter->boot_coma = 0;
5348	et1310_disable_phy_coma(adapter);
5349
5350	rc = -ENOMEM;
5351
5352	/* Setup the mii_bus struct */
5353	adapter->mii_bus = mdiobus_alloc();
5354	if (!adapter->mii_bus) {
5355		dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
5356		goto err_mem_free;
5357	}
5358
5359	adapter->mii_bus->name = "et131x_eth_mii";
5360	snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
5361		(adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5362	adapter->mii_bus->priv = netdev;
5363	adapter->mii_bus->read = et131x_mdio_read;
5364	adapter->mii_bus->write = et131x_mdio_write;
5365	adapter->mii_bus->reset = et131x_mdio_reset;
5366	adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
5367	if (!adapter->mii_bus->irq) {
5368		dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
5369		goto err_mdio_free;
5370	}
5371
5372	for (ii = 0; ii < PHY_MAX_ADDR; ii++)
5373		adapter->mii_bus->irq[ii] = PHY_POLL;
5374
5375	rc = mdiobus_register(adapter->mii_bus);
5376	if (rc < 0) {
5377		dev_err(&pdev->dev, "failed to register MII bus\n");
5378		goto err_mdio_free_irq;
5379	}
5380
5381	rc = et131x_mii_probe(netdev);
5382	if (rc < 0) {
5383		dev_err(&pdev->dev, "failed to probe MII bus\n");
5384		goto err_mdio_unregister;
5385	}
5386
5387	/* Setup et1310 as per the documentation */
5388	et131x_adapter_setup(adapter);
5389
5390	/* We can enable interrupts now
5391	 *
5392	 *  NOTE - Because registration of interrupt handler is done in the
5393	 *         device's open(), defer enabling device interrupts to that
5394	 *         point
5395	 */
5396
5397	/* Register the net_device struct with the Linux network layer */
5398	rc = register_netdev(netdev);
5399	if (rc < 0) {
5400		dev_err(&pdev->dev, "register_netdev() failed\n");
5401		goto err_phy_disconnect;
5402	}
5403
5404	/* Register the net_device struct with the PCI subsystem. Save a copy
5405	 * of the PCI config space for this device now that the device has
5406	 * been initialized, just in case it needs to be quickly restored.
5407	 */
5408	pci_set_drvdata(pdev, netdev);
5409out:
5410	return rc;
5411
5412err_phy_disconnect:
5413	phy_disconnect(adapter->phydev);
5414err_mdio_unregister:
5415	mdiobus_unregister(adapter->mii_bus);
5416err_mdio_free_irq:
5417	kfree(adapter->mii_bus->irq);
5418err_mdio_free:
5419	mdiobus_free(adapter->mii_bus);
5420err_mem_free:
5421	et131x_adapter_memory_free(adapter);
5422err_iounmap:
5423	iounmap(adapter->regs);
5424err_free_dev:
5425	pci_dev_put(pdev);
5426	free_netdev(netdev);
5427err_release_res:
5428	pci_release_regions(pdev);
5429err_disable:
5430	pci_disable_device(pdev);
5431	goto out;
5432}
5433
5434static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5435	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5436	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5437	{0,}
5438};
5439MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5440
5441static struct pci_driver et131x_driver = {
5442	.name		= DRIVER_NAME,
5443	.id_table	= et131x_pci_table,
5444	.probe		= et131x_pci_setup,
5445	.remove		= __devexit_p(et131x_pci_remove),
5446	.driver.pm	= ET131X_PM_OPS,
5447};
5448
5449/**
5450 * et131x_init_module - The "main" entry point called on driver initialization
5451 *
5452 * Returns 0 on success, errno on failure (as defined in errno.h)
5453 */
5454static int __init et131x_init_module(void)
5455{
5456	return pci_register_driver(&et131x_driver);
5457}
5458
5459/**
5460 * et131x_cleanup_module - The entry point called on driver cleanup
5461 */
5462static void __exit et131x_cleanup_module(void)
5463{
5464	pci_unregister_driver(&et131x_driver);
5465}
5466
5467module_init(et131x_init_module);
5468module_exit(et131x_cleanup_module);
5469
5470