1/****************************************************************************
2 *
3 * Driver for the IFX 6x60 spi modem.
4 *
5 * Copyright (C) 2008 Option International
6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
7 *		      Denis Joseph Barrow <d.barow@option.com>
8 *		      Jan Dumon <j.dumon@option.com>
9 *
10 * Copyright (C) 2009, 2010 Intel Corp
11 * Russ Gorby <russ.gorby@intel.com>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
25 * USA
26 *
27 * Driver modified by Intel from Option gtm501l_spi.c
28 *
29 * Notes
30 * o	The driver currently assumes a single device only. If you need to
31 *	change this then look for saved_ifx_dev and add a device lookup
32 * o	The driver is intended to be big-endian safe but has never been
33 *	tested that way (no suitable hardware). There are a couple of FIXME
34 *	notes by areas that may need addressing
35 * o	Some of the GPIO naming/setup assumptions may need revisiting if
36 *	you need to use this driver for another platform.
37 *
38 *****************************************************************************/
39#include <linux/dma-mapping.h>
40#include <linux/module.h>
41#include <linux/termios.h>
42#include <linux/tty.h>
43#include <linux/device.h>
44#include <linux/spi/spi.h>
45#include <linux/kfifo.h>
46#include <linux/tty_flip.h>
47#include <linux/timer.h>
48#include <linux/serial.h>
49#include <linux/interrupt.h>
50#include <linux/irq.h>
51#include <linux/rfkill.h>
52#include <linux/fs.h>
53#include <linux/ip.h>
54#include <linux/dmapool.h>
55#include <linux/gpio.h>
56#include <linux/sched.h>
57#include <linux/time.h>
58#include <linux/wait.h>
59#include <linux/pm.h>
60#include <linux/pm_runtime.h>
61#include <linux/spi/ifx_modem.h>
62#include <linux/delay.h>
63
64#include "ifx6x60.h"
65
66#define IFX_SPI_MORE_MASK		0x10
67#define IFX_SPI_MORE_BIT		12	/* bit position in u16 */
68#define IFX_SPI_CTS_BIT			13	/* bit position in u16 */
69#define IFX_SPI_MODE			SPI_MODE_1
70#define IFX_SPI_TTY_ID			0
71#define IFX_SPI_TIMEOUT_SEC		2
72#define IFX_SPI_HEADER_0		(-1)
73#define IFX_SPI_HEADER_F		(-2)
74
75/* forward reference */
76static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
77
78/* local variables */
79static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */
80static struct tty_driver *tty_drv;
81static struct ifx_spi_device *saved_ifx_dev;
82static struct lock_class_key ifx_spi_key;
83
84/* GPIO/GPE settings */
85
86/**
87 *	mrdy_set_high		-	set MRDY GPIO
88 *	@ifx: device we are controlling
89 *
90 */
91static inline void mrdy_set_high(struct ifx_spi_device *ifx)
92{
93	gpio_set_value(ifx->gpio.mrdy, 1);
94}
95
96/**
97 *	mrdy_set_low		-	clear MRDY GPIO
98 *	@ifx: device we are controlling
99 *
100 */
101static inline void mrdy_set_low(struct ifx_spi_device *ifx)
102{
103	gpio_set_value(ifx->gpio.mrdy, 0);
104}
105
106/**
107 *	ifx_spi_power_state_set
108 *	@ifx_dev: our SPI device
109 *	@val: bits to set
110 *
111 *	Set bit in power status and signal power system if status becomes non-0
112 */
113static void
114ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
115{
116	unsigned long flags;
117
118	spin_lock_irqsave(&ifx_dev->power_lock, flags);
119
120	/*
121	 * if power status is already non-0, just update, else
122	 * tell power system
123	 */
124	if (!ifx_dev->power_status)
125		pm_runtime_get(&ifx_dev->spi_dev->dev);
126	ifx_dev->power_status |= val;
127
128	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
129}
130
131/**
132 *	ifx_spi_power_state_clear	-	clear power bit
133 *	@ifx_dev: our SPI device
134 *	@val: bits to clear
135 *
136 *	clear bit in power status and signal power system if status becomes 0
137 */
138static void
139ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
140{
141	unsigned long flags;
142
143	spin_lock_irqsave(&ifx_dev->power_lock, flags);
144
145	if (ifx_dev->power_status) {
146		ifx_dev->power_status &= ~val;
147		if (!ifx_dev->power_status)
148			pm_runtime_put(&ifx_dev->spi_dev->dev);
149	}
150
151	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
152}
153
154/**
155 *	swap_buf
156 *	@buf: our buffer
157 *	@len : number of bytes (not words) in the buffer
158 *	@end: end of buffer
159 *
160 *	Swap the contents of a buffer into big endian format
161 */
162static inline void swap_buf(u16 *buf, int len, void *end)
163{
164	int n;
165
166	len = ((len + 1) >> 1);
167	if ((void *)&buf[len] > end) {
168		pr_err("swap_buf: swap exceeds boundary (%p > %p)!",
169		       &buf[len], end);
170		return;
171	}
172	for (n = 0; n < len; n++) {
173		*buf = cpu_to_be16(*buf);
174		buf++;
175	}
176}
177
178/**
179 *	mrdy_assert		-	assert MRDY line
180 *	@ifx_dev: our SPI device
181 *
182 *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
183 *	now.
184 *
185 *	FIXME: Can SRDY even go high as we are running this code ?
186 */
187static void mrdy_assert(struct ifx_spi_device *ifx_dev)
188{
189	int val = gpio_get_value(ifx_dev->gpio.srdy);
190	if (!val) {
191		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
192				      &ifx_dev->flags)) {
193			ifx_dev->spi_timer.expires =
194				jiffies + IFX_SPI_TIMEOUT_SEC*HZ;
195			add_timer(&ifx_dev->spi_timer);
196
197		}
198	}
199	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
200	mrdy_set_high(ifx_dev);
201}
202
203/**
204 *	ifx_spi_hangup		-	hang up an IFX device
205 *	@ifx_dev: our SPI device
206 *
207 *	Hang up the tty attached to the IFX device if one is currently
208 *	open. If not take no action
209 */
210static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev)
211{
212	struct tty_port *pport = &ifx_dev->tty_port;
213	struct tty_struct *tty = tty_port_tty_get(pport);
214	if (tty) {
215		tty_hangup(tty);
216		tty_kref_put(tty);
217	}
218}
219
220/**
221 *	ifx_spi_timeout		-	SPI timeout
222 *	@arg: our SPI device
223 *
224 *	The SPI has timed out: hang up the tty. Users will then see a hangup
225 *	and error events.
226 */
227static void ifx_spi_timeout(unsigned long arg)
228{
229	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
230
231	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
232	ifx_spi_ttyhangup(ifx_dev);
233	mrdy_set_low(ifx_dev);
234	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
235}
236
237/* char/tty operations */
238
239/**
240 *	ifx_spi_tiocmget	-	get modem lines
241 *	@tty: our tty device
242 *	@filp: file handle issuing the request
243 *
244 *	Map the signal state into Linux modem flags and report the value
245 *	in Linux terms
246 */
247static int ifx_spi_tiocmget(struct tty_struct *tty)
248{
249	unsigned int value;
250	struct ifx_spi_device *ifx_dev = tty->driver_data;
251
252	value =
253	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
254	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
255	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
256	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
257	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
258	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
259	return value;
260}
261
262/**
263 *	ifx_spi_tiocmset	-	set modem bits
264 *	@tty: the tty structure
265 *	@set: bits to set
266 *	@clear: bits to clear
267 *
268 *	The IFX6x60 only supports DTR and RTS. Set them accordingly
269 *	and flag that an update to the modem is needed.
270 *
271 *	FIXME: do we need to kick the tranfers when we do this ?
272 */
273static int ifx_spi_tiocmset(struct tty_struct *tty,
274			    unsigned int set, unsigned int clear)
275{
276	struct ifx_spi_device *ifx_dev = tty->driver_data;
277
278	if (set & TIOCM_RTS)
279		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
280	if (set & TIOCM_DTR)
281		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
282	if (clear & TIOCM_RTS)
283		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
284	if (clear & TIOCM_DTR)
285		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
286
287	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
288	return 0;
289}
290
291/**
292 *	ifx_spi_open	-	called on tty open
293 *	@tty: our tty device
294 *	@filp: file handle being associated with the tty
295 *
296 *	Open the tty interface. We let the tty_port layer do all the work
297 *	for us.
298 *
299 *	FIXME: Remove single device assumption and saved_ifx_dev
300 */
301static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
302{
303	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
304}
305
306/**
307 *	ifx_spi_close	-	called when our tty closes
308 *	@tty: the tty being closed
309 *	@filp: the file handle being closed
310 *
311 *	Perform the close of the tty. We use the tty_port layer to do all
312 *	our hard work.
313 */
314static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
315{
316	struct ifx_spi_device *ifx_dev = tty->driver_data;
317	tty_port_close(&ifx_dev->tty_port, tty, filp);
318	/* FIXME: should we do an ifx_spi_reset here ? */
319}
320
321/**
322 *	ifx_decode_spi_header	-	decode received header
323 *	@buffer: the received data
324 *	@length: decoded length
325 *	@more: decoded more flag
326 *	@received_cts: status of cts we received
327 *
328 *	Note how received_cts is handled -- if header is all F it is left
329 *	the same as it was, if header is all 0 it is set to 0 otherwise it is
330 *	taken from the incoming header.
331 *
332 *	FIXME: endianness
333 */
334static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
335			unsigned char *more, unsigned char *received_cts)
336{
337	u16 h1;
338	u16 h2;
339	u16 *in_buffer = (u16 *)buffer;
340
341	h1 = *in_buffer;
342	h2 = *(in_buffer+1);
343
344	if (h1 == 0 && h2 == 0) {
345		*received_cts = 0;
346		return IFX_SPI_HEADER_0;
347	} else if (h1 == 0xffff && h2 == 0xffff) {
348		/* spi_slave_cts remains as it was */
349		return IFX_SPI_HEADER_F;
350	}
351
352	*length = h1 & 0xfff;	/* upper bits of byte are flags */
353	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
354	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
355	return 0;
356}
357
358/**
359 *	ifx_setup_spi_header	-	set header fields
360 *	@txbuffer: pointer to start of SPI buffer
361 *	@tx_count: bytes
362 *	@more: indicate if more to follow
363 *
364 *	Format up an SPI header for a transfer
365 *
366 *	FIXME: endianness?
367 */
368static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
369					unsigned char more)
370{
371	*(u16 *)(txbuffer) = tx_count;
372	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
373	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
374}
375
376/**
377 *	ifx_spi_wakeup_serial	-	SPI space made
378 *	@port_data: our SPI device
379 *
380 *	We have emptied the FIFO enough that we want to get more data
381 *	queued into it. Poke the line discipline via tty_wakeup so that
382 *	it will feed us more bits
383 */
384static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev)
385{
386	struct tty_struct *tty;
387
388	tty = tty_port_tty_get(&ifx_dev->tty_port);
389	if (!tty)
390		return;
391	tty_wakeup(tty);
392	tty_kref_put(tty);
393}
394
395/**
396 *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame
397 *	@ifx_dev: our SPI device
398 *
399 *	The transmit buffr needs a header and various other bits of
400 *	information followed by as much data as we can pull from the FIFO
401 *	and transfer. This function formats up a suitable buffer in the
402 *	ifx_dev->tx_buffer
403 *
404 *	FIXME: performance - should we wake the tty when the queue is half
405 *			     empty ?
406 */
407static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
408{
409	int temp_count;
410	int queue_length;
411	int tx_count;
412	unsigned char *tx_buffer;
413
414	tx_buffer = ifx_dev->tx_buffer;
415	memset(tx_buffer, 0, IFX_SPI_TRANSFER_SIZE);
416
417	/* make room for required SPI header */
418	tx_buffer += IFX_SPI_HEADER_OVERHEAD;
419	tx_count = IFX_SPI_HEADER_OVERHEAD;
420
421	/* clear to signal no more data if this turns out to be the
422	 * last buffer sent in a sequence */
423	ifx_dev->spi_more = 0;
424
425	/* if modem cts is set, just send empty buffer */
426	if (!ifx_dev->spi_slave_cts) {
427		/* see if there's tx data */
428		queue_length = kfifo_len(&ifx_dev->tx_fifo);
429		if (queue_length != 0) {
430			/* data to mux -- see if there's room for it */
431			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
432			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
433					tx_buffer, temp_count,
434					&ifx_dev->fifo_lock);
435
436			/* update buffer pointer and data count in message */
437			tx_buffer += temp_count;
438			tx_count += temp_count;
439			if (temp_count == queue_length)
440				/* poke port to get more data */
441				ifx_spi_wakeup_serial(ifx_dev);
442			else /* more data in port, use next SPI message */
443				ifx_dev->spi_more = 1;
444		}
445	}
446	/* have data and info for header -- set up SPI header in buffer */
447	/* spi header needs payload size, not entire buffer size */
448	ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
449					tx_count-IFX_SPI_HEADER_OVERHEAD,
450					ifx_dev->spi_more);
451	/* swap actual data in the buffer */
452	swap_buf((u16 *)(ifx_dev->tx_buffer), tx_count,
453		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
454	return tx_count;
455}
456
457/**
458 *	ifx_spi_write		-	line discipline write
459 *	@tty: our tty device
460 *	@buf: pointer to buffer to write (kernel space)
461 *	@count: size of buffer
462 *
463 *	Write the characters we have been given into the FIFO. If the device
464 *	is not active then activate it, when the SRDY line is asserted back
465 *	this will commence I/O
466 */
467static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
468			 int count)
469{
470	struct ifx_spi_device *ifx_dev = tty->driver_data;
471	unsigned char *tmp_buf = (unsigned char *)buf;
472	int tx_count = kfifo_in_locked(&ifx_dev->tx_fifo, tmp_buf, count,
473				   &ifx_dev->fifo_lock);
474	mrdy_assert(ifx_dev);
475	return tx_count;
476}
477
478/**
479 *	ifx_spi_chars_in_buffer	-	line discipline helper
480 *	@tty: our tty device
481 *
482 *	Report how much data we can accept before we drop bytes. As we use
483 *	a simple FIFO this is nice and easy.
484 */
485static int ifx_spi_write_room(struct tty_struct *tty)
486{
487	struct ifx_spi_device *ifx_dev = tty->driver_data;
488	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
489}
490
491/**
492 *	ifx_spi_chars_in_buffer	-	line discipline helper
493 *	@tty: our tty device
494 *
495 *	Report how many characters we have buffered. In our case this is the
496 *	number of bytes sitting in our transmit FIFO.
497 */
498static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
499{
500	struct ifx_spi_device *ifx_dev = tty->driver_data;
501	return kfifo_len(&ifx_dev->tx_fifo);
502}
503
504/**
505 *	ifx_port_hangup
506 *	@port: our tty port
507 *
508 *	tty port hang up. Called when tty_hangup processing is invoked either
509 *	by loss of carrier, or by software (eg vhangup). Serialized against
510 *	activate/shutdown by the tty layer.
511 */
512static void ifx_spi_hangup(struct tty_struct *tty)
513{
514	struct ifx_spi_device *ifx_dev = tty->driver_data;
515	tty_port_hangup(&ifx_dev->tty_port);
516}
517
518/**
519 *	ifx_port_activate
520 *	@port: our tty port
521 *
522 *	tty port activate method - called for first open. Serialized
523 *	with hangup and shutdown by the tty layer.
524 */
525static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
526{
527	struct ifx_spi_device *ifx_dev =
528		container_of(port, struct ifx_spi_device, tty_port);
529
530	/* clear any old data; can't do this in 'close' */
531	kfifo_reset(&ifx_dev->tx_fifo);
532
533	/* put port data into this tty */
534	tty->driver_data = ifx_dev;
535
536	/* allows flip string push from int context */
537	tty->low_latency = 1;
538
539	return 0;
540}
541
542/**
543 *	ifx_port_shutdown
544 *	@port: our tty port
545 *
546 *	tty port shutdown method - called for last port close. Serialized
547 *	with hangup and activate by the tty layer.
548 */
549static void ifx_port_shutdown(struct tty_port *port)
550{
551	struct ifx_spi_device *ifx_dev =
552		container_of(port, struct ifx_spi_device, tty_port);
553
554	mrdy_set_low(ifx_dev);
555	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
556	tasklet_kill(&ifx_dev->io_work_tasklet);
557}
558
559static const struct tty_port_operations ifx_tty_port_ops = {
560	.activate = ifx_port_activate,
561	.shutdown = ifx_port_shutdown,
562};
563
564static const struct tty_operations ifx_spi_serial_ops = {
565	.open = ifx_spi_open,
566	.close = ifx_spi_close,
567	.write = ifx_spi_write,
568	.hangup = ifx_spi_hangup,
569	.write_room = ifx_spi_write_room,
570	.chars_in_buffer = ifx_spi_chars_in_buffer,
571	.tiocmget = ifx_spi_tiocmget,
572	.tiocmset = ifx_spi_tiocmset,
573};
574
575/**
576 *	ifx_spi_insert_fip_string	-	queue received data
577 *	@ifx_ser: our SPI device
578 *	@chars: buffer we have received
579 *	@size: number of chars reeived
580 *
581 *	Queue bytes to the tty assuming the tty side is currently open. If
582 *	not the discard the data.
583 */
584static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
585				    unsigned char *chars, size_t size)
586{
587	struct tty_struct *tty = tty_port_tty_get(&ifx_dev->tty_port);
588	if (!tty)
589		return;
590	tty_insert_flip_string(tty, chars, size);
591	tty_flip_buffer_push(tty);
592	tty_kref_put(tty);
593}
594
595/**
596 *	ifx_spi_complete	-	SPI transfer completed
597 *	@ctx: our SPI device
598 *
599 *	An SPI transfer has completed. Process any received data and kick off
600 *	any further transmits we can commence.
601 */
602static void ifx_spi_complete(void *ctx)
603{
604	struct ifx_spi_device *ifx_dev = ctx;
605	struct tty_struct *tty;
606	struct tty_ldisc *ldisc = NULL;
607	int length;
608	int actual_length;
609	unsigned char more;
610	unsigned char cts;
611	int local_write_pending = 0;
612	int queue_length;
613	int srdy;
614	int decode_result;
615
616	mrdy_set_low(ifx_dev);
617
618	if (!ifx_dev->spi_msg.status) {
619		/* check header validity, get comm flags */
620		swap_buf((u16 *)ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
621			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
622		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
623				&length, &more, &cts);
624		if (decode_result == IFX_SPI_HEADER_0) {
625			dev_dbg(&ifx_dev->spi_dev->dev,
626				"ignore input: invalid header 0");
627			ifx_dev->spi_slave_cts = 0;
628			goto complete_exit;
629		} else if (decode_result == IFX_SPI_HEADER_F) {
630			dev_dbg(&ifx_dev->spi_dev->dev,
631				"ignore input: invalid header F");
632			goto complete_exit;
633		}
634
635		ifx_dev->spi_slave_cts = cts;
636
637		actual_length = min((unsigned int)length,
638					ifx_dev->spi_msg.actual_length);
639		swap_buf((u16 *)(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
640			 actual_length,
641			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
642		ifx_spi_insert_flip_string(
643			ifx_dev,
644			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
645			(size_t)actual_length);
646	} else {
647		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
648		       ifx_dev->spi_msg.status);
649	}
650
651complete_exit:
652	if (ifx_dev->write_pending) {
653		ifx_dev->write_pending = 0;
654		local_write_pending = 1;
655	}
656
657	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
658
659	queue_length = kfifo_len(&ifx_dev->tx_fifo);
660	srdy = gpio_get_value(ifx_dev->gpio.srdy);
661	if (!srdy)
662		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
663
664	/* schedule output if there is more to do */
665	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
666		tasklet_schedule(&ifx_dev->io_work_tasklet);
667	else {
668		if (more || ifx_dev->spi_more || queue_length > 0 ||
669			local_write_pending) {
670			if (ifx_dev->spi_slave_cts) {
671				if (more)
672					mrdy_assert(ifx_dev);
673			} else
674				mrdy_assert(ifx_dev);
675		} else {
676			/*
677			 * poke line discipline driver if any for more data
678			 * may or may not get more data to write
679			 * for now, say not busy
680			 */
681			ifx_spi_power_state_clear(ifx_dev,
682						  IFX_SPI_POWER_DATA_PENDING);
683			tty = tty_port_tty_get(&ifx_dev->tty_port);
684			if (tty) {
685				ldisc = tty_ldisc_ref(tty);
686				if (ldisc) {
687					ldisc->ops->write_wakeup(tty);
688					tty_ldisc_deref(ldisc);
689				}
690				tty_kref_put(tty);
691			}
692		}
693	}
694}
695
696/**
697 *	ifx_spio_io		-	I/O tasklet
698 *	@data: our SPI device
699 *
700 *	Queue data for transmission if possible and then kick off the
701 *	transfer.
702 */
703static void ifx_spi_io(unsigned long data)
704{
705	int retval;
706	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
707
708	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags)) {
709		if (ifx_dev->gpio.unack_srdy_int_nb > 0)
710			ifx_dev->gpio.unack_srdy_int_nb--;
711
712		ifx_spi_prepare_tx_buffer(ifx_dev);
713
714		spi_message_init(&ifx_dev->spi_msg);
715		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
716
717		ifx_dev->spi_msg.context = ifx_dev;
718		ifx_dev->spi_msg.complete = ifx_spi_complete;
719
720		/* set up our spi transfer */
721		/* note len is BYTES, not transfers */
722		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
723		ifx_dev->spi_xfer.cs_change = 0;
724		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
725		/* ifx_dev->spi_xfer.speed_hz = 390625; */
726		ifx_dev->spi_xfer.bits_per_word = spi_bpw;
727
728		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
729		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
730
731		/*
732		 * setup dma pointers
733		 */
734		if (ifx_dev->use_dma) {
735			ifx_dev->spi_msg.is_dma_mapped = 1;
736			ifx_dev->tx_dma = ifx_dev->tx_bus;
737			ifx_dev->rx_dma = ifx_dev->rx_bus;
738			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
739			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
740		} else {
741			ifx_dev->spi_msg.is_dma_mapped = 0;
742			ifx_dev->tx_dma = (dma_addr_t)0;
743			ifx_dev->rx_dma = (dma_addr_t)0;
744			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
745			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
746		}
747
748		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
749
750		/* Assert MRDY. This may have already been done by the write
751		 * routine.
752		 */
753		mrdy_assert(ifx_dev);
754
755		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
756		if (retval) {
757			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
758				  &ifx_dev->flags);
759			tasklet_schedule(&ifx_dev->io_work_tasklet);
760			return;
761		}
762	} else
763		ifx_dev->write_pending = 1;
764}
765
766/**
767 *	ifx_spi_free_port	-	free up the tty side
768 *	@ifx_dev: IFX device going away
769 *
770 *	Unregister and free up a port when the device goes away
771 */
772static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
773{
774	if (ifx_dev->tty_dev)
775		tty_unregister_device(tty_drv, ifx_dev->minor);
776	kfifo_free(&ifx_dev->tx_fifo);
777}
778
779/**
780 *	ifx_spi_create_port	-	create a new port
781 *	@ifx_dev: our spi device
782 *
783 *	Allocate and initialise the tty port that goes with this interface
784 *	and add it to the tty layer so that it can be opened.
785 */
786static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
787{
788	int ret = 0;
789	struct tty_port *pport = &ifx_dev->tty_port;
790
791	spin_lock_init(&ifx_dev->fifo_lock);
792	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
793		&ifx_spi_key, 0);
794
795	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
796		ret = -ENOMEM;
797		goto error_ret;
798	}
799
800	tty_port_init(pport);
801	pport->ops = &ifx_tty_port_ops;
802	ifx_dev->minor = IFX_SPI_TTY_ID;
803	ifx_dev->tty_dev = tty_register_device(tty_drv, ifx_dev->minor,
804					       &ifx_dev->spi_dev->dev);
805	if (IS_ERR(ifx_dev->tty_dev)) {
806		dev_dbg(&ifx_dev->spi_dev->dev,
807			"%s: registering tty device failed", __func__);
808		ret = PTR_ERR(ifx_dev->tty_dev);
809		goto error_ret;
810	}
811	return 0;
812
813error_ret:
814	ifx_spi_free_port(ifx_dev);
815	return ret;
816}
817
818/**
819 *	ifx_spi_handle_srdy		-	handle SRDY
820 *	@ifx_dev: device asserting SRDY
821 *
822 *	Check our device state and see what we need to kick off when SRDY
823 *	is asserted. This usually means killing the timer and firing off the
824 *	I/O processing.
825 */
826static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
827{
828	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
829		del_timer_sync(&ifx_dev->spi_timer);
830		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
831	}
832
833	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
834
835	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
836		tasklet_schedule(&ifx_dev->io_work_tasklet);
837	else
838		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
839}
840
841/**
842 *	ifx_spi_srdy_interrupt	-	SRDY asserted
843 *	@irq: our IRQ number
844 *	@dev: our ifx device
845 *
846 *	The modem asserted SRDY. Handle the srdy event
847 */
848static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
849{
850	struct ifx_spi_device *ifx_dev = dev;
851	ifx_dev->gpio.unack_srdy_int_nb++;
852	ifx_spi_handle_srdy(ifx_dev);
853	return IRQ_HANDLED;
854}
855
856/**
857 *	ifx_spi_reset_interrupt	-	Modem has changed reset state
858 *	@irq: interrupt number
859 *	@dev: our device pointer
860 *
861 *	The modem has either entered or left reset state. Check the GPIO
862 *	line to see which.
863 *
864 *	FIXME: review locking on MR_INPROGRESS versus
865 *	parallel unsolicited reset/solicited reset
866 */
867static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
868{
869	struct ifx_spi_device *ifx_dev = dev;
870	int val = gpio_get_value(ifx_dev->gpio.reset_out);
871	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
872
873	if (val == 0) {
874		/* entered reset */
875		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
876		if (!solreset) {
877			/* unsolicited reset  */
878			ifx_spi_ttyhangup(ifx_dev);
879		}
880	} else {
881		/* exited reset */
882		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
883		if (solreset) {
884			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
885			wake_up(&ifx_dev->mdm_reset_wait);
886		}
887	}
888	return IRQ_HANDLED;
889}
890
891/**
892 *	ifx_spi_free_device - free device
893 *	@ifx_dev: device to free
894 *
895 *	Free the IFX device
896 */
897static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
898{
899	ifx_spi_free_port(ifx_dev);
900	dma_free_coherent(&ifx_dev->spi_dev->dev,
901				IFX_SPI_TRANSFER_SIZE,
902				ifx_dev->tx_buffer,
903				ifx_dev->tx_bus);
904	dma_free_coherent(&ifx_dev->spi_dev->dev,
905				IFX_SPI_TRANSFER_SIZE,
906				ifx_dev->rx_buffer,
907				ifx_dev->rx_bus);
908}
909
910/**
911 *	ifx_spi_reset	-	reset modem
912 *	@ifx_dev: modem to reset
913 *
914 *	Perform a reset on the modem
915 */
916static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
917{
918	int ret;
919	/*
920	 * set up modem power, reset
921	 *
922	 * delays are required on some platforms for the modem
923	 * to reset properly
924	 */
925	set_bit(MR_START, &ifx_dev->mdm_reset_state);
926	gpio_set_value(ifx_dev->gpio.po, 0);
927	gpio_set_value(ifx_dev->gpio.reset, 0);
928	msleep(25);
929	gpio_set_value(ifx_dev->gpio.reset, 1);
930	msleep(1);
931	gpio_set_value(ifx_dev->gpio.po, 1);
932	msleep(1);
933	gpio_set_value(ifx_dev->gpio.po, 0);
934	ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
935				 test_bit(MR_COMPLETE,
936					  &ifx_dev->mdm_reset_state),
937				 IFX_RESET_TIMEOUT);
938	if (!ret)
939		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
940			 ifx_dev->mdm_reset_state);
941
942	ifx_dev->mdm_reset_state = 0;
943	return ret;
944}
945
946/**
947 *	ifx_spi_spi_probe	-	probe callback
948 *	@spi: our possible matching SPI device
949 *
950 *	Probe for a 6x60 modem on SPI bus. Perform any needed device and
951 *	GPIO setup.
952 *
953 *	FIXME:
954 *	-	Support for multiple devices
955 *	-	Split out MID specific GPIO handling eventually
956 */
957
958static int ifx_spi_spi_probe(struct spi_device *spi)
959{
960	int ret;
961	int srdy;
962	struct ifx_modem_platform_data *pl_data;
963	struct ifx_spi_device *ifx_dev;
964
965	if (saved_ifx_dev) {
966		dev_dbg(&spi->dev, "ignoring subsequent detection");
967		return -ENODEV;
968	}
969
970	pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data;
971	if (!pl_data) {
972		dev_err(&spi->dev, "missing platform data!");
973		return -ENODEV;
974	}
975
976	/* initialize structure to hold our device variables */
977	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
978	if (!ifx_dev) {
979		dev_err(&spi->dev, "spi device allocation failed");
980		return -ENOMEM;
981	}
982	saved_ifx_dev = ifx_dev;
983	ifx_dev->spi_dev = spi;
984	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
985	spin_lock_init(&ifx_dev->write_lock);
986	spin_lock_init(&ifx_dev->power_lock);
987	ifx_dev->power_status = 0;
988	init_timer(&ifx_dev->spi_timer);
989	ifx_dev->spi_timer.function = ifx_spi_timeout;
990	ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
991	ifx_dev->modem = pl_data->modem_type;
992	ifx_dev->use_dma = pl_data->use_dma;
993	ifx_dev->max_hz = pl_data->max_hz;
994	/* initialize spi mode, etc */
995	spi->max_speed_hz = ifx_dev->max_hz;
996	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
997	spi->bits_per_word = spi_bpw;
998	ret = spi_setup(spi);
999	if (ret) {
1000		dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1001		return -ENODEV;
1002	}
1003
1004	/* ensure SPI protocol flags are initialized to enable transfer */
1005	ifx_dev->spi_more = 0;
1006	ifx_dev->spi_slave_cts = 0;
1007
1008	/*initialize transfer and dma buffers */
1009	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1010				IFX_SPI_TRANSFER_SIZE,
1011				&ifx_dev->tx_bus,
1012				GFP_KERNEL);
1013	if (!ifx_dev->tx_buffer) {
1014		dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1015		ret = -ENOMEM;
1016		goto error_ret;
1017	}
1018	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1019				IFX_SPI_TRANSFER_SIZE,
1020				&ifx_dev->rx_bus,
1021				GFP_KERNEL);
1022	if (!ifx_dev->rx_buffer) {
1023		dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1024		ret = -ENOMEM;
1025		goto error_ret;
1026	}
1027
1028	/* initialize waitq for modem reset */
1029	init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1030
1031	spi_set_drvdata(spi, ifx_dev);
1032	tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1033						(unsigned long)ifx_dev);
1034
1035	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1036
1037	/* create our tty port */
1038	ret = ifx_spi_create_port(ifx_dev);
1039	if (ret != 0) {
1040		dev_err(&spi->dev, "create default tty port failed");
1041		goto error_ret;
1042	}
1043
1044	ifx_dev->gpio.reset = pl_data->rst_pmu;
1045	ifx_dev->gpio.po = pl_data->pwr_on;
1046	ifx_dev->gpio.mrdy = pl_data->mrdy;
1047	ifx_dev->gpio.srdy = pl_data->srdy;
1048	ifx_dev->gpio.reset_out = pl_data->rst_out;
1049
1050	dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1051		 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1052		 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1053
1054	/* Configure gpios */
1055	ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1056	if (ret < 0) {
1057		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1058			ifx_dev->gpio.reset);
1059		goto error_ret;
1060	}
1061	ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1062	ret += gpio_export(ifx_dev->gpio.reset, 1);
1063	if (ret) {
1064		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1065			ifx_dev->gpio.reset);
1066		ret = -EBUSY;
1067		goto error_ret2;
1068	}
1069
1070	ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1071	ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1072	ret += gpio_export(ifx_dev->gpio.po, 1);
1073	if (ret) {
1074		dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1075			ifx_dev->gpio.po);
1076		ret = -EBUSY;
1077		goto error_ret3;
1078	}
1079
1080	ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1081	if (ret < 0) {
1082		dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1083			ifx_dev->gpio.mrdy);
1084		goto error_ret3;
1085	}
1086	ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1087	ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1088	if (ret) {
1089		dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1090			ifx_dev->gpio.mrdy);
1091		ret = -EBUSY;
1092		goto error_ret4;
1093	}
1094
1095	ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1096	if (ret < 0) {
1097		dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1098			ifx_dev->gpio.srdy);
1099		ret = -EBUSY;
1100		goto error_ret4;
1101	}
1102	ret += gpio_export(ifx_dev->gpio.srdy, 1);
1103	ret += gpio_direction_input(ifx_dev->gpio.srdy);
1104	if (ret) {
1105		dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1106			ifx_dev->gpio.srdy);
1107		ret = -EBUSY;
1108		goto error_ret5;
1109	}
1110
1111	ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1112	if (ret < 0) {
1113		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1114			ifx_dev->gpio.reset_out);
1115		goto error_ret5;
1116	}
1117	ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1118	ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1119	if (ret) {
1120		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1121			ifx_dev->gpio.reset_out);
1122		ret = -EBUSY;
1123		goto error_ret6;
1124	}
1125
1126	ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1127			  ifx_spi_reset_interrupt,
1128			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1129		(void *)ifx_dev);
1130	if (ret) {
1131		dev_err(&spi->dev, "Unable to get irq %x\n",
1132			gpio_to_irq(ifx_dev->gpio.reset_out));
1133		goto error_ret6;
1134	}
1135
1136	ret = ifx_spi_reset(ifx_dev);
1137
1138	ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1139			  ifx_spi_srdy_interrupt,
1140			  IRQF_TRIGGER_RISING, DRVNAME,
1141			  (void *)ifx_dev);
1142	if (ret) {
1143		dev_err(&spi->dev, "Unable to get irq %x",
1144			gpio_to_irq(ifx_dev->gpio.srdy));
1145		goto error_ret7;
1146	}
1147
1148	/* set pm runtime power state and register with power system */
1149	pm_runtime_set_active(&spi->dev);
1150	pm_runtime_enable(&spi->dev);
1151
1152	/* handle case that modem is already signaling SRDY */
1153	/* no outgoing tty open at this point, this just satisfies the
1154	 * modem's read and should reset communication properly
1155	 */
1156	srdy = gpio_get_value(ifx_dev->gpio.srdy);
1157
1158	if (srdy) {
1159		mrdy_assert(ifx_dev);
1160		ifx_spi_handle_srdy(ifx_dev);
1161	} else
1162		mrdy_set_low(ifx_dev);
1163	return 0;
1164
1165error_ret7:
1166	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1167error_ret6:
1168	gpio_free(ifx_dev->gpio.srdy);
1169error_ret5:
1170	gpio_free(ifx_dev->gpio.mrdy);
1171error_ret4:
1172	gpio_free(ifx_dev->gpio.reset);
1173error_ret3:
1174	gpio_free(ifx_dev->gpio.po);
1175error_ret2:
1176	gpio_free(ifx_dev->gpio.reset_out);
1177error_ret:
1178	ifx_spi_free_device(ifx_dev);
1179	saved_ifx_dev = NULL;
1180	return ret;
1181}
1182
1183/**
1184 *	ifx_spi_spi_remove	-	SPI device was removed
1185 *	@spi: SPI device
1186 *
1187 *	FIXME: We should be shutting the device down here not in
1188 *	the module unload path.
1189 */
1190
1191static int ifx_spi_spi_remove(struct spi_device *spi)
1192{
1193	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1194	/* stop activity */
1195	tasklet_kill(&ifx_dev->io_work_tasklet);
1196	/* free irq */
1197	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1198	free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1199
1200	gpio_free(ifx_dev->gpio.srdy);
1201	gpio_free(ifx_dev->gpio.mrdy);
1202	gpio_free(ifx_dev->gpio.reset);
1203	gpio_free(ifx_dev->gpio.po);
1204	gpio_free(ifx_dev->gpio.reset_out);
1205
1206	/* free allocations */
1207	ifx_spi_free_device(ifx_dev);
1208
1209	saved_ifx_dev = NULL;
1210	return 0;
1211}
1212
1213/**
1214 *	ifx_spi_spi_shutdown	-	called on SPI shutdown
1215 *	@spi: SPI device
1216 *
1217 *	No action needs to be taken here
1218 */
1219
1220static void ifx_spi_spi_shutdown(struct spi_device *spi)
1221{
1222}
1223
1224/*
1225 * various suspends and resumes have nothing to do
1226 * no hardware to save state for
1227 */
1228
1229/**
1230 *	ifx_spi_spi_suspend	-	suspend SPI on system suspend
1231 *	@dev: device being suspended
1232 *
1233 *	Suspend the SPI side. No action needed on Intel MID platforms, may
1234 *	need extending for other systems.
1235 */
1236static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg)
1237{
1238	return 0;
1239}
1240
1241/**
1242 *	ifx_spi_spi_resume	-	resume SPI side on system resume
1243 *	@dev: device being suspended
1244 *
1245 *	Suspend the SPI side. No action needed on Intel MID platforms, may
1246 *	need extending for other systems.
1247 */
1248static int ifx_spi_spi_resume(struct spi_device *spi)
1249{
1250	return 0;
1251}
1252
1253/**
1254 *	ifx_spi_pm_suspend	-	suspend modem on system suspend
1255 *	@dev: device being suspended
1256 *
1257 *	Suspend the modem. No action needed on Intel MID platforms, may
1258 *	need extending for other systems.
1259 */
1260static int ifx_spi_pm_suspend(struct device *dev)
1261{
1262	return 0;
1263}
1264
1265/**
1266 *	ifx_spi_pm_resume	-	resume modem on system resume
1267 *	@dev: device being suspended
1268 *
1269 *	Allow the modem to resume. No action needed.
1270 *
1271 *	FIXME: do we need to reset anything here ?
1272 */
1273static int ifx_spi_pm_resume(struct device *dev)
1274{
1275	return 0;
1276}
1277
1278/**
1279 *	ifx_spi_pm_runtime_resume	-	suspend modem
1280 *	@dev: device being suspended
1281 *
1282 *	Allow the modem to resume. No action needed.
1283 */
1284static int ifx_spi_pm_runtime_resume(struct device *dev)
1285{
1286	return 0;
1287}
1288
1289/**
1290 *	ifx_spi_pm_runtime_suspend	-	suspend modem
1291 *	@dev: device being suspended
1292 *
1293 *	Allow the modem to suspend and thus suspend to continue up the
1294 *	device tree.
1295 */
1296static int ifx_spi_pm_runtime_suspend(struct device *dev)
1297{
1298	return 0;
1299}
1300
1301/**
1302 *	ifx_spi_pm_runtime_idle		-	check if modem idle
1303 *	@dev: our device
1304 *
1305 *	Check conditions and queue runtime suspend if idle.
1306 */
1307static int ifx_spi_pm_runtime_idle(struct device *dev)
1308{
1309	struct spi_device *spi = to_spi_device(dev);
1310	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1311
1312	if (!ifx_dev->power_status)
1313		pm_runtime_suspend(dev);
1314
1315	return 0;
1316}
1317
1318static const struct dev_pm_ops ifx_spi_pm = {
1319	.resume = ifx_spi_pm_resume,
1320	.suspend = ifx_spi_pm_suspend,
1321	.runtime_resume = ifx_spi_pm_runtime_resume,
1322	.runtime_suspend = ifx_spi_pm_runtime_suspend,
1323	.runtime_idle = ifx_spi_pm_runtime_idle
1324};
1325
1326static const struct spi_device_id ifx_id_table[] = {
1327	{"ifx6160", 0},
1328	{"ifx6260", 0},
1329	{ }
1330};
1331MODULE_DEVICE_TABLE(spi, ifx_id_table);
1332
1333/* spi operations */
1334static const struct spi_driver ifx_spi_driver = {
1335	.driver = {
1336		.name = DRVNAME,
1337		.pm = &ifx_spi_pm,
1338		.owner = THIS_MODULE},
1339	.probe = ifx_spi_spi_probe,
1340	.shutdown = ifx_spi_spi_shutdown,
1341	.remove = __devexit_p(ifx_spi_spi_remove),
1342	.suspend = ifx_spi_spi_suspend,
1343	.resume = ifx_spi_spi_resume,
1344	.id_table = ifx_id_table
1345};
1346
1347/**
1348 *	ifx_spi_exit	-	module exit
1349 *
1350 *	Unload the module.
1351 */
1352
1353static void __exit ifx_spi_exit(void)
1354{
1355	/* unregister */
1356	tty_unregister_driver(tty_drv);
1357	spi_unregister_driver((void *)&ifx_spi_driver);
1358}
1359
1360/**
1361 *	ifx_spi_init		-	module entry point
1362 *
1363 *	Initialise the SPI and tty interfaces for the IFX SPI driver
1364 *	We need to initialize upper-edge spi driver after the tty
1365 *	driver because otherwise the spi probe will race
1366 */
1367
1368static int __init ifx_spi_init(void)
1369{
1370	int result;
1371
1372	tty_drv = alloc_tty_driver(1);
1373	if (!tty_drv) {
1374		pr_err("%s: alloc_tty_driver failed", DRVNAME);
1375		return -ENOMEM;
1376	}
1377
1378	tty_drv->driver_name = DRVNAME;
1379	tty_drv->name = TTYNAME;
1380	tty_drv->minor_start = IFX_SPI_TTY_ID;
1381	tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1382	tty_drv->subtype = SERIAL_TYPE_NORMAL;
1383	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1384	tty_drv->init_termios = tty_std_termios;
1385
1386	tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1387
1388	result = tty_register_driver(tty_drv);
1389	if (result) {
1390		pr_err("%s: tty_register_driver failed(%d)",
1391			DRVNAME, result);
1392		put_tty_driver(tty_drv);
1393		return result;
1394	}
1395
1396	result = spi_register_driver((void *)&ifx_spi_driver);
1397	if (result) {
1398		pr_err("%s: spi_register_driver failed(%d)",
1399			DRVNAME, result);
1400		tty_unregister_driver(tty_drv);
1401	}
1402	return result;
1403}
1404
1405module_init(ifx_spi_init);
1406module_exit(ifx_spi_exit);
1407
1408MODULE_AUTHOR("Intel");
1409MODULE_DESCRIPTION("IFX6x60 spi driver");
1410MODULE_LICENSE("GPL");
1411MODULE_INFO(Version, "0.1-IFX6x60");
1412