1/*
2 * MSM 7k/8k High speed uart driver
3 *
4 * Copyright (c) 2007-2011, Code Aurora Forum. All rights reserved.
5 * Copyright (c) 2008 Google Inc.
6 * Modified: Nick Pelly <npelly@google.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * version 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
15 * See the GNU General Public License for more details.
16 *
17 * Has optional support for uart power management independent of linux
18 * suspend/resume:
19 *
20 * RX wakeup.
21 * UART wakeup can be triggered by RX activity (using a wakeup GPIO on the
22 * UART RX pin). This should only be used if there is not a wakeup
23 * GPIO on the UART CTS, and the first RX byte is known (for example, with the
24 * Bluetooth Texas Instruments HCILL protocol), since the first RX byte will
25 * always be lost. RTS will be asserted even while the UART is off in this mode
26 * of operation. See msm_serial_hs_platform_data.rx_wakeup_irq.
27 */
28
29#include <linux/module.h>
30
31#include <linux/serial.h>
32#include <linux/serial_core.h>
33#include <linux/tty.h>
34#include <linux/tty_flip.h>
35#include <linux/slab.h>
36#include <linux/init.h>
37#include <linux/interrupt.h>
38#include <linux/irq.h>
39#include <linux/io.h>
40#include <linux/ioport.h>
41#include <linux/kernel.h>
42#include <linux/timer.h>
43#include <linux/clk.h>
44#include <linux/platform_device.h>
45#include <linux/pm_runtime.h>
46#include <linux/dma-mapping.h>
47#include <linux/dmapool.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
50
51#include <linux/atomic.h>
52#include <asm/irq.h>
53
54#include <mach/hardware.h>
55#include <mach/dma.h>
56#include <linux/platform_data/msm_serial_hs.h>
57
58/* HSUART Registers */
59#define UARTDM_MR1_ADDR 0x0
60#define UARTDM_MR2_ADDR 0x4
61
62/* Data Mover result codes */
63#define RSLT_FIFO_CNTR_BMSK (0xE << 28)
64#define RSLT_VLD            BIT(1)
65
66/* write only register */
67#define UARTDM_CSR_ADDR 0x8
68#define UARTDM_CSR_115200 0xFF
69#define UARTDM_CSR_57600  0xEE
70#define UARTDM_CSR_38400  0xDD
71#define UARTDM_CSR_28800  0xCC
72#define UARTDM_CSR_19200  0xBB
73#define UARTDM_CSR_14400  0xAA
74#define UARTDM_CSR_9600   0x99
75#define UARTDM_CSR_7200   0x88
76#define UARTDM_CSR_4800   0x77
77#define UARTDM_CSR_3600   0x66
78#define UARTDM_CSR_2400   0x55
79#define UARTDM_CSR_1200   0x44
80#define UARTDM_CSR_600    0x33
81#define UARTDM_CSR_300    0x22
82#define UARTDM_CSR_150    0x11
83#define UARTDM_CSR_75     0x00
84
85/* write only register */
86#define UARTDM_TF_ADDR 0x70
87#define UARTDM_TF2_ADDR 0x74
88#define UARTDM_TF3_ADDR 0x78
89#define UARTDM_TF4_ADDR 0x7C
90
91/* write only register */
92#define UARTDM_CR_ADDR 0x10
93#define UARTDM_IMR_ADDR 0x14
94
95#define UARTDM_IPR_ADDR 0x18
96#define UARTDM_TFWR_ADDR 0x1c
97#define UARTDM_RFWR_ADDR 0x20
98#define UARTDM_HCR_ADDR 0x24
99#define UARTDM_DMRX_ADDR 0x34
100#define UARTDM_IRDA_ADDR 0x38
101#define UARTDM_DMEN_ADDR 0x3c
102
103/* UART_DM_NO_CHARS_FOR_TX */
104#define UARTDM_NCF_TX_ADDR 0x40
105
106#define UARTDM_BADR_ADDR 0x44
107
108#define UARTDM_SIM_CFG_ADDR 0x80
109/* Read Only register */
110#define UARTDM_SR_ADDR 0x8
111
112/* Read Only register */
113#define UARTDM_RF_ADDR  0x70
114#define UARTDM_RF2_ADDR 0x74
115#define UARTDM_RF3_ADDR 0x78
116#define UARTDM_RF4_ADDR 0x7C
117
118/* Read Only register */
119#define UARTDM_MISR_ADDR 0x10
120
121/* Read Only register */
122#define UARTDM_ISR_ADDR 0x14
123#define UARTDM_RX_TOTAL_SNAP_ADDR 0x38
124
125#define UARTDM_RXFS_ADDR 0x50
126
127/* Register field Mask Mapping */
128#define UARTDM_SR_PAR_FRAME_BMSK        BIT(5)
129#define UARTDM_SR_OVERRUN_BMSK          BIT(4)
130#define UARTDM_SR_TXEMT_BMSK            BIT(3)
131#define UARTDM_SR_TXRDY_BMSK            BIT(2)
132#define UARTDM_SR_RXRDY_BMSK            BIT(0)
133
134#define UARTDM_CR_TX_DISABLE_BMSK       BIT(3)
135#define UARTDM_CR_RX_DISABLE_BMSK       BIT(1)
136#define UARTDM_CR_TX_EN_BMSK            BIT(2)
137#define UARTDM_CR_RX_EN_BMSK            BIT(0)
138
139/* UARTDM_CR channel_comman bit value (register field is bits 8:4) */
140#define RESET_RX                0x10
141#define RESET_TX                0x20
142#define RESET_ERROR_STATUS      0x30
143#define RESET_BREAK_INT         0x40
144#define START_BREAK             0x50
145#define STOP_BREAK              0x60
146#define RESET_CTS               0x70
147#define RESET_STALE_INT         0x80
148#define RFR_LOW                 0xD0
149#define RFR_HIGH                0xE0
150#define CR_PROTECTION_EN        0x100
151#define STALE_EVENT_ENABLE      0x500
152#define STALE_EVENT_DISABLE     0x600
153#define FORCE_STALE_EVENT       0x400
154#define CLEAR_TX_READY          0x300
155#define RESET_TX_ERROR          0x800
156#define RESET_TX_DONE           0x810
157
158#define UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK 0xffffff00
159#define UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK 0x3f
160#define UARTDM_MR1_CTS_CTL_BMSK 0x40
161#define UARTDM_MR1_RX_RDY_CTL_BMSK 0x80
162
163#define UARTDM_MR2_ERROR_MODE_BMSK 0x40
164#define UARTDM_MR2_BITS_PER_CHAR_BMSK 0x30
165
166/* bits per character configuration */
167#define FIVE_BPC  (0 << 4)
168#define SIX_BPC   (1 << 4)
169#define SEVEN_BPC (2 << 4)
170#define EIGHT_BPC (3 << 4)
171
172#define UARTDM_MR2_STOP_BIT_LEN_BMSK 0xc
173#define STOP_BIT_ONE (1 << 2)
174#define STOP_BIT_TWO (3 << 2)
175
176#define UARTDM_MR2_PARITY_MODE_BMSK 0x3
177
178/* Parity configuration */
179#define NO_PARITY 0x0
180#define EVEN_PARITY 0x1
181#define ODD_PARITY 0x2
182#define SPACE_PARITY 0x3
183
184#define UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK 0xffffff80
185#define UARTDM_IPR_STALE_LSB_BMSK 0x1f
186
187/* These can be used for both ISR and IMR register */
188#define UARTDM_ISR_TX_READY_BMSK        BIT(7)
189#define UARTDM_ISR_CURRENT_CTS_BMSK     BIT(6)
190#define UARTDM_ISR_DELTA_CTS_BMSK       BIT(5)
191#define UARTDM_ISR_RXLEV_BMSK           BIT(4)
192#define UARTDM_ISR_RXSTALE_BMSK         BIT(3)
193#define UARTDM_ISR_RXBREAK_BMSK         BIT(2)
194#define UARTDM_ISR_RXHUNT_BMSK          BIT(1)
195#define UARTDM_ISR_TXLEV_BMSK           BIT(0)
196
197/* Field definitions for UART_DM_DMEN*/
198#define UARTDM_TX_DM_EN_BMSK 0x1
199#define UARTDM_RX_DM_EN_BMSK 0x2
200
201#define UART_FIFOSIZE 64
202#define UARTCLK 7372800
203
204/* Rx DMA request states */
205enum flush_reason {
206	FLUSH_NONE,
207	FLUSH_DATA_READY,
208	FLUSH_DATA_INVALID,  /* values after this indicate invalid data */
209	FLUSH_IGNORE = FLUSH_DATA_INVALID,
210	FLUSH_STOP,
211	FLUSH_SHUTDOWN,
212};
213
214/* UART clock states */
215enum msm_hs_clk_states_e {
216	MSM_HS_CLK_PORT_OFF,     /* port not in use */
217	MSM_HS_CLK_OFF,          /* clock disabled */
218	MSM_HS_CLK_REQUEST_OFF,  /* disable after TX and RX flushed */
219	MSM_HS_CLK_ON,           /* clock enabled */
220};
221
222/* Track the forced RXSTALE flush during clock off sequence.
223 * These states are only valid during MSM_HS_CLK_REQUEST_OFF */
224enum msm_hs_clk_req_off_state_e {
225	CLK_REQ_OFF_START,
226	CLK_REQ_OFF_RXSTALE_ISSUED,
227	CLK_REQ_OFF_FLUSH_ISSUED,
228	CLK_REQ_OFF_RXSTALE_FLUSHED,
229};
230
231/**
232 * struct msm_hs_tx
233 * @tx_ready_int_en: ok to dma more tx?
234 * @dma_in_flight: tx dma in progress
235 * @xfer: top level DMA command pointer structure
236 * @command_ptr: third level command struct pointer
237 * @command_ptr_ptr: second level command list struct pointer
238 * @mapped_cmd_ptr: DMA view of third level command struct
239 * @mapped_cmd_ptr_ptr: DMA view of second level command list struct
240 * @tx_count: number of bytes to transfer in DMA transfer
241 * @dma_base: DMA view of UART xmit buffer
242 *
243 * This structure describes a single Tx DMA transaction. MSM DMA
244 * commands have two levels of indirection. The top level command
245 * ptr points to a list of command ptr which in turn points to a
246 * single DMA 'command'. In our case each Tx transaction consists
247 * of a single second level pointer pointing to a 'box type' command.
248 */
249struct msm_hs_tx {
250	unsigned int tx_ready_int_en;
251	unsigned int dma_in_flight;
252	struct msm_dmov_cmd xfer;
253	dmov_box *command_ptr;
254	u32 *command_ptr_ptr;
255	dma_addr_t mapped_cmd_ptr;
256	dma_addr_t mapped_cmd_ptr_ptr;
257	int tx_count;
258	dma_addr_t dma_base;
259};
260
261/**
262 * struct msm_hs_rx
263 * @flush: Rx DMA request state
264 * @xfer: top level DMA command pointer structure
265 * @cmdptr_dmaaddr: DMA view of second level command structure
266 * @command_ptr: third level DMA command pointer structure
267 * @command_ptr_ptr: second level DMA command list pointer
268 * @mapped_cmd_ptr: DMA view of the third level command structure
269 * @wait: wait for DMA completion before shutdown
270 * @buffer: destination buffer for RX DMA
271 * @rbuffer: DMA view of buffer
272 * @pool: dma pool out of which coherent rx buffer is allocated
273 * @tty_work: private work-queue for tty flip buffer push task
274 *
275 * This structure describes a single Rx DMA transaction. Rx DMA
276 * transactions use box mode DMA commands.
277 */
278struct msm_hs_rx {
279	enum flush_reason flush;
280	struct msm_dmov_cmd xfer;
281	dma_addr_t cmdptr_dmaaddr;
282	dmov_box *command_ptr;
283	u32 *command_ptr_ptr;
284	dma_addr_t mapped_cmd_ptr;
285	wait_queue_head_t wait;
286	dma_addr_t rbuffer;
287	unsigned char *buffer;
288	struct dma_pool *pool;
289	struct work_struct tty_work;
290};
291
292/**
293 * struct msm_hs_rx_wakeup
294 * @irq: IRQ line to be configured as interrupt source on Rx activity
295 * @ignore: boolean value. 1 = ignore the wakeup interrupt
296 * @rx_to_inject: extra character to be inserted to Rx tty on wakeup
297 * @inject_rx: 1 = insert rx_to_inject. 0 = do not insert extra character
298 *
299 * This is an optional structure required for UART Rx GPIO IRQ based
300 * wakeup from low power state. UART wakeup can be triggered by RX activity
301 * (using a wakeup GPIO on the UART RX pin). This should only be used if
302 * there is not a wakeup GPIO on the UART CTS, and the first RX byte is
303 * known (eg., with the Bluetooth Texas Instruments HCILL protocol),
304 * since the first RX byte will always be lost. RTS will be asserted even
305 * while the UART is clocked off in this mode of operation.
306 */
307struct msm_hs_rx_wakeup {
308	int irq;  /* < 0 indicates low power wakeup disabled */
309	unsigned char ignore;
310	unsigned char inject_rx;
311	char rx_to_inject;
312};
313
314/**
315 * struct msm_hs_port
316 * @uport: embedded uart port structure
317 * @imr_reg: shadow value of UARTDM_IMR
318 * @clk: uart input clock handle
319 * @tx: Tx transaction related data structure
320 * @rx: Rx transaction related data structure
321 * @dma_tx_channel: Tx DMA command channel
322 * @dma_rx_channel Rx DMA command channel
323 * @dma_tx_crci: Tx channel rate control interface number
324 * @dma_rx_crci: Rx channel rate control interface number
325 * @clk_off_timer: Timer to poll DMA event completion before clock off
326 * @clk_off_delay: clk_off_timer poll interval
327 * @clk_state: overall clock state
328 * @clk_req_off_state: post flush clock states
329 * @rx_wakeup: optional rx_wakeup feature related data
330 * @exit_lpm_cb: optional callback to exit low power mode
331 *
332 * Low level serial port structure.
333 */
334struct msm_hs_port {
335	struct uart_port uport;
336	unsigned long imr_reg;
337	struct clk *clk;
338	struct msm_hs_tx tx;
339	struct msm_hs_rx rx;
340
341	int dma_tx_channel;
342	int dma_rx_channel;
343	int dma_tx_crci;
344	int dma_rx_crci;
345
346	struct hrtimer clk_off_timer;
347	ktime_t clk_off_delay;
348	enum msm_hs_clk_states_e clk_state;
349	enum msm_hs_clk_req_off_state_e clk_req_off_state;
350
351	struct msm_hs_rx_wakeup rx_wakeup;
352	void (*exit_lpm_cb)(struct uart_port *);
353};
354
355#define MSM_UARTDM_BURST_SIZE 16   /* DM burst size (in bytes) */
356#define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE
357#define UARTDM_RX_BUF_SIZE 512
358
359#define UARTDM_NR 2
360
361static struct msm_hs_port q_uart_port[UARTDM_NR];
362static struct platform_driver msm_serial_hs_platform_driver;
363static struct uart_driver msm_hs_driver;
364static struct uart_ops msm_hs_ops;
365static struct workqueue_struct *msm_hs_workqueue;
366
367#define UARTDM_TO_MSM(uart_port) \
368	container_of((uart_port), struct msm_hs_port, uport)
369
370static unsigned int use_low_power_rx_wakeup(struct msm_hs_port
371						   *msm_uport)
372{
373	return (msm_uport->rx_wakeup.irq >= 0);
374}
375
376static unsigned int msm_hs_read(struct uart_port *uport,
377				       unsigned int offset)
378{
379	return ioread32(uport->membase + offset);
380}
381
382static void msm_hs_write(struct uart_port *uport, unsigned int offset,
383				 unsigned int value)
384{
385	iowrite32(value, uport->membase + offset);
386}
387
388static void msm_hs_release_port(struct uart_port *port)
389{
390	iounmap(port->membase);
391}
392
393static int msm_hs_request_port(struct uart_port *port)
394{
395	port->membase = ioremap(port->mapbase, PAGE_SIZE);
396	if (unlikely(!port->membase))
397		return -ENOMEM;
398
399	/* configure the CR Protection to Enable */
400	msm_hs_write(port, UARTDM_CR_ADDR, CR_PROTECTION_EN);
401	return 0;
402}
403
404static int __devexit msm_hs_remove(struct platform_device *pdev)
405{
406
407	struct msm_hs_port *msm_uport;
408	struct device *dev;
409
410	if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
411		printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
412		return -EINVAL;
413	}
414
415	msm_uport = &q_uart_port[pdev->id];
416	dev = msm_uport->uport.dev;
417
418	dma_unmap_single(dev, msm_uport->rx.mapped_cmd_ptr, sizeof(dmov_box),
419			 DMA_TO_DEVICE);
420	dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
421		      msm_uport->rx.rbuffer);
422	dma_pool_destroy(msm_uport->rx.pool);
423
424	dma_unmap_single(dev, msm_uport->rx.cmdptr_dmaaddr, sizeof(u32),
425			 DMA_TO_DEVICE);
426	dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr_ptr, sizeof(u32),
427			 DMA_TO_DEVICE);
428	dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr, sizeof(dmov_box),
429			 DMA_TO_DEVICE);
430
431	uart_remove_one_port(&msm_hs_driver, &msm_uport->uport);
432	clk_put(msm_uport->clk);
433
434	/* Free the tx resources */
435	kfree(msm_uport->tx.command_ptr);
436	kfree(msm_uport->tx.command_ptr_ptr);
437
438	/* Free the rx resources */
439	kfree(msm_uport->rx.command_ptr);
440	kfree(msm_uport->rx.command_ptr_ptr);
441
442	iounmap(msm_uport->uport.membase);
443
444	return 0;
445}
446
447static int msm_hs_init_clk_locked(struct uart_port *uport)
448{
449	int ret;
450	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
451
452	ret = clk_enable(msm_uport->clk);
453	if (ret) {
454		printk(KERN_ERR "Error could not turn on UART clk\n");
455		return ret;
456	}
457
458	/* Set up the MREG/NREG/DREG/MNDREG */
459	ret = clk_set_rate(msm_uport->clk, uport->uartclk);
460	if (ret) {
461		printk(KERN_WARNING "Error setting clock rate on UART\n");
462		clk_disable(msm_uport->clk);
463		return ret;
464	}
465
466	msm_uport->clk_state = MSM_HS_CLK_ON;
467	return 0;
468}
469
470/* Enable and Disable clocks  (Used for power management) */
471static void msm_hs_pm(struct uart_port *uport, unsigned int state,
472		      unsigned int oldstate)
473{
474	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
475
476	if (use_low_power_rx_wakeup(msm_uport) ||
477	    msm_uport->exit_lpm_cb)
478		return;  /* ignore linux PM states,
479			    use msm_hs_request_clock API */
480
481	switch (state) {
482	case 0:
483		clk_enable(msm_uport->clk);
484		break;
485	case 3:
486		clk_disable(msm_uport->clk);
487		break;
488	default:
489		dev_err(uport->dev, "msm_serial: Unknown PM state %d\n",
490			state);
491	}
492}
493
494/*
495 * programs the UARTDM_CSR register with correct bit rates
496 *
497 * Interrupts should be disabled before we are called, as
498 * we modify Set Baud rate
499 * Set receive stale interrupt level, dependent on Bit Rate
500 * Goal is to have around 8 ms before indicate stale.
501 * roundup (((Bit Rate * .008) / 10) + 1
502 */
503static void msm_hs_set_bps_locked(struct uart_port *uport,
504				  unsigned int bps)
505{
506	unsigned long rxstale;
507	unsigned long data;
508	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
509
510	switch (bps) {
511	case 300:
512		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_75);
513		rxstale = 1;
514		break;
515	case 600:
516		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_150);
517		rxstale = 1;
518		break;
519	case 1200:
520		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_300);
521		rxstale = 1;
522		break;
523	case 2400:
524		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_600);
525		rxstale = 1;
526		break;
527	case 4800:
528		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_1200);
529		rxstale = 1;
530		break;
531	case 9600:
532		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400);
533		rxstale = 2;
534		break;
535	case 14400:
536		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_3600);
537		rxstale = 3;
538		break;
539	case 19200:
540		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_4800);
541		rxstale = 4;
542		break;
543	case 28800:
544		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_7200);
545		rxstale = 6;
546		break;
547	case 38400:
548		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_9600);
549		rxstale = 8;
550		break;
551	case 57600:
552		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_14400);
553		rxstale = 16;
554		break;
555	case 76800:
556		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_19200);
557		rxstale = 16;
558		break;
559	case 115200:
560		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_28800);
561		rxstale = 31;
562		break;
563	case 230400:
564		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_57600);
565		rxstale = 31;
566		break;
567	case 460800:
568		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200);
569		rxstale = 31;
570		break;
571	case 4000000:
572	case 3686400:
573	case 3200000:
574	case 3500000:
575	case 3000000:
576	case 2500000:
577	case 1500000:
578	case 1152000:
579	case 1000000:
580	case 921600:
581		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200);
582		rxstale = 31;
583		break;
584	default:
585		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400);
586		/* default to 9600 */
587		bps = 9600;
588		rxstale = 2;
589		break;
590	}
591	if (bps > 460800)
592		uport->uartclk = bps * 16;
593	else
594		uport->uartclk = UARTCLK;
595
596	if (clk_set_rate(msm_uport->clk, uport->uartclk)) {
597		printk(KERN_WARNING "Error setting clock rate on UART\n");
598		return;
599	}
600
601	data = rxstale & UARTDM_IPR_STALE_LSB_BMSK;
602	data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
603
604	msm_hs_write(uport, UARTDM_IPR_ADDR, data);
605}
606
607/*
608 * termios :  new ktermios
609 * oldtermios:  old ktermios previous setting
610 *
611 * Configure the serial port
612 */
613static void msm_hs_set_termios(struct uart_port *uport,
614			       struct ktermios *termios,
615			       struct ktermios *oldtermios)
616{
617	unsigned int bps;
618	unsigned long data;
619	unsigned long flags;
620	unsigned int c_cflag = termios->c_cflag;
621	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
622
623	spin_lock_irqsave(&uport->lock, flags);
624	clk_enable(msm_uport->clk);
625
626	/* 300 is the minimum baud support by the driver  */
627	bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000);
628
629	/* Temporary remapping  200 BAUD to 3.2 mbps */
630	if (bps == 200)
631		bps = 3200000;
632
633	msm_hs_set_bps_locked(uport, bps);
634
635	data = msm_hs_read(uport, UARTDM_MR2_ADDR);
636	data &= ~UARTDM_MR2_PARITY_MODE_BMSK;
637	/* set parity */
638	if (PARENB == (c_cflag & PARENB)) {
639		if (PARODD == (c_cflag & PARODD))
640			data |= ODD_PARITY;
641		else if (CMSPAR == (c_cflag & CMSPAR))
642			data |= SPACE_PARITY;
643		else
644			data |= EVEN_PARITY;
645	}
646
647	/* Set bits per char */
648	data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK;
649
650	switch (c_cflag & CSIZE) {
651	case CS5:
652		data |= FIVE_BPC;
653		break;
654	case CS6:
655		data |= SIX_BPC;
656		break;
657	case CS7:
658		data |= SEVEN_BPC;
659		break;
660	default:
661		data |= EIGHT_BPC;
662		break;
663	}
664	/* stop bits */
665	if (c_cflag & CSTOPB) {
666		data |= STOP_BIT_TWO;
667	} else {
668		/* otherwise 1 stop bit */
669		data |= STOP_BIT_ONE;
670	}
671	data |= UARTDM_MR2_ERROR_MODE_BMSK;
672	/* write parity/bits per char/stop bit configuration */
673	msm_hs_write(uport, UARTDM_MR2_ADDR, data);
674
675	/* Configure HW flow control */
676	data = msm_hs_read(uport, UARTDM_MR1_ADDR);
677
678	data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK);
679
680	if (c_cflag & CRTSCTS) {
681		data |= UARTDM_MR1_CTS_CTL_BMSK;
682		data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
683	}
684
685	msm_hs_write(uport, UARTDM_MR1_ADDR, data);
686
687	uport->ignore_status_mask = termios->c_iflag & INPCK;
688	uport->ignore_status_mask |= termios->c_iflag & IGNPAR;
689	uport->read_status_mask = (termios->c_cflag & CREAD);
690
691	msm_hs_write(uport, UARTDM_IMR_ADDR, 0);
692
693	/* Set Transmit software time out */
694	uart_update_timeout(uport, c_cflag, bps);
695
696	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
697	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
698
699	if (msm_uport->rx.flush == FLUSH_NONE) {
700		msm_uport->rx.flush = FLUSH_IGNORE;
701		msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
702	}
703
704	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
705
706	clk_disable(msm_uport->clk);
707	spin_unlock_irqrestore(&uport->lock, flags);
708}
709
710/*
711 *  Standard API, Transmitter
712 *  Any character in the transmit shift register is sent
713 */
714static unsigned int msm_hs_tx_empty(struct uart_port *uport)
715{
716	unsigned int data;
717	unsigned int ret = 0;
718	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
719
720	clk_enable(msm_uport->clk);
721
722	data = msm_hs_read(uport, UARTDM_SR_ADDR);
723	if (data & UARTDM_SR_TXEMT_BMSK)
724		ret = TIOCSER_TEMT;
725
726	clk_disable(msm_uport->clk);
727
728	return ret;
729}
730
731/*
732 *  Standard API, Stop transmitter.
733 *  Any character in the transmit shift register is sent as
734 *  well as the current data mover transfer .
735 */
736static void msm_hs_stop_tx_locked(struct uart_port *uport)
737{
738	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
739
740	msm_uport->tx.tx_ready_int_en = 0;
741}
742
743/*
744 *  Standard API, Stop receiver as soon as possible.
745 *
746 *  Function immediately terminates the operation of the
747 *  channel receiver and any incoming characters are lost. None
748 *  of the receiver status bits are affected by this command and
749 *  characters that are already in the receive FIFO there.
750 */
751static void msm_hs_stop_rx_locked(struct uart_port *uport)
752{
753	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
754	unsigned int data;
755
756	clk_enable(msm_uport->clk);
757
758	/* disable dlink */
759	data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
760	data &= ~UARTDM_RX_DM_EN_BMSK;
761	msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
762
763	/* Disable the receiver */
764	if (msm_uport->rx.flush == FLUSH_NONE)
765		msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
766
767	if (msm_uport->rx.flush != FLUSH_SHUTDOWN)
768		msm_uport->rx.flush = FLUSH_STOP;
769
770	clk_disable(msm_uport->clk);
771}
772
773/*  Transmit the next chunk of data */
774static void msm_hs_submit_tx_locked(struct uart_port *uport)
775{
776	int left;
777	int tx_count;
778	dma_addr_t src_addr;
779	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
780	struct msm_hs_tx *tx = &msm_uport->tx;
781	struct circ_buf *tx_buf = &msm_uport->uport.state->xmit;
782
783	if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) {
784		msm_hs_stop_tx_locked(uport);
785		return;
786	}
787
788	tx->dma_in_flight = 1;
789
790	tx_count = uart_circ_chars_pending(tx_buf);
791
792	if (UARTDM_TX_BUF_SIZE < tx_count)
793		tx_count = UARTDM_TX_BUF_SIZE;
794
795	left = UART_XMIT_SIZE - tx_buf->tail;
796
797	if (tx_count > left)
798		tx_count = left;
799
800	src_addr = tx->dma_base + tx_buf->tail;
801	dma_sync_single_for_device(uport->dev, src_addr, tx_count,
802				   DMA_TO_DEVICE);
803
804	tx->command_ptr->num_rows = (((tx_count + 15) >> 4) << 16) |
805				     ((tx_count + 15) >> 4);
806	tx->command_ptr->src_row_addr = src_addr;
807
808	dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr,
809				   sizeof(dmov_box), DMA_TO_DEVICE);
810
811	*tx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(tx->mapped_cmd_ptr);
812
813	dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr_ptr,
814				   sizeof(u32), DMA_TO_DEVICE);
815
816	/* Save tx_count to use in Callback */
817	tx->tx_count = tx_count;
818	msm_hs_write(uport, UARTDM_NCF_TX_ADDR, tx_count);
819
820	/* Disable the tx_ready interrupt */
821	msm_uport->imr_reg &= ~UARTDM_ISR_TX_READY_BMSK;
822	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
823	msm_dmov_enqueue_cmd(msm_uport->dma_tx_channel, &tx->xfer);
824}
825
826/* Start to receive the next chunk of data */
827static void msm_hs_start_rx_locked(struct uart_port *uport)
828{
829	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
830
831	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
832	msm_hs_write(uport, UARTDM_DMRX_ADDR, UARTDM_RX_BUF_SIZE);
833	msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_ENABLE);
834	msm_uport->imr_reg |= UARTDM_ISR_RXLEV_BMSK;
835	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
836
837	msm_uport->rx.flush = FLUSH_NONE;
838	msm_dmov_enqueue_cmd(msm_uport->dma_rx_channel, &msm_uport->rx.xfer);
839
840	/* might have finished RX and be ready to clock off */
841	hrtimer_start(&msm_uport->clk_off_timer, msm_uport->clk_off_delay,
842			HRTIMER_MODE_REL);
843}
844
845/* Enable the transmitter Interrupt */
846static void msm_hs_start_tx_locked(struct uart_port *uport)
847{
848	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
849
850	clk_enable(msm_uport->clk);
851
852	if (msm_uport->exit_lpm_cb)
853		msm_uport->exit_lpm_cb(uport);
854
855	if (msm_uport->tx.tx_ready_int_en == 0) {
856		msm_uport->tx.tx_ready_int_en = 1;
857		msm_hs_submit_tx_locked(uport);
858	}
859
860	clk_disable(msm_uport->clk);
861}
862
863/*
864 *  This routine is called when we are done with a DMA transfer
865 *
866 *  This routine is registered with Data mover when we set
867 *  up a Data Mover transfer. It is called from Data mover ISR
868 *  when the DMA transfer is done.
869 */
870static void msm_hs_dmov_tx_callback(struct msm_dmov_cmd *cmd_ptr,
871					unsigned int result,
872					struct msm_dmov_errdata *err)
873{
874	unsigned long flags;
875	struct msm_hs_port *msm_uport;
876
877	/* DMA did not finish properly */
878	WARN_ON((((result & RSLT_FIFO_CNTR_BMSK) >> 28) == 1) &&
879		!(result & RSLT_VLD));
880
881	msm_uport = container_of(cmd_ptr, struct msm_hs_port, tx.xfer);
882
883	spin_lock_irqsave(&msm_uport->uport.lock, flags);
884	clk_enable(msm_uport->clk);
885
886	msm_uport->imr_reg |= UARTDM_ISR_TX_READY_BMSK;
887	msm_hs_write(&msm_uport->uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
888
889	clk_disable(msm_uport->clk);
890	spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
891}
892
893/*
894 * This routine is called when we are done with a DMA transfer or the
895 * a flush has been sent to the data mover driver.
896 *
897 * This routine is registered with Data mover when we set up a Data Mover
898 *  transfer. It is called from Data mover ISR when the DMA transfer is done.
899 */
900static void msm_hs_dmov_rx_callback(struct msm_dmov_cmd *cmd_ptr,
901					unsigned int result,
902					struct msm_dmov_errdata *err)
903{
904	int retval;
905	int rx_count;
906	unsigned long status;
907	unsigned int error_f = 0;
908	unsigned long flags;
909	unsigned int flush;
910	struct tty_struct *tty;
911	struct uart_port *uport;
912	struct msm_hs_port *msm_uport;
913
914	msm_uport = container_of(cmd_ptr, struct msm_hs_port, rx.xfer);
915	uport = &msm_uport->uport;
916
917	spin_lock_irqsave(&uport->lock, flags);
918	clk_enable(msm_uport->clk);
919
920	tty = uport->state->port.tty;
921
922	msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
923
924	status = msm_hs_read(uport, UARTDM_SR_ADDR);
925
926	/* overflow is not connect to data in a FIFO */
927	if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) &&
928		     (uport->read_status_mask & CREAD))) {
929		tty_insert_flip_char(tty, 0, TTY_OVERRUN);
930		uport->icount.buf_overrun++;
931		error_f = 1;
932	}
933
934	if (!(uport->ignore_status_mask & INPCK))
935		status = status & ~(UARTDM_SR_PAR_FRAME_BMSK);
936
937	if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) {
938		/* Can not tell difference between parity & frame error */
939		uport->icount.parity++;
940		error_f = 1;
941		if (uport->ignore_status_mask & IGNPAR)
942			tty_insert_flip_char(tty, 0, TTY_PARITY);
943	}
944
945	if (error_f)
946		msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
947
948	if (msm_uport->clk_req_off_state == CLK_REQ_OFF_FLUSH_ISSUED)
949		msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_FLUSHED;
950
951	flush = msm_uport->rx.flush;
952	if (flush == FLUSH_IGNORE)
953		msm_hs_start_rx_locked(uport);
954	if (flush == FLUSH_STOP)
955		msm_uport->rx.flush = FLUSH_SHUTDOWN;
956	if (flush >= FLUSH_DATA_INVALID)
957		goto out;
958
959	rx_count = msm_hs_read(uport, UARTDM_RX_TOTAL_SNAP_ADDR);
960
961	if (0 != (uport->read_status_mask & CREAD)) {
962		retval = tty_insert_flip_string(tty, msm_uport->rx.buffer,
963						rx_count);
964		BUG_ON(retval != rx_count);
965	}
966
967	msm_hs_start_rx_locked(uport);
968
969out:
970	clk_disable(msm_uport->clk);
971
972	spin_unlock_irqrestore(&uport->lock, flags);
973
974	if (flush < FLUSH_DATA_INVALID)
975		queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work);
976}
977
978static void msm_hs_tty_flip_buffer_work(struct work_struct *work)
979{
980	struct msm_hs_port *msm_uport =
981			container_of(work, struct msm_hs_port, rx.tty_work);
982	struct tty_struct *tty = msm_uport->uport.state->port.tty;
983
984	tty_flip_buffer_push(tty);
985}
986
987/*
988 *  Standard API, Current states of modem control inputs
989 *
990 * Since CTS can be handled entirely by HARDWARE we always
991 * indicate clear to send and count on the TX FIFO to block when
992 * it fills up.
993 *
994 * - TIOCM_DCD
995 * - TIOCM_CTS
996 * - TIOCM_DSR
997 * - TIOCM_RI
998 *  (Unsupported) DCD and DSR will return them high. RI will return low.
999 */
1000static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport)
1001{
1002	return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS;
1003}
1004
1005/*
1006 * True enables UART auto RFR, which indicates we are ready for data if the RX
1007 * buffer is not full. False disables auto RFR, and deasserts RFR to indicate
1008 * we are not ready for data. Must be called with UART clock on.
1009 */
1010static void set_rfr_locked(struct uart_port *uport, int auto_rfr)
1011{
1012	unsigned int data;
1013
1014	data = msm_hs_read(uport, UARTDM_MR1_ADDR);
1015
1016	if (auto_rfr) {
1017		/* enable auto ready-for-receiving */
1018		data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
1019		msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1020	} else {
1021		/* disable auto ready-for-receiving */
1022		data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK;
1023		msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1024		/* RFR is active low, set high */
1025		msm_hs_write(uport, UARTDM_CR_ADDR, RFR_HIGH);
1026	}
1027}
1028
1029/*
1030 *  Standard API, used to set or clear RFR
1031 */
1032static void msm_hs_set_mctrl_locked(struct uart_port *uport,
1033				    unsigned int mctrl)
1034{
1035	unsigned int auto_rfr;
1036	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1037
1038	clk_enable(msm_uport->clk);
1039
1040	auto_rfr = TIOCM_RTS & mctrl ? 1 : 0;
1041	set_rfr_locked(uport, auto_rfr);
1042
1043	clk_disable(msm_uport->clk);
1044}
1045
1046/* Standard API, Enable modem status (CTS) interrupt  */
1047static void msm_hs_enable_ms_locked(struct uart_port *uport)
1048{
1049	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1050
1051	clk_enable(msm_uport->clk);
1052
1053	/* Enable DELTA_CTS Interrupt */
1054	msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK;
1055	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1056
1057	clk_disable(msm_uport->clk);
1058
1059}
1060
1061/*
1062 *  Standard API, Break Signal
1063 *
1064 * Control the transmission of a break signal. ctl eq 0 => break
1065 * signal terminate ctl ne 0 => start break signal
1066 */
1067static void msm_hs_break_ctl(struct uart_port *uport, int ctl)
1068{
1069	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1070
1071	clk_enable(msm_uport->clk);
1072	msm_hs_write(uport, UARTDM_CR_ADDR, ctl ? START_BREAK : STOP_BREAK);
1073	clk_disable(msm_uport->clk);
1074}
1075
1076static void msm_hs_config_port(struct uart_port *uport, int cfg_flags)
1077{
1078	unsigned long flags;
1079
1080	spin_lock_irqsave(&uport->lock, flags);
1081	if (cfg_flags & UART_CONFIG_TYPE) {
1082		uport->type = PORT_MSM;
1083		msm_hs_request_port(uport);
1084	}
1085	spin_unlock_irqrestore(&uport->lock, flags);
1086}
1087
1088/*  Handle CTS changes (Called from interrupt handler) */
1089static void msm_hs_handle_delta_cts_locked(struct uart_port *uport)
1090{
1091	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1092
1093	clk_enable(msm_uport->clk);
1094
1095	/* clear interrupt */
1096	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
1097	uport->icount.cts++;
1098
1099	clk_disable(msm_uport->clk);
1100
1101	/* clear the IOCTL TIOCMIWAIT if called */
1102	wake_up_interruptible(&uport->state->port.delta_msr_wait);
1103}
1104
1105/* check if the TX path is flushed, and if so clock off
1106 * returns 0 did not clock off, need to retry (still sending final byte)
1107 *        -1 did not clock off, do not retry
1108 *         1 if we clocked off
1109 */
1110static int msm_hs_check_clock_off_locked(struct uart_port *uport)
1111{
1112	unsigned long sr_status;
1113	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1114	struct circ_buf *tx_buf = &uport->state->xmit;
1115
1116	/* Cancel if tx tty buffer is not empty, dma is in flight,
1117	 * or tx fifo is not empty, or rx fifo is not empty */
1118	if (msm_uport->clk_state != MSM_HS_CLK_REQUEST_OFF ||
1119	    !uart_circ_empty(tx_buf) || msm_uport->tx.dma_in_flight ||
1120	    (msm_uport->imr_reg & UARTDM_ISR_TXLEV_BMSK) ||
1121	    !(msm_uport->imr_reg & UARTDM_ISR_RXLEV_BMSK))  {
1122		return -1;
1123	}
1124
1125	/* Make sure the uart is finished with the last byte */
1126	sr_status = msm_hs_read(uport, UARTDM_SR_ADDR);
1127	if (!(sr_status & UARTDM_SR_TXEMT_BMSK))
1128		return 0;  /* retry */
1129
1130	/* Make sure forced RXSTALE flush complete */
1131	switch (msm_uport->clk_req_off_state) {
1132	case CLK_REQ_OFF_START:
1133		msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_ISSUED;
1134		msm_hs_write(uport, UARTDM_CR_ADDR, FORCE_STALE_EVENT);
1135		return 0;  /* RXSTALE flush not complete - retry */
1136	case CLK_REQ_OFF_RXSTALE_ISSUED:
1137	case CLK_REQ_OFF_FLUSH_ISSUED:
1138		return 0;  /* RXSTALE flush not complete - retry */
1139	case CLK_REQ_OFF_RXSTALE_FLUSHED:
1140		break;  /* continue */
1141	}
1142
1143	if (msm_uport->rx.flush != FLUSH_SHUTDOWN) {
1144		if (msm_uport->rx.flush == FLUSH_NONE)
1145			msm_hs_stop_rx_locked(uport);
1146		return 0;  /* come back later to really clock off */
1147	}
1148
1149	/* we really want to clock off */
1150	clk_disable(msm_uport->clk);
1151	msm_uport->clk_state = MSM_HS_CLK_OFF;
1152
1153	if (use_low_power_rx_wakeup(msm_uport)) {
1154		msm_uport->rx_wakeup.ignore = 1;
1155		enable_irq(msm_uport->rx_wakeup.irq);
1156	}
1157	return 1;
1158}
1159
1160static enum hrtimer_restart msm_hs_clk_off_retry(struct hrtimer *timer)
1161{
1162	unsigned long flags;
1163	int ret = HRTIMER_NORESTART;
1164	struct msm_hs_port *msm_uport = container_of(timer, struct msm_hs_port,
1165						     clk_off_timer);
1166	struct uart_port *uport = &msm_uport->uport;
1167
1168	spin_lock_irqsave(&uport->lock, flags);
1169
1170	if (!msm_hs_check_clock_off_locked(uport)) {
1171		hrtimer_forward_now(timer, msm_uport->clk_off_delay);
1172		ret = HRTIMER_RESTART;
1173	}
1174
1175	spin_unlock_irqrestore(&uport->lock, flags);
1176
1177	return ret;
1178}
1179
1180static irqreturn_t msm_hs_isr(int irq, void *dev)
1181{
1182	unsigned long flags;
1183	unsigned long isr_status;
1184	struct msm_hs_port *msm_uport = dev;
1185	struct uart_port *uport = &msm_uport->uport;
1186	struct circ_buf *tx_buf = &uport->state->xmit;
1187	struct msm_hs_tx *tx = &msm_uport->tx;
1188	struct msm_hs_rx *rx = &msm_uport->rx;
1189
1190	spin_lock_irqsave(&uport->lock, flags);
1191
1192	isr_status = msm_hs_read(uport, UARTDM_MISR_ADDR);
1193
1194	/* Uart RX starting */
1195	if (isr_status & UARTDM_ISR_RXLEV_BMSK) {
1196		msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK;
1197		msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1198	}
1199	/* Stale rx interrupt */
1200	if (isr_status & UARTDM_ISR_RXSTALE_BMSK) {
1201		msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
1202		msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
1203
1204		if (msm_uport->clk_req_off_state == CLK_REQ_OFF_RXSTALE_ISSUED)
1205			msm_uport->clk_req_off_state =
1206					CLK_REQ_OFF_FLUSH_ISSUED;
1207		if (rx->flush == FLUSH_NONE) {
1208			rx->flush = FLUSH_DATA_READY;
1209			msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
1210		}
1211	}
1212	/* tx ready interrupt */
1213	if (isr_status & UARTDM_ISR_TX_READY_BMSK) {
1214		/* Clear  TX Ready */
1215		msm_hs_write(uport, UARTDM_CR_ADDR, CLEAR_TX_READY);
1216
1217		if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) {
1218			msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
1219			msm_hs_write(uport, UARTDM_IMR_ADDR,
1220				     msm_uport->imr_reg);
1221		}
1222
1223		/* Complete DMA TX transactions and submit new transactions */
1224		tx_buf->tail = (tx_buf->tail + tx->tx_count) & ~UART_XMIT_SIZE;
1225
1226		tx->dma_in_flight = 0;
1227
1228		uport->icount.tx += tx->tx_count;
1229		if (tx->tx_ready_int_en)
1230			msm_hs_submit_tx_locked(uport);
1231
1232		if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS)
1233			uart_write_wakeup(uport);
1234	}
1235	if (isr_status & UARTDM_ISR_TXLEV_BMSK) {
1236		/* TX FIFO is empty */
1237		msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK;
1238		msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1239		if (!msm_hs_check_clock_off_locked(uport))
1240			hrtimer_start(&msm_uport->clk_off_timer,
1241				      msm_uport->clk_off_delay,
1242				      HRTIMER_MODE_REL);
1243	}
1244
1245	/* Change in CTS interrupt */
1246	if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK)
1247		msm_hs_handle_delta_cts_locked(uport);
1248
1249	spin_unlock_irqrestore(&uport->lock, flags);
1250
1251	return IRQ_HANDLED;
1252}
1253
1254void msm_hs_request_clock_off_locked(struct uart_port *uport)
1255{
1256	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1257
1258	if (msm_uport->clk_state == MSM_HS_CLK_ON) {
1259		msm_uport->clk_state = MSM_HS_CLK_REQUEST_OFF;
1260		msm_uport->clk_req_off_state = CLK_REQ_OFF_START;
1261		if (!use_low_power_rx_wakeup(msm_uport))
1262			set_rfr_locked(uport, 0);
1263		msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
1264		msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1265	}
1266}
1267
1268/**
1269 * msm_hs_request_clock_off - request to (i.e. asynchronously) turn off uart
1270 * clock once pending TX is flushed and Rx DMA command is terminated.
1271 * @uport: uart_port structure for the device instance.
1272 *
1273 * This functions puts the device into a partially active low power mode. It
1274 * waits to complete all pending tx transactions, flushes ongoing Rx DMA
1275 * command and terminates UART side Rx transaction, puts UART HW in non DMA
1276 * mode and then clocks off the device. A client calls this when no UART
1277 * data is expected. msm_request_clock_on() must be called before any further
1278 * UART can be sent or received.
1279 */
1280void msm_hs_request_clock_off(struct uart_port *uport)
1281{
1282	unsigned long flags;
1283
1284	spin_lock_irqsave(&uport->lock, flags);
1285	msm_hs_request_clock_off_locked(uport);
1286	spin_unlock_irqrestore(&uport->lock, flags);
1287}
1288
1289void msm_hs_request_clock_on_locked(struct uart_port *uport)
1290{
1291	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1292	unsigned int data;
1293
1294	switch (msm_uport->clk_state) {
1295	case MSM_HS_CLK_OFF:
1296		clk_enable(msm_uport->clk);
1297		disable_irq_nosync(msm_uport->rx_wakeup.irq);
1298		/* fall-through */
1299	case MSM_HS_CLK_REQUEST_OFF:
1300		if (msm_uport->rx.flush == FLUSH_STOP ||
1301		    msm_uport->rx.flush == FLUSH_SHUTDOWN) {
1302			msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
1303			data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
1304			data |= UARTDM_RX_DM_EN_BMSK;
1305			msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
1306		}
1307		hrtimer_try_to_cancel(&msm_uport->clk_off_timer);
1308		if (msm_uport->rx.flush == FLUSH_SHUTDOWN)
1309			msm_hs_start_rx_locked(uport);
1310		if (!use_low_power_rx_wakeup(msm_uport))
1311			set_rfr_locked(uport, 1);
1312		if (msm_uport->rx.flush == FLUSH_STOP)
1313			msm_uport->rx.flush = FLUSH_IGNORE;
1314		msm_uport->clk_state = MSM_HS_CLK_ON;
1315		break;
1316	case MSM_HS_CLK_ON:
1317		break;
1318	case MSM_HS_CLK_PORT_OFF:
1319		break;
1320	}
1321}
1322
1323/**
1324 * msm_hs_request_clock_on - Switch the device from partially active low
1325 * power mode to fully active (i.e. clock on) mode.
1326 * @uport: uart_port structure for the device.
1327 *
1328 * This function switches on the input clock, puts UART HW into DMA mode
1329 * and enqueues an Rx DMA command if the device was in partially active
1330 * mode. It has no effect if called with the device in inactive state.
1331 */
1332void msm_hs_request_clock_on(struct uart_port *uport)
1333{
1334	unsigned long flags;
1335
1336	spin_lock_irqsave(&uport->lock, flags);
1337	msm_hs_request_clock_on_locked(uport);
1338	spin_unlock_irqrestore(&uport->lock, flags);
1339}
1340
1341static irqreturn_t msm_hs_rx_wakeup_isr(int irq, void *dev)
1342{
1343	unsigned int wakeup = 0;
1344	unsigned long flags;
1345	struct msm_hs_port *msm_uport = dev;
1346	struct uart_port *uport = &msm_uport->uport;
1347	struct tty_struct *tty = NULL;
1348
1349	spin_lock_irqsave(&uport->lock, flags);
1350	if (msm_uport->clk_state == MSM_HS_CLK_OFF) {
1351		/* ignore the first irq - it is a pending irq that occurred
1352		 * before enable_irq() */
1353		if (msm_uport->rx_wakeup.ignore)
1354			msm_uport->rx_wakeup.ignore = 0;
1355		else
1356			wakeup = 1;
1357	}
1358
1359	if (wakeup) {
1360		/* the uart was clocked off during an rx, wake up and
1361		 * optionally inject char into tty rx */
1362		msm_hs_request_clock_on_locked(uport);
1363		if (msm_uport->rx_wakeup.inject_rx) {
1364			tty = uport->state->port.tty;
1365			tty_insert_flip_char(tty,
1366					     msm_uport->rx_wakeup.rx_to_inject,
1367					     TTY_NORMAL);
1368			queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work);
1369		}
1370	}
1371
1372	spin_unlock_irqrestore(&uport->lock, flags);
1373
1374	return IRQ_HANDLED;
1375}
1376
1377static const char *msm_hs_type(struct uart_port *port)
1378{
1379	return (port->type == PORT_MSM) ? "MSM_HS_UART" : NULL;
1380}
1381
1382/* Called when port is opened */
1383static int msm_hs_startup(struct uart_port *uport)
1384{
1385	int ret;
1386	int rfr_level;
1387	unsigned long flags;
1388	unsigned int data;
1389	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1390	struct circ_buf *tx_buf = &uport->state->xmit;
1391	struct msm_hs_tx *tx = &msm_uport->tx;
1392	struct msm_hs_rx *rx = &msm_uport->rx;
1393
1394	rfr_level = uport->fifosize;
1395	if (rfr_level > 16)
1396		rfr_level -= 16;
1397
1398	tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE,
1399				      DMA_TO_DEVICE);
1400
1401	/* do not let tty layer execute RX in global workqueue, use a
1402	 * dedicated workqueue managed by this driver */
1403	uport->state->port.tty->low_latency = 1;
1404
1405	/* turn on uart clk */
1406	ret = msm_hs_init_clk_locked(uport);
1407	if (unlikely(ret)) {
1408		printk(KERN_ERR "Turning uartclk failed!\n");
1409		goto err_msm_hs_init_clk;
1410	}
1411
1412	/* Set auto RFR Level */
1413	data = msm_hs_read(uport, UARTDM_MR1_ADDR);
1414	data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK;
1415	data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK;
1416	data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2));
1417	data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level);
1418	msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1419
1420	/* Make sure RXSTALE count is non-zero */
1421	data = msm_hs_read(uport, UARTDM_IPR_ADDR);
1422	if (!data) {
1423		data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK;
1424		msm_hs_write(uport, UARTDM_IPR_ADDR, data);
1425	}
1426
1427	/* Enable Data Mover Mode */
1428	data = UARTDM_TX_DM_EN_BMSK | UARTDM_RX_DM_EN_BMSK;
1429	msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
1430
1431	/* Reset TX */
1432	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
1433	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
1434	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
1435	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_BREAK_INT);
1436	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
1437	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
1438	msm_hs_write(uport, UARTDM_CR_ADDR, RFR_LOW);
1439	/* Turn on Uart Receiver */
1440	msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_EN_BMSK);
1441
1442	/* Turn on Uart Transmitter */
1443	msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_EN_BMSK);
1444
1445	/* Initialize the tx */
1446	tx->tx_ready_int_en = 0;
1447	tx->dma_in_flight = 0;
1448
1449	tx->xfer.complete_func = msm_hs_dmov_tx_callback;
1450	tx->xfer.execute_func = NULL;
1451
1452	tx->command_ptr->cmd = CMD_LC |
1453	    CMD_DST_CRCI(msm_uport->dma_tx_crci) | CMD_MODE_BOX;
1454
1455	tx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
1456					   | (MSM_UARTDM_BURST_SIZE);
1457
1458	tx->command_ptr->row_offset = (MSM_UARTDM_BURST_SIZE << 16);
1459
1460	tx->command_ptr->dst_row_addr =
1461	    msm_uport->uport.mapbase + UARTDM_TF_ADDR;
1462
1463
1464	/* Turn on Uart Receive */
1465	rx->xfer.complete_func = msm_hs_dmov_rx_callback;
1466	rx->xfer.execute_func = NULL;
1467
1468	rx->command_ptr->cmd = CMD_LC |
1469	    CMD_SRC_CRCI(msm_uport->dma_rx_crci) | CMD_MODE_BOX;
1470
1471	rx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
1472					   | (MSM_UARTDM_BURST_SIZE);
1473	rx->command_ptr->row_offset =  MSM_UARTDM_BURST_SIZE;
1474	rx->command_ptr->src_row_addr = uport->mapbase + UARTDM_RF_ADDR;
1475
1476
1477	msm_uport->imr_reg |= UARTDM_ISR_RXSTALE_BMSK;
1478	/* Enable reading the current CTS, no harm even if CTS is ignored */
1479	msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK;
1480
1481	msm_hs_write(uport, UARTDM_TFWR_ADDR, 0);  /* TXLEV on empty TX fifo */
1482
1483
1484	ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH,
1485			  "msm_hs_uart", msm_uport);
1486	if (unlikely(ret)) {
1487		printk(KERN_ERR "Request msm_hs_uart IRQ failed!\n");
1488		goto err_request_irq;
1489	}
1490	if (use_low_power_rx_wakeup(msm_uport)) {
1491		ret = request_irq(msm_uport->rx_wakeup.irq,
1492				  msm_hs_rx_wakeup_isr,
1493				  IRQF_TRIGGER_FALLING,
1494				  "msm_hs_rx_wakeup", msm_uport);
1495		if (unlikely(ret)) {
1496			printk(KERN_ERR "Request msm_hs_rx_wakeup IRQ failed!\n");
1497			free_irq(uport->irq, msm_uport);
1498			goto err_request_irq;
1499		}
1500		disable_irq(msm_uport->rx_wakeup.irq);
1501	}
1502
1503	spin_lock_irqsave(&uport->lock, flags);
1504
1505	msm_hs_write(uport, UARTDM_RFWR_ADDR, 0);
1506	msm_hs_start_rx_locked(uport);
1507
1508	spin_unlock_irqrestore(&uport->lock, flags);
1509	ret = pm_runtime_set_active(uport->dev);
1510	if (ret)
1511		dev_err(uport->dev, "set active error:%d\n", ret);
1512	pm_runtime_enable(uport->dev);
1513
1514	return 0;
1515
1516err_request_irq:
1517err_msm_hs_init_clk:
1518	dma_unmap_single(uport->dev, tx->dma_base,
1519				UART_XMIT_SIZE, DMA_TO_DEVICE);
1520	return ret;
1521}
1522
1523/* Initialize tx and rx data structures */
1524static int __devinit uartdm_init_port(struct uart_port *uport)
1525{
1526	int ret = 0;
1527	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1528	struct msm_hs_tx *tx = &msm_uport->tx;
1529	struct msm_hs_rx *rx = &msm_uport->rx;
1530
1531	/* Allocate the command pointer. Needs to be 64 bit aligned */
1532	tx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
1533	if (!tx->command_ptr)
1534		return -ENOMEM;
1535
1536	tx->command_ptr_ptr = kmalloc(sizeof(u32), GFP_KERNEL | __GFP_DMA);
1537	if (!tx->command_ptr_ptr) {
1538		ret = -ENOMEM;
1539		goto err_tx_command_ptr_ptr;
1540	}
1541
1542	tx->mapped_cmd_ptr = dma_map_single(uport->dev, tx->command_ptr,
1543					    sizeof(dmov_box), DMA_TO_DEVICE);
1544	tx->mapped_cmd_ptr_ptr = dma_map_single(uport->dev,
1545						tx->command_ptr_ptr,
1546						sizeof(u32), DMA_TO_DEVICE);
1547	tx->xfer.cmdptr = DMOV_CMD_ADDR(tx->mapped_cmd_ptr_ptr);
1548
1549	init_waitqueue_head(&rx->wait);
1550
1551	rx->pool = dma_pool_create("rx_buffer_pool", uport->dev,
1552				   UARTDM_RX_BUF_SIZE, 16, 0);
1553	if (!rx->pool) {
1554		pr_err("%s(): cannot allocate rx_buffer_pool", __func__);
1555		ret = -ENOMEM;
1556		goto err_dma_pool_create;
1557	}
1558
1559	rx->buffer = dma_pool_alloc(rx->pool, GFP_KERNEL, &rx->rbuffer);
1560	if (!rx->buffer) {
1561		pr_err("%s(): cannot allocate rx->buffer", __func__);
1562		ret = -ENOMEM;
1563		goto err_dma_pool_alloc;
1564	}
1565
1566	/* Allocate the command pointer. Needs to be 64 bit aligned */
1567	rx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
1568	if (!rx->command_ptr) {
1569		pr_err("%s(): cannot allocate rx->command_ptr", __func__);
1570		ret = -ENOMEM;
1571		goto err_rx_command_ptr;
1572	}
1573
1574	rx->command_ptr_ptr = kmalloc(sizeof(u32), GFP_KERNEL | __GFP_DMA);
1575	if (!rx->command_ptr_ptr) {
1576		pr_err("%s(): cannot allocate rx->command_ptr_ptr", __func__);
1577		ret = -ENOMEM;
1578		goto err_rx_command_ptr_ptr;
1579	}
1580
1581	rx->command_ptr->num_rows = ((UARTDM_RX_BUF_SIZE >> 4) << 16) |
1582					 (UARTDM_RX_BUF_SIZE >> 4);
1583
1584	rx->command_ptr->dst_row_addr = rx->rbuffer;
1585
1586	rx->mapped_cmd_ptr = dma_map_single(uport->dev, rx->command_ptr,
1587					    sizeof(dmov_box), DMA_TO_DEVICE);
1588
1589	*rx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(rx->mapped_cmd_ptr);
1590
1591	rx->cmdptr_dmaaddr = dma_map_single(uport->dev, rx->command_ptr_ptr,
1592					    sizeof(u32), DMA_TO_DEVICE);
1593	rx->xfer.cmdptr = DMOV_CMD_ADDR(rx->cmdptr_dmaaddr);
1594
1595	INIT_WORK(&rx->tty_work, msm_hs_tty_flip_buffer_work);
1596
1597	return ret;
1598
1599err_rx_command_ptr_ptr:
1600	kfree(rx->command_ptr);
1601err_rx_command_ptr:
1602	dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
1603						msm_uport->rx.rbuffer);
1604err_dma_pool_alloc:
1605	dma_pool_destroy(msm_uport->rx.pool);
1606err_dma_pool_create:
1607	dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr_ptr,
1608				sizeof(u32), DMA_TO_DEVICE);
1609	dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr,
1610				sizeof(dmov_box), DMA_TO_DEVICE);
1611	kfree(msm_uport->tx.command_ptr_ptr);
1612err_tx_command_ptr_ptr:
1613	kfree(msm_uport->tx.command_ptr);
1614	return ret;
1615}
1616
1617static int __devinit msm_hs_probe(struct platform_device *pdev)
1618{
1619	int ret;
1620	struct uart_port *uport;
1621	struct msm_hs_port *msm_uport;
1622	struct resource *resource;
1623	const struct msm_serial_hs_platform_data *pdata =
1624						pdev->dev.platform_data;
1625
1626	if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
1627		printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
1628		return -EINVAL;
1629	}
1630
1631	msm_uport = &q_uart_port[pdev->id];
1632	uport = &msm_uport->uport;
1633
1634	uport->dev = &pdev->dev;
1635
1636	resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1637	if (unlikely(!resource))
1638		return -ENXIO;
1639
1640	uport->mapbase = resource->start;
1641	uport->irq = platform_get_irq(pdev, 0);
1642	if (unlikely(uport->irq < 0))
1643		return -ENXIO;
1644
1645	if (unlikely(irq_set_irq_wake(uport->irq, 1)))
1646		return -ENXIO;
1647
1648	if (pdata == NULL || pdata->rx_wakeup_irq < 0)
1649		msm_uport->rx_wakeup.irq = -1;
1650	else {
1651		msm_uport->rx_wakeup.irq = pdata->rx_wakeup_irq;
1652		msm_uport->rx_wakeup.ignore = 1;
1653		msm_uport->rx_wakeup.inject_rx = pdata->inject_rx_on_wakeup;
1654		msm_uport->rx_wakeup.rx_to_inject = pdata->rx_to_inject;
1655
1656		if (unlikely(msm_uport->rx_wakeup.irq < 0))
1657			return -ENXIO;
1658
1659		if (unlikely(irq_set_irq_wake(msm_uport->rx_wakeup.irq, 1)))
1660			return -ENXIO;
1661	}
1662
1663	if (pdata == NULL)
1664		msm_uport->exit_lpm_cb = NULL;
1665	else
1666		msm_uport->exit_lpm_cb = pdata->exit_lpm_cb;
1667
1668	resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1669						"uartdm_channels");
1670	if (unlikely(!resource))
1671		return -ENXIO;
1672
1673	msm_uport->dma_tx_channel = resource->start;
1674	msm_uport->dma_rx_channel = resource->end;
1675
1676	resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1677						"uartdm_crci");
1678	if (unlikely(!resource))
1679		return -ENXIO;
1680
1681	msm_uport->dma_tx_crci = resource->start;
1682	msm_uport->dma_rx_crci = resource->end;
1683
1684	uport->iotype = UPIO_MEM;
1685	uport->fifosize = UART_FIFOSIZE;
1686	uport->ops = &msm_hs_ops;
1687	uport->flags = UPF_BOOT_AUTOCONF;
1688	uport->uartclk = UARTCLK;
1689	msm_uport->imr_reg = 0x0;
1690	msm_uport->clk = clk_get(&pdev->dev, "uartdm_clk");
1691	if (IS_ERR(msm_uport->clk))
1692		return PTR_ERR(msm_uport->clk);
1693
1694	ret = uartdm_init_port(uport);
1695	if (unlikely(ret))
1696		return ret;
1697
1698	msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
1699	hrtimer_init(&msm_uport->clk_off_timer, CLOCK_MONOTONIC,
1700		     HRTIMER_MODE_REL);
1701	msm_uport->clk_off_timer.function = msm_hs_clk_off_retry;
1702	msm_uport->clk_off_delay = ktime_set(0, 1000000);  /* 1ms */
1703
1704	uport->line = pdev->id;
1705	return uart_add_one_port(&msm_hs_driver, uport);
1706}
1707
1708static int __init msm_serial_hs_init(void)
1709{
1710	int ret, i;
1711
1712	/* Init all UARTS as non-configured */
1713	for (i = 0; i < UARTDM_NR; i++)
1714		q_uart_port[i].uport.type = PORT_UNKNOWN;
1715
1716	msm_hs_workqueue = create_singlethread_workqueue("msm_serial_hs");
1717	if (unlikely(!msm_hs_workqueue))
1718		return -ENOMEM;
1719
1720	ret = uart_register_driver(&msm_hs_driver);
1721	if (unlikely(ret)) {
1722		printk(KERN_ERR "%s failed to load\n", __func__);
1723		goto err_uart_register_driver;
1724	}
1725
1726	ret = platform_driver_register(&msm_serial_hs_platform_driver);
1727	if (ret) {
1728		printk(KERN_ERR "%s failed to load\n", __func__);
1729		goto err_platform_driver_register;
1730	}
1731
1732	return ret;
1733
1734err_platform_driver_register:
1735	uart_unregister_driver(&msm_hs_driver);
1736err_uart_register_driver:
1737	destroy_workqueue(msm_hs_workqueue);
1738	return ret;
1739}
1740module_init(msm_serial_hs_init);
1741
1742/*
1743 *  Called by the upper layer when port is closed.
1744 *     - Disables the port
1745 *     - Unhook the ISR
1746 */
1747static void msm_hs_shutdown(struct uart_port *uport)
1748{
1749	unsigned long flags;
1750	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1751
1752	BUG_ON(msm_uport->rx.flush < FLUSH_STOP);
1753
1754	spin_lock_irqsave(&uport->lock, flags);
1755	clk_enable(msm_uport->clk);
1756
1757	/* Disable the transmitter */
1758	msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_DISABLE_BMSK);
1759	/* Disable the receiver */
1760	msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_DISABLE_BMSK);
1761
1762	pm_runtime_disable(uport->dev);
1763	pm_runtime_set_suspended(uport->dev);
1764
1765	/* Free the interrupt */
1766	free_irq(uport->irq, msm_uport);
1767	if (use_low_power_rx_wakeup(msm_uport))
1768		free_irq(msm_uport->rx_wakeup.irq, msm_uport);
1769
1770	msm_uport->imr_reg = 0;
1771	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1772
1773	wait_event(msm_uport->rx.wait, msm_uport->rx.flush == FLUSH_SHUTDOWN);
1774
1775	clk_disable(msm_uport->clk);  /* to balance local clk_enable() */
1776	if (msm_uport->clk_state != MSM_HS_CLK_OFF)
1777		clk_disable(msm_uport->clk);  /* to balance clk_state */
1778	msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
1779
1780	dma_unmap_single(uport->dev, msm_uport->tx.dma_base,
1781			 UART_XMIT_SIZE, DMA_TO_DEVICE);
1782
1783	spin_unlock_irqrestore(&uport->lock, flags);
1784
1785	if (cancel_work_sync(&msm_uport->rx.tty_work))
1786		msm_hs_tty_flip_buffer_work(&msm_uport->rx.tty_work);
1787}
1788
1789static void __exit msm_serial_hs_exit(void)
1790{
1791	flush_workqueue(msm_hs_workqueue);
1792	destroy_workqueue(msm_hs_workqueue);
1793	platform_driver_unregister(&msm_serial_hs_platform_driver);
1794	uart_unregister_driver(&msm_hs_driver);
1795}
1796module_exit(msm_serial_hs_exit);
1797
1798#ifdef CONFIG_PM_RUNTIME
1799static int msm_hs_runtime_idle(struct device *dev)
1800{
1801	/*
1802	 * returning success from idle results in runtime suspend to be
1803	 * called
1804	 */
1805	return 0;
1806}
1807
1808static int msm_hs_runtime_resume(struct device *dev)
1809{
1810	struct platform_device *pdev = container_of(dev, struct
1811						    platform_device, dev);
1812	struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
1813
1814	msm_hs_request_clock_on(&msm_uport->uport);
1815	return 0;
1816}
1817
1818static int msm_hs_runtime_suspend(struct device *dev)
1819{
1820	struct platform_device *pdev = container_of(dev, struct
1821						    platform_device, dev);
1822	struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
1823
1824	msm_hs_request_clock_off(&msm_uport->uport);
1825	return 0;
1826}
1827#else
1828#define msm_hs_runtime_idle NULL
1829#define msm_hs_runtime_resume NULL
1830#define msm_hs_runtime_suspend NULL
1831#endif
1832
1833static const struct dev_pm_ops msm_hs_dev_pm_ops = {
1834	.runtime_suspend = msm_hs_runtime_suspend,
1835	.runtime_resume  = msm_hs_runtime_resume,
1836	.runtime_idle    = msm_hs_runtime_idle,
1837};
1838
1839static struct platform_driver msm_serial_hs_platform_driver = {
1840	.probe = msm_hs_probe,
1841	.remove = __devexit_p(msm_hs_remove),
1842	.driver = {
1843		.name = "msm_serial_hs",
1844		.owner = THIS_MODULE,
1845		.pm   = &msm_hs_dev_pm_ops,
1846	},
1847};
1848
1849static struct uart_driver msm_hs_driver = {
1850	.owner = THIS_MODULE,
1851	.driver_name = "msm_serial_hs",
1852	.dev_name = "ttyHS",
1853	.nr = UARTDM_NR,
1854	.cons = 0,
1855};
1856
1857static struct uart_ops msm_hs_ops = {
1858	.tx_empty = msm_hs_tx_empty,
1859	.set_mctrl = msm_hs_set_mctrl_locked,
1860	.get_mctrl = msm_hs_get_mctrl_locked,
1861	.stop_tx = msm_hs_stop_tx_locked,
1862	.start_tx = msm_hs_start_tx_locked,
1863	.stop_rx = msm_hs_stop_rx_locked,
1864	.enable_ms = msm_hs_enable_ms_locked,
1865	.break_ctl = msm_hs_break_ctl,
1866	.startup = msm_hs_startup,
1867	.shutdown = msm_hs_shutdown,
1868	.set_termios = msm_hs_set_termios,
1869	.pm = msm_hs_pm,
1870	.type = msm_hs_type,
1871	.config_port = msm_hs_config_port,
1872	.release_port = msm_hs_release_port,
1873	.request_port = msm_hs_request_port,
1874};
1875
1876MODULE_DESCRIPTION("High Speed UART Driver for the MSM chipset");
1877MODULE_VERSION("1.2");
1878MODULE_LICENSE("GPL v2");
1879