1/*
2 * message.c - synchronous message handling
3 */
4
5#include <linux/pci.h>	/* for scatterlist macros */
6#include <linux/usb.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/init.h>
10#include <linux/mm.h>
11#include <linux/timer.h>
12#include <linux/ctype.h>
13#include <linux/nls.h>
14#include <linux/device.h>
15#include <linux/scatterlist.h>
16#include <linux/usb/quirks.h>
17#include <linux/usb/hcd.h>	/* for usbcore internals */
18#include <asm/byteorder.h>
19
20#include "usb.h"
21
22static void cancel_async_set_config(struct usb_device *udev);
23
24struct api_context {
25	struct completion	done;
26	int			status;
27};
28
29static void usb_api_blocking_completion(struct urb *urb)
30{
31	struct api_context *ctx = urb->context;
32
33	ctx->status = urb->status;
34	complete(&ctx->done);
35}
36
37
38/*
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
43 */
44static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45{
46	struct api_context ctx;
47	unsigned long expire;
48	int retval;
49
50	init_completion(&ctx.done);
51	urb->context = &ctx;
52	urb->actual_length = 0;
53	retval = usb_submit_urb(urb, GFP_NOIO);
54	if (unlikely(retval))
55		goto out;
56
57	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58	if (!wait_for_completion_timeout(&ctx.done, expire)) {
59		usb_kill_urb(urb);
60		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61
62		dev_dbg(&urb->dev->dev,
63			"%s timed out on ep%d%s len=%u/%u\n",
64			current->comm,
65			usb_endpoint_num(&urb->ep->desc),
66			usb_urb_dir_in(urb) ? "in" : "out",
67			urb->actual_length,
68			urb->transfer_buffer_length);
69	} else
70		retval = ctx.status;
71out:
72	if (actual_length)
73		*actual_length = urb->actual_length;
74
75	usb_free_urb(urb);
76	return retval;
77}
78
79/*-------------------------------------------------------------------*/
80/* returns status (negative) or length (positive) */
81static int usb_internal_control_msg(struct usb_device *usb_dev,
82				    unsigned int pipe,
83				    struct usb_ctrlrequest *cmd,
84				    void *data, int len, int timeout)
85{
86	struct urb *urb;
87	int retv;
88	int length;
89
90	urb = usb_alloc_urb(0, GFP_NOIO);
91	if (!urb)
92		return -ENOMEM;
93
94	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95			     len, usb_api_blocking_completion, NULL);
96
97	retv = usb_start_wait_urb(urb, timeout, &length);
98	if (retv < 0)
99		return retv;
100	else
101		return length;
102}
103
104/**
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 *	out (if 0 the wait is forever)
116 *
117 * Context: !in_interrupt ()
118 *
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
121 *
122 * If successful, it returns the number of bytes transferred, otherwise a
123 * negative error number.
124 *
125 * Don't use this function from within an interrupt context, like a bottom half
126 * handler.  If you need an asynchronous message, or need to send a message
127 * from within interrupt context, use usb_submit_urb().
128 * If a thread in your driver uses this call, make sure your disconnect()
129 * method can wait for it to complete.  Since you don't have a handle on the
130 * URB used, you can't cancel the request.
131 */
132int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133		    __u8 requesttype, __u16 value, __u16 index, void *data,
134		    __u16 size, int timeout)
135{
136	struct usb_ctrlrequest *dr;
137	int ret;
138
139	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140	if (!dr)
141		return -ENOMEM;
142
143	dr->bRequestType = requesttype;
144	dr->bRequest = request;
145	dr->wValue = cpu_to_le16(value);
146	dr->wIndex = cpu_to_le16(index);
147	dr->wLength = cpu_to_le16(size);
148
149	/* dbg("usb_control_msg"); */
150
151	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152
153	kfree(dr);
154
155	return ret;
156}
157EXPORT_SYMBOL_GPL(usb_control_msg);
158
159/**
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
166 *	in bytes
167 * @timeout: time in msecs to wait for the message to complete before
168 *	timing out (if 0 the wait is forever)
169 *
170 * Context: !in_interrupt ()
171 *
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
174 *
175 * If successful, it returns 0, otherwise a negative error number.  The number
176 * of actual bytes transferred will be stored in the actual_length paramater.
177 *
178 * Don't use this function from within an interrupt context, like a bottom half
179 * handler.  If you need an asynchronous message, or need to send a message
180 * from within interrupt context, use usb_submit_urb() If a thread in your
181 * driver uses this call, make sure your disconnect() method can wait for it to
182 * complete.  Since you don't have a handle on the URB used, you can't cancel
183 * the request.
184 */
185int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186		      void *data, int len, int *actual_length, int timeout)
187{
188	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189}
190EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191
192/**
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
199 *	in bytes
200 * @timeout: time in msecs to wait for the message to complete before
201 *	timing out (if 0 the wait is forever)
202 *
203 * Context: !in_interrupt ()
204 *
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
207 *
208 * If successful, it returns 0, otherwise a negative error number.  The number
209 * of actual bytes transferred will be stored in the actual_length paramater.
210 *
211 * Don't use this function from within an interrupt context, like a bottom half
212 * handler.  If you need an asynchronous message, or need to send a message
213 * from within interrupt context, use usb_submit_urb() If a thread in your
214 * driver uses this call, make sure your disconnect() method can wait for it to
215 * complete.  Since you don't have a handle on the URB used, you can't cancel
216 * the request.
217 *
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
222 */
223int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224		 void *data, int len, int *actual_length, int timeout)
225{
226	struct urb *urb;
227	struct usb_host_endpoint *ep;
228
229	ep = usb_pipe_endpoint(usb_dev, pipe);
230	if (!ep || len < 0)
231		return -EINVAL;
232
233	urb = usb_alloc_urb(0, GFP_KERNEL);
234	if (!urb)
235		return -ENOMEM;
236
237	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238			USB_ENDPOINT_XFER_INT) {
239		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241				usb_api_blocking_completion, NULL,
242				ep->desc.bInterval);
243	} else
244		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245				usb_api_blocking_completion, NULL);
246
247	return usb_start_wait_urb(urb, timeout, actual_length);
248}
249EXPORT_SYMBOL_GPL(usb_bulk_msg);
250
251/*-------------------------------------------------------------------*/
252
253static void sg_clean(struct usb_sg_request *io)
254{
255	if (io->urbs) {
256		while (io->entries--)
257			usb_free_urb(io->urbs [io->entries]);
258		kfree(io->urbs);
259		io->urbs = NULL;
260	}
261	io->dev = NULL;
262}
263
264static void sg_complete(struct urb *urb)
265{
266	struct usb_sg_request *io = urb->context;
267	int status = urb->status;
268
269	spin_lock(&io->lock);
270
271	/* In 2.5 we require hcds' endpoint queues not to progress after fault
272	 * reports, until the completion callback (this!) returns.  That lets
273	 * device driver code (like this routine) unlink queued urbs first,
274	 * if it needs to, since the HC won't work on them at all.  So it's
275	 * not possible for page N+1 to overwrite page N, and so on.
276	 *
277	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278	 * complete before the HCD can get requests away from hardware,
279	 * though never during cleanup after a hard fault.
280	 */
281	if (io->status
282			&& (io->status != -ECONNRESET
283				|| status != -ECONNRESET)
284			&& urb->actual_length) {
285		dev_err(io->dev->bus->controller,
286			"dev %s ep%d%s scatterlist error %d/%d\n",
287			io->dev->devpath,
288			usb_endpoint_num(&urb->ep->desc),
289			usb_urb_dir_in(urb) ? "in" : "out",
290			status, io->status);
291		/* BUG (); */
292	}
293
294	if (io->status == 0 && status && status != -ECONNRESET) {
295		int i, found, retval;
296
297		io->status = status;
298
299		/* the previous urbs, and this one, completed already.
300		 * unlink pending urbs so they won't rx/tx bad data.
301		 * careful: unlink can sometimes be synchronous...
302		 */
303		spin_unlock(&io->lock);
304		for (i = 0, found = 0; i < io->entries; i++) {
305			if (!io->urbs [i] || !io->urbs [i]->dev)
306				continue;
307			if (found) {
308				retval = usb_unlink_urb(io->urbs [i]);
309				if (retval != -EINPROGRESS &&
310				    retval != -ENODEV &&
311				    retval != -EBUSY &&
312				    retval != -EIDRM)
313					dev_err(&io->dev->dev,
314						"%s, unlink --> %d\n",
315						__func__, retval);
316			} else if (urb == io->urbs [i])
317				found = 1;
318		}
319		spin_lock(&io->lock);
320	}
321
322	/* on the last completion, signal usb_sg_wait() */
323	io->bytes += urb->actual_length;
324	io->count--;
325	if (!io->count)
326		complete(&io->complete);
327
328	spin_unlock(&io->lock);
329}
330
331
332/**
333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334 * @io: request block being initialized.  until usb_sg_wait() returns,
335 *	treat this as a pointer to an opaque block of memory,
336 * @dev: the usb device that will send or receive the data
337 * @pipe: endpoint "pipe" used to transfer the data
338 * @period: polling rate for interrupt endpoints, in frames or
339 * 	(for high speed endpoints) microframes; ignored for bulk
340 * @sg: scatterlist entries
341 * @nents: how many entries in the scatterlist
342 * @length: how many bytes to send from the scatterlist, or zero to
343 * 	send every byte identified in the list.
344 * @mem_flags: SLAB_* flags affecting memory allocations in this call
345 *
346 * Returns zero for success, else a negative errno value.  This initializes a
347 * scatter/gather request, allocating resources such as I/O mappings and urb
348 * memory (except maybe memory used by USB controller drivers).
349 *
350 * The request must be issued using usb_sg_wait(), which waits for the I/O to
351 * complete (or to be canceled) and then cleans up all resources allocated by
352 * usb_sg_init().
353 *
354 * The request may be canceled with usb_sg_cancel(), either before or after
355 * usb_sg_wait() is called.
356 */
357int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
358		unsigned pipe, unsigned	period, struct scatterlist *sg,
359		int nents, size_t length, gfp_t mem_flags)
360{
361	int i;
362	int urb_flags;
363	int use_sg;
364
365	if (!io || !dev || !sg
366			|| usb_pipecontrol(pipe)
367			|| usb_pipeisoc(pipe)
368			|| nents <= 0)
369		return -EINVAL;
370
371	spin_lock_init(&io->lock);
372	io->dev = dev;
373	io->pipe = pipe;
374
375	if (dev->bus->sg_tablesize > 0) {
376		use_sg = true;
377		io->entries = 1;
378	} else {
379		use_sg = false;
380		io->entries = nents;
381	}
382
383	/* initialize all the urbs we'll use */
384	io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
385	if (!io->urbs)
386		goto nomem;
387
388	urb_flags = URB_NO_INTERRUPT;
389	if (usb_pipein(pipe))
390		urb_flags |= URB_SHORT_NOT_OK;
391
392	for_each_sg(sg, sg, io->entries, i) {
393		struct urb *urb;
394		unsigned len;
395
396		urb = usb_alloc_urb(0, mem_flags);
397		if (!urb) {
398			io->entries = i;
399			goto nomem;
400		}
401		io->urbs[i] = urb;
402
403		urb->dev = NULL;
404		urb->pipe = pipe;
405		urb->interval = period;
406		urb->transfer_flags = urb_flags;
407		urb->complete = sg_complete;
408		urb->context = io;
409		urb->sg = sg;
410
411		if (use_sg) {
412			/* There is no single transfer buffer */
413			urb->transfer_buffer = NULL;
414			urb->num_sgs = nents;
415
416			/* A length of zero means transfer the whole sg list */
417			len = length;
418			if (len == 0) {
419				struct scatterlist	*sg2;
420				int			j;
421
422				for_each_sg(sg, sg2, nents, j)
423					len += sg2->length;
424			}
425		} else {
426			/*
427			 * Some systems can't use DMA; they use PIO instead.
428			 * For their sakes, transfer_buffer is set whenever
429			 * possible.
430			 */
431			if (!PageHighMem(sg_page(sg)))
432				urb->transfer_buffer = sg_virt(sg);
433			else
434				urb->transfer_buffer = NULL;
435
436			len = sg->length;
437			if (length) {
438				len = min_t(size_t, len, length);
439				length -= len;
440				if (length == 0)
441					io->entries = i + 1;
442			}
443		}
444		urb->transfer_buffer_length = len;
445	}
446	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
447
448	/* transaction state */
449	io->count = io->entries;
450	io->status = 0;
451	io->bytes = 0;
452	init_completion(&io->complete);
453	return 0;
454
455nomem:
456	sg_clean(io);
457	return -ENOMEM;
458}
459EXPORT_SYMBOL_GPL(usb_sg_init);
460
461/**
462 * usb_sg_wait - synchronously execute scatter/gather request
463 * @io: request block handle, as initialized with usb_sg_init().
464 * 	some fields become accessible when this call returns.
465 * Context: !in_interrupt ()
466 *
467 * This function blocks until the specified I/O operation completes.  It
468 * leverages the grouping of the related I/O requests to get good transfer
469 * rates, by queueing the requests.  At higher speeds, such queuing can
470 * significantly improve USB throughput.
471 *
472 * There are three kinds of completion for this function.
473 * (1) success, where io->status is zero.  The number of io->bytes
474 *     transferred is as requested.
475 * (2) error, where io->status is a negative errno value.  The number
476 *     of io->bytes transferred before the error is usually less
477 *     than requested, and can be nonzero.
478 * (3) cancellation, a type of error with status -ECONNRESET that
479 *     is initiated by usb_sg_cancel().
480 *
481 * When this function returns, all memory allocated through usb_sg_init() or
482 * this call will have been freed.  The request block parameter may still be
483 * passed to usb_sg_cancel(), or it may be freed.  It could also be
484 * reinitialized and then reused.
485 *
486 * Data Transfer Rates:
487 *
488 * Bulk transfers are valid for full or high speed endpoints.
489 * The best full speed data rate is 19 packets of 64 bytes each
490 * per frame, or 1216 bytes per millisecond.
491 * The best high speed data rate is 13 packets of 512 bytes each
492 * per microframe, or 52 KBytes per millisecond.
493 *
494 * The reason to use interrupt transfers through this API would most likely
495 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
496 * could be transferred.  That capability is less useful for low or full
497 * speed interrupt endpoints, which allow at most one packet per millisecond,
498 * of at most 8 or 64 bytes (respectively).
499 *
500 * It is not necessary to call this function to reserve bandwidth for devices
501 * under an xHCI host controller, as the bandwidth is reserved when the
502 * configuration or interface alt setting is selected.
503 */
504void usb_sg_wait(struct usb_sg_request *io)
505{
506	int i;
507	int entries = io->entries;
508
509	/* queue the urbs.  */
510	spin_lock_irq(&io->lock);
511	i = 0;
512	while (i < entries && !io->status) {
513		int retval;
514
515		io->urbs[i]->dev = io->dev;
516		retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
517
518		/* after we submit, let completions or cancelations fire;
519		 * we handshake using io->status.
520		 */
521		spin_unlock_irq(&io->lock);
522		switch (retval) {
523			/* maybe we retrying will recover */
524		case -ENXIO:	/* hc didn't queue this one */
525		case -EAGAIN:
526		case -ENOMEM:
527			retval = 0;
528			yield();
529			break;
530
531			/* no error? continue immediately.
532			 *
533			 * NOTE: to work better with UHCI (4K I/O buffer may
534			 * need 3K of TDs) it may be good to limit how many
535			 * URBs are queued at once; N milliseconds?
536			 */
537		case 0:
538			++i;
539			cpu_relax();
540			break;
541
542			/* fail any uncompleted urbs */
543		default:
544			io->urbs[i]->status = retval;
545			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
546				__func__, retval);
547			usb_sg_cancel(io);
548		}
549		spin_lock_irq(&io->lock);
550		if (retval && (io->status == 0 || io->status == -ECONNRESET))
551			io->status = retval;
552	}
553	io->count -= entries - i;
554	if (io->count == 0)
555		complete(&io->complete);
556	spin_unlock_irq(&io->lock);
557
558	/* OK, yes, this could be packaged as non-blocking.
559	 * So could the submit loop above ... but it's easier to
560	 * solve neither problem than to solve both!
561	 */
562	wait_for_completion(&io->complete);
563
564	sg_clean(io);
565}
566EXPORT_SYMBOL_GPL(usb_sg_wait);
567
568/**
569 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
570 * @io: request block, initialized with usb_sg_init()
571 *
572 * This stops a request after it has been started by usb_sg_wait().
573 * It can also prevents one initialized by usb_sg_init() from starting,
574 * so that call just frees resources allocated to the request.
575 */
576void usb_sg_cancel(struct usb_sg_request *io)
577{
578	unsigned long flags;
579
580	spin_lock_irqsave(&io->lock, flags);
581
582	/* shut everything down, if it didn't already */
583	if (!io->status) {
584		int i;
585
586		io->status = -ECONNRESET;
587		spin_unlock(&io->lock);
588		for (i = 0; i < io->entries; i++) {
589			int retval;
590
591			if (!io->urbs [i]->dev)
592				continue;
593			retval = usb_unlink_urb(io->urbs [i]);
594			if (retval != -EINPROGRESS
595					&& retval != -ENODEV
596					&& retval != -EBUSY
597					&& retval != -EIDRM)
598				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
599					__func__, retval);
600		}
601		spin_lock(&io->lock);
602	}
603	spin_unlock_irqrestore(&io->lock, flags);
604}
605EXPORT_SYMBOL_GPL(usb_sg_cancel);
606
607/*-------------------------------------------------------------------*/
608
609/**
610 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
611 * @dev: the device whose descriptor is being retrieved
612 * @type: the descriptor type (USB_DT_*)
613 * @index: the number of the descriptor
614 * @buf: where to put the descriptor
615 * @size: how big is "buf"?
616 * Context: !in_interrupt ()
617 *
618 * Gets a USB descriptor.  Convenience functions exist to simplify
619 * getting some types of descriptors.  Use
620 * usb_get_string() or usb_string() for USB_DT_STRING.
621 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
622 * are part of the device structure.
623 * In addition to a number of USB-standard descriptors, some
624 * devices also use class-specific or vendor-specific descriptors.
625 *
626 * This call is synchronous, and may not be used in an interrupt context.
627 *
628 * Returns the number of bytes received on success, or else the status code
629 * returned by the underlying usb_control_msg() call.
630 */
631int usb_get_descriptor(struct usb_device *dev, unsigned char type,
632		       unsigned char index, void *buf, int size)
633{
634	int i;
635	int result;
636
637	memset(buf, 0, size);	/* Make sure we parse really received data */
638
639	for (i = 0; i < 3; ++i) {
640		/* retry on length 0 or error; some devices are flakey */
641		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
642				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
643				(type << 8) + index, 0, buf, size,
644				USB_CTRL_GET_TIMEOUT);
645		if (result <= 0 && result != -ETIMEDOUT)
646			continue;
647		if (result > 1 && ((u8 *)buf)[1] != type) {
648			result = -ENODATA;
649			continue;
650		}
651		break;
652	}
653	return result;
654}
655EXPORT_SYMBOL_GPL(usb_get_descriptor);
656
657/**
658 * usb_get_string - gets a string descriptor
659 * @dev: the device whose string descriptor is being retrieved
660 * @langid: code for language chosen (from string descriptor zero)
661 * @index: the number of the descriptor
662 * @buf: where to put the string
663 * @size: how big is "buf"?
664 * Context: !in_interrupt ()
665 *
666 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
667 * in little-endian byte order).
668 * The usb_string() function will often be a convenient way to turn
669 * these strings into kernel-printable form.
670 *
671 * Strings may be referenced in device, configuration, interface, or other
672 * descriptors, and could also be used in vendor-specific ways.
673 *
674 * This call is synchronous, and may not be used in an interrupt context.
675 *
676 * Returns the number of bytes received on success, or else the status code
677 * returned by the underlying usb_control_msg() call.
678 */
679static int usb_get_string(struct usb_device *dev, unsigned short langid,
680			  unsigned char index, void *buf, int size)
681{
682	int i;
683	int result;
684
685	for (i = 0; i < 3; ++i) {
686		/* retry on length 0 or stall; some devices are flakey */
687		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
688			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
689			(USB_DT_STRING << 8) + index, langid, buf, size,
690			USB_CTRL_GET_TIMEOUT);
691		if (result == 0 || result == -EPIPE)
692			continue;
693		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
694			result = -ENODATA;
695			continue;
696		}
697		break;
698	}
699	return result;
700}
701
702static void usb_try_string_workarounds(unsigned char *buf, int *length)
703{
704	int newlength, oldlength = *length;
705
706	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
707		if (!isprint(buf[newlength]) || buf[newlength + 1])
708			break;
709
710	if (newlength > 2) {
711		buf[0] = newlength;
712		*length = newlength;
713	}
714}
715
716static int usb_string_sub(struct usb_device *dev, unsigned int langid,
717			  unsigned int index, unsigned char *buf)
718{
719	int rc;
720
721	/* Try to read the string descriptor by asking for the maximum
722	 * possible number of bytes */
723	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
724		rc = -EIO;
725	else
726		rc = usb_get_string(dev, langid, index, buf, 255);
727
728	/* If that failed try to read the descriptor length, then
729	 * ask for just that many bytes */
730	if (rc < 2) {
731		rc = usb_get_string(dev, langid, index, buf, 2);
732		if (rc == 2)
733			rc = usb_get_string(dev, langid, index, buf, buf[0]);
734	}
735
736	if (rc >= 2) {
737		if (!buf[0] && !buf[1])
738			usb_try_string_workarounds(buf, &rc);
739
740		/* There might be extra junk at the end of the descriptor */
741		if (buf[0] < rc)
742			rc = buf[0];
743
744		rc = rc - (rc & 1); /* force a multiple of two */
745	}
746
747	if (rc < 2)
748		rc = (rc < 0 ? rc : -EINVAL);
749
750	return rc;
751}
752
753static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
754{
755	int err;
756
757	if (dev->have_langid)
758		return 0;
759
760	if (dev->string_langid < 0)
761		return -EPIPE;
762
763	err = usb_string_sub(dev, 0, 0, tbuf);
764
765	/* If the string was reported but is malformed, default to english
766	 * (0x0409) */
767	if (err == -ENODATA || (err > 0 && err < 4)) {
768		dev->string_langid = 0x0409;
769		dev->have_langid = 1;
770		dev_err(&dev->dev,
771			"string descriptor 0 malformed (err = %d), "
772			"defaulting to 0x%04x\n",
773				err, dev->string_langid);
774		return 0;
775	}
776
777	/* In case of all other errors, we assume the device is not able to
778	 * deal with strings at all. Set string_langid to -1 in order to
779	 * prevent any string to be retrieved from the device */
780	if (err < 0) {
781		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
782					err);
783		dev->string_langid = -1;
784		return -EPIPE;
785	}
786
787	/* always use the first langid listed */
788	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
789	dev->have_langid = 1;
790	dev_dbg(&dev->dev, "default language 0x%04x\n",
791				dev->string_langid);
792	return 0;
793}
794
795/**
796 * usb_string - returns UTF-8 version of a string descriptor
797 * @dev: the device whose string descriptor is being retrieved
798 * @index: the number of the descriptor
799 * @buf: where to put the string
800 * @size: how big is "buf"?
801 * Context: !in_interrupt ()
802 *
803 * This converts the UTF-16LE encoded strings returned by devices, from
804 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
805 * that are more usable in most kernel contexts.  Note that this function
806 * chooses strings in the first language supported by the device.
807 *
808 * This call is synchronous, and may not be used in an interrupt context.
809 *
810 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
811 */
812int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
813{
814	unsigned char *tbuf;
815	int err;
816
817	if (dev->state == USB_STATE_SUSPENDED)
818		return -EHOSTUNREACH;
819	if (size <= 0 || !buf || !index)
820		return -EINVAL;
821	buf[0] = 0;
822	tbuf = kmalloc(256, GFP_NOIO);
823	if (!tbuf)
824		return -ENOMEM;
825
826	err = usb_get_langid(dev, tbuf);
827	if (err < 0)
828		goto errout;
829
830	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
831	if (err < 0)
832		goto errout;
833
834	size--;		/* leave room for trailing NULL char in output buffer */
835	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
836			UTF16_LITTLE_ENDIAN, buf, size);
837	buf[err] = 0;
838
839	if (tbuf[1] != USB_DT_STRING)
840		dev_dbg(&dev->dev,
841			"wrong descriptor type %02x for string %d (\"%s\")\n",
842			tbuf[1], index, buf);
843
844 errout:
845	kfree(tbuf);
846	return err;
847}
848EXPORT_SYMBOL_GPL(usb_string);
849
850/* one UTF-8-encoded 16-bit character has at most three bytes */
851#define MAX_USB_STRING_SIZE (127 * 3 + 1)
852
853/**
854 * usb_cache_string - read a string descriptor and cache it for later use
855 * @udev: the device whose string descriptor is being read
856 * @index: the descriptor index
857 *
858 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
859 * or NULL if the index is 0 or the string could not be read.
860 */
861char *usb_cache_string(struct usb_device *udev, int index)
862{
863	char *buf;
864	char *smallbuf = NULL;
865	int len;
866
867	if (index <= 0)
868		return NULL;
869
870	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
871	if (buf) {
872		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
873		if (len > 0) {
874			smallbuf = kmalloc(++len, GFP_NOIO);
875			if (!smallbuf)
876				return buf;
877			memcpy(smallbuf, buf, len);
878		}
879		kfree(buf);
880	}
881	return smallbuf;
882}
883
884/*
885 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
886 * @dev: the device whose device descriptor is being updated
887 * @size: how much of the descriptor to read
888 * Context: !in_interrupt ()
889 *
890 * Updates the copy of the device descriptor stored in the device structure,
891 * which dedicates space for this purpose.
892 *
893 * Not exported, only for use by the core.  If drivers really want to read
894 * the device descriptor directly, they can call usb_get_descriptor() with
895 * type = USB_DT_DEVICE and index = 0.
896 *
897 * This call is synchronous, and may not be used in an interrupt context.
898 *
899 * Returns the number of bytes received on success, or else the status code
900 * returned by the underlying usb_control_msg() call.
901 */
902int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
903{
904	struct usb_device_descriptor *desc;
905	int ret;
906
907	if (size > sizeof(*desc))
908		return -EINVAL;
909	desc = kmalloc(sizeof(*desc), GFP_NOIO);
910	if (!desc)
911		return -ENOMEM;
912
913	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
914	if (ret >= 0)
915		memcpy(&dev->descriptor, desc, size);
916	kfree(desc);
917	return ret;
918}
919
920/**
921 * usb_get_status - issues a GET_STATUS call
922 * @dev: the device whose status is being checked
923 * @type: USB_RECIP_*; for device, interface, or endpoint
924 * @target: zero (for device), else interface or endpoint number
925 * @data: pointer to two bytes of bitmap data
926 * Context: !in_interrupt ()
927 *
928 * Returns device, interface, or endpoint status.  Normally only of
929 * interest to see if the device is self powered, or has enabled the
930 * remote wakeup facility; or whether a bulk or interrupt endpoint
931 * is halted ("stalled").
932 *
933 * Bits in these status bitmaps are set using the SET_FEATURE request,
934 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
935 * function should be used to clear halt ("stall") status.
936 *
937 * This call is synchronous, and may not be used in an interrupt context.
938 *
939 * Returns the number of bytes received on success, or else the status code
940 * returned by the underlying usb_control_msg() call.
941 */
942int usb_get_status(struct usb_device *dev, int type, int target, void *data)
943{
944	int ret;
945	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
946
947	if (!status)
948		return -ENOMEM;
949
950	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
951		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
952		sizeof(*status), USB_CTRL_GET_TIMEOUT);
953
954	*(u16 *)data = *status;
955	kfree(status);
956	return ret;
957}
958EXPORT_SYMBOL_GPL(usb_get_status);
959
960/**
961 * usb_clear_halt - tells device to clear endpoint halt/stall condition
962 * @dev: device whose endpoint is halted
963 * @pipe: endpoint "pipe" being cleared
964 * Context: !in_interrupt ()
965 *
966 * This is used to clear halt conditions for bulk and interrupt endpoints,
967 * as reported by URB completion status.  Endpoints that are halted are
968 * sometimes referred to as being "stalled".  Such endpoints are unable
969 * to transmit or receive data until the halt status is cleared.  Any URBs
970 * queued for such an endpoint should normally be unlinked by the driver
971 * before clearing the halt condition, as described in sections 5.7.5
972 * and 5.8.5 of the USB 2.0 spec.
973 *
974 * Note that control and isochronous endpoints don't halt, although control
975 * endpoints report "protocol stall" (for unsupported requests) using the
976 * same status code used to report a true stall.
977 *
978 * This call is synchronous, and may not be used in an interrupt context.
979 *
980 * Returns zero on success, or else the status code returned by the
981 * underlying usb_control_msg() call.
982 */
983int usb_clear_halt(struct usb_device *dev, int pipe)
984{
985	int result;
986	int endp = usb_pipeendpoint(pipe);
987
988	if (usb_pipein(pipe))
989		endp |= USB_DIR_IN;
990
991	/* we don't care if it wasn't halted first. in fact some devices
992	 * (like some ibmcam model 1 units) seem to expect hosts to make
993	 * this request for iso endpoints, which can't halt!
994	 */
995	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
996		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
997		USB_ENDPOINT_HALT, endp, NULL, 0,
998		USB_CTRL_SET_TIMEOUT);
999
1000	/* don't un-halt or force to DATA0 except on success */
1001	if (result < 0)
1002		return result;
1003
1004	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1005	 * the clear "took", so some devices could lock up if you check...
1006	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1007	 *
1008	 * NOTE:  make sure the logic here doesn't diverge much from
1009	 * the copy in usb-storage, for as long as we need two copies.
1010	 */
1011
1012	usb_reset_endpoint(dev, endp);
1013
1014	return 0;
1015}
1016EXPORT_SYMBOL_GPL(usb_clear_halt);
1017
1018static int create_intf_ep_devs(struct usb_interface *intf)
1019{
1020	struct usb_device *udev = interface_to_usbdev(intf);
1021	struct usb_host_interface *alt = intf->cur_altsetting;
1022	int i;
1023
1024	if (intf->ep_devs_created || intf->unregistering)
1025		return 0;
1026
1027	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1028		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1029	intf->ep_devs_created = 1;
1030	return 0;
1031}
1032
1033static void remove_intf_ep_devs(struct usb_interface *intf)
1034{
1035	struct usb_host_interface *alt = intf->cur_altsetting;
1036	int i;
1037
1038	if (!intf->ep_devs_created)
1039		return;
1040
1041	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1042		usb_remove_ep_devs(&alt->endpoint[i]);
1043	intf->ep_devs_created = 0;
1044}
1045
1046/**
1047 * usb_disable_endpoint -- Disable an endpoint by address
1048 * @dev: the device whose endpoint is being disabled
1049 * @epaddr: the endpoint's address.  Endpoint number for output,
1050 *	endpoint number + USB_DIR_IN for input
1051 * @reset_hardware: flag to erase any endpoint state stored in the
1052 *	controller hardware
1053 *
1054 * Disables the endpoint for URB submission and nukes all pending URBs.
1055 * If @reset_hardware is set then also deallocates hcd/hardware state
1056 * for the endpoint.
1057 */
1058void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1059		bool reset_hardware)
1060{
1061	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1062	struct usb_host_endpoint *ep;
1063
1064	if (!dev)
1065		return;
1066
1067	if (usb_endpoint_out(epaddr)) {
1068		ep = dev->ep_out[epnum];
1069		if (reset_hardware)
1070			dev->ep_out[epnum] = NULL;
1071	} else {
1072		ep = dev->ep_in[epnum];
1073		if (reset_hardware)
1074			dev->ep_in[epnum] = NULL;
1075	}
1076	if (ep) {
1077		ep->enabled = 0;
1078		usb_hcd_flush_endpoint(dev, ep);
1079		if (reset_hardware)
1080			usb_hcd_disable_endpoint(dev, ep);
1081	}
1082}
1083
1084/**
1085 * usb_reset_endpoint - Reset an endpoint's state.
1086 * @dev: the device whose endpoint is to be reset
1087 * @epaddr: the endpoint's address.  Endpoint number for output,
1088 *	endpoint number + USB_DIR_IN for input
1089 *
1090 * Resets any host-side endpoint state such as the toggle bit,
1091 * sequence number or current window.
1092 */
1093void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1094{
1095	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1096	struct usb_host_endpoint *ep;
1097
1098	if (usb_endpoint_out(epaddr))
1099		ep = dev->ep_out[epnum];
1100	else
1101		ep = dev->ep_in[epnum];
1102	if (ep)
1103		usb_hcd_reset_endpoint(dev, ep);
1104}
1105EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1106
1107
1108/**
1109 * usb_disable_interface -- Disable all endpoints for an interface
1110 * @dev: the device whose interface is being disabled
1111 * @intf: pointer to the interface descriptor
1112 * @reset_hardware: flag to erase any endpoint state stored in the
1113 *	controller hardware
1114 *
1115 * Disables all the endpoints for the interface's current altsetting.
1116 */
1117void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1118		bool reset_hardware)
1119{
1120	struct usb_host_interface *alt = intf->cur_altsetting;
1121	int i;
1122
1123	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1124		usb_disable_endpoint(dev,
1125				alt->endpoint[i].desc.bEndpointAddress,
1126				reset_hardware);
1127	}
1128}
1129
1130/**
1131 * usb_disable_device - Disable all the endpoints for a USB device
1132 * @dev: the device whose endpoints are being disabled
1133 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1134 *
1135 * Disables all the device's endpoints, potentially including endpoint 0.
1136 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1137 * pending urbs) and usbcore state for the interfaces, so that usbcore
1138 * must usb_set_configuration() before any interfaces could be used.
1139 */
1140void usb_disable_device(struct usb_device *dev, int skip_ep0)
1141{
1142	int i;
1143	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1144
1145	/* getting rid of interfaces will disconnect
1146	 * any drivers bound to them (a key side effect)
1147	 */
1148	if (dev->actconfig) {
1149		/*
1150		 * FIXME: In order to avoid self-deadlock involving the
1151		 * bandwidth_mutex, we have to mark all the interfaces
1152		 * before unregistering any of them.
1153		 */
1154		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1155			dev->actconfig->interface[i]->unregistering = 1;
1156
1157		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1158			struct usb_interface	*interface;
1159
1160			/* remove this interface if it has been registered */
1161			interface = dev->actconfig->interface[i];
1162			if (!device_is_registered(&interface->dev))
1163				continue;
1164			dev_dbg(&dev->dev, "unregistering interface %s\n",
1165				dev_name(&interface->dev));
1166			remove_intf_ep_devs(interface);
1167			device_del(&interface->dev);
1168		}
1169
1170		/* Now that the interfaces are unbound, nobody should
1171		 * try to access them.
1172		 */
1173		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1174			put_device(&dev->actconfig->interface[i]->dev);
1175			dev->actconfig->interface[i] = NULL;
1176		}
1177		dev->actconfig = NULL;
1178		if (dev->state == USB_STATE_CONFIGURED)
1179			usb_set_device_state(dev, USB_STATE_ADDRESS);
1180	}
1181
1182	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1183		skip_ep0 ? "non-ep0" : "all");
1184	if (hcd->driver->check_bandwidth) {
1185		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1186		for (i = skip_ep0; i < 16; ++i) {
1187			usb_disable_endpoint(dev, i, false);
1188			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1189		}
1190		/* Remove endpoints from the host controller internal state */
1191		mutex_lock(hcd->bandwidth_mutex);
1192		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1193		mutex_unlock(hcd->bandwidth_mutex);
1194		/* Second pass: remove endpoint pointers */
1195	}
1196	for (i = skip_ep0; i < 16; ++i) {
1197		usb_disable_endpoint(dev, i, true);
1198		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1199	}
1200}
1201
1202/**
1203 * usb_enable_endpoint - Enable an endpoint for USB communications
1204 * @dev: the device whose interface is being enabled
1205 * @ep: the endpoint
1206 * @reset_ep: flag to reset the endpoint state
1207 *
1208 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1209 * For control endpoints, both the input and output sides are handled.
1210 */
1211void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1212		bool reset_ep)
1213{
1214	int epnum = usb_endpoint_num(&ep->desc);
1215	int is_out = usb_endpoint_dir_out(&ep->desc);
1216	int is_control = usb_endpoint_xfer_control(&ep->desc);
1217
1218	if (reset_ep)
1219		usb_hcd_reset_endpoint(dev, ep);
1220	if (is_out || is_control)
1221		dev->ep_out[epnum] = ep;
1222	if (!is_out || is_control)
1223		dev->ep_in[epnum] = ep;
1224	ep->enabled = 1;
1225}
1226
1227/**
1228 * usb_enable_interface - Enable all the endpoints for an interface
1229 * @dev: the device whose interface is being enabled
1230 * @intf: pointer to the interface descriptor
1231 * @reset_eps: flag to reset the endpoints' state
1232 *
1233 * Enables all the endpoints for the interface's current altsetting.
1234 */
1235void usb_enable_interface(struct usb_device *dev,
1236		struct usb_interface *intf, bool reset_eps)
1237{
1238	struct usb_host_interface *alt = intf->cur_altsetting;
1239	int i;
1240
1241	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1242		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1243}
1244
1245/**
1246 * usb_set_interface - Makes a particular alternate setting be current
1247 * @dev: the device whose interface is being updated
1248 * @interface: the interface being updated
1249 * @alternate: the setting being chosen.
1250 * Context: !in_interrupt ()
1251 *
1252 * This is used to enable data transfers on interfaces that may not
1253 * be enabled by default.  Not all devices support such configurability.
1254 * Only the driver bound to an interface may change its setting.
1255 *
1256 * Within any given configuration, each interface may have several
1257 * alternative settings.  These are often used to control levels of
1258 * bandwidth consumption.  For example, the default setting for a high
1259 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1260 * while interrupt transfers of up to 3KBytes per microframe are legal.
1261 * Also, isochronous endpoints may never be part of an
1262 * interface's default setting.  To access such bandwidth, alternate
1263 * interface settings must be made current.
1264 *
1265 * Note that in the Linux USB subsystem, bandwidth associated with
1266 * an endpoint in a given alternate setting is not reserved until an URB
1267 * is submitted that needs that bandwidth.  Some other operating systems
1268 * allocate bandwidth early, when a configuration is chosen.
1269 *
1270 * This call is synchronous, and may not be used in an interrupt context.
1271 * Also, drivers must not change altsettings while urbs are scheduled for
1272 * endpoints in that interface; all such urbs must first be completed
1273 * (perhaps forced by unlinking).
1274 *
1275 * Returns zero on success, or else the status code returned by the
1276 * underlying usb_control_msg() call.
1277 */
1278int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1279{
1280	struct usb_interface *iface;
1281	struct usb_host_interface *alt;
1282	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1283	int ret;
1284	int manual = 0;
1285	unsigned int epaddr;
1286	unsigned int pipe;
1287
1288	if (dev->state == USB_STATE_SUSPENDED)
1289		return -EHOSTUNREACH;
1290
1291	iface = usb_ifnum_to_if(dev, interface);
1292	if (!iface) {
1293		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1294			interface);
1295		return -EINVAL;
1296	}
1297	if (iface->unregistering)
1298		return -ENODEV;
1299
1300	alt = usb_altnum_to_altsetting(iface, alternate);
1301	if (!alt) {
1302		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1303			 alternate);
1304		return -EINVAL;
1305	}
1306
1307	/* Make sure we have enough bandwidth for this alternate interface.
1308	 * Remove the current alt setting and add the new alt setting.
1309	 */
1310	mutex_lock(hcd->bandwidth_mutex);
1311	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1312	if (ret < 0) {
1313		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1314				alternate);
1315		mutex_unlock(hcd->bandwidth_mutex);
1316		return ret;
1317	}
1318
1319	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1320		ret = -EPIPE;
1321	else
1322		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1323				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1324				   alternate, interface, NULL, 0, 5000);
1325
1326	/* 9.4.10 says devices don't need this and are free to STALL the
1327	 * request if the interface only has one alternate setting.
1328	 */
1329	if (ret == -EPIPE && iface->num_altsetting == 1) {
1330		dev_dbg(&dev->dev,
1331			"manual set_interface for iface %d, alt %d\n",
1332			interface, alternate);
1333		manual = 1;
1334	} else if (ret < 0) {
1335		/* Re-instate the old alt setting */
1336		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1337		mutex_unlock(hcd->bandwidth_mutex);
1338		return ret;
1339	}
1340	mutex_unlock(hcd->bandwidth_mutex);
1341
1342	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1343	 * when they implement async or easily-killable versions of this or
1344	 * other "should-be-internal" functions (like clear_halt).
1345	 * should hcd+usbcore postprocess control requests?
1346	 */
1347
1348	/* prevent submissions using previous endpoint settings */
1349	if (iface->cur_altsetting != alt) {
1350		remove_intf_ep_devs(iface);
1351		usb_remove_sysfs_intf_files(iface);
1352	}
1353	usb_disable_interface(dev, iface, true);
1354
1355	iface->cur_altsetting = alt;
1356
1357	/* If the interface only has one altsetting and the device didn't
1358	 * accept the request, we attempt to carry out the equivalent action
1359	 * by manually clearing the HALT feature for each endpoint in the
1360	 * new altsetting.
1361	 */
1362	if (manual) {
1363		int i;
1364
1365		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1366			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1367			pipe = __create_pipe(dev,
1368					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1369					(usb_endpoint_out(epaddr) ?
1370					USB_DIR_OUT : USB_DIR_IN);
1371
1372			usb_clear_halt(dev, pipe);
1373		}
1374	}
1375
1376	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1377	 *
1378	 * Note:
1379	 * Despite EP0 is always present in all interfaces/AS, the list of
1380	 * endpoints from the descriptor does not contain EP0. Due to its
1381	 * omnipresence one might expect EP0 being considered "affected" by
1382	 * any SetInterface request and hence assume toggles need to be reset.
1383	 * However, EP0 toggles are re-synced for every individual transfer
1384	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1385	 * (Likewise, EP0 never "halts" on well designed devices.)
1386	 */
1387	usb_enable_interface(dev, iface, true);
1388	if (device_is_registered(&iface->dev)) {
1389		usb_create_sysfs_intf_files(iface);
1390		create_intf_ep_devs(iface);
1391	}
1392	return 0;
1393}
1394EXPORT_SYMBOL_GPL(usb_set_interface);
1395
1396/**
1397 * usb_reset_configuration - lightweight device reset
1398 * @dev: the device whose configuration is being reset
1399 *
1400 * This issues a standard SET_CONFIGURATION request to the device using
1401 * the current configuration.  The effect is to reset most USB-related
1402 * state in the device, including interface altsettings (reset to zero),
1403 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1404 * endpoints).  Other usbcore state is unchanged, including bindings of
1405 * usb device drivers to interfaces.
1406 *
1407 * Because this affects multiple interfaces, avoid using this with composite
1408 * (multi-interface) devices.  Instead, the driver for each interface may
1409 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1410 * some devices don't support the SET_INTERFACE request, and others won't
1411 * reset all the interface state (notably endpoint state).  Resetting the whole
1412 * configuration would affect other drivers' interfaces.
1413 *
1414 * The caller must own the device lock.
1415 *
1416 * Returns zero on success, else a negative error code.
1417 */
1418int usb_reset_configuration(struct usb_device *dev)
1419{
1420	int			i, retval;
1421	struct usb_host_config	*config;
1422	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1423
1424	if (dev->state == USB_STATE_SUSPENDED)
1425		return -EHOSTUNREACH;
1426
1427	/* caller must have locked the device and must own
1428	 * the usb bus readlock (so driver bindings are stable);
1429	 * calls during probe() are fine
1430	 */
1431
1432	for (i = 1; i < 16; ++i) {
1433		usb_disable_endpoint(dev, i, true);
1434		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1435	}
1436
1437	config = dev->actconfig;
1438	retval = 0;
1439	mutex_lock(hcd->bandwidth_mutex);
1440	/* Make sure we have enough bandwidth for each alternate setting 0 */
1441	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1442		struct usb_interface *intf = config->interface[i];
1443		struct usb_host_interface *alt;
1444
1445		alt = usb_altnum_to_altsetting(intf, 0);
1446		if (!alt)
1447			alt = &intf->altsetting[0];
1448		if (alt != intf->cur_altsetting)
1449			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1450					intf->cur_altsetting, alt);
1451		if (retval < 0)
1452			break;
1453	}
1454	/* If not, reinstate the old alternate settings */
1455	if (retval < 0) {
1456reset_old_alts:
1457		for (i--; i >= 0; i--) {
1458			struct usb_interface *intf = config->interface[i];
1459			struct usb_host_interface *alt;
1460
1461			alt = usb_altnum_to_altsetting(intf, 0);
1462			if (!alt)
1463				alt = &intf->altsetting[0];
1464			if (alt != intf->cur_altsetting)
1465				usb_hcd_alloc_bandwidth(dev, NULL,
1466						alt, intf->cur_altsetting);
1467		}
1468		mutex_unlock(hcd->bandwidth_mutex);
1469		return retval;
1470	}
1471	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1472			USB_REQ_SET_CONFIGURATION, 0,
1473			config->desc.bConfigurationValue, 0,
1474			NULL, 0, USB_CTRL_SET_TIMEOUT);
1475	if (retval < 0)
1476		goto reset_old_alts;
1477	mutex_unlock(hcd->bandwidth_mutex);
1478
1479	/* re-init hc/hcd interface/endpoint state */
1480	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1481		struct usb_interface *intf = config->interface[i];
1482		struct usb_host_interface *alt;
1483
1484		alt = usb_altnum_to_altsetting(intf, 0);
1485
1486		/* No altsetting 0?  We'll assume the first altsetting.
1487		 * We could use a GetInterface call, but if a device is
1488		 * so non-compliant that it doesn't have altsetting 0
1489		 * then I wouldn't trust its reply anyway.
1490		 */
1491		if (!alt)
1492			alt = &intf->altsetting[0];
1493
1494		if (alt != intf->cur_altsetting) {
1495			remove_intf_ep_devs(intf);
1496			usb_remove_sysfs_intf_files(intf);
1497		}
1498		intf->cur_altsetting = alt;
1499		usb_enable_interface(dev, intf, true);
1500		if (device_is_registered(&intf->dev)) {
1501			usb_create_sysfs_intf_files(intf);
1502			create_intf_ep_devs(intf);
1503		}
1504	}
1505	return 0;
1506}
1507EXPORT_SYMBOL_GPL(usb_reset_configuration);
1508
1509static void usb_release_interface(struct device *dev)
1510{
1511	struct usb_interface *intf = to_usb_interface(dev);
1512	struct usb_interface_cache *intfc =
1513			altsetting_to_usb_interface_cache(intf->altsetting);
1514
1515	kref_put(&intfc->ref, usb_release_interface_cache);
1516	kfree(intf);
1517}
1518
1519#ifdef	CONFIG_HOTPLUG
1520static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1521{
1522	struct usb_device *usb_dev;
1523	struct usb_interface *intf;
1524	struct usb_host_interface *alt;
1525
1526	intf = to_usb_interface(dev);
1527	usb_dev = interface_to_usbdev(intf);
1528	alt = intf->cur_altsetting;
1529
1530	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1531		   alt->desc.bInterfaceClass,
1532		   alt->desc.bInterfaceSubClass,
1533		   alt->desc.bInterfaceProtocol))
1534		return -ENOMEM;
1535
1536	if (add_uevent_var(env,
1537		   "MODALIAS=usb:"
1538		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1539		   le16_to_cpu(usb_dev->descriptor.idVendor),
1540		   le16_to_cpu(usb_dev->descriptor.idProduct),
1541		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1542		   usb_dev->descriptor.bDeviceClass,
1543		   usb_dev->descriptor.bDeviceSubClass,
1544		   usb_dev->descriptor.bDeviceProtocol,
1545		   alt->desc.bInterfaceClass,
1546		   alt->desc.bInterfaceSubClass,
1547		   alt->desc.bInterfaceProtocol))
1548		return -ENOMEM;
1549
1550	return 0;
1551}
1552
1553#else
1554
1555static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1556{
1557	return -ENODEV;
1558}
1559#endif	/* CONFIG_HOTPLUG */
1560
1561struct device_type usb_if_device_type = {
1562	.name =		"usb_interface",
1563	.release =	usb_release_interface,
1564	.uevent =	usb_if_uevent,
1565};
1566
1567static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1568						struct usb_host_config *config,
1569						u8 inum)
1570{
1571	struct usb_interface_assoc_descriptor *retval = NULL;
1572	struct usb_interface_assoc_descriptor *intf_assoc;
1573	int first_intf;
1574	int last_intf;
1575	int i;
1576
1577	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1578		intf_assoc = config->intf_assoc[i];
1579		if (intf_assoc->bInterfaceCount == 0)
1580			continue;
1581
1582		first_intf = intf_assoc->bFirstInterface;
1583		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1584		if (inum >= first_intf && inum <= last_intf) {
1585			if (!retval)
1586				retval = intf_assoc;
1587			else
1588				dev_err(&dev->dev, "Interface #%d referenced"
1589					" by multiple IADs\n", inum);
1590		}
1591	}
1592
1593	return retval;
1594}
1595
1596
1597/*
1598 * Internal function to queue a device reset
1599 *
1600 * This is initialized into the workstruct in 'struct
1601 * usb_device->reset_ws' that is launched by
1602 * message.c:usb_set_configuration() when initializing each 'struct
1603 * usb_interface'.
1604 *
1605 * It is safe to get the USB device without reference counts because
1606 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1607 * this function will be ran only if @iface is alive (and before
1608 * freeing it any scheduled instances of it will have been cancelled).
1609 *
1610 * We need to set a flag (usb_dev->reset_running) because when we call
1611 * the reset, the interfaces might be unbound. The current interface
1612 * cannot try to remove the queued work as it would cause a deadlock
1613 * (you cannot remove your work from within your executing
1614 * workqueue). This flag lets it know, so that
1615 * usb_cancel_queued_reset() doesn't try to do it.
1616 *
1617 * See usb_queue_reset_device() for more details
1618 */
1619static void __usb_queue_reset_device(struct work_struct *ws)
1620{
1621	int rc;
1622	struct usb_interface *iface =
1623		container_of(ws, struct usb_interface, reset_ws);
1624	struct usb_device *udev = interface_to_usbdev(iface);
1625
1626	rc = usb_lock_device_for_reset(udev, iface);
1627	if (rc >= 0) {
1628		iface->reset_running = 1;
1629		usb_reset_device(udev);
1630		iface->reset_running = 0;
1631		usb_unlock_device(udev);
1632	}
1633}
1634
1635
1636/*
1637 * usb_set_configuration - Makes a particular device setting be current
1638 * @dev: the device whose configuration is being updated
1639 * @configuration: the configuration being chosen.
1640 * Context: !in_interrupt(), caller owns the device lock
1641 *
1642 * This is used to enable non-default device modes.  Not all devices
1643 * use this kind of configurability; many devices only have one
1644 * configuration.
1645 *
1646 * @configuration is the value of the configuration to be installed.
1647 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1648 * must be non-zero; a value of zero indicates that the device in
1649 * unconfigured.  However some devices erroneously use 0 as one of their
1650 * configuration values.  To help manage such devices, this routine will
1651 * accept @configuration = -1 as indicating the device should be put in
1652 * an unconfigured state.
1653 *
1654 * USB device configurations may affect Linux interoperability,
1655 * power consumption and the functionality available.  For example,
1656 * the default configuration is limited to using 100mA of bus power,
1657 * so that when certain device functionality requires more power,
1658 * and the device is bus powered, that functionality should be in some
1659 * non-default device configuration.  Other device modes may also be
1660 * reflected as configuration options, such as whether two ISDN
1661 * channels are available independently; and choosing between open
1662 * standard device protocols (like CDC) or proprietary ones.
1663 *
1664 * Note that a non-authorized device (dev->authorized == 0) will only
1665 * be put in unconfigured mode.
1666 *
1667 * Note that USB has an additional level of device configurability,
1668 * associated with interfaces.  That configurability is accessed using
1669 * usb_set_interface().
1670 *
1671 * This call is synchronous. The calling context must be able to sleep,
1672 * must own the device lock, and must not hold the driver model's USB
1673 * bus mutex; usb interface driver probe() methods cannot use this routine.
1674 *
1675 * Returns zero on success, or else the status code returned by the
1676 * underlying call that failed.  On successful completion, each interface
1677 * in the original device configuration has been destroyed, and each one
1678 * in the new configuration has been probed by all relevant usb device
1679 * drivers currently known to the kernel.
1680 */
1681int usb_set_configuration(struct usb_device *dev, int configuration)
1682{
1683	int i, ret;
1684	struct usb_host_config *cp = NULL;
1685	struct usb_interface **new_interfaces = NULL;
1686	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1687	int n, nintf;
1688
1689	if (dev->authorized == 0 || configuration == -1)
1690		configuration = 0;
1691	else {
1692		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1693			if (dev->config[i].desc.bConfigurationValue ==
1694					configuration) {
1695				cp = &dev->config[i];
1696				break;
1697			}
1698		}
1699	}
1700	if ((!cp && configuration != 0))
1701		return -EINVAL;
1702
1703	/* The USB spec says configuration 0 means unconfigured.
1704	 * But if a device includes a configuration numbered 0,
1705	 * we will accept it as a correctly configured state.
1706	 * Use -1 if you really want to unconfigure the device.
1707	 */
1708	if (cp && configuration == 0)
1709		dev_warn(&dev->dev, "config 0 descriptor??\n");
1710
1711	/* Allocate memory for new interfaces before doing anything else,
1712	 * so that if we run out then nothing will have changed. */
1713	n = nintf = 0;
1714	if (cp) {
1715		nintf = cp->desc.bNumInterfaces;
1716		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1717				GFP_NOIO);
1718		if (!new_interfaces) {
1719			dev_err(&dev->dev, "Out of memory\n");
1720			return -ENOMEM;
1721		}
1722
1723		for (; n < nintf; ++n) {
1724			new_interfaces[n] = kzalloc(
1725					sizeof(struct usb_interface),
1726					GFP_NOIO);
1727			if (!new_interfaces[n]) {
1728				dev_err(&dev->dev, "Out of memory\n");
1729				ret = -ENOMEM;
1730free_interfaces:
1731				while (--n >= 0)
1732					kfree(new_interfaces[n]);
1733				kfree(new_interfaces);
1734				return ret;
1735			}
1736		}
1737
1738		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1739		if (i < 0)
1740			dev_warn(&dev->dev, "new config #%d exceeds power "
1741					"limit by %dmA\n",
1742					configuration, -i);
1743	}
1744
1745	/* Wake up the device so we can send it the Set-Config request */
1746	ret = usb_autoresume_device(dev);
1747	if (ret)
1748		goto free_interfaces;
1749
1750	/* if it's already configured, clear out old state first.
1751	 * getting rid of old interfaces means unbinding their drivers.
1752	 */
1753	if (dev->state != USB_STATE_ADDRESS)
1754		usb_disable_device(dev, 1);	/* Skip ep0 */
1755
1756	/* Get rid of pending async Set-Config requests for this device */
1757	cancel_async_set_config(dev);
1758
1759	/* Make sure we have bandwidth (and available HCD resources) for this
1760	 * configuration.  Remove endpoints from the schedule if we're dropping
1761	 * this configuration to set configuration 0.  After this point, the
1762	 * host controller will not allow submissions to dropped endpoints.  If
1763	 * this call fails, the device state is unchanged.
1764	 */
1765	mutex_lock(hcd->bandwidth_mutex);
1766	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1767	if (ret < 0) {
1768		mutex_unlock(hcd->bandwidth_mutex);
1769		usb_autosuspend_device(dev);
1770		goto free_interfaces;
1771	}
1772
1773	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1774			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1775			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1776	if (ret < 0) {
1777		/* All the old state is gone, so what else can we do?
1778		 * The device is probably useless now anyway.
1779		 */
1780		cp = NULL;
1781	}
1782
1783	dev->actconfig = cp;
1784	if (!cp) {
1785		usb_set_device_state(dev, USB_STATE_ADDRESS);
1786		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1787		mutex_unlock(hcd->bandwidth_mutex);
1788		usb_autosuspend_device(dev);
1789		goto free_interfaces;
1790	}
1791	mutex_unlock(hcd->bandwidth_mutex);
1792	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1793
1794	/* Initialize the new interface structures and the
1795	 * hc/hcd/usbcore interface/endpoint state.
1796	 */
1797	for (i = 0; i < nintf; ++i) {
1798		struct usb_interface_cache *intfc;
1799		struct usb_interface *intf;
1800		struct usb_host_interface *alt;
1801
1802		cp->interface[i] = intf = new_interfaces[i];
1803		intfc = cp->intf_cache[i];
1804		intf->altsetting = intfc->altsetting;
1805		intf->num_altsetting = intfc->num_altsetting;
1806		kref_get(&intfc->ref);
1807
1808		alt = usb_altnum_to_altsetting(intf, 0);
1809
1810		/* No altsetting 0?  We'll assume the first altsetting.
1811		 * We could use a GetInterface call, but if a device is
1812		 * so non-compliant that it doesn't have altsetting 0
1813		 * then I wouldn't trust its reply anyway.
1814		 */
1815		if (!alt)
1816			alt = &intf->altsetting[0];
1817
1818		intf->intf_assoc =
1819			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1820		intf->cur_altsetting = alt;
1821		usb_enable_interface(dev, intf, true);
1822		intf->dev.parent = &dev->dev;
1823		intf->dev.driver = NULL;
1824		intf->dev.bus = &usb_bus_type;
1825		intf->dev.type = &usb_if_device_type;
1826		intf->dev.groups = usb_interface_groups;
1827		intf->dev.dma_mask = dev->dev.dma_mask;
1828		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1829		intf->minor = -1;
1830		device_initialize(&intf->dev);
1831		pm_runtime_no_callbacks(&intf->dev);
1832		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1833			dev->bus->busnum, dev->devpath,
1834			configuration, alt->desc.bInterfaceNumber);
1835	}
1836	kfree(new_interfaces);
1837
1838	if (cp->string == NULL &&
1839			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1840		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1841
1842	/* Now that all the interfaces are set up, register them
1843	 * to trigger binding of drivers to interfaces.  probe()
1844	 * routines may install different altsettings and may
1845	 * claim() any interfaces not yet bound.  Many class drivers
1846	 * need that: CDC, audio, video, etc.
1847	 */
1848	for (i = 0; i < nintf; ++i) {
1849		struct usb_interface *intf = cp->interface[i];
1850
1851		dev_dbg(&dev->dev,
1852			"adding %s (config #%d, interface %d)\n",
1853			dev_name(&intf->dev), configuration,
1854			intf->cur_altsetting->desc.bInterfaceNumber);
1855		device_enable_async_suspend(&intf->dev);
1856		ret = device_add(&intf->dev);
1857		if (ret != 0) {
1858			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1859				dev_name(&intf->dev), ret);
1860			continue;
1861		}
1862		create_intf_ep_devs(intf);
1863	}
1864
1865	usb_autosuspend_device(dev);
1866	return 0;
1867}
1868
1869static LIST_HEAD(set_config_list);
1870static DEFINE_SPINLOCK(set_config_lock);
1871
1872struct set_config_request {
1873	struct usb_device	*udev;
1874	int			config;
1875	struct work_struct	work;
1876	struct list_head	node;
1877};
1878
1879/* Worker routine for usb_driver_set_configuration() */
1880static void driver_set_config_work(struct work_struct *work)
1881{
1882	struct set_config_request *req =
1883		container_of(work, struct set_config_request, work);
1884	struct usb_device *udev = req->udev;
1885
1886	usb_lock_device(udev);
1887	spin_lock(&set_config_lock);
1888	list_del(&req->node);
1889	spin_unlock(&set_config_lock);
1890
1891	if (req->config >= -1)		/* Is req still valid? */
1892		usb_set_configuration(udev, req->config);
1893	usb_unlock_device(udev);
1894	usb_put_dev(udev);
1895	kfree(req);
1896}
1897
1898/* Cancel pending Set-Config requests for a device whose configuration
1899 * was just changed
1900 */
1901static void cancel_async_set_config(struct usb_device *udev)
1902{
1903	struct set_config_request *req;
1904
1905	spin_lock(&set_config_lock);
1906	list_for_each_entry(req, &set_config_list, node) {
1907		if (req->udev == udev)
1908			req->config = -999;	/* Mark as cancelled */
1909	}
1910	spin_unlock(&set_config_lock);
1911}
1912
1913/**
1914 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1915 * @udev: the device whose configuration is being updated
1916 * @config: the configuration being chosen.
1917 * Context: In process context, must be able to sleep
1918 *
1919 * Device interface drivers are not allowed to change device configurations.
1920 * This is because changing configurations will destroy the interface the
1921 * driver is bound to and create new ones; it would be like a floppy-disk
1922 * driver telling the computer to replace the floppy-disk drive with a
1923 * tape drive!
1924 *
1925 * Still, in certain specialized circumstances the need may arise.  This
1926 * routine gets around the normal restrictions by using a work thread to
1927 * submit the change-config request.
1928 *
1929 * Returns 0 if the request was successfully queued, error code otherwise.
1930 * The caller has no way to know whether the queued request will eventually
1931 * succeed.
1932 */
1933int usb_driver_set_configuration(struct usb_device *udev, int config)
1934{
1935	struct set_config_request *req;
1936
1937	req = kmalloc(sizeof(*req), GFP_KERNEL);
1938	if (!req)
1939		return -ENOMEM;
1940	req->udev = udev;
1941	req->config = config;
1942	INIT_WORK(&req->work, driver_set_config_work);
1943
1944	spin_lock(&set_config_lock);
1945	list_add(&req->node, &set_config_list);
1946	spin_unlock(&set_config_lock);
1947
1948	usb_get_dev(udev);
1949	schedule_work(&req->work);
1950	return 0;
1951}
1952EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1953