1/* linux/drivers/usb/gadget/s3c-hsotg.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 *		http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 *      Ben Dooks <ben@simtec.co.uk>
9 *      http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16*/
17
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/spinlock.h>
21#include <linux/interrupt.h>
22#include <linux/platform_device.h>
23#include <linux/dma-mapping.h>
24#include <linux/debugfs.h>
25#include <linux/seq_file.h>
26#include <linux/delay.h>
27#include <linux/io.h>
28#include <linux/slab.h>
29#include <linux/clk.h>
30
31#include <linux/usb/ch9.h>
32#include <linux/usb/gadget.h>
33
34#include <mach/map.h>
35
36#include <plat/regs-usb-hsotg-phy.h>
37#include <plat/regs-usb-hsotg.h>
38#include <mach/regs-sys.h>
39#include <plat/udc-hs.h>
40#include <plat/cpu.h>
41
42#define DMA_ADDR_INVALID (~((dma_addr_t)0))
43
44/* EP0_MPS_LIMIT
45 *
46 * Unfortunately there seems to be a limit of the amount of data that can
47 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
48 * packets (which practically means 1 packet and 63 bytes of data) when the
49 * MPS is set to 64.
50 *
51 * This means if we are wanting to move >127 bytes of data, we need to
52 * split the transactions up, but just doing one packet at a time does
53 * not work (this may be an implicit DATA0 PID on first packet of the
54 * transaction) and doing 2 packets is outside the controller's limits.
55 *
56 * If we try to lower the MPS size for EP0, then no transfers work properly
57 * for EP0, and the system will fail basic enumeration. As no cause for this
58 * has currently been found, we cannot support any large IN transfers for
59 * EP0.
60 */
61#define EP0_MPS_LIMIT	64
62
63struct s3c_hsotg;
64struct s3c_hsotg_req;
65
66/**
67 * struct s3c_hsotg_ep - driver endpoint definition.
68 * @ep: The gadget layer representation of the endpoint.
69 * @name: The driver generated name for the endpoint.
70 * @queue: Queue of requests for this endpoint.
71 * @parent: Reference back to the parent device structure.
72 * @req: The current request that the endpoint is processing. This is
73 *       used to indicate an request has been loaded onto the endpoint
74 *       and has yet to be completed (maybe due to data move, or simply
75 *	 awaiting an ack from the core all the data has been completed).
76 * @debugfs: File entry for debugfs file for this endpoint.
77 * @lock: State lock to protect contents of endpoint.
78 * @dir_in: Set to true if this endpoint is of the IN direction, which
79 *	    means that it is sending data to the Host.
80 * @index: The index for the endpoint registers.
81 * @name: The name array passed to the USB core.
82 * @halted: Set if the endpoint has been halted.
83 * @periodic: Set if this is a periodic ep, such as Interrupt
84 * @sent_zlp: Set if we've sent a zero-length packet.
85 * @total_data: The total number of data bytes done.
86 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
87 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
88 * @last_load: The offset of data for the last start of request.
89 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
90 *
91 * This is the driver's state for each registered enpoint, allowing it
92 * to keep track of transactions that need doing. Each endpoint has a
93 * lock to protect the state, to try and avoid using an overall lock
94 * for the host controller as much as possible.
95 *
96 * For periodic IN endpoints, we have fifo_size and fifo_load to try
97 * and keep track of the amount of data in the periodic FIFO for each
98 * of these as we don't have a status register that tells us how much
99 * is in each of them. (note, this may actually be useless information
100 * as in shared-fifo mode periodic in acts like a single-frame packet
101 * buffer than a fifo)
102 */
103struct s3c_hsotg_ep {
104	struct usb_ep		ep;
105	struct list_head	queue;
106	struct s3c_hsotg	*parent;
107	struct s3c_hsotg_req	*req;
108	struct dentry		*debugfs;
109
110	spinlock_t		lock;
111
112	unsigned long		total_data;
113	unsigned int		size_loaded;
114	unsigned int		last_load;
115	unsigned int		fifo_load;
116	unsigned short		fifo_size;
117
118	unsigned char		dir_in;
119	unsigned char		index;
120
121	unsigned int		halted:1;
122	unsigned int		periodic:1;
123	unsigned int		sent_zlp:1;
124
125	char			name[10];
126};
127
128#define S3C_HSOTG_EPS	(8+1)	/* limit to 9 for the moment */
129
130/**
131 * struct s3c_hsotg - driver state.
132 * @dev: The parent device supplied to the probe function
133 * @driver: USB gadget driver
134 * @plat: The platform specific configuration data.
135 * @regs: The memory area mapped for accessing registers.
136 * @regs_res: The resource that was allocated when claiming register space.
137 * @irq: The IRQ number we are using
138 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
139 * @debug_root: root directrory for debugfs.
140 * @debug_file: main status file for debugfs.
141 * @debug_fifo: FIFO status file for debugfs.
142 * @ep0_reply: Request used for ep0 reply.
143 * @ep0_buff: Buffer for EP0 reply data, if needed.
144 * @ctrl_buff: Buffer for EP0 control requests.
145 * @ctrl_req: Request for EP0 control packets.
146 * @eps: The endpoints being supplied to the gadget framework
147 */
148struct s3c_hsotg {
149	struct device		 *dev;
150	struct usb_gadget_driver *driver;
151	struct s3c_hsotg_plat	 *plat;
152
153	void __iomem		*regs;
154	struct resource		*regs_res;
155	int			irq;
156	struct clk		*clk;
157
158	unsigned int		dedicated_fifos:1;
159
160	struct dentry		*debug_root;
161	struct dentry		*debug_file;
162	struct dentry		*debug_fifo;
163
164	struct usb_request	*ep0_reply;
165	struct usb_request	*ctrl_req;
166	u8			ep0_buff[8];
167	u8			ctrl_buff[8];
168
169	struct usb_gadget	gadget;
170	struct s3c_hsotg_ep	eps[];
171};
172
173/**
174 * struct s3c_hsotg_req - data transfer request
175 * @req: The USB gadget request
176 * @queue: The list of requests for the endpoint this is queued for.
177 * @in_progress: Has already had size/packets written to core
178 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
179 */
180struct s3c_hsotg_req {
181	struct usb_request	req;
182	struct list_head	queue;
183	unsigned char		in_progress;
184	unsigned char		mapped;
185};
186
187/* conversion functions */
188static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
189{
190	return container_of(req, struct s3c_hsotg_req, req);
191}
192
193static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
194{
195	return container_of(ep, struct s3c_hsotg_ep, ep);
196}
197
198static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
199{
200	return container_of(gadget, struct s3c_hsotg, gadget);
201}
202
203static inline void __orr32(void __iomem *ptr, u32 val)
204{
205	writel(readl(ptr) | val, ptr);
206}
207
208static inline void __bic32(void __iomem *ptr, u32 val)
209{
210	writel(readl(ptr) & ~val, ptr);
211}
212
213/* forward decleration of functions */
214static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
215
216/**
217 * using_dma - return the DMA status of the driver.
218 * @hsotg: The driver state.
219 *
220 * Return true if we're using DMA.
221 *
222 * Currently, we have the DMA support code worked into everywhere
223 * that needs it, but the AMBA DMA implementation in the hardware can
224 * only DMA from 32bit aligned addresses. This means that gadgets such
225 * as the CDC Ethernet cannot work as they often pass packets which are
226 * not 32bit aligned.
227 *
228 * Unfortunately the choice to use DMA or not is global to the controller
229 * and seems to be only settable when the controller is being put through
230 * a core reset. This means we either need to fix the gadgets to take
231 * account of DMA alignment, or add bounce buffers (yuerk).
232 *
233 * Until this issue is sorted out, we always return 'false'.
234 */
235static inline bool using_dma(struct s3c_hsotg *hsotg)
236{
237	return false;	/* support is not complete */
238}
239
240/**
241 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
242 * @hsotg: The device state
243 * @ints: A bitmask of the interrupts to enable
244 */
245static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
246{
247	u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
248	u32 new_gsintmsk;
249
250	new_gsintmsk = gsintmsk | ints;
251
252	if (new_gsintmsk != gsintmsk) {
253		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
254		writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
255	}
256}
257
258/**
259 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
260 * @hsotg: The device state
261 * @ints: A bitmask of the interrupts to enable
262 */
263static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
264{
265	u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
266	u32 new_gsintmsk;
267
268	new_gsintmsk = gsintmsk & ~ints;
269
270	if (new_gsintmsk != gsintmsk)
271		writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
272}
273
274/**
275 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
276 * @hsotg: The device state
277 * @ep: The endpoint index
278 * @dir_in: True if direction is in.
279 * @en: The enable value, true to enable
280 *
281 * Set or clear the mask for an individual endpoint's interrupt
282 * request.
283 */
284static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
285				 unsigned int ep, unsigned int dir_in,
286				 unsigned int en)
287{
288	unsigned long flags;
289	u32 bit = 1 << ep;
290	u32 daint;
291
292	if (!dir_in)
293		bit <<= 16;
294
295	local_irq_save(flags);
296	daint = readl(hsotg->regs + S3C_DAINTMSK);
297	if (en)
298		daint |= bit;
299	else
300		daint &= ~bit;
301	writel(daint, hsotg->regs + S3C_DAINTMSK);
302	local_irq_restore(flags);
303}
304
305/**
306 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
307 * @hsotg: The device instance.
308 */
309static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
310{
311	unsigned int ep;
312	unsigned int addr;
313	unsigned int size;
314	int timeout;
315	u32 val;
316
317	/* the ryu 2.6.24 release ahs
318	   writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
319	   writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
320		S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
321		hsotg->regs + S3C_GNPTXFSIZ);
322	*/
323
324	/* set FIFO sizes to 2048/1024 */
325
326	writel(2048, hsotg->regs + S3C_GRXFSIZ);
327	writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
328	       S3C_GNPTXFSIZ_NPTxFDep(1024),
329	       hsotg->regs + S3C_GNPTXFSIZ);
330
331	/* arange all the rest of the TX FIFOs, as some versions of this
332	 * block have overlapping default addresses. This also ensures
333	 * that if the settings have been changed, then they are set to
334	 * known values. */
335
336	/* start at the end of the GNPTXFSIZ, rounded up */
337	addr = 2048 + 1024;
338	size = 768;
339
340	/* currently we allocate TX FIFOs for all possible endpoints,
341	 * and assume that they are all the same size. */
342
343	for (ep = 1; ep <= 15; ep++) {
344		val = addr;
345		val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
346		addr += size;
347
348		writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
349	}
350
351	/* according to p428 of the design guide, we need to ensure that
352	 * all fifos are flushed before continuing */
353
354	writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
355	       S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
356
357	/* wait until the fifos are both flushed */
358	timeout = 100;
359	while (1) {
360		val = readl(hsotg->regs + S3C_GRSTCTL);
361
362		if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
363			break;
364
365		if (--timeout == 0) {
366			dev_err(hsotg->dev,
367				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
368				__func__, val);
369		}
370
371		udelay(1);
372	}
373
374	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
375}
376
377/**
378 * @ep: USB endpoint to allocate request for.
379 * @flags: Allocation flags
380 *
381 * Allocate a new USB request structure appropriate for the specified endpoint
382 */
383static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
384						      gfp_t flags)
385{
386	struct s3c_hsotg_req *req;
387
388	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
389	if (!req)
390		return NULL;
391
392	INIT_LIST_HEAD(&req->queue);
393
394	req->req.dma = DMA_ADDR_INVALID;
395	return &req->req;
396}
397
398/**
399 * is_ep_periodic - return true if the endpoint is in periodic mode.
400 * @hs_ep: The endpoint to query.
401 *
402 * Returns true if the endpoint is in periodic mode, meaning it is being
403 * used for an Interrupt or ISO transfer.
404 */
405static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
406{
407	return hs_ep->periodic;
408}
409
410/**
411 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
412 * @hsotg: The device state.
413 * @hs_ep: The endpoint for the request
414 * @hs_req: The request being processed.
415 *
416 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
417 * of a request to ensure the buffer is ready for access by the caller.
418*/
419static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
420				struct s3c_hsotg_ep *hs_ep,
421				struct s3c_hsotg_req *hs_req)
422{
423	struct usb_request *req = &hs_req->req;
424	enum dma_data_direction dir;
425
426	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
427
428	/* ignore this if we're not moving any data */
429	if (hs_req->req.length == 0)
430		return;
431
432	if (hs_req->mapped) {
433		/* we mapped this, so unmap and remove the dma */
434
435		dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
436
437		req->dma = DMA_ADDR_INVALID;
438		hs_req->mapped = 0;
439	} else {
440		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
441	}
442}
443
444/**
445 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
446 * @hsotg: The controller state.
447 * @hs_ep: The endpoint we're going to write for.
448 * @hs_req: The request to write data for.
449 *
450 * This is called when the TxFIFO has some space in it to hold a new
451 * transmission and we have something to give it. The actual setup of
452 * the data size is done elsewhere, so all we have to do is to actually
453 * write the data.
454 *
455 * The return value is zero if there is more space (or nothing was done)
456 * otherwise -ENOSPC is returned if the FIFO space was used up.
457 *
458 * This routine is only needed for PIO
459*/
460static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
461				struct s3c_hsotg_ep *hs_ep,
462				struct s3c_hsotg_req *hs_req)
463{
464	bool periodic = is_ep_periodic(hs_ep);
465	u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
466	int buf_pos = hs_req->req.actual;
467	int to_write = hs_ep->size_loaded;
468	void *data;
469	int can_write;
470	int pkt_round;
471
472	to_write -= (buf_pos - hs_ep->last_load);
473
474	/* if there's nothing to write, get out early */
475	if (to_write == 0)
476		return 0;
477
478	if (periodic && !hsotg->dedicated_fifos) {
479		u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
480		int size_left;
481		int size_done;
482
483		/* work out how much data was loaded so we can calculate
484		 * how much data is left in the fifo. */
485
486		size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
487
488		/* if shared fifo, we cannot write anything until the
489		 * previous data has been completely sent.
490		 */
491		if (hs_ep->fifo_load != 0) {
492			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
493			return -ENOSPC;
494		}
495
496		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
497			__func__, size_left,
498			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
499
500		/* how much of the data has moved */
501		size_done = hs_ep->size_loaded - size_left;
502
503		/* how much data is left in the fifo */
504		can_write = hs_ep->fifo_load - size_done;
505		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
506			__func__, can_write);
507
508		can_write = hs_ep->fifo_size - can_write;
509		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
510			__func__, can_write);
511
512		if (can_write <= 0) {
513			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
514			return -ENOSPC;
515		}
516	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
517		can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
518
519		can_write &= 0xffff;
520		can_write *= 4;
521	} else {
522		if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
523			dev_dbg(hsotg->dev,
524				"%s: no queue slots available (0x%08x)\n",
525				__func__, gnptxsts);
526
527			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
528			return -ENOSPC;
529		}
530
531		can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
532		can_write *= 4;	/* fifo size is in 32bit quantities. */
533	}
534
535	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
536		 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
537
538	/* limit to 512 bytes of data, it seems at least on the non-periodic
539	 * FIFO, requests of >512 cause the endpoint to get stuck with a
540	 * fragment of the end of the transfer in it.
541	 */
542	if (can_write > 512)
543		can_write = 512;
544
545	/* limit the write to one max-packet size worth of data, but allow
546	 * the transfer to return that it did not run out of fifo space
547	 * doing it. */
548	if (to_write > hs_ep->ep.maxpacket) {
549		to_write = hs_ep->ep.maxpacket;
550
551		s3c_hsotg_en_gsint(hsotg,
552				   periodic ? S3C_GINTSTS_PTxFEmp :
553				   S3C_GINTSTS_NPTxFEmp);
554	}
555
556	/* see if we can write data */
557
558	if (to_write > can_write) {
559		to_write = can_write;
560		pkt_round = to_write % hs_ep->ep.maxpacket;
561
562		/* Not sure, but we probably shouldn't be writing partial
563		 * packets into the FIFO, so round the write down to an
564		 * exact number of packets.
565		 *
566		 * Note, we do not currently check to see if we can ever
567		 * write a full packet or not to the FIFO.
568		 */
569
570		if (pkt_round)
571			to_write -= pkt_round;
572
573		/* enable correct FIFO interrupt to alert us when there
574		 * is more room left. */
575
576		s3c_hsotg_en_gsint(hsotg,
577				   periodic ? S3C_GINTSTS_PTxFEmp :
578				   S3C_GINTSTS_NPTxFEmp);
579	}
580
581	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
582		 to_write, hs_req->req.length, can_write, buf_pos);
583
584	if (to_write <= 0)
585		return -ENOSPC;
586
587	hs_req->req.actual = buf_pos + to_write;
588	hs_ep->total_data += to_write;
589
590	if (periodic)
591		hs_ep->fifo_load += to_write;
592
593	to_write = DIV_ROUND_UP(to_write, 4);
594	data = hs_req->req.buf + buf_pos;
595
596	writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
597
598	return (to_write >= can_write) ? -ENOSPC : 0;
599}
600
601/**
602 * get_ep_limit - get the maximum data legnth for this endpoint
603 * @hs_ep: The endpoint
604 *
605 * Return the maximum data that can be queued in one go on a given endpoint
606 * so that transfers that are too long can be split.
607 */
608static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
609{
610	int index = hs_ep->index;
611	unsigned maxsize;
612	unsigned maxpkt;
613
614	if (index != 0) {
615		maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
616		maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
617	} else {
618		maxsize = 64+64;
619		if (hs_ep->dir_in)
620			maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
621		else
622			maxpkt = 2;
623	}
624
625	/* we made the constant loading easier above by using +1 */
626	maxpkt--;
627	maxsize--;
628
629	/* constrain by packet count if maxpkts*pktsize is greater
630	 * than the length register size. */
631
632	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
633		maxsize = maxpkt * hs_ep->ep.maxpacket;
634
635	return maxsize;
636}
637
638/**
639 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
640 * @hsotg: The controller state.
641 * @hs_ep: The endpoint to process a request for
642 * @hs_req: The request to start.
643 * @continuing: True if we are doing more for the current request.
644 *
645 * Start the given request running by setting the endpoint registers
646 * appropriately, and writing any data to the FIFOs.
647 */
648static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
649				struct s3c_hsotg_ep *hs_ep,
650				struct s3c_hsotg_req *hs_req,
651				bool continuing)
652{
653	struct usb_request *ureq = &hs_req->req;
654	int index = hs_ep->index;
655	int dir_in = hs_ep->dir_in;
656	u32 epctrl_reg;
657	u32 epsize_reg;
658	u32 epsize;
659	u32 ctrl;
660	unsigned length;
661	unsigned packets;
662	unsigned maxreq;
663
664	if (index != 0) {
665		if (hs_ep->req && !continuing) {
666			dev_err(hsotg->dev, "%s: active request\n", __func__);
667			WARN_ON(1);
668			return;
669		} else if (hs_ep->req != hs_req && continuing) {
670			dev_err(hsotg->dev,
671				"%s: continue different req\n", __func__);
672			WARN_ON(1);
673			return;
674		}
675	}
676
677	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
678	epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
679
680	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
681		__func__, readl(hsotg->regs + epctrl_reg), index,
682		hs_ep->dir_in ? "in" : "out");
683
684	/* If endpoint is stalled, we will restart request later */
685	ctrl = readl(hsotg->regs + epctrl_reg);
686
687	if (ctrl & S3C_DxEPCTL_Stall) {
688		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
689		return;
690	}
691
692	length = ureq->length - ureq->actual;
693
694	if (0)
695		dev_dbg(hsotg->dev,
696			"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
697			ureq->buf, length, ureq->dma,
698			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
699
700	maxreq = get_ep_limit(hs_ep);
701	if (length > maxreq) {
702		int round = maxreq % hs_ep->ep.maxpacket;
703
704		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
705			__func__, length, maxreq, round);
706
707		/* round down to multiple of packets */
708		if (round)
709			maxreq -= round;
710
711		length = maxreq;
712	}
713
714	if (length)
715		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
716	else
717		packets = 1;	/* send one packet if length is zero. */
718
719	if (dir_in && index != 0)
720		epsize = S3C_DxEPTSIZ_MC(1);
721	else
722		epsize = 0;
723
724	if (index != 0 && ureq->zero) {
725		/* test for the packets being exactly right for the
726		 * transfer */
727
728		if (length == (packets * hs_ep->ep.maxpacket))
729			packets++;
730	}
731
732	epsize |= S3C_DxEPTSIZ_PktCnt(packets);
733	epsize |= S3C_DxEPTSIZ_XferSize(length);
734
735	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
736		__func__, packets, length, ureq->length, epsize, epsize_reg);
737
738	/* store the request as the current one we're doing */
739	hs_ep->req = hs_req;
740
741	/* write size / packets */
742	writel(epsize, hsotg->regs + epsize_reg);
743
744	if (using_dma(hsotg) && !continuing) {
745		unsigned int dma_reg;
746
747		/* write DMA address to control register, buffer already
748		 * synced by s3c_hsotg_ep_queue().  */
749
750		dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
751		writel(ureq->dma, hsotg->regs + dma_reg);
752
753		dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
754			__func__, ureq->dma, dma_reg);
755	}
756
757	ctrl |= S3C_DxEPCTL_EPEna;	/* ensure ep enabled */
758	ctrl |= S3C_DxEPCTL_USBActEp;
759	ctrl |= S3C_DxEPCTL_CNAK;	/* clear NAK set by core */
760
761	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
762	writel(ctrl, hsotg->regs + epctrl_reg);
763
764	/* set these, it seems that DMA support increments past the end
765	 * of the packet buffer so we need to calculate the length from
766	 * this information. */
767	hs_ep->size_loaded = length;
768	hs_ep->last_load = ureq->actual;
769
770	if (dir_in && !using_dma(hsotg)) {
771		/* set these anyway, we may need them for non-periodic in */
772		hs_ep->fifo_load = 0;
773
774		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
775	}
776
777	/* clear the INTknTXFEmpMsk when we start request, more as a aide
778	 * to debugging to see what is going on. */
779	if (dir_in)
780		writel(S3C_DIEPMSK_INTknTXFEmpMsk,
781		       hsotg->regs + S3C_DIEPINT(index));
782
783	/* Note, trying to clear the NAK here causes problems with transmit
784	 * on the S3C6400 ending up with the TXFIFO becoming full. */
785
786	/* check ep is enabled */
787	if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
788		dev_warn(hsotg->dev,
789			 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
790			 index, readl(hsotg->regs + epctrl_reg));
791
792	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
793		__func__, readl(hsotg->regs + epctrl_reg));
794}
795
796/**
797 * s3c_hsotg_map_dma - map the DMA memory being used for the request
798 * @hsotg: The device state.
799 * @hs_ep: The endpoint the request is on.
800 * @req: The request being processed.
801 *
802 * We've been asked to queue a request, so ensure that the memory buffer
803 * is correctly setup for DMA. If we've been passed an extant DMA address
804 * then ensure the buffer has been synced to memory. If our buffer has no
805 * DMA memory, then we map the memory and mark our request to allow us to
806 * cleanup on completion.
807*/
808static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
809			     struct s3c_hsotg_ep *hs_ep,
810			     struct usb_request *req)
811{
812	enum dma_data_direction dir;
813	struct s3c_hsotg_req *hs_req = our_req(req);
814
815	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
816
817	/* if the length is zero, ignore the DMA data */
818	if (hs_req->req.length == 0)
819		return 0;
820
821	if (req->dma == DMA_ADDR_INVALID) {
822		dma_addr_t dma;
823
824		dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
825
826		if (unlikely(dma_mapping_error(hsotg->dev, dma)))
827			goto dma_error;
828
829		if (dma & 3) {
830			dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
831				__func__);
832
833			dma_unmap_single(hsotg->dev, dma, req->length, dir);
834			return -EINVAL;
835		}
836
837		hs_req->mapped = 1;
838		req->dma = dma;
839	} else {
840		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
841		hs_req->mapped = 0;
842	}
843
844	return 0;
845
846dma_error:
847	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
848		__func__, req->buf, req->length);
849
850	return -EIO;
851}
852
853static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
854			      gfp_t gfp_flags)
855{
856	struct s3c_hsotg_req *hs_req = our_req(req);
857	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
858	struct s3c_hsotg *hs = hs_ep->parent;
859	unsigned long irqflags;
860	bool first;
861
862	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
863		ep->name, req, req->length, req->buf, req->no_interrupt,
864		req->zero, req->short_not_ok);
865
866	/* initialise status of the request */
867	INIT_LIST_HEAD(&hs_req->queue);
868	req->actual = 0;
869	req->status = -EINPROGRESS;
870
871	/* if we're using DMA, sync the buffers as necessary */
872	if (using_dma(hs)) {
873		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
874		if (ret)
875			return ret;
876	}
877
878	spin_lock_irqsave(&hs_ep->lock, irqflags);
879
880	first = list_empty(&hs_ep->queue);
881	list_add_tail(&hs_req->queue, &hs_ep->queue);
882
883	if (first)
884		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
885
886	spin_unlock_irqrestore(&hs_ep->lock, irqflags);
887
888	return 0;
889}
890
891static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
892				      struct usb_request *req)
893{
894	struct s3c_hsotg_req *hs_req = our_req(req);
895
896	kfree(hs_req);
897}
898
899/**
900 * s3c_hsotg_complete_oursetup - setup completion callback
901 * @ep: The endpoint the request was on.
902 * @req: The request completed.
903 *
904 * Called on completion of any requests the driver itself
905 * submitted that need cleaning up.
906 */
907static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
908					struct usb_request *req)
909{
910	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
911	struct s3c_hsotg *hsotg = hs_ep->parent;
912
913	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
914
915	s3c_hsotg_ep_free_request(ep, req);
916}
917
918/**
919 * ep_from_windex - convert control wIndex value to endpoint
920 * @hsotg: The driver state.
921 * @windex: The control request wIndex field (in host order).
922 *
923 * Convert the given wIndex into a pointer to an driver endpoint
924 * structure, or return NULL if it is not a valid endpoint.
925*/
926static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
927					   u32 windex)
928{
929	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
930	int dir = (windex & USB_DIR_IN) ? 1 : 0;
931	int idx = windex & 0x7F;
932
933	if (windex >= 0x100)
934		return NULL;
935
936	if (idx > S3C_HSOTG_EPS)
937		return NULL;
938
939	if (idx && ep->dir_in != dir)
940		return NULL;
941
942	return ep;
943}
944
945/**
946 * s3c_hsotg_send_reply - send reply to control request
947 * @hsotg: The device state
948 * @ep: Endpoint 0
949 * @buff: Buffer for request
950 * @length: Length of reply.
951 *
952 * Create a request and queue it on the given endpoint. This is useful as
953 * an internal method of sending replies to certain control requests, etc.
954 */
955static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
956				struct s3c_hsotg_ep *ep,
957				void *buff,
958				int length)
959{
960	struct usb_request *req;
961	int ret;
962
963	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
964
965	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
966	hsotg->ep0_reply = req;
967	if (!req) {
968		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
969		return -ENOMEM;
970	}
971
972	req->buf = hsotg->ep0_buff;
973	req->length = length;
974	req->zero = 1; /* always do zero-length final transfer */
975	req->complete = s3c_hsotg_complete_oursetup;
976
977	if (length)
978		memcpy(req->buf, buff, length);
979	else
980		ep->sent_zlp = 1;
981
982	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
983	if (ret) {
984		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
985		return ret;
986	}
987
988	return 0;
989}
990
991/**
992 * s3c_hsotg_process_req_status - process request GET_STATUS
993 * @hsotg: The device state
994 * @ctrl: USB control request
995 */
996static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
997					struct usb_ctrlrequest *ctrl)
998{
999	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1000	struct s3c_hsotg_ep *ep;
1001	__le16 reply;
1002	int ret;
1003
1004	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1005
1006	if (!ep0->dir_in) {
1007		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1008		return -EINVAL;
1009	}
1010
1011	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1012	case USB_RECIP_DEVICE:
1013		reply = cpu_to_le16(0); /* bit 0 => self powered,
1014					 * bit 1 => remote wakeup */
1015		break;
1016
1017	case USB_RECIP_INTERFACE:
1018		/* currently, the data result should be zero */
1019		reply = cpu_to_le16(0);
1020		break;
1021
1022	case USB_RECIP_ENDPOINT:
1023		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1024		if (!ep)
1025			return -ENOENT;
1026
1027		reply = cpu_to_le16(ep->halted ? 1 : 0);
1028		break;
1029
1030	default:
1031		return 0;
1032	}
1033
1034	if (le16_to_cpu(ctrl->wLength) != 2)
1035		return -EINVAL;
1036
1037	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1038	if (ret) {
1039		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1040		return ret;
1041	}
1042
1043	return 1;
1044}
1045
1046static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1047
1048/**
1049 * get_ep_head - return the first request on the endpoint
1050 * @hs_ep: The controller endpoint to get
1051 *
1052 * Get the first request on the endpoint.
1053 */
1054static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1055{
1056	if (list_empty(&hs_ep->queue))
1057		return NULL;
1058
1059	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1060}
1061
1062/**
1063 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1064 * @hsotg: The device state
1065 * @ctrl: USB control request
1066 */
1067static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1068					 struct usb_ctrlrequest *ctrl)
1069{
1070	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1071	struct s3c_hsotg_req *hs_req;
1072	bool restart;
1073	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1074	struct s3c_hsotg_ep *ep;
1075	int ret;
1076
1077	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1078		__func__, set ? "SET" : "CLEAR");
1079
1080	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1081		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1082		if (!ep) {
1083			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1084				__func__, le16_to_cpu(ctrl->wIndex));
1085			return -ENOENT;
1086		}
1087
1088		switch (le16_to_cpu(ctrl->wValue)) {
1089		case USB_ENDPOINT_HALT:
1090			s3c_hsotg_ep_sethalt(&ep->ep, set);
1091
1092			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1093			if (ret) {
1094				dev_err(hsotg->dev,
1095					"%s: failed to send reply\n", __func__);
1096				return ret;
1097			}
1098
1099			if (!set) {
1100				/*
1101				 * If we have request in progress,
1102				 * then complete it
1103				 */
1104				if (ep->req) {
1105					hs_req = ep->req;
1106					ep->req = NULL;
1107					list_del_init(&hs_req->queue);
1108					hs_req->req.complete(&ep->ep,
1109							     &hs_req->req);
1110				}
1111
1112				/* If we have pending request, then start it */
1113				restart = !list_empty(&ep->queue);
1114				if (restart) {
1115					hs_req = get_ep_head(ep);
1116					s3c_hsotg_start_req(hsotg, ep,
1117							    hs_req, false);
1118				}
1119			}
1120
1121			break;
1122
1123		default:
1124			return -ENOENT;
1125		}
1126	} else
1127		return -ENOENT;  /* currently only deal with endpoint */
1128
1129	return 1;
1130}
1131
1132/**
1133 * s3c_hsotg_process_control - process a control request
1134 * @hsotg: The device state
1135 * @ctrl: The control request received
1136 *
1137 * The controller has received the SETUP phase of a control request, and
1138 * needs to work out what to do next (and whether to pass it on to the
1139 * gadget driver).
1140 */
1141static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1142				      struct usb_ctrlrequest *ctrl)
1143{
1144	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1145	int ret = 0;
1146	u32 dcfg;
1147
1148	ep0->sent_zlp = 0;
1149
1150	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1151		 ctrl->bRequest, ctrl->bRequestType,
1152		 ctrl->wValue, ctrl->wLength);
1153
1154	/* record the direction of the request, for later use when enquing
1155	 * packets onto EP0. */
1156
1157	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1158	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1159
1160	/* if we've no data with this request, then the last part of the
1161	 * transaction is going to implicitly be IN. */
1162	if (ctrl->wLength == 0)
1163		ep0->dir_in = 1;
1164
1165	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1166		switch (ctrl->bRequest) {
1167		case USB_REQ_SET_ADDRESS:
1168			dcfg = readl(hsotg->regs + S3C_DCFG);
1169			dcfg &= ~S3C_DCFG_DevAddr_MASK;
1170			dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1171			writel(dcfg, hsotg->regs + S3C_DCFG);
1172
1173			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1174
1175			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1176			return;
1177
1178		case USB_REQ_GET_STATUS:
1179			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1180			break;
1181
1182		case USB_REQ_CLEAR_FEATURE:
1183		case USB_REQ_SET_FEATURE:
1184			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1185			break;
1186		}
1187	}
1188
1189	/* as a fallback, try delivering it to the driver to deal with */
1190
1191	if (ret == 0 && hsotg->driver) {
1192		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1193		if (ret < 0)
1194			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1195	}
1196
1197	/* the request is either unhandlable, or is not formatted correctly
1198	 * so respond with a STALL for the status stage to indicate failure.
1199	 */
1200
1201	if (ret < 0) {
1202		u32 reg;
1203		u32 ctrl;
1204
1205		dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1206		reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1207
1208		/* S3C_DxEPCTL_Stall will be cleared by EP once it has
1209		 * taken effect, so no need to clear later. */
1210
1211		ctrl = readl(hsotg->regs + reg);
1212		ctrl |= S3C_DxEPCTL_Stall;
1213		ctrl |= S3C_DxEPCTL_CNAK;
1214		writel(ctrl, hsotg->regs + reg);
1215
1216		dev_dbg(hsotg->dev,
1217			"written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1218			ctrl, reg, readl(hsotg->regs + reg));
1219
1220		/* don't believe we need to anything more to get the EP
1221		 * to reply with a STALL packet */
1222	}
1223}
1224
1225static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1226
1227/**
1228 * s3c_hsotg_complete_setup - completion of a setup transfer
1229 * @ep: The endpoint the request was on.
1230 * @req: The request completed.
1231 *
1232 * Called on completion of any requests the driver itself submitted for
1233 * EP0 setup packets
1234 */
1235static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1236				     struct usb_request *req)
1237{
1238	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1239	struct s3c_hsotg *hsotg = hs_ep->parent;
1240
1241	if (req->status < 0) {
1242		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1243		return;
1244	}
1245
1246	if (req->actual == 0)
1247		s3c_hsotg_enqueue_setup(hsotg);
1248	else
1249		s3c_hsotg_process_control(hsotg, req->buf);
1250}
1251
1252/**
1253 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1254 * @hsotg: The device state.
1255 *
1256 * Enqueue a request on EP0 if necessary to received any SETUP packets
1257 * received from the host.
1258 */
1259static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1260{
1261	struct usb_request *req = hsotg->ctrl_req;
1262	struct s3c_hsotg_req *hs_req = our_req(req);
1263	int ret;
1264
1265	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1266
1267	req->zero = 0;
1268	req->length = 8;
1269	req->buf = hsotg->ctrl_buff;
1270	req->complete = s3c_hsotg_complete_setup;
1271
1272	if (!list_empty(&hs_req->queue)) {
1273		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1274		return;
1275	}
1276
1277	hsotg->eps[0].dir_in = 0;
1278
1279	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1280	if (ret < 0) {
1281		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1282		/* Don't think there's much we can do other than watch the
1283		 * driver fail. */
1284	}
1285}
1286
1287/**
1288 * s3c_hsotg_complete_request - complete a request given to us
1289 * @hsotg: The device state.
1290 * @hs_ep: The endpoint the request was on.
1291 * @hs_req: The request to complete.
1292 * @result: The result code (0 => Ok, otherwise errno)
1293 *
1294 * The given request has finished, so call the necessary completion
1295 * if it has one and then look to see if we can start a new request
1296 * on the endpoint.
1297 *
1298 * Note, expects the ep to already be locked as appropriate.
1299*/
1300static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1301				       struct s3c_hsotg_ep *hs_ep,
1302				       struct s3c_hsotg_req *hs_req,
1303				       int result)
1304{
1305	bool restart;
1306
1307	if (!hs_req) {
1308		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1309		return;
1310	}
1311
1312	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1313		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1314
1315	/* only replace the status if we've not already set an error
1316	 * from a previous transaction */
1317
1318	if (hs_req->req.status == -EINPROGRESS)
1319		hs_req->req.status = result;
1320
1321	hs_ep->req = NULL;
1322	list_del_init(&hs_req->queue);
1323
1324	if (using_dma(hsotg))
1325		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1326
1327	/* call the complete request with the locks off, just in case the
1328	 * request tries to queue more work for this endpoint. */
1329
1330	if (hs_req->req.complete) {
1331		spin_unlock(&hs_ep->lock);
1332		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1333		spin_lock(&hs_ep->lock);
1334	}
1335
1336	/* Look to see if there is anything else to do. Note, the completion
1337	 * of the previous request may have caused a new request to be started
1338	 * so be careful when doing this. */
1339
1340	if (!hs_ep->req && result >= 0) {
1341		restart = !list_empty(&hs_ep->queue);
1342		if (restart) {
1343			hs_req = get_ep_head(hs_ep);
1344			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1345		}
1346	}
1347}
1348
1349/**
1350 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1351 * @hsotg: The device state.
1352 * @hs_ep: The endpoint the request was on.
1353 * @hs_req: The request to complete.
1354 * @result: The result code (0 => Ok, otherwise errno)
1355 *
1356 * See s3c_hsotg_complete_request(), but called with the endpoint's
1357 * lock held.
1358*/
1359static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1360					    struct s3c_hsotg_ep *hs_ep,
1361					    struct s3c_hsotg_req *hs_req,
1362					    int result)
1363{
1364	unsigned long flags;
1365
1366	spin_lock_irqsave(&hs_ep->lock, flags);
1367	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1368	spin_unlock_irqrestore(&hs_ep->lock, flags);
1369}
1370
1371/**
1372 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1373 * @hsotg: The device state.
1374 * @ep_idx: The endpoint index for the data
1375 * @size: The size of data in the fifo, in bytes
1376 *
1377 * The FIFO status shows there is data to read from the FIFO for a given
1378 * endpoint, so sort out whether we need to read the data into a request
1379 * that has been made for that endpoint.
1380 */
1381static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1382{
1383	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1384	struct s3c_hsotg_req *hs_req = hs_ep->req;
1385	void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1386	int to_read;
1387	int max_req;
1388	int read_ptr;
1389
1390	if (!hs_req) {
1391		u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1392		int ptr;
1393
1394		dev_warn(hsotg->dev,
1395			 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1396			 __func__, size, ep_idx, epctl);
1397
1398		/* dump the data from the FIFO, we've nothing we can do */
1399		for (ptr = 0; ptr < size; ptr += 4)
1400			(void)readl(fifo);
1401
1402		return;
1403	}
1404
1405	spin_lock(&hs_ep->lock);
1406
1407	to_read = size;
1408	read_ptr = hs_req->req.actual;
1409	max_req = hs_req->req.length - read_ptr;
1410
1411	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1412		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1413
1414	if (to_read > max_req) {
1415		/* more data appeared than we where willing
1416		 * to deal with in this request.
1417		 */
1418
1419		/* currently we don't deal this */
1420		WARN_ON_ONCE(1);
1421	}
1422
1423	hs_ep->total_data += to_read;
1424	hs_req->req.actual += to_read;
1425	to_read = DIV_ROUND_UP(to_read, 4);
1426
1427	/* note, we might over-write the buffer end by 3 bytes depending on
1428	 * alignment of the data. */
1429	readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1430
1431	spin_unlock(&hs_ep->lock);
1432}
1433
1434/**
1435 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1436 * @hsotg: The device instance
1437 * @req: The request currently on this endpoint
1438 *
1439 * Generate a zero-length IN packet request for terminating a SETUP
1440 * transaction.
1441 *
1442 * Note, since we don't write any data to the TxFIFO, then it is
1443 * currently believed that we do not need to wait for any space in
1444 * the TxFIFO.
1445 */
1446static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1447			       struct s3c_hsotg_req *req)
1448{
1449	u32 ctrl;
1450
1451	if (!req) {
1452		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1453		return;
1454	}
1455
1456	if (req->req.length == 0) {
1457		hsotg->eps[0].sent_zlp = 1;
1458		s3c_hsotg_enqueue_setup(hsotg);
1459		return;
1460	}
1461
1462	hsotg->eps[0].dir_in = 1;
1463	hsotg->eps[0].sent_zlp = 1;
1464
1465	dev_dbg(hsotg->dev, "sending zero-length packet\n");
1466
1467	/* issue a zero-sized packet to terminate this */
1468	writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1469	       S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1470
1471	ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1472	ctrl |= S3C_DxEPCTL_CNAK;  /* clear NAK set by core */
1473	ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1474	ctrl |= S3C_DxEPCTL_USBActEp;
1475	writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1476}
1477
1478/**
1479 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1480 * @hsotg: The device instance
1481 * @epnum: The endpoint received from
1482 * @was_setup: Set if processing a SetupDone event.
1483 *
1484 * The RXFIFO has delivered an OutDone event, which means that the data
1485 * transfer for an OUT endpoint has been completed, either by a short
1486 * packet or by the finish of a transfer.
1487*/
1488static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1489				     int epnum, bool was_setup)
1490{
1491	u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
1492	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1493	struct s3c_hsotg_req *hs_req = hs_ep->req;
1494	struct usb_request *req = &hs_req->req;
1495	unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1496	int result = 0;
1497
1498	if (!hs_req) {
1499		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1500		return;
1501	}
1502
1503	if (using_dma(hsotg)) {
1504		unsigned size_done;
1505
1506		/* Calculate the size of the transfer by checking how much
1507		 * is left in the endpoint size register and then working it
1508		 * out from the amount we loaded for the transfer.
1509		 *
1510		 * We need to do this as DMA pointers are always 32bit aligned
1511		 * so may overshoot/undershoot the transfer.
1512		 */
1513
1514		size_done = hs_ep->size_loaded - size_left;
1515		size_done += hs_ep->last_load;
1516
1517		req->actual = size_done;
1518	}
1519
1520	/* if there is more request to do, schedule new transfer */
1521	if (req->actual < req->length && size_left == 0) {
1522		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1523		return;
1524	}
1525
1526	if (req->actual < req->length && req->short_not_ok) {
1527		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1528			__func__, req->actual, req->length);
1529
1530		/* todo - what should we return here? there's no one else
1531		 * even bothering to check the status. */
1532	}
1533
1534	if (epnum == 0) {
1535		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1536			s3c_hsotg_send_zlp(hsotg, hs_req);
1537	}
1538
1539	s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1540}
1541
1542/**
1543 * s3c_hsotg_read_frameno - read current frame number
1544 * @hsotg: The device instance
1545 *
1546 * Return the current frame number
1547*/
1548static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1549{
1550	u32 dsts;
1551
1552	dsts = readl(hsotg->regs + S3C_DSTS);
1553	dsts &= S3C_DSTS_SOFFN_MASK;
1554	dsts >>= S3C_DSTS_SOFFN_SHIFT;
1555
1556	return dsts;
1557}
1558
1559/**
1560 * s3c_hsotg_handle_rx - RX FIFO has data
1561 * @hsotg: The device instance
1562 *
1563 * The IRQ handler has detected that the RX FIFO has some data in it
1564 * that requires processing, so find out what is in there and do the
1565 * appropriate read.
1566 *
1567 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1568 * chunks, so if you have x packets received on an endpoint you'll get x
1569 * FIFO events delivered, each with a packet's worth of data in it.
1570 *
1571 * When using DMA, we should not be processing events from the RXFIFO
1572 * as the actual data should be sent to the memory directly and we turn
1573 * on the completion interrupts to get notifications of transfer completion.
1574 */
1575static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1576{
1577	u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1578	u32 epnum, status, size;
1579
1580	WARN_ON(using_dma(hsotg));
1581
1582	epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1583	status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1584
1585	size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1586	size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1587
1588	if (1)
1589		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1590			__func__, grxstsr, size, epnum);
1591
1592#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1593
1594	switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1595	case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1596		dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1597		break;
1598
1599	case __status(S3C_GRXSTS_PktSts_OutDone):
1600		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1601			s3c_hsotg_read_frameno(hsotg));
1602
1603		if (!using_dma(hsotg))
1604			s3c_hsotg_handle_outdone(hsotg, epnum, false);
1605		break;
1606
1607	case __status(S3C_GRXSTS_PktSts_SetupDone):
1608		dev_dbg(hsotg->dev,
1609			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1610			s3c_hsotg_read_frameno(hsotg),
1611			readl(hsotg->regs + S3C_DOEPCTL(0)));
1612
1613		s3c_hsotg_handle_outdone(hsotg, epnum, true);
1614		break;
1615
1616	case __status(S3C_GRXSTS_PktSts_OutRX):
1617		s3c_hsotg_rx_data(hsotg, epnum, size);
1618		break;
1619
1620	case __status(S3C_GRXSTS_PktSts_SetupRX):
1621		dev_dbg(hsotg->dev,
1622			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1623			s3c_hsotg_read_frameno(hsotg),
1624			readl(hsotg->regs + S3C_DOEPCTL(0)));
1625
1626		s3c_hsotg_rx_data(hsotg, epnum, size);
1627		break;
1628
1629	default:
1630		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1631			 __func__, grxstsr);
1632
1633		s3c_hsotg_dump(hsotg);
1634		break;
1635	}
1636}
1637
1638/**
1639 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1640 * @mps: The maximum packet size in bytes.
1641*/
1642static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1643{
1644	switch (mps) {
1645	case 64:
1646		return S3C_D0EPCTL_MPS_64;
1647	case 32:
1648		return S3C_D0EPCTL_MPS_32;
1649	case 16:
1650		return S3C_D0EPCTL_MPS_16;
1651	case 8:
1652		return S3C_D0EPCTL_MPS_8;
1653	}
1654
1655	/* bad max packet size, warn and return invalid result */
1656	WARN_ON(1);
1657	return (u32)-1;
1658}
1659
1660/**
1661 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1662 * @hsotg: The driver state.
1663 * @ep: The index number of the endpoint
1664 * @mps: The maximum packet size in bytes
1665 *
1666 * Configure the maximum packet size for the given endpoint, updating
1667 * the hardware control registers to reflect this.
1668 */
1669static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1670				       unsigned int ep, unsigned int mps)
1671{
1672	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1673	void __iomem *regs = hsotg->regs;
1674	u32 mpsval;
1675	u32 reg;
1676
1677	if (ep == 0) {
1678		/* EP0 is a special case */
1679		mpsval = s3c_hsotg_ep0_mps(mps);
1680		if (mpsval > 3)
1681			goto bad_mps;
1682	} else {
1683		if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1684			goto bad_mps;
1685
1686		mpsval = mps;
1687	}
1688
1689	hs_ep->ep.maxpacket = mps;
1690
1691	/* update both the in and out endpoint controldir_ registers, even
1692	 * if one of the directions may not be in use. */
1693
1694	reg = readl(regs + S3C_DIEPCTL(ep));
1695	reg &= ~S3C_DxEPCTL_MPS_MASK;
1696	reg |= mpsval;
1697	writel(reg, regs + S3C_DIEPCTL(ep));
1698
1699	if (ep) {
1700		reg = readl(regs + S3C_DOEPCTL(ep));
1701		reg &= ~S3C_DxEPCTL_MPS_MASK;
1702		reg |= mpsval;
1703		writel(reg, regs + S3C_DOEPCTL(ep));
1704	}
1705
1706	return;
1707
1708bad_mps:
1709	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1710}
1711
1712/**
1713 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1714 * @hsotg: The driver state
1715 * @idx: The index for the endpoint (0..15)
1716 */
1717static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1718{
1719	int timeout;
1720	int val;
1721
1722	writel(S3C_GRSTCTL_TxFNum(idx) | S3C_GRSTCTL_TxFFlsh,
1723		hsotg->regs + S3C_GRSTCTL);
1724
1725	/* wait until the fifo is flushed */
1726	timeout = 100;
1727
1728	while (1) {
1729		val = readl(hsotg->regs + S3C_GRSTCTL);
1730
1731		if ((val & (S3C_GRSTCTL_TxFFlsh)) == 0)
1732			break;
1733
1734		if (--timeout == 0) {
1735			dev_err(hsotg->dev,
1736				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1737				__func__, val);
1738		}
1739
1740		udelay(1);
1741	}
1742}
1743
1744/**
1745 * s3c_hsotg_trytx - check to see if anything needs transmitting
1746 * @hsotg: The driver state
1747 * @hs_ep: The driver endpoint to check.
1748 *
1749 * Check to see if there is a request that has data to send, and if so
1750 * make an attempt to write data into the FIFO.
1751 */
1752static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1753			   struct s3c_hsotg_ep *hs_ep)
1754{
1755	struct s3c_hsotg_req *hs_req = hs_ep->req;
1756
1757	if (!hs_ep->dir_in || !hs_req)
1758		return 0;
1759
1760	if (hs_req->req.actual < hs_req->req.length) {
1761		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1762			hs_ep->index);
1763		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1764	}
1765
1766	return 0;
1767}
1768
1769/**
1770 * s3c_hsotg_complete_in - complete IN transfer
1771 * @hsotg: The device state.
1772 * @hs_ep: The endpoint that has just completed.
1773 *
1774 * An IN transfer has been completed, update the transfer's state and then
1775 * call the relevant completion routines.
1776 */
1777static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1778				  struct s3c_hsotg_ep *hs_ep)
1779{
1780	struct s3c_hsotg_req *hs_req = hs_ep->req;
1781	u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1782	int size_left, size_done;
1783
1784	if (!hs_req) {
1785		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1786		return;
1787	}
1788
1789	/* Calculate the size of the transfer by checking how much is left
1790	 * in the endpoint size register and then working it out from
1791	 * the amount we loaded for the transfer.
1792	 *
1793	 * We do this even for DMA, as the transfer may have incremented
1794	 * past the end of the buffer (DMA transfers are always 32bit
1795	 * aligned).
1796	 */
1797
1798	size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1799
1800	size_done = hs_ep->size_loaded - size_left;
1801	size_done += hs_ep->last_load;
1802
1803	if (hs_req->req.actual != size_done)
1804		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1805			__func__, hs_req->req.actual, size_done);
1806
1807	hs_req->req.actual = size_done;
1808
1809	/* if we did all of the transfer, and there is more data left
1810	 * around, then try restarting the rest of the request */
1811
1812	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1813		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1814		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1815	} else
1816		s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1817}
1818
1819/**
1820 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1821 * @hsotg: The driver state
1822 * @idx: The index for the endpoint (0..15)
1823 * @dir_in: Set if this is an IN endpoint
1824 *
1825 * Process and clear any interrupt pending for an individual endpoint
1826*/
1827static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1828			    int dir_in)
1829{
1830	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1831	u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1832	u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1833	u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1834	u32 ints;
1835
1836	ints = readl(hsotg->regs + epint_reg);
1837
1838	/* Clear endpoint interrupts */
1839	writel(ints, hsotg->regs + epint_reg);
1840
1841	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1842		__func__, idx, dir_in ? "in" : "out", ints);
1843
1844	if (ints & S3C_DxEPINT_XferCompl) {
1845		dev_dbg(hsotg->dev,
1846			"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1847			__func__, readl(hsotg->regs + epctl_reg),
1848			readl(hsotg->regs + epsiz_reg));
1849
1850		/* we get OutDone from the FIFO, so we only need to look
1851		 * at completing IN requests here */
1852		if (dir_in) {
1853			s3c_hsotg_complete_in(hsotg, hs_ep);
1854
1855			if (idx == 0 && !hs_ep->req)
1856				s3c_hsotg_enqueue_setup(hsotg);
1857		} else if (using_dma(hsotg)) {
1858			/* We're using DMA, we need to fire an OutDone here
1859			 * as we ignore the RXFIFO. */
1860
1861			s3c_hsotg_handle_outdone(hsotg, idx, false);
1862		}
1863	}
1864
1865	if (ints & S3C_DxEPINT_EPDisbld) {
1866		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1867
1868		if (dir_in) {
1869			int epctl = readl(hsotg->regs + epctl_reg);
1870
1871			s3c_hsotg_txfifo_flush(hsotg, idx);
1872
1873			if ((epctl & S3C_DxEPCTL_Stall) &&
1874				(epctl & S3C_DxEPCTL_EPType_Bulk)) {
1875				int dctl = readl(hsotg->regs + S3C_DCTL);
1876
1877				dctl |= S3C_DCTL_CGNPInNAK;
1878				writel(dctl, hsotg->regs + S3C_DCTL);
1879			}
1880		}
1881	}
1882
1883	if (ints & S3C_DxEPINT_AHBErr)
1884		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1885
1886	if (ints & S3C_DxEPINT_Setup) {  /* Setup or Timeout */
1887		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1888
1889		if (using_dma(hsotg) && idx == 0) {
1890			/* this is the notification we've received a
1891			 * setup packet. In non-DMA mode we'd get this
1892			 * from the RXFIFO, instead we need to process
1893			 * the setup here. */
1894
1895			if (dir_in)
1896				WARN_ON_ONCE(1);
1897			else
1898				s3c_hsotg_handle_outdone(hsotg, 0, true);
1899		}
1900	}
1901
1902	if (ints & S3C_DxEPINT_Back2BackSetup)
1903		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1904
1905	if (dir_in) {
1906		/* not sure if this is important, but we'll clear it anyway
1907		 */
1908		if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1909			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1910				__func__, idx);
1911		}
1912
1913		/* this probably means something bad is happening */
1914		if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1915			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1916				 __func__, idx);
1917		}
1918
1919		/* FIFO has space or is empty (see GAHBCFG) */
1920		if (hsotg->dedicated_fifos &&
1921		    ints & S3C_DIEPMSK_TxFIFOEmpty) {
1922			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1923				__func__, idx);
1924			if (!using_dma(hsotg))
1925				s3c_hsotg_trytx(hsotg, hs_ep);
1926		}
1927	}
1928}
1929
1930/**
1931 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1932 * @hsotg: The device state.
1933 *
1934 * Handle updating the device settings after the enumeration phase has
1935 * been completed.
1936*/
1937static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1938{
1939	u32 dsts = readl(hsotg->regs + S3C_DSTS);
1940	int ep0_mps = 0, ep_mps;
1941
1942	/* This should signal the finish of the enumeration phase
1943	 * of the USB handshaking, so we should now know what rate
1944	 * we connected at. */
1945
1946	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1947
1948	/* note, since we're limited by the size of transfer on EP0, and
1949	 * it seems IN transfers must be a even number of packets we do
1950	 * not advertise a 64byte MPS on EP0. */
1951
1952	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1953	switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1954	case S3C_DSTS_EnumSpd_FS:
1955	case S3C_DSTS_EnumSpd_FS48:
1956		hsotg->gadget.speed = USB_SPEED_FULL;
1957		ep0_mps = EP0_MPS_LIMIT;
1958		ep_mps = 64;
1959		break;
1960
1961	case S3C_DSTS_EnumSpd_HS:
1962		hsotg->gadget.speed = USB_SPEED_HIGH;
1963		ep0_mps = EP0_MPS_LIMIT;
1964		ep_mps = 512;
1965		break;
1966
1967	case S3C_DSTS_EnumSpd_LS:
1968		hsotg->gadget.speed = USB_SPEED_LOW;
1969		/* note, we don't actually support LS in this driver at the
1970		 * moment, and the documentation seems to imply that it isn't
1971		 * supported by the PHYs on some of the devices.
1972		 */
1973		break;
1974	}
1975	dev_info(hsotg->dev, "new device is %s\n",
1976		 usb_speed_string(hsotg->gadget.speed));
1977
1978	/* we should now know the maximum packet size for an
1979	 * endpoint, so set the endpoints to a default value. */
1980
1981	if (ep0_mps) {
1982		int i;
1983		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1984		for (i = 1; i < S3C_HSOTG_EPS; i++)
1985			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1986	}
1987
1988	/* ensure after enumeration our EP0 is active */
1989
1990	s3c_hsotg_enqueue_setup(hsotg);
1991
1992	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1993		readl(hsotg->regs + S3C_DIEPCTL0),
1994		readl(hsotg->regs + S3C_DOEPCTL0));
1995}
1996
1997/**
1998 * kill_all_requests - remove all requests from the endpoint's queue
1999 * @hsotg: The device state.
2000 * @ep: The endpoint the requests may be on.
2001 * @result: The result code to use.
2002 * @force: Force removal of any current requests
2003 *
2004 * Go through the requests on the given endpoint and mark them
2005 * completed with the given result code.
2006 */
2007static void kill_all_requests(struct s3c_hsotg *hsotg,
2008			      struct s3c_hsotg_ep *ep,
2009			      int result, bool force)
2010{
2011	struct s3c_hsotg_req *req, *treq;
2012	unsigned long flags;
2013
2014	spin_lock_irqsave(&ep->lock, flags);
2015
2016	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2017		/* currently, we can't do much about an already
2018		 * running request on an in endpoint */
2019
2020		if (ep->req == req && ep->dir_in && !force)
2021			continue;
2022
2023		s3c_hsotg_complete_request(hsotg, ep, req,
2024					   result);
2025	}
2026
2027	spin_unlock_irqrestore(&ep->lock, flags);
2028}
2029
2030#define call_gadget(_hs, _entry) \
2031	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
2032	    (_hs)->driver && (_hs)->driver->_entry)	\
2033		(_hs)->driver->_entry(&(_hs)->gadget);
2034
2035/**
2036 * s3c_hsotg_disconnect_irq - disconnect irq service
2037 * @hsotg: The device state.
2038 *
2039 * A disconnect IRQ has been received, meaning that the host has
2040 * lost contact with the bus. Remove all current transactions
2041 * and signal the gadget driver that this has happened.
2042*/
2043static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
2044{
2045	unsigned ep;
2046
2047	for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2048		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2049
2050	call_gadget(hsotg, disconnect);
2051}
2052
2053/**
2054 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2055 * @hsotg: The device state:
2056 * @periodic: True if this is a periodic FIFO interrupt
2057 */
2058static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2059{
2060	struct s3c_hsotg_ep *ep;
2061	int epno, ret;
2062
2063	/* look through for any more data to transmit */
2064
2065	for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
2066		ep = &hsotg->eps[epno];
2067
2068		if (!ep->dir_in)
2069			continue;
2070
2071		if ((periodic && !ep->periodic) ||
2072		    (!periodic && ep->periodic))
2073			continue;
2074
2075		ret = s3c_hsotg_trytx(hsotg, ep);
2076		if (ret < 0)
2077			break;
2078	}
2079}
2080
2081static struct s3c_hsotg *our_hsotg;
2082
2083/* IRQ flags which will trigger a retry around the IRQ loop */
2084#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2085			S3C_GINTSTS_PTxFEmp |  \
2086			S3C_GINTSTS_RxFLvl)
2087
2088/**
2089 * s3c_hsotg_irq - handle device interrupt
2090 * @irq: The IRQ number triggered
2091 * @pw: The pw value when registered the handler.
2092 */
2093static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2094{
2095	struct s3c_hsotg *hsotg = pw;
2096	int retry_count = 8;
2097	u32 gintsts;
2098	u32 gintmsk;
2099
2100irq_retry:
2101	gintsts = readl(hsotg->regs + S3C_GINTSTS);
2102	gintmsk = readl(hsotg->regs + S3C_GINTMSK);
2103
2104	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2105		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2106
2107	gintsts &= gintmsk;
2108
2109	if (gintsts & S3C_GINTSTS_OTGInt) {
2110		u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
2111
2112		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2113
2114		writel(otgint, hsotg->regs + S3C_GOTGINT);
2115	}
2116
2117	if (gintsts & S3C_GINTSTS_DisconnInt) {
2118		dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
2119		writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
2120
2121		s3c_hsotg_disconnect_irq(hsotg);
2122	}
2123
2124	if (gintsts & S3C_GINTSTS_SessReqInt) {
2125		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2126		writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
2127	}
2128
2129	if (gintsts & S3C_GINTSTS_EnumDone) {
2130		writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
2131
2132		s3c_hsotg_irq_enumdone(hsotg);
2133	}
2134
2135	if (gintsts & S3C_GINTSTS_ConIDStsChng) {
2136		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2137			readl(hsotg->regs + S3C_DSTS),
2138			readl(hsotg->regs + S3C_GOTGCTL));
2139
2140		writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
2141	}
2142
2143	if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
2144		u32 daint = readl(hsotg->regs + S3C_DAINT);
2145		u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
2146		u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
2147		int ep;
2148
2149		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2150
2151		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2152			if (daint_out & 1)
2153				s3c_hsotg_epint(hsotg, ep, 0);
2154		}
2155
2156		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2157			if (daint_in & 1)
2158				s3c_hsotg_epint(hsotg, ep, 1);
2159		}
2160	}
2161
2162	if (gintsts & S3C_GINTSTS_USBRst) {
2163		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2164		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2165			readl(hsotg->regs + S3C_GNPTXSTS));
2166
2167		writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2168
2169		kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2170
2171		/* it seems after a reset we can end up with a situation
2172		 * where the TXFIFO still has data in it... the docs
2173		 * suggest resetting all the fifos, so use the init_fifo
2174		 * code to relayout and flush the fifos.
2175		 */
2176
2177		s3c_hsotg_init_fifo(hsotg);
2178
2179		s3c_hsotg_enqueue_setup(hsotg);
2180	}
2181
2182	/* check both FIFOs */
2183
2184	if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2185		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2186
2187		/* Disable the interrupt to stop it happening again
2188		 * unless one of these endpoint routines decides that
2189		 * it needs re-enabling */
2190
2191		s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2192		s3c_hsotg_irq_fifoempty(hsotg, false);
2193	}
2194
2195	if (gintsts & S3C_GINTSTS_PTxFEmp) {
2196		dev_dbg(hsotg->dev, "PTxFEmp\n");
2197
2198		/* See note in S3C_GINTSTS_NPTxFEmp */
2199
2200		s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2201		s3c_hsotg_irq_fifoempty(hsotg, true);
2202	}
2203
2204	if (gintsts & S3C_GINTSTS_RxFLvl) {
2205		/* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2206		 * we need to retry s3c_hsotg_handle_rx if this is still
2207		 * set. */
2208
2209		s3c_hsotg_handle_rx(hsotg);
2210	}
2211
2212	if (gintsts & S3C_GINTSTS_ModeMis) {
2213		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2214		writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2215	}
2216
2217	if (gintsts & S3C_GINTSTS_USBSusp) {
2218		dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2219		writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2220
2221		call_gadget(hsotg, suspend);
2222	}
2223
2224	if (gintsts & S3C_GINTSTS_WkUpInt) {
2225		dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2226		writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2227
2228		call_gadget(hsotg, resume);
2229	}
2230
2231	if (gintsts & S3C_GINTSTS_ErlySusp) {
2232		dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2233		writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2234	}
2235
2236	/* these next two seem to crop-up occasionally causing the core
2237	 * to shutdown the USB transfer, so try clearing them and logging
2238	 * the occurrence. */
2239
2240	if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2241		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2242
2243		writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2244
2245		s3c_hsotg_dump(hsotg);
2246	}
2247
2248	if (gintsts & S3C_GINTSTS_GINNakEff) {
2249		dev_info(hsotg->dev, "GINNakEff triggered\n");
2250
2251		writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2252
2253		s3c_hsotg_dump(hsotg);
2254	}
2255
2256	/* if we've had fifo events, we should try and go around the
2257	 * loop again to see if there's any point in returning yet. */
2258
2259	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2260			goto irq_retry;
2261
2262	return IRQ_HANDLED;
2263}
2264
2265/**
2266 * s3c_hsotg_ep_enable - enable the given endpoint
2267 * @ep: The USB endpint to configure
2268 * @desc: The USB endpoint descriptor to configure with.
2269 *
2270 * This is called from the USB gadget code's usb_ep_enable().
2271*/
2272static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2273			       const struct usb_endpoint_descriptor *desc)
2274{
2275	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2276	struct s3c_hsotg *hsotg = hs_ep->parent;
2277	unsigned long flags;
2278	int index = hs_ep->index;
2279	u32 epctrl_reg;
2280	u32 epctrl;
2281	u32 mps;
2282	int dir_in;
2283	int ret = 0;
2284
2285	dev_dbg(hsotg->dev,
2286		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2287		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2288		desc->wMaxPacketSize, desc->bInterval);
2289
2290	/* not to be called for EP0 */
2291	WARN_ON(index == 0);
2292
2293	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2294	if (dir_in != hs_ep->dir_in) {
2295		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2296		return -EINVAL;
2297	}
2298
2299	mps = usb_endpoint_maxp(desc);
2300
2301	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2302
2303	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2304	epctrl = readl(hsotg->regs + epctrl_reg);
2305
2306	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2307		__func__, epctrl, epctrl_reg);
2308
2309	spin_lock_irqsave(&hs_ep->lock, flags);
2310
2311	epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2312	epctrl |= S3C_DxEPCTL_MPS(mps);
2313
2314	/* mark the endpoint as active, otherwise the core may ignore
2315	 * transactions entirely for this endpoint */
2316	epctrl |= S3C_DxEPCTL_USBActEp;
2317
2318	/* set the NAK status on the endpoint, otherwise we might try and
2319	 * do something with data that we've yet got a request to process
2320	 * since the RXFIFO will take data for an endpoint even if the
2321	 * size register hasn't been set.
2322	 */
2323
2324	epctrl |= S3C_DxEPCTL_SNAK;
2325
2326	/* update the endpoint state */
2327	hs_ep->ep.maxpacket = mps;
2328
2329	/* default, set to non-periodic */
2330	hs_ep->periodic = 0;
2331
2332	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2333	case USB_ENDPOINT_XFER_ISOC:
2334		dev_err(hsotg->dev, "no current ISOC support\n");
2335		ret = -EINVAL;
2336		goto out;
2337
2338	case USB_ENDPOINT_XFER_BULK:
2339		epctrl |= S3C_DxEPCTL_EPType_Bulk;
2340		break;
2341
2342	case USB_ENDPOINT_XFER_INT:
2343		if (dir_in) {
2344			/* Allocate our TxFNum by simply using the index
2345			 * of the endpoint for the moment. We could do
2346			 * something better if the host indicates how
2347			 * many FIFOs we are expecting to use. */
2348
2349			hs_ep->periodic = 1;
2350			epctrl |= S3C_DxEPCTL_TxFNum(index);
2351		}
2352
2353		epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2354		break;
2355
2356	case USB_ENDPOINT_XFER_CONTROL:
2357		epctrl |= S3C_DxEPCTL_EPType_Control;
2358		break;
2359	}
2360
2361	/* if the hardware has dedicated fifos, we must give each IN EP
2362	 * a unique tx-fifo even if it is non-periodic.
2363	 */
2364	if (dir_in && hsotg->dedicated_fifos)
2365		epctrl |= S3C_DxEPCTL_TxFNum(index);
2366
2367	/* for non control endpoints, set PID to D0 */
2368	if (index)
2369		epctrl |= S3C_DxEPCTL_SetD0PID;
2370
2371	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2372		__func__, epctrl);
2373
2374	writel(epctrl, hsotg->regs + epctrl_reg);
2375	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2376		__func__, readl(hsotg->regs + epctrl_reg));
2377
2378	/* enable the endpoint interrupt */
2379	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2380
2381out:
2382	spin_unlock_irqrestore(&hs_ep->lock, flags);
2383	return ret;
2384}
2385
2386static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2387{
2388	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2389	struct s3c_hsotg *hsotg = hs_ep->parent;
2390	int dir_in = hs_ep->dir_in;
2391	int index = hs_ep->index;
2392	unsigned long flags;
2393	u32 epctrl_reg;
2394	u32 ctrl;
2395
2396	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2397
2398	if (ep == &hsotg->eps[0].ep) {
2399		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2400		return -EINVAL;
2401	}
2402
2403	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2404
2405	/* terminate all requests with shutdown */
2406	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2407
2408	spin_lock_irqsave(&hs_ep->lock, flags);
2409
2410	ctrl = readl(hsotg->regs + epctrl_reg);
2411	ctrl &= ~S3C_DxEPCTL_EPEna;
2412	ctrl &= ~S3C_DxEPCTL_USBActEp;
2413	ctrl |= S3C_DxEPCTL_SNAK;
2414
2415	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2416	writel(ctrl, hsotg->regs + epctrl_reg);
2417
2418	/* disable endpoint interrupts */
2419	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2420
2421	spin_unlock_irqrestore(&hs_ep->lock, flags);
2422	return 0;
2423}
2424
2425/**
2426 * on_list - check request is on the given endpoint
2427 * @ep: The endpoint to check.
2428 * @test: The request to test if it is on the endpoint.
2429*/
2430static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2431{
2432	struct s3c_hsotg_req *req, *treq;
2433
2434	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2435		if (req == test)
2436			return true;
2437	}
2438
2439	return false;
2440}
2441
2442static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2443{
2444	struct s3c_hsotg_req *hs_req = our_req(req);
2445	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2446	struct s3c_hsotg *hs = hs_ep->parent;
2447	unsigned long flags;
2448
2449	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2450
2451	spin_lock_irqsave(&hs_ep->lock, flags);
2452
2453	if (!on_list(hs_ep, hs_req)) {
2454		spin_unlock_irqrestore(&hs_ep->lock, flags);
2455		return -EINVAL;
2456	}
2457
2458	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2459	spin_unlock_irqrestore(&hs_ep->lock, flags);
2460
2461	return 0;
2462}
2463
2464static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2465{
2466	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2467	struct s3c_hsotg *hs = hs_ep->parent;
2468	int index = hs_ep->index;
2469	unsigned long irqflags;
2470	u32 epreg;
2471	u32 epctl;
2472	u32 xfertype;
2473
2474	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2475
2476	spin_lock_irqsave(&hs_ep->lock, irqflags);
2477
2478	/* write both IN and OUT control registers */
2479
2480	epreg = S3C_DIEPCTL(index);
2481	epctl = readl(hs->regs + epreg);
2482
2483	if (value) {
2484		epctl |= S3C_DxEPCTL_Stall + S3C_DxEPCTL_SNAK;
2485		if (epctl & S3C_DxEPCTL_EPEna)
2486			epctl |= S3C_DxEPCTL_EPDis;
2487	} else {
2488		epctl &= ~S3C_DxEPCTL_Stall;
2489		xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
2490		if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
2491			xfertype == S3C_DxEPCTL_EPType_Intterupt)
2492				epctl |= S3C_DxEPCTL_SetD0PID;
2493	}
2494
2495	writel(epctl, hs->regs + epreg);
2496
2497	epreg = S3C_DOEPCTL(index);
2498	epctl = readl(hs->regs + epreg);
2499
2500	if (value)
2501		epctl |= S3C_DxEPCTL_Stall;
2502	else {
2503		epctl &= ~S3C_DxEPCTL_Stall;
2504		xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
2505		if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
2506			xfertype == S3C_DxEPCTL_EPType_Intterupt)
2507				epctl |= S3C_DxEPCTL_SetD0PID;
2508	}
2509
2510	writel(epctl, hs->regs + epreg);
2511
2512	spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2513
2514	return 0;
2515}
2516
2517static struct usb_ep_ops s3c_hsotg_ep_ops = {
2518	.enable		= s3c_hsotg_ep_enable,
2519	.disable	= s3c_hsotg_ep_disable,
2520	.alloc_request	= s3c_hsotg_ep_alloc_request,
2521	.free_request	= s3c_hsotg_ep_free_request,
2522	.queue		= s3c_hsotg_ep_queue,
2523	.dequeue	= s3c_hsotg_ep_dequeue,
2524	.set_halt	= s3c_hsotg_ep_sethalt,
2525	/* note, don't believe we have any call for the fifo routines */
2526};
2527
2528/**
2529 * s3c_hsotg_corereset - issue softreset to the core
2530 * @hsotg: The device state
2531 *
2532 * Issue a soft reset to the core, and await the core finishing it.
2533*/
2534static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2535{
2536	int timeout;
2537	u32 grstctl;
2538
2539	dev_dbg(hsotg->dev, "resetting core\n");
2540
2541	/* issue soft reset */
2542	writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2543
2544	timeout = 1000;
2545	do {
2546		grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2547	} while ((grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2548
2549	if (grstctl & S3C_GRSTCTL_CSftRst) {
2550		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2551		return -EINVAL;
2552	}
2553
2554	timeout = 1000;
2555
2556	while (1) {
2557		u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2558
2559		if (timeout-- < 0) {
2560			dev_info(hsotg->dev,
2561				 "%s: reset failed, GRSTCTL=%08x\n",
2562				 __func__, grstctl);
2563			return -ETIMEDOUT;
2564		}
2565
2566		if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2567			continue;
2568
2569		break;		/* reset done */
2570	}
2571
2572	dev_dbg(hsotg->dev, "reset successful\n");
2573	return 0;
2574}
2575
2576static int s3c_hsotg_start(struct usb_gadget_driver *driver,
2577		int (*bind)(struct usb_gadget *))
2578{
2579	struct s3c_hsotg *hsotg = our_hsotg;
2580	int ret;
2581
2582	if (!hsotg) {
2583		printk(KERN_ERR "%s: called with no device\n", __func__);
2584		return -ENODEV;
2585	}
2586
2587	if (!driver) {
2588		dev_err(hsotg->dev, "%s: no driver\n", __func__);
2589		return -EINVAL;
2590	}
2591
2592	if (driver->max_speed < USB_SPEED_FULL)
2593		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2594
2595	if (!bind || !driver->setup) {
2596		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2597		return -EINVAL;
2598	}
2599
2600	WARN_ON(hsotg->driver);
2601
2602	driver->driver.bus = NULL;
2603	hsotg->driver = driver;
2604	hsotg->gadget.dev.driver = &driver->driver;
2605	hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2606	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2607
2608	ret = device_add(&hsotg->gadget.dev);
2609	if (ret) {
2610		dev_err(hsotg->dev, "failed to register gadget device\n");
2611		goto err;
2612	}
2613
2614	ret = bind(&hsotg->gadget);
2615	if (ret) {
2616		dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2617
2618		hsotg->gadget.dev.driver = NULL;
2619		hsotg->driver = NULL;
2620		goto err;
2621	}
2622
2623	/* we must now enable ep0 ready for host detection and then
2624	 * set configuration. */
2625
2626	s3c_hsotg_corereset(hsotg);
2627
2628	/* set the PLL on, remove the HNP/SRP and set the PHY */
2629	writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2630	       (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2631
2632	/* looks like soft-reset changes state of FIFOs */
2633	s3c_hsotg_init_fifo(hsotg);
2634
2635	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2636
2637	writel(1 << 18 | S3C_DCFG_DevSpd_HS,  hsotg->regs + S3C_DCFG);
2638
2639	/* Clear any pending OTG interrupts */
2640	writel(0xffffffff, hsotg->regs + S3C_GOTGINT);
2641
2642	/* Clear any pending interrupts */
2643	writel(0xffffffff, hsotg->regs + S3C_GINTSTS);
2644
2645	writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2646	       S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2647	       S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2648	       S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2649	       S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2650	       S3C_GINTSTS_ErlySusp,
2651	       hsotg->regs + S3C_GINTMSK);
2652
2653	if (using_dma(hsotg))
2654		writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2655		       S3C_GAHBCFG_HBstLen_Incr4,
2656		       hsotg->regs + S3C_GAHBCFG);
2657	else
2658		writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2659
2660	/* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2661	 * up being flooded with interrupts if the host is polling the
2662	 * endpoint to try and read data. */
2663
2664	writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2665	       S3C_DIEPMSK_INTknEPMisMsk |
2666	       S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
2667	       ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
2668	       hsotg->regs + S3C_DIEPMSK);
2669
2670	/* don't need XferCompl, we get that from RXFIFO in slave mode. In
2671	 * DMA mode we may need this. */
2672	writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2673	       S3C_DOEPMSK_EPDisbldMsk |
2674	       (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2675				   S3C_DIEPMSK_TimeOUTMsk) : 0),
2676	       hsotg->regs + S3C_DOEPMSK);
2677
2678	writel(0, hsotg->regs + S3C_DAINTMSK);
2679
2680	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2681		readl(hsotg->regs + S3C_DIEPCTL0),
2682		readl(hsotg->regs + S3C_DOEPCTL0));
2683
2684	/* enable in and out endpoint interrupts */
2685	s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2686
2687	/* Enable the RXFIFO when in slave mode, as this is how we collect
2688	 * the data. In DMA mode, we get events from the FIFO but also
2689	 * things we cannot process, so do not use it. */
2690	if (!using_dma(hsotg))
2691		s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2692
2693	/* Enable interrupts for EP0 in and out */
2694	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2695	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2696
2697	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2698	udelay(10);  /* see openiboot */
2699	__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2700
2701	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2702
2703	/* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2704	   writing to the EPCTL register.. */
2705
2706	/* set to read 1 8byte packet */
2707	writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2708	       S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2709
2710	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2711	       S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2712	       S3C_DxEPCTL_USBActEp,
2713	       hsotg->regs + S3C_DOEPCTL0);
2714
2715	/* enable, but don't activate EP0in */
2716	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2717	       S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2718
2719	s3c_hsotg_enqueue_setup(hsotg);
2720
2721	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2722		readl(hsotg->regs + S3C_DIEPCTL0),
2723		readl(hsotg->regs + S3C_DOEPCTL0));
2724
2725	/* clear global NAKs */
2726	writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2727	       hsotg->regs + S3C_DCTL);
2728
2729	/* must be at-least 3ms to allow bus to see disconnect */
2730	msleep(3);
2731
2732	/* remove the soft-disconnect and let's go */
2733	__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2734
2735	/* report to the user, and return */
2736
2737	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2738	return 0;
2739
2740err:
2741	hsotg->driver = NULL;
2742	hsotg->gadget.dev.driver = NULL;
2743	return ret;
2744}
2745
2746static int s3c_hsotg_stop(struct usb_gadget_driver *driver)
2747{
2748	struct s3c_hsotg *hsotg = our_hsotg;
2749	int ep;
2750
2751	if (!hsotg)
2752		return -ENODEV;
2753
2754	if (!driver || driver != hsotg->driver || !driver->unbind)
2755		return -EINVAL;
2756
2757	/* all endpoints should be shutdown */
2758	for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2759		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2760
2761	call_gadget(hsotg, disconnect);
2762
2763	driver->unbind(&hsotg->gadget);
2764	hsotg->driver = NULL;
2765	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2766
2767	device_del(&hsotg->gadget.dev);
2768
2769	dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2770		 driver->driver.name);
2771
2772	return 0;
2773}
2774
2775static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2776{
2777	return s3c_hsotg_read_frameno(to_hsotg(gadget));
2778}
2779
2780static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2781	.get_frame	= s3c_hsotg_gadget_getframe,
2782	.start		= s3c_hsotg_start,
2783	.stop		= s3c_hsotg_stop,
2784};
2785
2786/**
2787 * s3c_hsotg_initep - initialise a single endpoint
2788 * @hsotg: The device state.
2789 * @hs_ep: The endpoint to be initialised.
2790 * @epnum: The endpoint number
2791 *
2792 * Initialise the given endpoint (as part of the probe and device state
2793 * creation) to give to the gadget driver. Setup the endpoint name, any
2794 * direction information and other state that may be required.
2795 */
2796static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2797				       struct s3c_hsotg_ep *hs_ep,
2798				       int epnum)
2799{
2800	u32 ptxfifo;
2801	char *dir;
2802
2803	if (epnum == 0)
2804		dir = "";
2805	else if ((epnum % 2) == 0) {
2806		dir = "out";
2807	} else {
2808		dir = "in";
2809		hs_ep->dir_in = 1;
2810	}
2811
2812	hs_ep->index = epnum;
2813
2814	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2815
2816	INIT_LIST_HEAD(&hs_ep->queue);
2817	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2818
2819	spin_lock_init(&hs_ep->lock);
2820
2821	/* add to the list of endpoints known by the gadget driver */
2822	if (epnum)
2823		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2824
2825	hs_ep->parent = hsotg;
2826	hs_ep->ep.name = hs_ep->name;
2827	hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2828	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2829
2830	/* Read the FIFO size for the Periodic TX FIFO, even if we're
2831	 * an OUT endpoint, we may as well do this if in future the
2832	 * code is changed to make each endpoint's direction changeable.
2833	 */
2834
2835	ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
2836	hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
2837
2838	/* if we're using dma, we need to set the next-endpoint pointer
2839	 * to be something valid.
2840	 */
2841
2842	if (using_dma(hsotg)) {
2843		u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2844		writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2845		writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2846	}
2847}
2848
2849/**
2850 * s3c_hsotg_otgreset - reset the OtG phy block
2851 * @hsotg: The host state.
2852 *
2853 * Power up the phy, set the basic configuration and start the PHY.
2854 */
2855static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2856{
2857	struct clk *xusbxti;
2858	u32 pwr, osc;
2859
2860	pwr = readl(S3C_PHYPWR);
2861	pwr &= ~0x19;
2862	writel(pwr, S3C_PHYPWR);
2863	mdelay(1);
2864
2865	osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2866
2867	xusbxti = clk_get(hsotg->dev, "xusbxti");
2868	if (xusbxti && !IS_ERR(xusbxti)) {
2869		switch (clk_get_rate(xusbxti)) {
2870		case 12*MHZ:
2871			osc |= S3C_PHYCLK_CLKSEL_12M;
2872			break;
2873		case 24*MHZ:
2874			osc |= S3C_PHYCLK_CLKSEL_24M;
2875			break;
2876		default:
2877		case 48*MHZ:
2878			/* default reference clock */
2879			break;
2880		}
2881		clk_put(xusbxti);
2882	}
2883
2884	writel(osc | 0x10, S3C_PHYCLK);
2885
2886	/* issue a full set of resets to the otg and core */
2887
2888	writel(S3C_RSTCON_PHY, S3C_RSTCON);
2889	udelay(20);	/* at-least 10uS */
2890	writel(0, S3C_RSTCON);
2891}
2892
2893
2894static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2895{
2896	u32 cfg4;
2897
2898	/* unmask subset of endpoint interrupts */
2899
2900	writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2901	       S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2902	       hsotg->regs + S3C_DIEPMSK);
2903
2904	writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2905	       S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2906	       hsotg->regs + S3C_DOEPMSK);
2907
2908	writel(0, hsotg->regs + S3C_DAINTMSK);
2909
2910	/* Be in disconnected state until gadget is registered */
2911	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2912
2913	if (0) {
2914		/* post global nak until we're ready */
2915		writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2916		       hsotg->regs + S3C_DCTL);
2917	}
2918
2919	/* setup fifos */
2920
2921	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2922		readl(hsotg->regs + S3C_GRXFSIZ),
2923		readl(hsotg->regs + S3C_GNPTXFSIZ));
2924
2925	s3c_hsotg_init_fifo(hsotg);
2926
2927	/* set the PLL on, remove the HNP/SRP and set the PHY */
2928	writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2929	       hsotg->regs + S3C_GUSBCFG);
2930
2931	writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2932	       hsotg->regs + S3C_GAHBCFG);
2933
2934	/* check hardware configuration */
2935
2936	cfg4 = readl(hsotg->regs + 0x50);
2937	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
2938
2939	dev_info(hsotg->dev, "%s fifos\n",
2940		 hsotg->dedicated_fifos ? "dedicated" : "shared");
2941}
2942
2943static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2944{
2945#ifdef DEBUG
2946	struct device *dev = hsotg->dev;
2947	void __iomem *regs = hsotg->regs;
2948	u32 val;
2949	int idx;
2950
2951	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2952		 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2953		 readl(regs + S3C_DIEPMSK));
2954
2955	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2956		 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2957
2958	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2959		 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2960
2961	/* show periodic fifo settings */
2962
2963	for (idx = 1; idx <= 15; idx++) {
2964		val = readl(regs + S3C_DPTXFSIZn(idx));
2965		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2966			 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2967			 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2968	}
2969
2970	for (idx = 0; idx < 15; idx++) {
2971		dev_info(dev,
2972			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2973			 readl(regs + S3C_DIEPCTL(idx)),
2974			 readl(regs + S3C_DIEPTSIZ(idx)),
2975			 readl(regs + S3C_DIEPDMA(idx)));
2976
2977		val = readl(regs + S3C_DOEPCTL(idx));
2978		dev_info(dev,
2979			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2980			 idx, readl(regs + S3C_DOEPCTL(idx)),
2981			 readl(regs + S3C_DOEPTSIZ(idx)),
2982			 readl(regs + S3C_DOEPDMA(idx)));
2983
2984	}
2985
2986	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2987		 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2988#endif
2989}
2990
2991
2992/**
2993 * state_show - debugfs: show overall driver and device state.
2994 * @seq: The seq file to write to.
2995 * @v: Unused parameter.
2996 *
2997 * This debugfs entry shows the overall state of the hardware and
2998 * some general information about each of the endpoints available
2999 * to the system.
3000 */
3001static int state_show(struct seq_file *seq, void *v)
3002{
3003	struct s3c_hsotg *hsotg = seq->private;
3004	void __iomem *regs = hsotg->regs;
3005	int idx;
3006
3007	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3008		 readl(regs + S3C_DCFG),
3009		 readl(regs + S3C_DCTL),
3010		 readl(regs + S3C_DSTS));
3011
3012	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3013		   readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
3014
3015	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3016		   readl(regs + S3C_GINTMSK),
3017		   readl(regs + S3C_GINTSTS));
3018
3019	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3020		   readl(regs + S3C_DAINTMSK),
3021		   readl(regs + S3C_DAINT));
3022
3023	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3024		   readl(regs + S3C_GNPTXSTS),
3025		   readl(regs + S3C_GRXSTSR));
3026
3027	seq_printf(seq, "\nEndpoint status:\n");
3028
3029	for (idx = 0; idx < 15; idx++) {
3030		u32 in, out;
3031
3032		in = readl(regs + S3C_DIEPCTL(idx));
3033		out = readl(regs + S3C_DOEPCTL(idx));
3034
3035		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3036			   idx, in, out);
3037
3038		in = readl(regs + S3C_DIEPTSIZ(idx));
3039		out = readl(regs + S3C_DOEPTSIZ(idx));
3040
3041		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3042			   in, out);
3043
3044		seq_printf(seq, "\n");
3045	}
3046
3047	return 0;
3048}
3049
3050static int state_open(struct inode *inode, struct file *file)
3051{
3052	return single_open(file, state_show, inode->i_private);
3053}
3054
3055static const struct file_operations state_fops = {
3056	.owner		= THIS_MODULE,
3057	.open		= state_open,
3058	.read		= seq_read,
3059	.llseek		= seq_lseek,
3060	.release	= single_release,
3061};
3062
3063/**
3064 * fifo_show - debugfs: show the fifo information
3065 * @seq: The seq_file to write data to.
3066 * @v: Unused parameter.
3067 *
3068 * Show the FIFO information for the overall fifo and all the
3069 * periodic transmission FIFOs.
3070*/
3071static int fifo_show(struct seq_file *seq, void *v)
3072{
3073	struct s3c_hsotg *hsotg = seq->private;
3074	void __iomem *regs = hsotg->regs;
3075	u32 val;
3076	int idx;
3077
3078	seq_printf(seq, "Non-periodic FIFOs:\n");
3079	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
3080
3081	val = readl(regs + S3C_GNPTXFSIZ);
3082	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3083		   val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
3084		   val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
3085
3086	seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3087
3088	for (idx = 1; idx <= 15; idx++) {
3089		val = readl(regs + S3C_DPTXFSIZn(idx));
3090
3091		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3092			   val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
3093			   val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
3094	}
3095
3096	return 0;
3097}
3098
3099static int fifo_open(struct inode *inode, struct file *file)
3100{
3101	return single_open(file, fifo_show, inode->i_private);
3102}
3103
3104static const struct file_operations fifo_fops = {
3105	.owner		= THIS_MODULE,
3106	.open		= fifo_open,
3107	.read		= seq_read,
3108	.llseek		= seq_lseek,
3109	.release	= single_release,
3110};
3111
3112
3113static const char *decode_direction(int is_in)
3114{
3115	return is_in ? "in" : "out";
3116}
3117
3118/**
3119 * ep_show - debugfs: show the state of an endpoint.
3120 * @seq: The seq_file to write data to.
3121 * @v: Unused parameter.
3122 *
3123 * This debugfs entry shows the state of the given endpoint (one is
3124 * registered for each available).
3125*/
3126static int ep_show(struct seq_file *seq, void *v)
3127{
3128	struct s3c_hsotg_ep *ep = seq->private;
3129	struct s3c_hsotg *hsotg = ep->parent;
3130	struct s3c_hsotg_req *req;
3131	void __iomem *regs = hsotg->regs;
3132	int index = ep->index;
3133	int show_limit = 15;
3134	unsigned long flags;
3135
3136	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3137		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3138
3139	/* first show the register state */
3140
3141	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3142		   readl(regs + S3C_DIEPCTL(index)),
3143		   readl(regs + S3C_DOEPCTL(index)));
3144
3145	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3146		   readl(regs + S3C_DIEPDMA(index)),
3147		   readl(regs + S3C_DOEPDMA(index)));
3148
3149	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3150		   readl(regs + S3C_DIEPINT(index)),
3151		   readl(regs + S3C_DOEPINT(index)));
3152
3153	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3154		   readl(regs + S3C_DIEPTSIZ(index)),
3155		   readl(regs + S3C_DOEPTSIZ(index)));
3156
3157	seq_printf(seq, "\n");
3158	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3159	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3160
3161	seq_printf(seq, "request list (%p,%p):\n",
3162		   ep->queue.next, ep->queue.prev);
3163
3164	spin_lock_irqsave(&ep->lock, flags);
3165
3166	list_for_each_entry(req, &ep->queue, queue) {
3167		if (--show_limit < 0) {
3168			seq_printf(seq, "not showing more requests...\n");
3169			break;
3170		}
3171
3172		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3173			   req == ep->req ? '*' : ' ',
3174			   req, req->req.length, req->req.buf);
3175		seq_printf(seq, "%d done, res %d\n",
3176			   req->req.actual, req->req.status);
3177	}
3178
3179	spin_unlock_irqrestore(&ep->lock, flags);
3180
3181	return 0;
3182}
3183
3184static int ep_open(struct inode *inode, struct file *file)
3185{
3186	return single_open(file, ep_show, inode->i_private);
3187}
3188
3189static const struct file_operations ep_fops = {
3190	.owner		= THIS_MODULE,
3191	.open		= ep_open,
3192	.read		= seq_read,
3193	.llseek		= seq_lseek,
3194	.release	= single_release,
3195};
3196
3197/**
3198 * s3c_hsotg_create_debug - create debugfs directory and files
3199 * @hsotg: The driver state
3200 *
3201 * Create the debugfs files to allow the user to get information
3202 * about the state of the system. The directory name is created
3203 * with the same name as the device itself, in case we end up
3204 * with multiple blocks in future systems.
3205*/
3206static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3207{
3208	struct dentry *root;
3209	unsigned epidx;
3210
3211	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3212	hsotg->debug_root = root;
3213	if (IS_ERR(root)) {
3214		dev_err(hsotg->dev, "cannot create debug root\n");
3215		return;
3216	}
3217
3218	/* create general state file */
3219
3220	hsotg->debug_file = debugfs_create_file("state", 0444, root,
3221						hsotg, &state_fops);
3222
3223	if (IS_ERR(hsotg->debug_file))
3224		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3225
3226	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3227						hsotg, &fifo_fops);
3228
3229	if (IS_ERR(hsotg->debug_fifo))
3230		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3231
3232	/* create one file for each endpoint */
3233
3234	for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3235		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3236
3237		ep->debugfs = debugfs_create_file(ep->name, 0444,
3238						  root, ep, &ep_fops);
3239
3240		if (IS_ERR(ep->debugfs))
3241			dev_err(hsotg->dev, "failed to create %s debug file\n",
3242				ep->name);
3243	}
3244}
3245
3246/**
3247 * s3c_hsotg_delete_debug - cleanup debugfs entries
3248 * @hsotg: The driver state
3249 *
3250 * Cleanup (remove) the debugfs files for use on module exit.
3251*/
3252static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3253{
3254	unsigned epidx;
3255
3256	for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3257		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3258		debugfs_remove(ep->debugfs);
3259	}
3260
3261	debugfs_remove(hsotg->debug_file);
3262	debugfs_remove(hsotg->debug_fifo);
3263	debugfs_remove(hsotg->debug_root);
3264}
3265
3266/**
3267 * s3c_hsotg_gate - set the hardware gate for the block
3268 * @pdev: The device we bound to
3269 * @on: On or off.
3270 *
3271 * Set the hardware gate setting into the block. If we end up on
3272 * something other than an S3C64XX, then we might need to change this
3273 * to using a platform data callback, or some other mechanism.
3274 */
3275static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3276{
3277	unsigned long flags;
3278	u32 others;
3279
3280	local_irq_save(flags);
3281
3282	others = __raw_readl(S3C64XX_OTHERS);
3283	if (on)
3284		others |= S3C64XX_OTHERS_USBMASK;
3285	else
3286		others &= ~S3C64XX_OTHERS_USBMASK;
3287	__raw_writel(others, S3C64XX_OTHERS);
3288
3289	local_irq_restore(flags);
3290}
3291
3292static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
3293
3294static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3295{
3296	struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3297	struct device *dev = &pdev->dev;
3298	struct s3c_hsotg *hsotg;
3299	struct resource *res;
3300	int epnum;
3301	int ret;
3302
3303	if (!plat)
3304		plat = &s3c_hsotg_default_pdata;
3305
3306	hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3307			sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3308			GFP_KERNEL);
3309	if (!hsotg) {
3310		dev_err(dev, "cannot get memory\n");
3311		return -ENOMEM;
3312	}
3313
3314	hsotg->dev = dev;
3315	hsotg->plat = plat;
3316
3317	hsotg->clk = clk_get(&pdev->dev, "otg");
3318	if (IS_ERR(hsotg->clk)) {
3319		dev_err(dev, "cannot get otg clock\n");
3320		ret = PTR_ERR(hsotg->clk);
3321		goto err_mem;
3322	}
3323
3324	platform_set_drvdata(pdev, hsotg);
3325
3326	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3327	if (!res) {
3328		dev_err(dev, "cannot find register resource 0\n");
3329		ret = -EINVAL;
3330		goto err_clk;
3331	}
3332
3333	hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3334					     dev_name(dev));
3335	if (!hsotg->regs_res) {
3336		dev_err(dev, "cannot reserve registers\n");
3337		ret = -ENOENT;
3338		goto err_clk;
3339	}
3340
3341	hsotg->regs = ioremap(res->start, resource_size(res));
3342	if (!hsotg->regs) {
3343		dev_err(dev, "cannot map registers\n");
3344		ret = -ENXIO;
3345		goto err_regs_res;
3346	}
3347
3348	ret = platform_get_irq(pdev, 0);
3349	if (ret < 0) {
3350		dev_err(dev, "cannot find IRQ\n");
3351		goto err_regs;
3352	}
3353
3354	hsotg->irq = ret;
3355
3356	ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3357	if (ret < 0) {
3358		dev_err(dev, "cannot claim IRQ\n");
3359		goto err_regs;
3360	}
3361
3362	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3363
3364	device_initialize(&hsotg->gadget.dev);
3365
3366	dev_set_name(&hsotg->gadget.dev, "gadget");
3367
3368	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3369	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3370	hsotg->gadget.name = dev_name(dev);
3371
3372	hsotg->gadget.dev.parent = dev;
3373	hsotg->gadget.dev.dma_mask = dev->dma_mask;
3374
3375	/* setup endpoint information */
3376
3377	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3378	hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3379
3380	/* allocate EP0 request */
3381
3382	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3383						     GFP_KERNEL);
3384	if (!hsotg->ctrl_req) {
3385		dev_err(dev, "failed to allocate ctrl req\n");
3386		goto err_regs;
3387	}
3388
3389	/* reset the system */
3390
3391	clk_enable(hsotg->clk);
3392
3393	s3c_hsotg_gate(pdev, true);
3394
3395	s3c_hsotg_otgreset(hsotg);
3396	s3c_hsotg_corereset(hsotg);
3397	s3c_hsotg_init(hsotg);
3398
3399	/* initialise the endpoints now the core has been initialised */
3400	for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3401		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3402
3403	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3404	if (ret)
3405		goto err_add_udc;
3406
3407	s3c_hsotg_create_debug(hsotg);
3408
3409	s3c_hsotg_dump(hsotg);
3410
3411	our_hsotg = hsotg;
3412	return 0;
3413
3414err_add_udc:
3415	s3c_hsotg_gate(pdev, false);
3416	clk_disable(hsotg->clk);
3417	clk_put(hsotg->clk);
3418
3419err_regs:
3420	iounmap(hsotg->regs);
3421
3422err_regs_res:
3423	release_resource(hsotg->regs_res);
3424	kfree(hsotg->regs_res);
3425err_clk:
3426	clk_put(hsotg->clk);
3427err_mem:
3428	kfree(hsotg);
3429	return ret;
3430}
3431
3432static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3433{
3434	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3435
3436	usb_del_gadget_udc(&hsotg->gadget);
3437
3438	s3c_hsotg_delete_debug(hsotg);
3439
3440	usb_gadget_unregister_driver(hsotg->driver);
3441
3442	free_irq(hsotg->irq, hsotg);
3443	iounmap(hsotg->regs);
3444
3445	release_resource(hsotg->regs_res);
3446	kfree(hsotg->regs_res);
3447
3448	s3c_hsotg_gate(pdev, false);
3449
3450	clk_disable(hsotg->clk);
3451	clk_put(hsotg->clk);
3452
3453	kfree(hsotg);
3454	return 0;
3455}
3456
3457#if 1
3458#define s3c_hsotg_suspend NULL
3459#define s3c_hsotg_resume NULL
3460#endif
3461
3462static struct platform_driver s3c_hsotg_driver = {
3463	.driver		= {
3464		.name	= "s3c-hsotg",
3465		.owner	= THIS_MODULE,
3466	},
3467	.probe		= s3c_hsotg_probe,
3468	.remove		= __devexit_p(s3c_hsotg_remove),
3469	.suspend	= s3c_hsotg_suspend,
3470	.resume		= s3c_hsotg_resume,
3471};
3472
3473module_platform_driver(s3c_hsotg_driver);
3474
3475MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3476MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3477MODULE_LICENSE("GPL");
3478MODULE_ALIAS("platform:s3c-hsotg");
3479