1/* Driver for USB Mass Storage compliant devices
2 *
3 * Current development and maintenance by:
4 *   (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
5 *
6 * Developed with the assistance of:
7 *   (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
8 *   (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
9 *   (c) 2002 Alan Stern <stern@rowland.org>
10 *
11 * Initial work by:
12 *   (c) 1999 Michael Gee (michael@linuxspecific.com)
13 *
14 * This driver is based on the 'USB Mass Storage Class' document. This
15 * describes in detail the protocol used to communicate with such
16 * devices.  Clearly, the designers had SCSI and ATAPI commands in
17 * mind when they created this document.  The commands are all very
18 * similar to commands in the SCSI-II and ATAPI specifications.
19 *
20 * It is important to note that in a number of cases this class
21 * exhibits class-specific exemptions from the USB specification.
22 * Notably the usage of NAK, STALL and ACK differs from the norm, in
23 * that they are used to communicate wait, failed and OK on commands.
24 *
25 * Also, for certain devices, the interrupt endpoint is used to convey
26 * status of a command.
27 *
28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
29 * information about this driver.
30 *
31 * This program is free software; you can redistribute it and/or modify it
32 * under the terms of the GNU General Public License as published by the
33 * Free Software Foundation; either version 2, or (at your option) any
34 * later version.
35 *
36 * This program is distributed in the hope that it will be useful, but
37 * WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
39 * General Public License for more details.
40 *
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, write to the Free Software Foundation, Inc.,
43 * 675 Mass Ave, Cambridge, MA 02139, USA.
44 */
45
46#include <linux/sched.h>
47#include <linux/gfp.h>
48#include <linux/errno.h>
49#include <linux/export.h>
50
51#include <linux/usb/quirks.h>
52
53#include <scsi/scsi.h>
54#include <scsi/scsi_eh.h>
55#include <scsi/scsi_device.h>
56
57#include "usb.h"
58#include "transport.h"
59#include "protocol.h"
60#include "scsiglue.h"
61#include "debug.h"
62
63#include <linux/blkdev.h>
64#include "../../scsi/sd.h"
65
66
67/***********************************************************************
68 * Data transfer routines
69 ***********************************************************************/
70
71/*
72 * This is subtle, so pay attention:
73 * ---------------------------------
74 * We're very concerned about races with a command abort.  Hanging this code
75 * is a sure fire way to hang the kernel.  (Note that this discussion applies
76 * only to transactions resulting from a scsi queued-command, since only
77 * these transactions are subject to a scsi abort.  Other transactions, such
78 * as those occurring during device-specific initialization, must be handled
79 * by a separate code path.)
80 *
81 * The abort function (usb_storage_command_abort() in scsiglue.c) first
82 * sets the machine state and the ABORTING bit in us->dflags to prevent
83 * new URBs from being submitted.  It then calls usb_stor_stop_transport()
84 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
85 * to see if the current_urb needs to be stopped.  Likewise, the SG_ACTIVE
86 * bit is tested to see if the current_sg scatter-gather request needs to be
87 * stopped.  The timeout callback routine does much the same thing.
88 *
89 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
90 * prevent new URBs from being submitted, and usb_stor_stop_transport() is
91 * called to stop any ongoing requests.
92 *
93 * The submit function first verifies that the submitting is allowed
94 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
95 * completes without errors, and only then sets the URB_ACTIVE bit.  This
96 * prevents the stop_transport() function from trying to cancel the URB
97 * while the submit call is underway.  Next, the submit function must test
98 * the flags to see if an abort or disconnect occurred during the submission
99 * or before the URB_ACTIVE bit was set.  If so, it's essential to cancel
100 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
101 * is still set).  Either way, the function must then wait for the URB to
102 * finish.  Note that the URB can still be in progress even after a call to
103 * usb_unlink_urb() returns.
104 *
105 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
106 * either the stop_transport() function or the submitting function
107 * is guaranteed to call usb_unlink_urb() for an active URB,
108 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
109 * called more than once or from being called during usb_submit_urb().
110 */
111
112/* This is the completion handler which will wake us up when an URB
113 * completes.
114 */
115static void usb_stor_blocking_completion(struct urb *urb)
116{
117	struct completion *urb_done_ptr = urb->context;
118
119	complete(urb_done_ptr);
120}
121
122/* This is the common part of the URB message submission code
123 *
124 * All URBs from the usb-storage driver involved in handling a queued scsi
125 * command _must_ pass through this function (or something like it) for the
126 * abort mechanisms to work properly.
127 */
128static int usb_stor_msg_common(struct us_data *us, int timeout)
129{
130	struct completion urb_done;
131	long timeleft;
132	int status;
133
134	/* don't submit URBs during abort processing */
135	if (test_bit(US_FLIDX_ABORTING, &us->dflags))
136		return -EIO;
137
138	/* set up data structures for the wakeup system */
139	init_completion(&urb_done);
140
141	/* fill the common fields in the URB */
142	us->current_urb->context = &urb_done;
143	us->current_urb->transfer_flags = 0;
144
145	/* we assume that if transfer_buffer isn't us->iobuf then it
146	 * hasn't been mapped for DMA.  Yes, this is clunky, but it's
147	 * easier than always having the caller tell us whether the
148	 * transfer buffer has already been mapped. */
149	if (us->current_urb->transfer_buffer == us->iobuf)
150		us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
151	us->current_urb->transfer_dma = us->iobuf_dma;
152
153	/* submit the URB */
154	status = usb_submit_urb(us->current_urb, GFP_NOIO);
155	if (status) {
156		/* something went wrong */
157		return status;
158	}
159
160	/* since the URB has been submitted successfully, it's now okay
161	 * to cancel it */
162	set_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
163
164	/* did an abort occur during the submission? */
165	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
166
167		/* cancel the URB, if it hasn't been cancelled already */
168		if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
169			US_DEBUGP("-- cancelling URB\n");
170			usb_unlink_urb(us->current_urb);
171		}
172	}
173
174	/* wait for the completion of the URB */
175	timeleft = wait_for_completion_interruptible_timeout(
176			&urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
177
178	clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
179
180	if (timeleft <= 0) {
181		US_DEBUGP("%s -- cancelling URB\n",
182			  timeleft == 0 ? "Timeout" : "Signal");
183		usb_kill_urb(us->current_urb);
184	}
185
186	/* return the URB status */
187	return us->current_urb->status;
188}
189
190/*
191 * Transfer one control message, with timeouts, and allowing early
192 * termination.  Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
193 */
194int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
195		 u8 request, u8 requesttype, u16 value, u16 index,
196		 void *data, u16 size, int timeout)
197{
198	int status;
199
200	US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
201			__func__, request, requesttype,
202			value, index, size);
203
204	/* fill in the devrequest structure */
205	us->cr->bRequestType = requesttype;
206	us->cr->bRequest = request;
207	us->cr->wValue = cpu_to_le16(value);
208	us->cr->wIndex = cpu_to_le16(index);
209	us->cr->wLength = cpu_to_le16(size);
210
211	/* fill and submit the URB */
212	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
213			 (unsigned char*) us->cr, data, size,
214			 usb_stor_blocking_completion, NULL);
215	status = usb_stor_msg_common(us, timeout);
216
217	/* return the actual length of the data transferred if no error */
218	if (status == 0)
219		status = us->current_urb->actual_length;
220	return status;
221}
222EXPORT_SYMBOL_GPL(usb_stor_control_msg);
223
224/* This is a version of usb_clear_halt() that allows early termination and
225 * doesn't read the status from the device -- this is because some devices
226 * crash their internal firmware when the status is requested after a halt.
227 *
228 * A definitive list of these 'bad' devices is too difficult to maintain or
229 * make complete enough to be useful.  This problem was first observed on the
230 * Hagiwara FlashGate DUAL unit.  However, bus traces reveal that neither
231 * MacOS nor Windows checks the status after clearing a halt.
232 *
233 * Since many vendors in this space limit their testing to interoperability
234 * with these two OSes, specification violations like this one are common.
235 */
236int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
237{
238	int result;
239	int endp = usb_pipeendpoint(pipe);
240
241	if (usb_pipein (pipe))
242		endp |= USB_DIR_IN;
243
244	result = usb_stor_control_msg(us, us->send_ctrl_pipe,
245		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
246		USB_ENDPOINT_HALT, endp,
247		NULL, 0, 3*HZ);
248
249	if (result >= 0)
250		usb_reset_endpoint(us->pusb_dev, endp);
251
252	US_DEBUGP("%s: result = %d\n", __func__, result);
253	return result;
254}
255EXPORT_SYMBOL_GPL(usb_stor_clear_halt);
256
257
258/*
259 * Interpret the results of a URB transfer
260 *
261 * This function prints appropriate debugging messages, clears halts on
262 * non-control endpoints, and translates the status to the corresponding
263 * USB_STOR_XFER_xxx return code.
264 */
265static int interpret_urb_result(struct us_data *us, unsigned int pipe,
266		unsigned int length, int result, unsigned int partial)
267{
268	US_DEBUGP("Status code %d; transferred %u/%u\n",
269			result, partial, length);
270	switch (result) {
271
272	/* no error code; did we send all the data? */
273	case 0:
274		if (partial != length) {
275			US_DEBUGP("-- short transfer\n");
276			return USB_STOR_XFER_SHORT;
277		}
278
279		US_DEBUGP("-- transfer complete\n");
280		return USB_STOR_XFER_GOOD;
281
282	/* stalled */
283	case -EPIPE:
284		/* for control endpoints, (used by CB[I]) a stall indicates
285		 * a failed command */
286		if (usb_pipecontrol(pipe)) {
287			US_DEBUGP("-- stall on control pipe\n");
288			return USB_STOR_XFER_STALLED;
289		}
290
291		/* for other sorts of endpoint, clear the stall */
292		US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe);
293		if (usb_stor_clear_halt(us, pipe) < 0)
294			return USB_STOR_XFER_ERROR;
295		return USB_STOR_XFER_STALLED;
296
297	/* babble - the device tried to send more than we wanted to read */
298	case -EOVERFLOW:
299		US_DEBUGP("-- babble\n");
300		return USB_STOR_XFER_LONG;
301
302	/* the transfer was cancelled by abort, disconnect, or timeout */
303	case -ECONNRESET:
304		US_DEBUGP("-- transfer cancelled\n");
305		return USB_STOR_XFER_ERROR;
306
307	/* short scatter-gather read transfer */
308	case -EREMOTEIO:
309		US_DEBUGP("-- short read transfer\n");
310		return USB_STOR_XFER_SHORT;
311
312	/* abort or disconnect in progress */
313	case -EIO:
314		US_DEBUGP("-- abort or disconnect in progress\n");
315		return USB_STOR_XFER_ERROR;
316
317	/* the catch-all error case */
318	default:
319		US_DEBUGP("-- unknown error\n");
320		return USB_STOR_XFER_ERROR;
321	}
322}
323
324/*
325 * Transfer one control message, without timeouts, but allowing early
326 * termination.  Return codes are USB_STOR_XFER_xxx.
327 */
328int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
329		u8 request, u8 requesttype, u16 value, u16 index,
330		void *data, u16 size)
331{
332	int result;
333
334	US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
335			__func__, request, requesttype,
336			value, index, size);
337
338	/* fill in the devrequest structure */
339	us->cr->bRequestType = requesttype;
340	us->cr->bRequest = request;
341	us->cr->wValue = cpu_to_le16(value);
342	us->cr->wIndex = cpu_to_le16(index);
343	us->cr->wLength = cpu_to_le16(size);
344
345	/* fill and submit the URB */
346	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
347			 (unsigned char*) us->cr, data, size,
348			 usb_stor_blocking_completion, NULL);
349	result = usb_stor_msg_common(us, 0);
350
351	return interpret_urb_result(us, pipe, size, result,
352			us->current_urb->actual_length);
353}
354EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer);
355
356/*
357 * Receive one interrupt buffer, without timeouts, but allowing early
358 * termination.  Return codes are USB_STOR_XFER_xxx.
359 *
360 * This routine always uses us->recv_intr_pipe as the pipe and
361 * us->ep_bInterval as the interrupt interval.
362 */
363static int usb_stor_intr_transfer(struct us_data *us, void *buf,
364				  unsigned int length)
365{
366	int result;
367	unsigned int pipe = us->recv_intr_pipe;
368	unsigned int maxp;
369
370	US_DEBUGP("%s: xfer %u bytes\n", __func__, length);
371
372	/* calculate the max packet size */
373	maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe));
374	if (maxp > length)
375		maxp = length;
376
377	/* fill and submit the URB */
378	usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
379			maxp, usb_stor_blocking_completion, NULL,
380			us->ep_bInterval);
381	result = usb_stor_msg_common(us, 0);
382
383	return interpret_urb_result(us, pipe, length, result,
384			us->current_urb->actual_length);
385}
386
387/*
388 * Transfer one buffer via bulk pipe, without timeouts, but allowing early
389 * termination.  Return codes are USB_STOR_XFER_xxx.  If the bulk pipe
390 * stalls during the transfer, the halt is automatically cleared.
391 */
392int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
393	void *buf, unsigned int length, unsigned int *act_len)
394{
395	int result;
396
397	US_DEBUGP("%s: xfer %u bytes\n", __func__, length);
398
399	/* fill and submit the URB */
400	usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
401		      usb_stor_blocking_completion, NULL);
402	result = usb_stor_msg_common(us, 0);
403
404	/* store the actual length of the data transferred */
405	if (act_len)
406		*act_len = us->current_urb->actual_length;
407	return interpret_urb_result(us, pipe, length, result,
408			us->current_urb->actual_length);
409}
410EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf);
411
412/*
413 * Transfer a scatter-gather list via bulk transfer
414 *
415 * This function does basically the same thing as usb_stor_bulk_transfer_buf()
416 * above, but it uses the usbcore scatter-gather library.
417 */
418static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
419		struct scatterlist *sg, int num_sg, unsigned int length,
420		unsigned int *act_len)
421{
422	int result;
423
424	/* don't submit s-g requests during abort processing */
425	if (test_bit(US_FLIDX_ABORTING, &us->dflags))
426		return USB_STOR_XFER_ERROR;
427
428	/* initialize the scatter-gather request block */
429	US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__,
430			length, num_sg);
431	result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
432			sg, num_sg, length, GFP_NOIO);
433	if (result) {
434		US_DEBUGP("usb_sg_init returned %d\n", result);
435		return USB_STOR_XFER_ERROR;
436	}
437
438	/* since the block has been initialized successfully, it's now
439	 * okay to cancel it */
440	set_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
441
442	/* did an abort occur during the submission? */
443	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
444
445		/* cancel the request, if it hasn't been cancelled already */
446		if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
447			US_DEBUGP("-- cancelling sg request\n");
448			usb_sg_cancel(&us->current_sg);
449		}
450	}
451
452	/* wait for the completion of the transfer */
453	usb_sg_wait(&us->current_sg);
454	clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
455
456	result = us->current_sg.status;
457	if (act_len)
458		*act_len = us->current_sg.bytes;
459	return interpret_urb_result(us, pipe, length, result,
460			us->current_sg.bytes);
461}
462
463/*
464 * Common used function. Transfer a complete command
465 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
466 */
467int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
468		      struct scsi_cmnd* srb)
469{
470	unsigned int partial;
471	int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
472				      scsi_sg_count(srb), scsi_bufflen(srb),
473				      &partial);
474
475	scsi_set_resid(srb, scsi_bufflen(srb) - partial);
476	return result;
477}
478EXPORT_SYMBOL_GPL(usb_stor_bulk_srb);
479
480/*
481 * Transfer an entire SCSI command's worth of data payload over the bulk
482 * pipe.
483 *
484 * Note that this uses usb_stor_bulk_transfer_buf() and
485 * usb_stor_bulk_transfer_sglist() to achieve its goals --
486 * this function simply determines whether we're going to use
487 * scatter-gather or not, and acts appropriately.
488 */
489int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
490		void *buf, unsigned int length_left, int use_sg, int *residual)
491{
492	int result;
493	unsigned int partial;
494
495	/* are we scatter-gathering? */
496	if (use_sg) {
497		/* use the usb core scatter-gather primitives */
498		result = usb_stor_bulk_transfer_sglist(us, pipe,
499				(struct scatterlist *) buf, use_sg,
500				length_left, &partial);
501		length_left -= partial;
502	} else {
503		/* no scatter-gather, just make the request */
504		result = usb_stor_bulk_transfer_buf(us, pipe, buf,
505				length_left, &partial);
506		length_left -= partial;
507	}
508
509	/* store the residual and return the error code */
510	if (residual)
511		*residual = length_left;
512	return result;
513}
514EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg);
515
516/***********************************************************************
517 * Transport routines
518 ***********************************************************************/
519
520/* There are so many devices that report the capacity incorrectly,
521 * this routine was written to counteract some of the resulting
522 * problems.
523 */
524static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb)
525{
526	struct gendisk *disk;
527	struct scsi_disk *sdkp;
528	u32 sector;
529
530	/* To Report "Medium Error: Record Not Found */
531	static unsigned char record_not_found[18] = {
532		[0]	= 0x70,			/* current error */
533		[2]	= MEDIUM_ERROR,		/* = 0x03 */
534		[7]	= 0x0a,			/* additional length */
535		[12]	= 0x14			/* Record Not Found */
536	};
537
538	/* If last-sector problems can't occur, whether because the
539	 * capacity was already decremented or because the device is
540	 * known to report the correct capacity, then we don't need
541	 * to do anything.
542	 */
543	if (!us->use_last_sector_hacks)
544		return;
545
546	/* Was this command a READ(10) or a WRITE(10)? */
547	if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10)
548		goto done;
549
550	/* Did this command access the last sector? */
551	sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) |
552			(srb->cmnd[4] << 8) | (srb->cmnd[5]);
553	disk = srb->request->rq_disk;
554	if (!disk)
555		goto done;
556	sdkp = scsi_disk(disk);
557	if (!sdkp)
558		goto done;
559	if (sector + 1 != sdkp->capacity)
560		goto done;
561
562	if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) {
563
564		/* The command succeeded.  We know this device doesn't
565		 * have the last-sector bug, so stop checking it.
566		 */
567		us->use_last_sector_hacks = 0;
568
569	} else {
570		/* The command failed.  Allow up to 3 retries in case this
571		 * is some normal sort of failure.  After that, assume the
572		 * capacity is wrong and we're trying to access the sector
573		 * beyond the end.  Replace the result code and sense data
574		 * with values that will cause the SCSI core to fail the
575		 * command immediately, instead of going into an infinite
576		 * (or even just a very long) retry loop.
577		 */
578		if (++us->last_sector_retries < 3)
579			return;
580		srb->result = SAM_STAT_CHECK_CONDITION;
581		memcpy(srb->sense_buffer, record_not_found,
582				sizeof(record_not_found));
583	}
584
585 done:
586	/* Don't reset the retry counter for TEST UNIT READY commands,
587	 * because they get issued after device resets which might be
588	 * caused by a failed last-sector access.
589	 */
590	if (srb->cmnd[0] != TEST_UNIT_READY)
591		us->last_sector_retries = 0;
592}
593
594/* Invoke the transport and basic error-handling/recovery methods
595 *
596 * This is used by the protocol layers to actually send the message to
597 * the device and receive the response.
598 */
599void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
600{
601	int need_auto_sense;
602	int result;
603
604	/* send the command to the transport layer */
605	scsi_set_resid(srb, 0);
606	result = us->transport(srb, us);
607
608	/* if the command gets aborted by the higher layers, we need to
609	 * short-circuit all other processing
610	 */
611	if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
612		US_DEBUGP("-- command was aborted\n");
613		srb->result = DID_ABORT << 16;
614		goto Handle_Errors;
615	}
616
617	/* if there is a transport error, reset and don't auto-sense */
618	if (result == USB_STOR_TRANSPORT_ERROR) {
619		US_DEBUGP("-- transport indicates error, resetting\n");
620		srb->result = DID_ERROR << 16;
621		goto Handle_Errors;
622	}
623
624	/* if the transport provided its own sense data, don't auto-sense */
625	if (result == USB_STOR_TRANSPORT_NO_SENSE) {
626		srb->result = SAM_STAT_CHECK_CONDITION;
627		last_sector_hacks(us, srb);
628		return;
629	}
630
631	srb->result = SAM_STAT_GOOD;
632
633	/* Determine if we need to auto-sense
634	 *
635	 * I normally don't use a flag like this, but it's almost impossible
636	 * to understand what's going on here if I don't.
637	 */
638	need_auto_sense = 0;
639
640	/*
641	 * If we're running the CB transport, which is incapable
642	 * of determining status on its own, we will auto-sense
643	 * unless the operation involved a data-in transfer.  Devices
644	 * can signal most data-in errors by stalling the bulk-in pipe.
645	 */
646	if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) &&
647			srb->sc_data_direction != DMA_FROM_DEVICE) {
648		US_DEBUGP("-- CB transport device requiring auto-sense\n");
649		need_auto_sense = 1;
650	}
651
652	/*
653	 * If we have a failure, we're going to do a REQUEST_SENSE
654	 * automatically.  Note that we differentiate between a command
655	 * "failure" and an "error" in the transport mechanism.
656	 */
657	if (result == USB_STOR_TRANSPORT_FAILED) {
658		US_DEBUGP("-- transport indicates command failure\n");
659		need_auto_sense = 1;
660	}
661
662	/*
663	 * Determine if this device is SAT by seeing if the
664	 * command executed successfully.  Otherwise we'll have
665	 * to wait for at least one CHECK_CONDITION to determine
666	 * SANE_SENSE support
667	 */
668	if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) &&
669	    result == USB_STOR_TRANSPORT_GOOD &&
670	    !(us->fflags & US_FL_SANE_SENSE) &&
671	    !(us->fflags & US_FL_BAD_SENSE) &&
672	    !(srb->cmnd[2] & 0x20))) {
673		US_DEBUGP("-- SAT supported, increasing auto-sense\n");
674		us->fflags |= US_FL_SANE_SENSE;
675	}
676
677	/*
678	 * A short transfer on a command where we don't expect it
679	 * is unusual, but it doesn't mean we need to auto-sense.
680	 */
681	if ((scsi_get_resid(srb) > 0) &&
682	    !((srb->cmnd[0] == REQUEST_SENSE) ||
683	      (srb->cmnd[0] == INQUIRY) ||
684	      (srb->cmnd[0] == MODE_SENSE) ||
685	      (srb->cmnd[0] == LOG_SENSE) ||
686	      (srb->cmnd[0] == MODE_SENSE_10))) {
687		US_DEBUGP("-- unexpectedly short transfer\n");
688	}
689
690	/* Now, if we need to do the auto-sense, let's do it */
691	if (need_auto_sense) {
692		int temp_result;
693		struct scsi_eh_save ses;
694		int sense_size = US_SENSE_SIZE;
695		struct scsi_sense_hdr sshdr;
696		const u8 *scdd;
697		u8 fm_ili;
698
699		/* device supports and needs bigger sense buffer */
700		if (us->fflags & US_FL_SANE_SENSE)
701			sense_size = ~0;
702Retry_Sense:
703		US_DEBUGP("Issuing auto-REQUEST_SENSE\n");
704
705		scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size);
706
707		/* FIXME: we must do the protocol translation here */
708		if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI ||
709				us->subclass == USB_SC_CYP_ATACB)
710			srb->cmd_len = 6;
711		else
712			srb->cmd_len = 12;
713
714		/* issue the auto-sense command */
715		scsi_set_resid(srb, 0);
716		temp_result = us->transport(us->srb, us);
717
718		/* let's clean up right away */
719		scsi_eh_restore_cmnd(srb, &ses);
720
721		if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
722			US_DEBUGP("-- auto-sense aborted\n");
723			srb->result = DID_ABORT << 16;
724
725			/* If SANE_SENSE caused this problem, disable it */
726			if (sense_size != US_SENSE_SIZE) {
727				us->fflags &= ~US_FL_SANE_SENSE;
728				us->fflags |= US_FL_BAD_SENSE;
729			}
730			goto Handle_Errors;
731		}
732
733		/* Some devices claim to support larger sense but fail when
734		 * trying to request it. When a transport failure happens
735		 * using US_FS_SANE_SENSE, we always retry with a standard
736		 * (small) sense request. This fixes some USB GSM modems
737		 */
738		if (temp_result == USB_STOR_TRANSPORT_FAILED &&
739				sense_size != US_SENSE_SIZE) {
740			US_DEBUGP("-- auto-sense failure, retry small sense\n");
741			sense_size = US_SENSE_SIZE;
742			us->fflags &= ~US_FL_SANE_SENSE;
743			us->fflags |= US_FL_BAD_SENSE;
744			goto Retry_Sense;
745		}
746
747		/* Other failures */
748		if (temp_result != USB_STOR_TRANSPORT_GOOD) {
749			US_DEBUGP("-- auto-sense failure\n");
750
751			/* we skip the reset if this happens to be a
752			 * multi-target device, since failure of an
753			 * auto-sense is perfectly valid
754			 */
755			srb->result = DID_ERROR << 16;
756			if (!(us->fflags & US_FL_SCM_MULT_TARG))
757				goto Handle_Errors;
758			return;
759		}
760
761		/* If the sense data returned is larger than 18-bytes then we
762		 * assume this device supports requesting more in the future.
763		 * The response code must be 70h through 73h inclusive.
764		 */
765		if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) &&
766		    !(us->fflags & US_FL_SANE_SENSE) &&
767		    !(us->fflags & US_FL_BAD_SENSE) &&
768		    (srb->sense_buffer[0] & 0x7C) == 0x70) {
769			US_DEBUGP("-- SANE_SENSE support enabled\n");
770			us->fflags |= US_FL_SANE_SENSE;
771
772			/* Indicate to the user that we truncated their sense
773			 * because we didn't know it supported larger sense.
774			 */
775			US_DEBUGP("-- Sense data truncated to %i from %i\n",
776			          US_SENSE_SIZE,
777			          srb->sense_buffer[7] + 8);
778			srb->sense_buffer[7] = (US_SENSE_SIZE - 8);
779		}
780
781		scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE,
782				     &sshdr);
783
784		US_DEBUGP("-- Result from auto-sense is %d\n", temp_result);
785		US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
786			  sshdr.response_code, sshdr.sense_key,
787			  sshdr.asc, sshdr.ascq);
788#ifdef CONFIG_USB_STORAGE_DEBUG
789		usb_stor_show_sense(sshdr.sense_key, sshdr.asc, sshdr.ascq);
790#endif
791
792		/* set the result so the higher layers expect this data */
793		srb->result = SAM_STAT_CHECK_CONDITION;
794
795		scdd = scsi_sense_desc_find(srb->sense_buffer,
796					    SCSI_SENSE_BUFFERSIZE, 4);
797		fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0;
798
799		/* We often get empty sense data.  This could indicate that
800		 * everything worked or that there was an unspecified
801		 * problem.  We have to decide which.
802		 */
803		if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 &&
804		    fm_ili == 0) {
805			/* If things are really okay, then let's show that.
806			 * Zero out the sense buffer so the higher layers
807			 * won't realize we did an unsolicited auto-sense.
808			 */
809			if (result == USB_STOR_TRANSPORT_GOOD) {
810				srb->result = SAM_STAT_GOOD;
811				srb->sense_buffer[0] = 0x0;
812
813			/* If there was a problem, report an unspecified
814			 * hardware error to prevent the higher layers from
815			 * entering an infinite retry loop.
816			 */
817			} else {
818				srb->result = DID_ERROR << 16;
819				if ((sshdr.response_code & 0x72) == 0x72)
820					srb->sense_buffer[1] = HARDWARE_ERROR;
821				else
822					srb->sense_buffer[2] = HARDWARE_ERROR;
823			}
824		}
825	}
826
827	/*
828	 * Some devices don't work or return incorrect data the first
829	 * time they get a READ(10) command, or for the first READ(10)
830	 * after a media change.  If the INITIAL_READ10 flag is set,
831	 * keep track of whether READ(10) commands succeed.  If the
832	 * previous one succeeded and this one failed, set the REDO_READ10
833	 * flag to force a retry.
834	 */
835	if (unlikely((us->fflags & US_FL_INITIAL_READ10) &&
836			srb->cmnd[0] == READ_10)) {
837		if (srb->result == SAM_STAT_GOOD) {
838			set_bit(US_FLIDX_READ10_WORKED, &us->dflags);
839		} else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) {
840			clear_bit(US_FLIDX_READ10_WORKED, &us->dflags);
841			set_bit(US_FLIDX_REDO_READ10, &us->dflags);
842		}
843
844		/*
845		 * Next, if the REDO_READ10 flag is set, return a result
846		 * code that will cause the SCSI core to retry the READ(10)
847		 * command immediately.
848		 */
849		if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) {
850			clear_bit(US_FLIDX_REDO_READ10, &us->dflags);
851			srb->result = DID_IMM_RETRY << 16;
852			srb->sense_buffer[0] = 0;
853		}
854	}
855
856	/* Did we transfer less than the minimum amount required? */
857	if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) &&
858			scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
859		srb->result = DID_ERROR << 16;
860
861	last_sector_hacks(us, srb);
862	return;
863
864	/* Error and abort processing: try to resynchronize with the device
865	 * by issuing a port reset.  If that fails, try a class-specific
866	 * device reset. */
867  Handle_Errors:
868
869	/* Set the RESETTING bit, and clear the ABORTING bit so that
870	 * the reset may proceed. */
871	scsi_lock(us_to_host(us));
872	set_bit(US_FLIDX_RESETTING, &us->dflags);
873	clear_bit(US_FLIDX_ABORTING, &us->dflags);
874	scsi_unlock(us_to_host(us));
875
876	/* We must release the device lock because the pre_reset routine
877	 * will want to acquire it. */
878	mutex_unlock(&us->dev_mutex);
879	result = usb_stor_port_reset(us);
880	mutex_lock(&us->dev_mutex);
881
882	if (result < 0) {
883		scsi_lock(us_to_host(us));
884		usb_stor_report_device_reset(us);
885		scsi_unlock(us_to_host(us));
886		us->transport_reset(us);
887	}
888	clear_bit(US_FLIDX_RESETTING, &us->dflags);
889	last_sector_hacks(us, srb);
890}
891
892/* Stop the current URB transfer */
893void usb_stor_stop_transport(struct us_data *us)
894{
895	US_DEBUGP("%s called\n", __func__);
896
897	/* If the state machine is blocked waiting for an URB,
898	 * let's wake it up.  The test_and_clear_bit() call
899	 * guarantees that if a URB has just been submitted,
900	 * it won't be cancelled more than once. */
901	if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
902		US_DEBUGP("-- cancelling URB\n");
903		usb_unlink_urb(us->current_urb);
904	}
905
906	/* If we are waiting for a scatter-gather operation, cancel it. */
907	if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
908		US_DEBUGP("-- cancelling sg request\n");
909		usb_sg_cancel(&us->current_sg);
910	}
911}
912
913/*
914 * Control/Bulk and Control/Bulk/Interrupt transport
915 */
916
917int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
918{
919	unsigned int transfer_length = scsi_bufflen(srb);
920	unsigned int pipe = 0;
921	int result;
922
923	/* COMMAND STAGE */
924	/* let's send the command via the control pipe */
925	result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
926				      US_CBI_ADSC,
927				      USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
928				      us->ifnum, srb->cmnd, srb->cmd_len);
929
930	/* check the return code for the command */
931	US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result);
932
933	/* if we stalled the command, it means command failed */
934	if (result == USB_STOR_XFER_STALLED) {
935		return USB_STOR_TRANSPORT_FAILED;
936	}
937
938	/* Uh oh... serious problem here */
939	if (result != USB_STOR_XFER_GOOD) {
940		return USB_STOR_TRANSPORT_ERROR;
941	}
942
943	/* DATA STAGE */
944	/* transfer the data payload for this command, if one exists*/
945	if (transfer_length) {
946		pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
947				us->recv_bulk_pipe : us->send_bulk_pipe;
948		result = usb_stor_bulk_srb(us, pipe, srb);
949		US_DEBUGP("CBI data stage result is 0x%x\n", result);
950
951		/* if we stalled the data transfer it means command failed */
952		if (result == USB_STOR_XFER_STALLED)
953			return USB_STOR_TRANSPORT_FAILED;
954		if (result > USB_STOR_XFER_STALLED)
955			return USB_STOR_TRANSPORT_ERROR;
956	}
957
958	/* STATUS STAGE */
959
960	/* NOTE: CB does not have a status stage.  Silly, I know.  So
961	 * we have to catch this at a higher level.
962	 */
963	if (us->protocol != USB_PR_CBI)
964		return USB_STOR_TRANSPORT_GOOD;
965
966	result = usb_stor_intr_transfer(us, us->iobuf, 2);
967	US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n",
968			us->iobuf[0], us->iobuf[1]);
969	if (result != USB_STOR_XFER_GOOD)
970		return USB_STOR_TRANSPORT_ERROR;
971
972	/* UFI gives us ASC and ASCQ, like a request sense
973	 *
974	 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
975	 * devices, so we ignore the information for those commands.  Note
976	 * that this means we could be ignoring a real error on these
977	 * commands, but that can't be helped.
978	 */
979	if (us->subclass == USB_SC_UFI) {
980		if (srb->cmnd[0] == REQUEST_SENSE ||
981		    srb->cmnd[0] == INQUIRY)
982			return USB_STOR_TRANSPORT_GOOD;
983		if (us->iobuf[0])
984			goto Failed;
985		return USB_STOR_TRANSPORT_GOOD;
986	}
987
988	/* If not UFI, we interpret the data as a result code
989	 * The first byte should always be a 0x0.
990	 *
991	 * Some bogus devices don't follow that rule.  They stuff the ASC
992	 * into the first byte -- so if it's non-zero, call it a failure.
993	 */
994	if (us->iobuf[0]) {
995		US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n",
996				us->iobuf[0]);
997		goto Failed;
998
999	}
1000
1001	/* The second byte & 0x0F should be 0x0 for good, otherwise error */
1002	switch (us->iobuf[1] & 0x0F) {
1003		case 0x00:
1004			return USB_STOR_TRANSPORT_GOOD;
1005		case 0x01:
1006			goto Failed;
1007	}
1008	return USB_STOR_TRANSPORT_ERROR;
1009
1010	/* the CBI spec requires that the bulk pipe must be cleared
1011	 * following any data-in/out command failure (section 2.4.3.1.3)
1012	 */
1013  Failed:
1014	if (pipe)
1015		usb_stor_clear_halt(us, pipe);
1016	return USB_STOR_TRANSPORT_FAILED;
1017}
1018EXPORT_SYMBOL_GPL(usb_stor_CB_transport);
1019
1020/*
1021 * Bulk only transport
1022 */
1023
1024/* Determine what the maximum LUN supported is */
1025int usb_stor_Bulk_max_lun(struct us_data *us)
1026{
1027	int result;
1028
1029	/* issue the command */
1030	us->iobuf[0] = 0;
1031	result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
1032				 US_BULK_GET_MAX_LUN,
1033				 USB_DIR_IN | USB_TYPE_CLASS |
1034				 USB_RECIP_INTERFACE,
1035				 0, us->ifnum, us->iobuf, 1, 10*HZ);
1036
1037	US_DEBUGP("GetMaxLUN command result is %d, data is %d\n",
1038		  result, us->iobuf[0]);
1039
1040	/* if we have a successful request, return the result */
1041	if (result > 0)
1042		return us->iobuf[0];
1043
1044	/*
1045	 * Some devices don't like GetMaxLUN.  They may STALL the control
1046	 * pipe, they may return a zero-length result, they may do nothing at
1047	 * all and timeout, or they may fail in even more bizarrely creative
1048	 * ways.  In these cases the best approach is to use the default
1049	 * value: only one LUN.
1050	 */
1051	return 0;
1052}
1053
1054int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
1055{
1056	struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
1057	struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
1058	unsigned int transfer_length = scsi_bufflen(srb);
1059	unsigned int residue;
1060	int result;
1061	int fake_sense = 0;
1062	unsigned int cswlen;
1063	unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
1064
1065	/* Take care of BULK32 devices; set extra byte to 0 */
1066	if (unlikely(us->fflags & US_FL_BULK32)) {
1067		cbwlen = 32;
1068		us->iobuf[31] = 0;
1069	}
1070
1071	/* set up the command wrapper */
1072	bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
1073	bcb->DataTransferLength = cpu_to_le32(transfer_length);
1074	bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ?
1075		US_BULK_FLAG_IN : 0;
1076	bcb->Tag = ++us->tag;
1077	bcb->Lun = srb->device->lun;
1078	if (us->fflags & US_FL_SCM_MULT_TARG)
1079		bcb->Lun |= srb->device->id << 4;
1080	bcb->Length = srb->cmd_len;
1081
1082	/* copy the command payload */
1083	memset(bcb->CDB, 0, sizeof(bcb->CDB));
1084	memcpy(bcb->CDB, srb->cmnd, bcb->Length);
1085
1086	/* send it to out endpoint */
1087	US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
1088			le32_to_cpu(bcb->Signature), bcb->Tag,
1089			le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
1090			(bcb->Lun >> 4), (bcb->Lun & 0x0F),
1091			bcb->Length);
1092	result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
1093				bcb, cbwlen, NULL);
1094	US_DEBUGP("Bulk command transfer result=%d\n", result);
1095	if (result != USB_STOR_XFER_GOOD)
1096		return USB_STOR_TRANSPORT_ERROR;
1097
1098	/* DATA STAGE */
1099	/* send/receive data payload, if there is any */
1100
1101	/* Some USB-IDE converter chips need a 100us delay between the
1102	 * command phase and the data phase.  Some devices need a little
1103	 * more than that, probably because of clock rate inaccuracies. */
1104	if (unlikely(us->fflags & US_FL_GO_SLOW))
1105		udelay(125);
1106
1107	if (transfer_length) {
1108		unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
1109				us->recv_bulk_pipe : us->send_bulk_pipe;
1110		result = usb_stor_bulk_srb(us, pipe, srb);
1111		US_DEBUGP("Bulk data transfer result 0x%x\n", result);
1112		if (result == USB_STOR_XFER_ERROR)
1113			return USB_STOR_TRANSPORT_ERROR;
1114
1115		/* If the device tried to send back more data than the
1116		 * amount requested, the spec requires us to transfer
1117		 * the CSW anyway.  Since there's no point retrying the
1118		 * the command, we'll return fake sense data indicating
1119		 * Illegal Request, Invalid Field in CDB.
1120		 */
1121		if (result == USB_STOR_XFER_LONG)
1122			fake_sense = 1;
1123	}
1124
1125	/* See flow chart on pg 15 of the Bulk Only Transport spec for
1126	 * an explanation of how this code works.
1127	 */
1128
1129	/* get CSW for device status */
1130	US_DEBUGP("Attempting to get CSW...\n");
1131	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1132				bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1133
1134	/* Some broken devices add unnecessary zero-length packets to the
1135	 * end of their data transfers.  Such packets show up as 0-length
1136	 * CSWs.  If we encounter such a thing, try to read the CSW again.
1137	 */
1138	if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
1139		US_DEBUGP("Received 0-length CSW; retrying...\n");
1140		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1141				bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1142	}
1143
1144	/* did the attempt to read the CSW fail? */
1145	if (result == USB_STOR_XFER_STALLED) {
1146
1147		/* get the status again */
1148		US_DEBUGP("Attempting to get CSW (2nd try)...\n");
1149		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1150				bcs, US_BULK_CS_WRAP_LEN, NULL);
1151	}
1152
1153	/* if we still have a failure at this point, we're in trouble */
1154	US_DEBUGP("Bulk status result = %d\n", result);
1155	if (result != USB_STOR_XFER_GOOD)
1156		return USB_STOR_TRANSPORT_ERROR;
1157
1158	/* check bulk status */
1159	residue = le32_to_cpu(bcs->Residue);
1160	US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1161			le32_to_cpu(bcs->Signature), bcs->Tag,
1162			residue, bcs->Status);
1163	if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) ||
1164		bcs->Status > US_BULK_STAT_PHASE) {
1165		US_DEBUGP("Bulk logical error\n");
1166		return USB_STOR_TRANSPORT_ERROR;
1167	}
1168
1169	/* Some broken devices report odd signatures, so we do not check them
1170	 * for validity against the spec. We store the first one we see,
1171	 * and check subsequent transfers for validity against this signature.
1172	 */
1173	if (!us->bcs_signature) {
1174		us->bcs_signature = bcs->Signature;
1175		if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
1176			US_DEBUGP("Learnt BCS signature 0x%08X\n",
1177					le32_to_cpu(us->bcs_signature));
1178	} else if (bcs->Signature != us->bcs_signature) {
1179		US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n",
1180			  le32_to_cpu(bcs->Signature),
1181			  le32_to_cpu(us->bcs_signature));
1182		return USB_STOR_TRANSPORT_ERROR;
1183	}
1184
1185	/* try to compute the actual residue, based on how much data
1186	 * was really transferred and what the device tells us */
1187	if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) {
1188
1189		/* Heuristically detect devices that generate bogus residues
1190		 * by seeing what happens with INQUIRY and READ CAPACITY
1191		 * commands.
1192		 */
1193		if (bcs->Status == US_BULK_STAT_OK &&
1194				scsi_get_resid(srb) == 0 &&
1195					((srb->cmnd[0] == INQUIRY &&
1196						transfer_length == 36) ||
1197					(srb->cmnd[0] == READ_CAPACITY &&
1198						transfer_length == 8))) {
1199			us->fflags |= US_FL_IGNORE_RESIDUE;
1200
1201		} else {
1202			residue = min(residue, transfer_length);
1203			scsi_set_resid(srb, max(scsi_get_resid(srb),
1204			                                       (int) residue));
1205		}
1206	}
1207
1208	/* based on the status code, we report good or bad */
1209	switch (bcs->Status) {
1210		case US_BULK_STAT_OK:
1211			/* device babbled -- return fake sense data */
1212			if (fake_sense) {
1213				memcpy(srb->sense_buffer,
1214				       usb_stor_sense_invalidCDB,
1215				       sizeof(usb_stor_sense_invalidCDB));
1216				return USB_STOR_TRANSPORT_NO_SENSE;
1217			}
1218
1219			/* command good -- note that data could be short */
1220			return USB_STOR_TRANSPORT_GOOD;
1221
1222		case US_BULK_STAT_FAIL:
1223			/* command failed */
1224			return USB_STOR_TRANSPORT_FAILED;
1225
1226		case US_BULK_STAT_PHASE:
1227			/* phase error -- note that a transport reset will be
1228			 * invoked by the invoke_transport() function
1229			 */
1230			return USB_STOR_TRANSPORT_ERROR;
1231	}
1232
1233	/* we should never get here, but if we do, we're in trouble */
1234	return USB_STOR_TRANSPORT_ERROR;
1235}
1236EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport);
1237
1238/***********************************************************************
1239 * Reset routines
1240 ***********************************************************************/
1241
1242/* This is the common part of the device reset code.
1243 *
1244 * It's handy that every transport mechanism uses the control endpoint for
1245 * resets.
1246 *
1247 * Basically, we send a reset with a 5-second timeout, so we don't get
1248 * jammed attempting to do the reset.
1249 */
1250static int usb_stor_reset_common(struct us_data *us,
1251		u8 request, u8 requesttype,
1252		u16 value, u16 index, void *data, u16 size)
1253{
1254	int result;
1255	int result2;
1256
1257	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1258		US_DEBUGP("No reset during disconnect\n");
1259		return -EIO;
1260	}
1261
1262	result = usb_stor_control_msg(us, us->send_ctrl_pipe,
1263			request, requesttype, value, index, data, size,
1264			5*HZ);
1265	if (result < 0) {
1266		US_DEBUGP("Soft reset failed: %d\n", result);
1267		return result;
1268	}
1269
1270	/* Give the device some time to recover from the reset,
1271	 * but don't delay disconnect processing. */
1272	wait_event_interruptible_timeout(us->delay_wait,
1273			test_bit(US_FLIDX_DISCONNECTING, &us->dflags),
1274			HZ*6);
1275	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1276		US_DEBUGP("Reset interrupted by disconnect\n");
1277		return -EIO;
1278	}
1279
1280	US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n");
1281	result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
1282
1283	US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n");
1284	result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
1285
1286	/* return a result code based on the result of the clear-halts */
1287	if (result >= 0)
1288		result = result2;
1289	if (result < 0)
1290		US_DEBUGP("Soft reset failed\n");
1291	else
1292		US_DEBUGP("Soft reset done\n");
1293	return result;
1294}
1295
1296/* This issues a CB[I] Reset to the device in question
1297 */
1298#define CB_RESET_CMD_SIZE	12
1299
1300int usb_stor_CB_reset(struct us_data *us)
1301{
1302	US_DEBUGP("%s called\n", __func__);
1303
1304	memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
1305	us->iobuf[0] = SEND_DIAGNOSTIC;
1306	us->iobuf[1] = 4;
1307	return usb_stor_reset_common(us, US_CBI_ADSC,
1308				 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1309				 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
1310}
1311EXPORT_SYMBOL_GPL(usb_stor_CB_reset);
1312
1313/* This issues a Bulk-only Reset to the device in question, including
1314 * clearing the subsequent endpoint halts that may occur.
1315 */
1316int usb_stor_Bulk_reset(struct us_data *us)
1317{
1318	US_DEBUGP("%s called\n", __func__);
1319
1320	return usb_stor_reset_common(us, US_BULK_RESET_REQUEST,
1321				 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1322				 0, us->ifnum, NULL, 0);
1323}
1324EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset);
1325
1326/* Issue a USB port reset to the device.  The caller must not hold
1327 * us->dev_mutex.
1328 */
1329int usb_stor_port_reset(struct us_data *us)
1330{
1331	int result;
1332
1333	/*for these devices we must use the class specific method */
1334	if (us->pusb_dev->quirks & USB_QUIRK_RESET_MORPHS)
1335		return -EPERM;
1336
1337	result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
1338	if (result < 0)
1339		US_DEBUGP("unable to lock device for reset: %d\n", result);
1340	else {
1341		/* Were we disconnected while waiting for the lock? */
1342		if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1343			result = -EIO;
1344			US_DEBUGP("No reset during disconnect\n");
1345		} else {
1346			result = usb_reset_device(us->pusb_dev);
1347			US_DEBUGP("usb_reset_device returns %d\n",
1348					result);
1349		}
1350		usb_unlock_device(us->pusb_dev);
1351	}
1352	return result;
1353}
1354