1/*
2 * Octeon Watchdog driver
3 *
4 * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
5 *
6 * Some parts derived from wdt.c
7 *
8 *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
9 *						All Rights Reserved.
10 *
11 *	This program is free software; you can redistribute it and/or
12 *	modify it under the terms of the GNU General Public License
13 *	as published by the Free Software Foundation; either version
14 *	2 of the License, or (at your option) any later version.
15 *
16 *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
17 *	warranty for any of this software. This material is provided
18 *	"AS-IS" and at no charge.
19 *
20 *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
21 *
22 * This file is subject to the terms and conditions of the GNU General Public
23 * License.  See the file "COPYING" in the main directory of this archive
24 * for more details.
25 *
26 *
27 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
28 * For most systems this is less than 10 seconds, so to allow for
29 * software to request longer watchdog heartbeats, we maintain software
30 * counters to count multiples of the base rate.  If the system locks
31 * up in such a manner that we can not run the software counters, the
32 * only result is a watchdog reset sooner than was requested.  But
33 * that is OK, because in this case userspace would likely not be able
34 * to do anything anyhow.
35 *
36 * The hardware watchdog interval we call the period.  The OCTEON
37 * watchdog goes through several stages, after the first period an
38 * irq is asserted, then if it is not reset, after the next period NMI
39 * is asserted, then after an additional period a chip wide soft reset.
40 * So for the software counters, we reset watchdog after each period
41 * and decrement the counter.  But for the last two periods we need to
42 * let the watchdog progress to the NMI stage so we disable the irq
43 * and let it proceed.  Once in the NMI, we print the register state
44 * to the serial port and then wait for the reset.
45 *
46 * A watchdog is maintained for each CPU in the system, that way if
47 * one CPU suffers a lockup, we also get a register dump and reset.
48 * The userspace ping resets the watchdog on all CPUs.
49 *
50 * Before userspace opens the watchdog device, we still run the
51 * watchdogs to catch any lockups that may be kernel related.
52 *
53 */
54
55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57#include <linux/miscdevice.h>
58#include <linux/interrupt.h>
59#include <linux/watchdog.h>
60#include <linux/cpumask.h>
61#include <linux/bitops.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/delay.h>
66#include <linux/cpu.h>
67#include <linux/smp.h>
68#include <linux/fs.h>
69#include <linux/irq.h>
70
71#include <asm/mipsregs.h>
72#include <asm/uasm.h>
73
74#include <asm/octeon/octeon.h>
75
76/* The count needed to achieve timeout_sec. */
77static unsigned int timeout_cnt;
78
79/* The maximum period supported. */
80static unsigned int max_timeout_sec;
81
82/* The current period.  */
83static unsigned int timeout_sec;
84
85/* Set to non-zero when userspace countdown mode active */
86static int do_coundown;
87static unsigned int countdown_reset;
88static unsigned int per_cpu_countdown[NR_CPUS];
89
90static cpumask_t irq_enabled_cpus;
91
92#define WD_TIMO 60			/* Default heartbeat = 60 seconds */
93
94static int heartbeat = WD_TIMO;
95module_param(heartbeat, int, S_IRUGO);
96MODULE_PARM_DESC(heartbeat,
97	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
98				__MODULE_STRING(WD_TIMO) ")");
99
100static bool nowayout = WATCHDOG_NOWAYOUT;
101module_param(nowayout, bool, S_IRUGO);
102MODULE_PARM_DESC(nowayout,
103	"Watchdog cannot be stopped once started (default="
104				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
105
106static unsigned long octeon_wdt_is_open;
107static char expect_close;
108
109static u32 __initdata nmi_stage1_insns[64];
110/* We need one branch and therefore one relocation per target label. */
111static struct uasm_label __initdata labels[5];
112static struct uasm_reloc __initdata relocs[5];
113
114enum lable_id {
115	label_enter_bootloader = 1
116};
117
118/* Some CP0 registers */
119#define K0		26
120#define C0_CVMMEMCTL 11, 7
121#define C0_STATUS 12, 0
122#define C0_EBASE 15, 1
123#define C0_DESAVE 31, 0
124
125void octeon_wdt_nmi_stage2(void);
126
127static void __init octeon_wdt_build_stage1(void)
128{
129	int i;
130	int len;
131	u32 *p = nmi_stage1_insns;
132#ifdef CONFIG_HOTPLUG_CPU
133	struct uasm_label *l = labels;
134	struct uasm_reloc *r = relocs;
135#endif
136
137	/*
138	 * For the next few instructions running the debugger may
139	 * cause corruption of k0 in the saved registers. Since we're
140	 * about to crash, nobody probably cares.
141	 *
142	 * Save K0 into the debug scratch register
143	 */
144	uasm_i_dmtc0(&p, K0, C0_DESAVE);
145
146	uasm_i_mfc0(&p, K0, C0_STATUS);
147#ifdef CONFIG_HOTPLUG_CPU
148	uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), label_enter_bootloader);
149#endif
150	/* Force 64-bit addressing enabled */
151	uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
152	uasm_i_mtc0(&p, K0, C0_STATUS);
153
154#ifdef CONFIG_HOTPLUG_CPU
155	uasm_i_mfc0(&p, K0, C0_EBASE);
156	/* Coreid number in K0 */
157	uasm_i_andi(&p, K0, K0, 0xf);
158	/* 8 * coreid in bits 16-31 */
159	uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
160	uasm_i_ori(&p, K0, K0, 0x8001);
161	uasm_i_dsll_safe(&p, K0, K0, 16);
162	uasm_i_ori(&p, K0, K0, 0x0700);
163	uasm_i_drotr_safe(&p, K0, K0, 32);
164	/*
165	 * Should result in: 0x8001,0700,0000,8*coreid which is
166	 * CVMX_CIU_WDOGX(coreid) - 0x0500
167	 *
168	 * Now ld K0, CVMX_CIU_WDOGX(coreid)
169	 */
170	uasm_i_ld(&p, K0, 0x500, K0);
171	/*
172	 * If bit one set handle the NMI as a watchdog event.
173	 * otherwise transfer control to bootloader.
174	 */
175	uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
176	uasm_i_nop(&p);
177#endif
178
179	/* Clear Dcache so cvmseg works right. */
180	uasm_i_cache(&p, 1, 0, 0);
181
182	/* Use K0 to do a read/modify/write of CVMMEMCTL */
183	uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
184	/* Clear out the size of CVMSEG	*/
185	uasm_i_dins(&p, K0, 0, 0, 6);
186	/* Set CVMSEG to its largest value */
187	uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
188	/* Store the CVMMEMCTL value */
189	uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
190
191	/* Load the address of the second stage handler */
192	UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
193	uasm_i_jr(&p, K0);
194	uasm_i_dmfc0(&p, K0, C0_DESAVE);
195
196#ifdef CONFIG_HOTPLUG_CPU
197	uasm_build_label(&l, p, label_enter_bootloader);
198	/* Jump to the bootloader and restore K0 */
199	UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
200	uasm_i_jr(&p, K0);
201	uasm_i_dmfc0(&p, K0, C0_DESAVE);
202#endif
203	uasm_resolve_relocs(relocs, labels);
204
205	len = (int)(p - nmi_stage1_insns);
206	pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len);
207
208	pr_debug("\t.set push\n");
209	pr_debug("\t.set noreorder\n");
210	for (i = 0; i < len; i++)
211		pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
212	pr_debug("\t.set pop\n");
213
214	if (len > 32)
215		panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
216}
217
218static int cpu2core(int cpu)
219{
220#ifdef CONFIG_SMP
221	return cpu_logical_map(cpu);
222#else
223	return cvmx_get_core_num();
224#endif
225}
226
227static int core2cpu(int coreid)
228{
229#ifdef CONFIG_SMP
230	return cpu_number_map(coreid);
231#else
232	return 0;
233#endif
234}
235
236/**
237 * Poke the watchdog when an interrupt is received
238 *
239 * @cpl:
240 * @dev_id:
241 *
242 * Returns
243 */
244static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
245{
246	unsigned int core = cvmx_get_core_num();
247	int cpu = core2cpu(core);
248
249	if (do_coundown) {
250		if (per_cpu_countdown[cpu] > 0) {
251			/* We're alive, poke the watchdog */
252			cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
253			per_cpu_countdown[cpu]--;
254		} else {
255			/* Bad news, you are about to reboot. */
256			disable_irq_nosync(cpl);
257			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
258		}
259	} else {
260		/* Not open, just ping away... */
261		cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
262	}
263	return IRQ_HANDLED;
264}
265
266/* From setup.c */
267extern int prom_putchar(char c);
268
269/**
270 * Write a string to the uart
271 *
272 * @str:        String to write
273 */
274static void octeon_wdt_write_string(const char *str)
275{
276	/* Just loop writing one byte at a time */
277	while (*str)
278		prom_putchar(*str++);
279}
280
281/**
282 * Write a hex number out of the uart
283 *
284 * @value:      Number to display
285 * @digits:     Number of digits to print (1 to 16)
286 */
287static void octeon_wdt_write_hex(u64 value, int digits)
288{
289	int d;
290	int v;
291	for (d = 0; d < digits; d++) {
292		v = (value >> ((digits - d - 1) * 4)) & 0xf;
293		if (v >= 10)
294			prom_putchar('a' + v - 10);
295		else
296			prom_putchar('0' + v);
297	}
298}
299
300const char *reg_name[] = {
301	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
302	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
303	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
304	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
305};
306
307/**
308 * NMI stage 3 handler. NMIs are handled in the following manner:
309 * 1) The first NMI handler enables CVMSEG and transfers from
310 * the bootbus region into normal memory. It is careful to not
311 * destroy any registers.
312 * 2) The second stage handler uses CVMSEG to save the registers
313 * and create a stack for C code. It then calls the third level
314 * handler with one argument, a pointer to the register values.
315 * 3) The third, and final, level handler is the following C
316 * function that prints out some useful infomration.
317 *
318 * @reg:    Pointer to register state before the NMI
319 */
320void octeon_wdt_nmi_stage3(u64 reg[32])
321{
322	u64 i;
323
324	unsigned int coreid = cvmx_get_core_num();
325	/*
326	 * Save status and cause early to get them before any changes
327	 * might happen.
328	 */
329	u64 cp0_cause = read_c0_cause();
330	u64 cp0_status = read_c0_status();
331	u64 cp0_error_epc = read_c0_errorepc();
332	u64 cp0_epc = read_c0_epc();
333
334	/* Delay so output from all cores output is not jumbled together. */
335	__delay(100000000ull * coreid);
336
337	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
338	octeon_wdt_write_hex(coreid, 1);
339	octeon_wdt_write_string(" ***\r\n");
340	for (i = 0; i < 32; i++) {
341		octeon_wdt_write_string("\t");
342		octeon_wdt_write_string(reg_name[i]);
343		octeon_wdt_write_string("\t0x");
344		octeon_wdt_write_hex(reg[i], 16);
345		if (i & 1)
346			octeon_wdt_write_string("\r\n");
347	}
348	octeon_wdt_write_string("\terr_epc\t0x");
349	octeon_wdt_write_hex(cp0_error_epc, 16);
350
351	octeon_wdt_write_string("\tepc\t0x");
352	octeon_wdt_write_hex(cp0_epc, 16);
353	octeon_wdt_write_string("\r\n");
354
355	octeon_wdt_write_string("\tstatus\t0x");
356	octeon_wdt_write_hex(cp0_status, 16);
357	octeon_wdt_write_string("\tcause\t0x");
358	octeon_wdt_write_hex(cp0_cause, 16);
359	octeon_wdt_write_string("\r\n");
360
361	octeon_wdt_write_string("\tsum0\t0x");
362	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
363	octeon_wdt_write_string("\ten0\t0x");
364	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
365	octeon_wdt_write_string("\r\n");
366
367	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
368}
369
370static void octeon_wdt_disable_interrupt(int cpu)
371{
372	unsigned int core;
373	unsigned int irq;
374	union cvmx_ciu_wdogx ciu_wdog;
375
376	core = cpu2core(cpu);
377
378	irq = OCTEON_IRQ_WDOG0 + core;
379
380	/* Poke the watchdog to clear out its state */
381	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
382
383	/* Disable the hardware. */
384	ciu_wdog.u64 = 0;
385	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
386
387	free_irq(irq, octeon_wdt_poke_irq);
388}
389
390static void octeon_wdt_setup_interrupt(int cpu)
391{
392	unsigned int core;
393	unsigned int irq;
394	union cvmx_ciu_wdogx ciu_wdog;
395
396	core = cpu2core(cpu);
397
398	/* Disable it before doing anything with the interrupts. */
399	ciu_wdog.u64 = 0;
400	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
401
402	per_cpu_countdown[cpu] = countdown_reset;
403
404	irq = OCTEON_IRQ_WDOG0 + core;
405
406	if (request_irq(irq, octeon_wdt_poke_irq,
407			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
408		panic("octeon_wdt: Couldn't obtain irq %d", irq);
409
410	cpumask_set_cpu(cpu, &irq_enabled_cpus);
411
412	/* Poke the watchdog to clear out its state */
413	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
414
415	/* Finally enable the watchdog now that all handlers are installed */
416	ciu_wdog.u64 = 0;
417	ciu_wdog.s.len = timeout_cnt;
418	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
419	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
420}
421
422static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
423					   unsigned long action, void *hcpu)
424{
425	unsigned int cpu = (unsigned long)hcpu;
426
427	switch (action) {
428	case CPU_DOWN_PREPARE:
429		octeon_wdt_disable_interrupt(cpu);
430		break;
431	case CPU_ONLINE:
432	case CPU_DOWN_FAILED:
433		octeon_wdt_setup_interrupt(cpu);
434		break;
435	default:
436		break;
437	}
438	return NOTIFY_OK;
439}
440
441static void octeon_wdt_ping(void)
442{
443	int cpu;
444	int coreid;
445
446	for_each_online_cpu(cpu) {
447		coreid = cpu2core(cpu);
448		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
449		per_cpu_countdown[cpu] = countdown_reset;
450		if ((countdown_reset || !do_coundown) &&
451		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
452			/* We have to enable the irq */
453			int irq = OCTEON_IRQ_WDOG0 + coreid;
454			enable_irq(irq);
455			cpumask_set_cpu(cpu, &irq_enabled_cpus);
456		}
457	}
458}
459
460static void octeon_wdt_calc_parameters(int t)
461{
462	unsigned int periods;
463
464	timeout_sec = max_timeout_sec;
465
466
467	/*
468	 * Find the largest interrupt period, that can evenly divide
469	 * the requested heartbeat time.
470	 */
471	while ((t % timeout_sec) != 0)
472		timeout_sec--;
473
474	periods = t / timeout_sec;
475
476	/*
477	 * The last two periods are after the irq is disabled, and
478	 * then to the nmi, so we subtract them off.
479	 */
480
481	countdown_reset = periods > 2 ? periods - 2 : 0;
482	heartbeat = t;
483	timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
484}
485
486static int octeon_wdt_set_heartbeat(int t)
487{
488	int cpu;
489	int coreid;
490	union cvmx_ciu_wdogx ciu_wdog;
491
492	if (t <= 0)
493		return -1;
494
495	octeon_wdt_calc_parameters(t);
496
497	for_each_online_cpu(cpu) {
498		coreid = cpu2core(cpu);
499		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
500		ciu_wdog.u64 = 0;
501		ciu_wdog.s.len = timeout_cnt;
502		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
503		cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
504		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
505	}
506	octeon_wdt_ping(); /* Get the irqs back on. */
507	return 0;
508}
509
510/**
511 *	octeon_wdt_write:
512 *	@file: file handle to the watchdog
513 *	@buf: buffer to write (unused as data does not matter here
514 *	@count: count of bytes
515 *	@ppos: pointer to the position to write. No seeks allowed
516 *
517 *	A write to a watchdog device is defined as a keepalive signal. Any
518 *	write of data will do, as we we don't define content meaning.
519 */
520
521static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
522				size_t count, loff_t *ppos)
523{
524	if (count) {
525		if (!nowayout) {
526			size_t i;
527
528			/* In case it was set long ago */
529			expect_close = 0;
530
531			for (i = 0; i != count; i++) {
532				char c;
533				if (get_user(c, buf + i))
534					return -EFAULT;
535				if (c == 'V')
536					expect_close = 1;
537			}
538		}
539		octeon_wdt_ping();
540	}
541	return count;
542}
543
544/**
545 *	octeon_wdt_ioctl:
546 *	@file: file handle to the device
547 *	@cmd: watchdog command
548 *	@arg: argument pointer
549 *
550 *	The watchdog API defines a common set of functions for all
551 *	watchdogs according to their available features. We only
552 *	actually usefully support querying capabilities and setting
553 *	the timeout.
554 */
555
556static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
557			     unsigned long arg)
558{
559	void __user *argp = (void __user *)arg;
560	int __user *p = argp;
561	int new_heartbeat;
562
563	static struct watchdog_info ident = {
564		.options =		WDIOF_SETTIMEOUT|
565					WDIOF_MAGICCLOSE|
566					WDIOF_KEEPALIVEPING,
567		.firmware_version =	1,
568		.identity =		"OCTEON",
569	};
570
571	switch (cmd) {
572	case WDIOC_GETSUPPORT:
573		return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
574	case WDIOC_GETSTATUS:
575	case WDIOC_GETBOOTSTATUS:
576		return put_user(0, p);
577	case WDIOC_KEEPALIVE:
578		octeon_wdt_ping();
579		return 0;
580	case WDIOC_SETTIMEOUT:
581		if (get_user(new_heartbeat, p))
582			return -EFAULT;
583		if (octeon_wdt_set_heartbeat(new_heartbeat))
584			return -EINVAL;
585		/* Fall through. */
586	case WDIOC_GETTIMEOUT:
587		return put_user(heartbeat, p);
588	default:
589		return -ENOTTY;
590	}
591}
592
593/**
594 *	octeon_wdt_open:
595 *	@inode: inode of device
596 *	@file: file handle to device
597 *
598 *	The watchdog device has been opened. The watchdog device is single
599 *	open and on opening we do a ping to reset the counters.
600 */
601
602static int octeon_wdt_open(struct inode *inode, struct file *file)
603{
604	if (test_and_set_bit(0, &octeon_wdt_is_open))
605		return -EBUSY;
606	/*
607	 *	Activate
608	 */
609	octeon_wdt_ping();
610	do_coundown = 1;
611	return nonseekable_open(inode, file);
612}
613
614/**
615 *	octeon_wdt_release:
616 *	@inode: inode to board
617 *	@file: file handle to board
618 *
619 *	The watchdog has a configurable API. There is a religious dispute
620 *	between people who want their watchdog to be able to shut down and
621 *	those who want to be sure if the watchdog manager dies the machine
622 *	reboots. In the former case we disable the counters, in the latter
623 *	case you have to open it again very soon.
624 */
625
626static int octeon_wdt_release(struct inode *inode, struct file *file)
627{
628	if (expect_close) {
629		do_coundown = 0;
630		octeon_wdt_ping();
631	} else {
632		pr_crit("WDT device closed unexpectedly.  WDT will not stop!\n");
633	}
634	clear_bit(0, &octeon_wdt_is_open);
635	expect_close = 0;
636	return 0;
637}
638
639static const struct file_operations octeon_wdt_fops = {
640	.owner		= THIS_MODULE,
641	.llseek		= no_llseek,
642	.write		= octeon_wdt_write,
643	.unlocked_ioctl	= octeon_wdt_ioctl,
644	.open		= octeon_wdt_open,
645	.release	= octeon_wdt_release,
646};
647
648static struct miscdevice octeon_wdt_miscdev = {
649	.minor	= WATCHDOG_MINOR,
650	.name	= "watchdog",
651	.fops	= &octeon_wdt_fops,
652};
653
654static struct notifier_block octeon_wdt_cpu_notifier = {
655	.notifier_call = octeon_wdt_cpu_callback,
656};
657
658
659/**
660 * Module/ driver initialization.
661 *
662 * Returns Zero on success
663 */
664static int __init octeon_wdt_init(void)
665{
666	int i;
667	int ret;
668	int cpu;
669	u64 *ptr;
670
671	/*
672	 * Watchdog time expiration length = The 16 bits of LEN
673	 * represent the most significant bits of a 24 bit decrementer
674	 * that decrements every 256 cycles.
675	 *
676	 * Try for a timeout of 5 sec, if that fails a smaller number
677	 * of even seconds,
678	 */
679	max_timeout_sec = 6;
680	do {
681		max_timeout_sec--;
682		timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
683	} while (timeout_cnt > 65535);
684
685	BUG_ON(timeout_cnt == 0);
686
687	octeon_wdt_calc_parameters(heartbeat);
688
689	pr_info("Initial granularity %d Sec\n", timeout_sec);
690
691	ret = misc_register(&octeon_wdt_miscdev);
692	if (ret) {
693		pr_err("cannot register miscdev on minor=%d (err=%d)\n",
694		       WATCHDOG_MINOR, ret);
695		goto out;
696	}
697
698	/* Build the NMI handler ... */
699	octeon_wdt_build_stage1();
700
701	/* ... and install it. */
702	ptr = (u64 *) nmi_stage1_insns;
703	for (i = 0; i < 16; i++) {
704		cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
705		cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
706	}
707	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
708
709	cpumask_clear(&irq_enabled_cpus);
710
711	for_each_online_cpu(cpu)
712		octeon_wdt_setup_interrupt(cpu);
713
714	register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
715out:
716	return ret;
717}
718
719/**
720 * Module / driver shutdown
721 */
722static void __exit octeon_wdt_cleanup(void)
723{
724	int cpu;
725
726	misc_deregister(&octeon_wdt_miscdev);
727
728	unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
729
730	for_each_online_cpu(cpu) {
731		int core = cpu2core(cpu);
732		/* Disable the watchdog */
733		cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
734		/* Free the interrupt handler */
735		free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
736	}
737	/*
738	 * Disable the boot-bus memory, the code it points to is soon
739	 * to go missing.
740	 */
741	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
742}
743
744MODULE_LICENSE("GPL");
745MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
746MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
747module_init(octeon_wdt_init);
748module_exit(octeon_wdt_cleanup);
749