1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifndef __ASSEMBLY__
5#ifndef __GENERATING_BOUNDS_H
6
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/bitops.h>
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
15#include <linux/seqlock.h>
16#include <linux/nodemask.h>
17#include <linux/pageblock-flags.h>
18#include <generated/bounds.h>
19#include <linux/atomic.h>
20#include <asm/page.h>
21
22/* Free memory management - zoned buddy allocator.  */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service.  That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
38#define MIGRATE_UNMOVABLE     0
39#define MIGRATE_RECLAIMABLE   1
40#define MIGRATE_MOVABLE       2
41#define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42#define MIGRATE_RESERVE       3
43#define MIGRATE_ISOLATE       4 /* can't allocate from here */
44#define MIGRATE_TYPES         5
45
46#define for_each_migratetype_order(order, type) \
47	for (order = 0; order < MAX_ORDER; order++) \
48		for (type = 0; type < MIGRATE_TYPES; type++)
49
50extern int page_group_by_mobility_disabled;
51
52static inline int get_pageblock_migratetype(struct page *page)
53{
54	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55}
56
57struct free_area {
58	struct list_head	free_list[MIGRATE_TYPES];
59	unsigned long		nr_free;
60};
61
62struct pglist_data;
63
64/*
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines.  There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
69 */
70#if defined(CONFIG_SMP)
71struct zone_padding {
72	char x[0];
73} ____cacheline_internodealigned_in_smp;
74#define ZONE_PADDING(name)	struct zone_padding name;
75#else
76#define ZONE_PADDING(name)
77#endif
78
79enum zone_stat_item {
80	/* First 128 byte cacheline (assuming 64 bit words) */
81	NR_FREE_PAGES,
82	NR_LRU_BASE,
83	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
85	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
86	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
87	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
88	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
89	NR_ANON_PAGES,	/* Mapped anonymous pages */
90	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
91			   only modified from process context */
92	NR_FILE_PAGES,
93	NR_FILE_DIRTY,
94	NR_WRITEBACK,
95	NR_SLAB_RECLAIMABLE,
96	NR_SLAB_UNRECLAIMABLE,
97	NR_PAGETABLE,		/* used for pagetables */
98	NR_KERNEL_STACK,
99	/* Second 128 byte cacheline */
100	NR_UNSTABLE_NFS,	/* NFS unstable pages */
101	NR_BOUNCE,
102	NR_VMSCAN_WRITE,
103	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
104	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
105	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
106	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
107	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
108	NR_DIRTIED,		/* page dirtyings since bootup */
109	NR_WRITTEN,		/* page writings since bootup */
110#ifdef CONFIG_NUMA
111	NUMA_HIT,		/* allocated in intended node */
112	NUMA_MISS,		/* allocated in non intended node */
113	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
114	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
115	NUMA_LOCAL,		/* allocation from local node */
116	NUMA_OTHER,		/* allocation from other node */
117#endif
118	NR_ANON_TRANSPARENT_HUGEPAGES,
119	NR_VM_ZONE_STAT_ITEMS };
120
121/*
122 * We do arithmetic on the LRU lists in various places in the code,
123 * so it is important to keep the active lists LRU_ACTIVE higher in
124 * the array than the corresponding inactive lists, and to keep
125 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
126 *
127 * This has to be kept in sync with the statistics in zone_stat_item
128 * above and the descriptions in vmstat_text in mm/vmstat.c
129 */
130#define LRU_BASE 0
131#define LRU_ACTIVE 1
132#define LRU_FILE 2
133
134enum lru_list {
135	LRU_INACTIVE_ANON = LRU_BASE,
136	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
137	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
138	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
139	LRU_UNEVICTABLE,
140	NR_LRU_LISTS
141};
142
143#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
144
145#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
146
147static inline int is_file_lru(enum lru_list lru)
148{
149	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
150}
151
152static inline int is_active_lru(enum lru_list lru)
153{
154	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
155}
156
157static inline int is_unevictable_lru(enum lru_list lru)
158{
159	return (lru == LRU_UNEVICTABLE);
160}
161
162struct lruvec {
163	struct list_head lists[NR_LRU_LISTS];
164};
165
166/* Mask used at gathering information at once (see memcontrol.c) */
167#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
168#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
169#define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
170#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
171
172/* Isolate inactive pages */
173#define ISOLATE_INACTIVE	((__force isolate_mode_t)0x1)
174/* Isolate active pages */
175#define ISOLATE_ACTIVE		((__force isolate_mode_t)0x2)
176/* Isolate clean file */
177#define ISOLATE_CLEAN		((__force isolate_mode_t)0x4)
178/* Isolate unmapped file */
179#define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x8)
180/* Isolate for asynchronous migration */
181#define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x10)
182
183/* LRU Isolation modes. */
184typedef unsigned __bitwise__ isolate_mode_t;
185
186enum zone_watermarks {
187	WMARK_MIN,
188	WMARK_LOW,
189	WMARK_HIGH,
190	NR_WMARK
191};
192
193#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
194#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
195#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
196
197struct per_cpu_pages {
198	int count;		/* number of pages in the list */
199	int high;		/* high watermark, emptying needed */
200	int batch;		/* chunk size for buddy add/remove */
201
202	/* Lists of pages, one per migrate type stored on the pcp-lists */
203	struct list_head lists[MIGRATE_PCPTYPES];
204};
205
206struct per_cpu_pageset {
207	struct per_cpu_pages pcp;
208#ifdef CONFIG_NUMA
209	s8 expire;
210#endif
211#ifdef CONFIG_SMP
212	s8 stat_threshold;
213	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
214#endif
215};
216
217#endif /* !__GENERATING_BOUNDS.H */
218
219enum zone_type {
220#ifdef CONFIG_ZONE_DMA
221	/*
222	 * ZONE_DMA is used when there are devices that are not able
223	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
224	 * carve out the portion of memory that is needed for these devices.
225	 * The range is arch specific.
226	 *
227	 * Some examples
228	 *
229	 * Architecture		Limit
230	 * ---------------------------
231	 * parisc, ia64, sparc	<4G
232	 * s390			<2G
233	 * arm			Various
234	 * alpha		Unlimited or 0-16MB.
235	 *
236	 * i386, x86_64 and multiple other arches
237	 * 			<16M.
238	 */
239	ZONE_DMA,
240#endif
241#ifdef CONFIG_ZONE_DMA32
242	/*
243	 * x86_64 needs two ZONE_DMAs because it supports devices that are
244	 * only able to do DMA to the lower 16M but also 32 bit devices that
245	 * can only do DMA areas below 4G.
246	 */
247	ZONE_DMA32,
248#endif
249	/*
250	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
251	 * performed on pages in ZONE_NORMAL if the DMA devices support
252	 * transfers to all addressable memory.
253	 */
254	ZONE_NORMAL,
255#ifdef CONFIG_HIGHMEM
256	/*
257	 * A memory area that is only addressable by the kernel through
258	 * mapping portions into its own address space. This is for example
259	 * used by i386 to allow the kernel to address the memory beyond
260	 * 900MB. The kernel will set up special mappings (page
261	 * table entries on i386) for each page that the kernel needs to
262	 * access.
263	 */
264	ZONE_HIGHMEM,
265#endif
266	ZONE_MOVABLE,
267	__MAX_NR_ZONES
268};
269
270#ifndef __GENERATING_BOUNDS_H
271
272/*
273 * When a memory allocation must conform to specific limitations (such
274 * as being suitable for DMA) the caller will pass in hints to the
275 * allocator in the gfp_mask, in the zone modifier bits.  These bits
276 * are used to select a priority ordered list of memory zones which
277 * match the requested limits. See gfp_zone() in include/linux/gfp.h
278 */
279
280#if MAX_NR_ZONES < 2
281#define ZONES_SHIFT 0
282#elif MAX_NR_ZONES <= 2
283#define ZONES_SHIFT 1
284#elif MAX_NR_ZONES <= 4
285#define ZONES_SHIFT 2
286#else
287#error ZONES_SHIFT -- too many zones configured adjust calculation
288#endif
289
290struct zone_reclaim_stat {
291	/*
292	 * The pageout code in vmscan.c keeps track of how many of the
293	 * mem/swap backed and file backed pages are refeferenced.
294	 * The higher the rotated/scanned ratio, the more valuable
295	 * that cache is.
296	 *
297	 * The anon LRU stats live in [0], file LRU stats in [1]
298	 */
299	unsigned long		recent_rotated[2];
300	unsigned long		recent_scanned[2];
301};
302
303struct zone {
304	/* Fields commonly accessed by the page allocator */
305
306	/* zone watermarks, access with *_wmark_pages(zone) macros */
307	unsigned long watermark[NR_WMARK];
308
309	/*
310	 * When free pages are below this point, additional steps are taken
311	 * when reading the number of free pages to avoid per-cpu counter
312	 * drift allowing watermarks to be breached
313	 */
314	unsigned long percpu_drift_mark;
315
316	/*
317	 * We don't know if the memory that we're going to allocate will be freeable
318	 * or/and it will be released eventually, so to avoid totally wasting several
319	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
320	 * to run OOM on the lower zones despite there's tons of freeable ram
321	 * on the higher zones). This array is recalculated at runtime if the
322	 * sysctl_lowmem_reserve_ratio sysctl changes.
323	 */
324	unsigned long		lowmem_reserve[MAX_NR_ZONES];
325
326	/*
327	 * This is a per-zone reserve of pages that should not be
328	 * considered dirtyable memory.
329	 */
330	unsigned long		dirty_balance_reserve;
331
332#ifdef CONFIG_NUMA
333	int node;
334	/*
335	 * zone reclaim becomes active if more unmapped pages exist.
336	 */
337	unsigned long		min_unmapped_pages;
338	unsigned long		min_slab_pages;
339#endif
340	struct per_cpu_pageset __percpu *pageset;
341	/*
342	 * free areas of different sizes
343	 */
344	spinlock_t		lock;
345	int                     all_unreclaimable; /* All pages pinned */
346#ifdef CONFIG_MEMORY_HOTPLUG
347	/* see spanned/present_pages for more description */
348	seqlock_t		span_seqlock;
349#endif
350	struct free_area	free_area[MAX_ORDER];
351
352#ifndef CONFIG_SPARSEMEM
353	/*
354	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
355	 * In SPARSEMEM, this map is stored in struct mem_section
356	 */
357	unsigned long		*pageblock_flags;
358#endif /* CONFIG_SPARSEMEM */
359
360#ifdef CONFIG_COMPACTION
361	/*
362	 * On compaction failure, 1<<compact_defer_shift compactions
363	 * are skipped before trying again. The number attempted since
364	 * last failure is tracked with compact_considered.
365	 */
366	unsigned int		compact_considered;
367	unsigned int		compact_defer_shift;
368	int			compact_order_failed;
369#endif
370
371	ZONE_PADDING(_pad1_)
372
373	/* Fields commonly accessed by the page reclaim scanner */
374	spinlock_t		lru_lock;
375	struct lruvec		lruvec;
376
377	struct zone_reclaim_stat reclaim_stat;
378
379	unsigned long		pages_scanned;	   /* since last reclaim */
380	unsigned long		flags;		   /* zone flags, see below */
381
382	/* Zone statistics */
383	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
384
385	/*
386	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
387	 * this zone's LRU.  Maintained by the pageout code.
388	 */
389	unsigned int inactive_ratio;
390
391
392	ZONE_PADDING(_pad2_)
393	/* Rarely used or read-mostly fields */
394
395	/*
396	 * wait_table		-- the array holding the hash table
397	 * wait_table_hash_nr_entries	-- the size of the hash table array
398	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
399	 *
400	 * The purpose of all these is to keep track of the people
401	 * waiting for a page to become available and make them
402	 * runnable again when possible. The trouble is that this
403	 * consumes a lot of space, especially when so few things
404	 * wait on pages at a given time. So instead of using
405	 * per-page waitqueues, we use a waitqueue hash table.
406	 *
407	 * The bucket discipline is to sleep on the same queue when
408	 * colliding and wake all in that wait queue when removing.
409	 * When something wakes, it must check to be sure its page is
410	 * truly available, a la thundering herd. The cost of a
411	 * collision is great, but given the expected load of the
412	 * table, they should be so rare as to be outweighed by the
413	 * benefits from the saved space.
414	 *
415	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
416	 * primary users of these fields, and in mm/page_alloc.c
417	 * free_area_init_core() performs the initialization of them.
418	 */
419	wait_queue_head_t	* wait_table;
420	unsigned long		wait_table_hash_nr_entries;
421	unsigned long		wait_table_bits;
422
423	/*
424	 * Discontig memory support fields.
425	 */
426	struct pglist_data	*zone_pgdat;
427	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
428	unsigned long		zone_start_pfn;
429
430	/*
431	 * zone_start_pfn, spanned_pages and present_pages are all
432	 * protected by span_seqlock.  It is a seqlock because it has
433	 * to be read outside of zone->lock, and it is done in the main
434	 * allocator path.  But, it is written quite infrequently.
435	 *
436	 * The lock is declared along with zone->lock because it is
437	 * frequently read in proximity to zone->lock.  It's good to
438	 * give them a chance of being in the same cacheline.
439	 */
440	unsigned long		spanned_pages;	/* total size, including holes */
441	unsigned long		present_pages;	/* amount of memory (excluding holes) */
442
443	/*
444	 * rarely used fields:
445	 */
446	const char		*name;
447} ____cacheline_internodealigned_in_smp;
448
449typedef enum {
450	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
451	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
452	ZONE_CONGESTED,			/* zone has many dirty pages backed by
453					 * a congested BDI
454					 */
455} zone_flags_t;
456
457static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
458{
459	set_bit(flag, &zone->flags);
460}
461
462static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
463{
464	return test_and_set_bit(flag, &zone->flags);
465}
466
467static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
468{
469	clear_bit(flag, &zone->flags);
470}
471
472static inline int zone_is_reclaim_congested(const struct zone *zone)
473{
474	return test_bit(ZONE_CONGESTED, &zone->flags);
475}
476
477static inline int zone_is_reclaim_locked(const struct zone *zone)
478{
479	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
480}
481
482static inline int zone_is_oom_locked(const struct zone *zone)
483{
484	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
485}
486
487/*
488 * The "priority" of VM scanning is how much of the queues we will scan in one
489 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
490 * queues ("queue_length >> 12") during an aging round.
491 */
492#define DEF_PRIORITY 12
493
494/* Maximum number of zones on a zonelist */
495#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
496
497#ifdef CONFIG_NUMA
498
499/*
500 * The NUMA zonelists are doubled because we need zonelists that restrict the
501 * allocations to a single node for GFP_THISNODE.
502 *
503 * [0]	: Zonelist with fallback
504 * [1]	: No fallback (GFP_THISNODE)
505 */
506#define MAX_ZONELISTS 2
507
508
509/*
510 * We cache key information from each zonelist for smaller cache
511 * footprint when scanning for free pages in get_page_from_freelist().
512 *
513 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
514 *    up short of free memory since the last time (last_fullzone_zap)
515 *    we zero'd fullzones.
516 * 2) The array z_to_n[] maps each zone in the zonelist to its node
517 *    id, so that we can efficiently evaluate whether that node is
518 *    set in the current tasks mems_allowed.
519 *
520 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
521 * indexed by a zones offset in the zonelist zones[] array.
522 *
523 * The get_page_from_freelist() routine does two scans.  During the
524 * first scan, we skip zones whose corresponding bit in 'fullzones'
525 * is set or whose corresponding node in current->mems_allowed (which
526 * comes from cpusets) is not set.  During the second scan, we bypass
527 * this zonelist_cache, to ensure we look methodically at each zone.
528 *
529 * Once per second, we zero out (zap) fullzones, forcing us to
530 * reconsider nodes that might have regained more free memory.
531 * The field last_full_zap is the time we last zapped fullzones.
532 *
533 * This mechanism reduces the amount of time we waste repeatedly
534 * reexaming zones for free memory when they just came up low on
535 * memory momentarilly ago.
536 *
537 * The zonelist_cache struct members logically belong in struct
538 * zonelist.  However, the mempolicy zonelists constructed for
539 * MPOL_BIND are intentionally variable length (and usually much
540 * shorter).  A general purpose mechanism for handling structs with
541 * multiple variable length members is more mechanism than we want
542 * here.  We resort to some special case hackery instead.
543 *
544 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
545 * part because they are shorter), so we put the fixed length stuff
546 * at the front of the zonelist struct, ending in a variable length
547 * zones[], as is needed by MPOL_BIND.
548 *
549 * Then we put the optional zonelist cache on the end of the zonelist
550 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
551 * the fixed length portion at the front of the struct.  This pointer
552 * both enables us to find the zonelist cache, and in the case of
553 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
554 * to know that the zonelist cache is not there.
555 *
556 * The end result is that struct zonelists come in two flavors:
557 *  1) The full, fixed length version, shown below, and
558 *  2) The custom zonelists for MPOL_BIND.
559 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
560 *
561 * Even though there may be multiple CPU cores on a node modifying
562 * fullzones or last_full_zap in the same zonelist_cache at the same
563 * time, we don't lock it.  This is just hint data - if it is wrong now
564 * and then, the allocator will still function, perhaps a bit slower.
565 */
566
567
568struct zonelist_cache {
569	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
570	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
571	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
572};
573#else
574#define MAX_ZONELISTS 1
575struct zonelist_cache;
576#endif
577
578/*
579 * This struct contains information about a zone in a zonelist. It is stored
580 * here to avoid dereferences into large structures and lookups of tables
581 */
582struct zoneref {
583	struct zone *zone;	/* Pointer to actual zone */
584	int zone_idx;		/* zone_idx(zoneref->zone) */
585};
586
587/*
588 * One allocation request operates on a zonelist. A zonelist
589 * is a list of zones, the first one is the 'goal' of the
590 * allocation, the other zones are fallback zones, in decreasing
591 * priority.
592 *
593 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
594 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
595 * *
596 * To speed the reading of the zonelist, the zonerefs contain the zone index
597 * of the entry being read. Helper functions to access information given
598 * a struct zoneref are
599 *
600 * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
601 * zonelist_zone_idx()	- Return the index of the zone for an entry
602 * zonelist_node_idx()	- Return the index of the node for an entry
603 */
604struct zonelist {
605	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
606	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
607#ifdef CONFIG_NUMA
608	struct zonelist_cache zlcache;			     // optional ...
609#endif
610};
611
612#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
613struct node_active_region {
614	unsigned long start_pfn;
615	unsigned long end_pfn;
616	int nid;
617};
618#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
619
620#ifndef CONFIG_DISCONTIGMEM
621/* The array of struct pages - for discontigmem use pgdat->lmem_map */
622extern struct page *mem_map;
623#endif
624
625/*
626 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
627 * (mostly NUMA machines?) to denote a higher-level memory zone than the
628 * zone denotes.
629 *
630 * On NUMA machines, each NUMA node would have a pg_data_t to describe
631 * it's memory layout.
632 *
633 * Memory statistics and page replacement data structures are maintained on a
634 * per-zone basis.
635 */
636struct bootmem_data;
637typedef struct pglist_data {
638	struct zone node_zones[MAX_NR_ZONES];
639	struct zonelist node_zonelists[MAX_ZONELISTS];
640	int nr_zones;
641#ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
642	struct page *node_mem_map;
643#ifdef CONFIG_CGROUP_MEM_RES_CTLR
644	struct page_cgroup *node_page_cgroup;
645#endif
646#endif
647#ifndef CONFIG_NO_BOOTMEM
648	struct bootmem_data *bdata;
649#endif
650#ifdef CONFIG_MEMORY_HOTPLUG
651	/*
652	 * Must be held any time you expect node_start_pfn, node_present_pages
653	 * or node_spanned_pages stay constant.  Holding this will also
654	 * guarantee that any pfn_valid() stays that way.
655	 *
656	 * Nests above zone->lock and zone->size_seqlock.
657	 */
658	spinlock_t node_size_lock;
659#endif
660	unsigned long node_start_pfn;
661	unsigned long node_present_pages; /* total number of physical pages */
662	unsigned long node_spanned_pages; /* total size of physical page
663					     range, including holes */
664	int node_id;
665	wait_queue_head_t kswapd_wait;
666	struct task_struct *kswapd;	/* Protected by lock_memory_hotplug() */
667	int kswapd_max_order;
668	enum zone_type classzone_idx;
669} pg_data_t;
670
671#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
672#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
673#ifdef CONFIG_FLAT_NODE_MEM_MAP
674#define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
675#else
676#define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
677#endif
678#define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
679
680#define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
681
682#define node_end_pfn(nid) ({\
683	pg_data_t *__pgdat = NODE_DATA(nid);\
684	__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
685})
686
687#include <linux/memory_hotplug.h>
688
689extern struct mutex zonelists_mutex;
690void build_all_zonelists(void *data);
691void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
692bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
693		int classzone_idx, int alloc_flags);
694bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
695		int classzone_idx, int alloc_flags);
696enum memmap_context {
697	MEMMAP_EARLY,
698	MEMMAP_HOTPLUG,
699};
700extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
701				     unsigned long size,
702				     enum memmap_context context);
703
704#ifdef CONFIG_HAVE_MEMORY_PRESENT
705void memory_present(int nid, unsigned long start, unsigned long end);
706#else
707static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
708#endif
709
710#ifdef CONFIG_HAVE_MEMORYLESS_NODES
711int local_memory_node(int node_id);
712#else
713static inline int local_memory_node(int node_id) { return node_id; };
714#endif
715
716#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
717unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
718#endif
719
720/*
721 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
722 */
723#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
724
725static inline int populated_zone(struct zone *zone)
726{
727	return (!!zone->present_pages);
728}
729
730extern int movable_zone;
731
732static inline int zone_movable_is_highmem(void)
733{
734#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
735	return movable_zone == ZONE_HIGHMEM;
736#else
737	return 0;
738#endif
739}
740
741static inline int is_highmem_idx(enum zone_type idx)
742{
743#ifdef CONFIG_HIGHMEM
744	return (idx == ZONE_HIGHMEM ||
745		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
746#else
747	return 0;
748#endif
749}
750
751static inline int is_normal_idx(enum zone_type idx)
752{
753	return (idx == ZONE_NORMAL);
754}
755
756/**
757 * is_highmem - helper function to quickly check if a struct zone is a
758 *              highmem zone or not.  This is an attempt to keep references
759 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
760 * @zone - pointer to struct zone variable
761 */
762static inline int is_highmem(struct zone *zone)
763{
764#ifdef CONFIG_HIGHMEM
765	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
766	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
767	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
768		zone_movable_is_highmem());
769#else
770	return 0;
771#endif
772}
773
774static inline int is_normal(struct zone *zone)
775{
776	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
777}
778
779static inline int is_dma32(struct zone *zone)
780{
781#ifdef CONFIG_ZONE_DMA32
782	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
783#else
784	return 0;
785#endif
786}
787
788static inline int is_dma(struct zone *zone)
789{
790#ifdef CONFIG_ZONE_DMA
791	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
792#else
793	return 0;
794#endif
795}
796
797/* These two functions are used to setup the per zone pages min values */
798struct ctl_table;
799int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
800					void __user *, size_t *, loff_t *);
801extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
802int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
803					void __user *, size_t *, loff_t *);
804int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
805					void __user *, size_t *, loff_t *);
806int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
807			void __user *, size_t *, loff_t *);
808int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
809			void __user *, size_t *, loff_t *);
810
811extern int numa_zonelist_order_handler(struct ctl_table *, int,
812			void __user *, size_t *, loff_t *);
813extern char numa_zonelist_order[];
814#define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
815
816#ifndef CONFIG_NEED_MULTIPLE_NODES
817
818extern struct pglist_data contig_page_data;
819#define NODE_DATA(nid)		(&contig_page_data)
820#define NODE_MEM_MAP(nid)	mem_map
821
822#else /* CONFIG_NEED_MULTIPLE_NODES */
823
824#include <asm/mmzone.h>
825
826#endif /* !CONFIG_NEED_MULTIPLE_NODES */
827
828extern struct pglist_data *first_online_pgdat(void);
829extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
830extern struct zone *next_zone(struct zone *zone);
831
832/**
833 * for_each_online_pgdat - helper macro to iterate over all online nodes
834 * @pgdat - pointer to a pg_data_t variable
835 */
836#define for_each_online_pgdat(pgdat)			\
837	for (pgdat = first_online_pgdat();		\
838	     pgdat;					\
839	     pgdat = next_online_pgdat(pgdat))
840/**
841 * for_each_zone - helper macro to iterate over all memory zones
842 * @zone - pointer to struct zone variable
843 *
844 * The user only needs to declare the zone variable, for_each_zone
845 * fills it in.
846 */
847#define for_each_zone(zone)			        \
848	for (zone = (first_online_pgdat())->node_zones; \
849	     zone;					\
850	     zone = next_zone(zone))
851
852#define for_each_populated_zone(zone)		        \
853	for (zone = (first_online_pgdat())->node_zones; \
854	     zone;					\
855	     zone = next_zone(zone))			\
856		if (!populated_zone(zone))		\
857			; /* do nothing */		\
858		else
859
860static inline struct zone *zonelist_zone(struct zoneref *zoneref)
861{
862	return zoneref->zone;
863}
864
865static inline int zonelist_zone_idx(struct zoneref *zoneref)
866{
867	return zoneref->zone_idx;
868}
869
870static inline int zonelist_node_idx(struct zoneref *zoneref)
871{
872#ifdef CONFIG_NUMA
873	/* zone_to_nid not available in this context */
874	return zoneref->zone->node;
875#else
876	return 0;
877#endif /* CONFIG_NUMA */
878}
879
880/**
881 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
882 * @z - The cursor used as a starting point for the search
883 * @highest_zoneidx - The zone index of the highest zone to return
884 * @nodes - An optional nodemask to filter the zonelist with
885 * @zone - The first suitable zone found is returned via this parameter
886 *
887 * This function returns the next zone at or below a given zone index that is
888 * within the allowed nodemask using a cursor as the starting point for the
889 * search. The zoneref returned is a cursor that represents the current zone
890 * being examined. It should be advanced by one before calling
891 * next_zones_zonelist again.
892 */
893struct zoneref *next_zones_zonelist(struct zoneref *z,
894					enum zone_type highest_zoneidx,
895					nodemask_t *nodes,
896					struct zone **zone);
897
898/**
899 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
900 * @zonelist - The zonelist to search for a suitable zone
901 * @highest_zoneidx - The zone index of the highest zone to return
902 * @nodes - An optional nodemask to filter the zonelist with
903 * @zone - The first suitable zone found is returned via this parameter
904 *
905 * This function returns the first zone at or below a given zone index that is
906 * within the allowed nodemask. The zoneref returned is a cursor that can be
907 * used to iterate the zonelist with next_zones_zonelist by advancing it by
908 * one before calling.
909 */
910static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
911					enum zone_type highest_zoneidx,
912					nodemask_t *nodes,
913					struct zone **zone)
914{
915	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
916								zone);
917}
918
919/**
920 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
921 * @zone - The current zone in the iterator
922 * @z - The current pointer within zonelist->zones being iterated
923 * @zlist - The zonelist being iterated
924 * @highidx - The zone index of the highest zone to return
925 * @nodemask - Nodemask allowed by the allocator
926 *
927 * This iterator iterates though all zones at or below a given zone index and
928 * within a given nodemask
929 */
930#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
931	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
932		zone;							\
933		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
934
935/**
936 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
937 * @zone - The current zone in the iterator
938 * @z - The current pointer within zonelist->zones being iterated
939 * @zlist - The zonelist being iterated
940 * @highidx - The zone index of the highest zone to return
941 *
942 * This iterator iterates though all zones at or below a given zone index.
943 */
944#define for_each_zone_zonelist(zone, z, zlist, highidx) \
945	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
946
947#ifdef CONFIG_SPARSEMEM
948#include <asm/sparsemem.h>
949#endif
950
951#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
952	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
953static inline unsigned long early_pfn_to_nid(unsigned long pfn)
954{
955	return 0;
956}
957#endif
958
959#ifdef CONFIG_FLATMEM
960#define pfn_to_nid(pfn)		(0)
961#endif
962
963#ifdef CONFIG_SPARSEMEM
964
965/*
966 * SECTION_SHIFT    		#bits space required to store a section #
967 *
968 * PA_SECTION_SHIFT		physical address to/from section number
969 * PFN_SECTION_SHIFT		pfn to/from section number
970 */
971#define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
972
973#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
974#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
975
976#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
977
978#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
979#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
980
981#define SECTION_BLOCKFLAGS_BITS \
982	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
983
984#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
985#error Allocator MAX_ORDER exceeds SECTION_SIZE
986#endif
987
988#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
989#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
990
991#define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
992#define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
993
994struct page;
995struct page_cgroup;
996struct mem_section {
997	/*
998	 * This is, logically, a pointer to an array of struct
999	 * pages.  However, it is stored with some other magic.
1000	 * (see sparse.c::sparse_init_one_section())
1001	 *
1002	 * Additionally during early boot we encode node id of
1003	 * the location of the section here to guide allocation.
1004	 * (see sparse.c::memory_present())
1005	 *
1006	 * Making it a UL at least makes someone do a cast
1007	 * before using it wrong.
1008	 */
1009	unsigned long section_mem_map;
1010
1011	/* See declaration of similar field in struct zone */
1012	unsigned long *pageblock_flags;
1013#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1014	/*
1015	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1016	 * section. (see memcontrol.h/page_cgroup.h about this.)
1017	 */
1018	struct page_cgroup *page_cgroup;
1019	unsigned long pad;
1020#endif
1021};
1022
1023#ifdef CONFIG_SPARSEMEM_EXTREME
1024#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1025#else
1026#define SECTIONS_PER_ROOT	1
1027#endif
1028
1029#define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1030#define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1031#define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1032
1033#ifdef CONFIG_SPARSEMEM_EXTREME
1034extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1035#else
1036extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1037#endif
1038
1039static inline struct mem_section *__nr_to_section(unsigned long nr)
1040{
1041	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1042		return NULL;
1043	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1044}
1045extern int __section_nr(struct mem_section* ms);
1046extern unsigned long usemap_size(void);
1047
1048/*
1049 * We use the lower bits of the mem_map pointer to store
1050 * a little bit of information.  There should be at least
1051 * 3 bits here due to 32-bit alignment.
1052 */
1053#define	SECTION_MARKED_PRESENT	(1UL<<0)
1054#define SECTION_HAS_MEM_MAP	(1UL<<1)
1055#define SECTION_MAP_LAST_BIT	(1UL<<2)
1056#define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1057#define SECTION_NID_SHIFT	2
1058
1059static inline struct page *__section_mem_map_addr(struct mem_section *section)
1060{
1061	unsigned long map = section->section_mem_map;
1062	map &= SECTION_MAP_MASK;
1063	return (struct page *)map;
1064}
1065
1066static inline int present_section(struct mem_section *section)
1067{
1068	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1069}
1070
1071static inline int present_section_nr(unsigned long nr)
1072{
1073	return present_section(__nr_to_section(nr));
1074}
1075
1076static inline int valid_section(struct mem_section *section)
1077{
1078	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1079}
1080
1081static inline int valid_section_nr(unsigned long nr)
1082{
1083	return valid_section(__nr_to_section(nr));
1084}
1085
1086static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1087{
1088	return __nr_to_section(pfn_to_section_nr(pfn));
1089}
1090
1091#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1092static inline int pfn_valid(unsigned long pfn)
1093{
1094	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1095		return 0;
1096	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1097}
1098#endif
1099
1100static inline int pfn_present(unsigned long pfn)
1101{
1102	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1103		return 0;
1104	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1105}
1106
1107/*
1108 * These are _only_ used during initialisation, therefore they
1109 * can use __initdata ...  They could have names to indicate
1110 * this restriction.
1111 */
1112#ifdef CONFIG_NUMA
1113#define pfn_to_nid(pfn)							\
1114({									\
1115	unsigned long __pfn_to_nid_pfn = (pfn);				\
1116	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1117})
1118#else
1119#define pfn_to_nid(pfn)		(0)
1120#endif
1121
1122#define early_pfn_valid(pfn)	pfn_valid(pfn)
1123void sparse_init(void);
1124#else
1125#define sparse_init()	do {} while (0)
1126#define sparse_index_init(_sec, _nid)  do {} while (0)
1127#endif /* CONFIG_SPARSEMEM */
1128
1129#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1130bool early_pfn_in_nid(unsigned long pfn, int nid);
1131#else
1132#define early_pfn_in_nid(pfn, nid)	(1)
1133#endif
1134
1135#ifndef early_pfn_valid
1136#define early_pfn_valid(pfn)	(1)
1137#endif
1138
1139void memory_present(int nid, unsigned long start, unsigned long end);
1140unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1141
1142/*
1143 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1144 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1145 * pfn_valid_within() should be used in this case; we optimise this away
1146 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1147 */
1148#ifdef CONFIG_HOLES_IN_ZONE
1149#define pfn_valid_within(pfn) pfn_valid(pfn)
1150#else
1151#define pfn_valid_within(pfn) (1)
1152#endif
1153
1154#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1155/*
1156 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1157 * associated with it or not. In FLATMEM, it is expected that holes always
1158 * have valid memmap as long as there is valid PFNs either side of the hole.
1159 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1160 * entire section.
1161 *
1162 * However, an ARM, and maybe other embedded architectures in the future
1163 * free memmap backing holes to save memory on the assumption the memmap is
1164 * never used. The page_zone linkages are then broken even though pfn_valid()
1165 * returns true. A walker of the full memmap must then do this additional
1166 * check to ensure the memmap they are looking at is sane by making sure
1167 * the zone and PFN linkages are still valid. This is expensive, but walkers
1168 * of the full memmap are extremely rare.
1169 */
1170int memmap_valid_within(unsigned long pfn,
1171					struct page *page, struct zone *zone);
1172#else
1173static inline int memmap_valid_within(unsigned long pfn,
1174					struct page *page, struct zone *zone)
1175{
1176	return 1;
1177}
1178#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1179
1180#endif /* !__GENERATING_BOUNDS.H */
1181#endif /* !__ASSEMBLY__ */
1182#endif /* _LINUX_MMZONE_H */
1183