1#ifndef __LINUX_USB_H
2#define __LINUX_USB_H
3
4#include <linux/mod_devicetable.h>
5#include <linux/usb/ch9.h>
6
7#define USB_MAJOR			180
8#define USB_DEVICE_MAJOR		189
9
10
11#ifdef __KERNEL__
12
13#include <linux/errno.h>        /* for -ENODEV */
14#include <linux/delay.h>	/* for mdelay() */
15#include <linux/interrupt.h>	/* for in_interrupt() */
16#include <linux/list.h>		/* for struct list_head */
17#include <linux/kref.h>		/* for struct kref */
18#include <linux/device.h>	/* for struct device */
19#include <linux/fs.h>		/* for struct file_operations */
20#include <linux/completion.h>	/* for struct completion */
21#include <linux/sched.h>	/* for current && schedule_timeout */
22#include <linux/mutex.h>	/* for struct mutex */
23#include <linux/pm_runtime.h>	/* for runtime PM */
24
25struct usb_device;
26struct usb_driver;
27struct wusb_dev;
28
29/*-------------------------------------------------------------------------*/
30
31/*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices.  Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 *  - devices have one (usually) or more configs;
37 *  - configs have one (often) or more interfaces;
38 *  - interfaces have one (usually) or more settings;
39 *  - each interface setting has zero or (usually) more endpoints.
40 *  - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47struct ep_device;
48
49/**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 *	with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 *
61 * USB requests are always queued to a given endpoint, identified by a
62 * descriptor within an active interface in a given USB configuration.
63 */
64struct usb_host_endpoint {
65	struct usb_endpoint_descriptor		desc;
66	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
67	struct list_head		urb_list;
68	void				*hcpriv;
69	struct ep_device		*ep_dev;	/* For sysfs info */
70
71	unsigned char *extra;   /* Extra descriptors */
72	int extralen;
73	int enabled;
74};
75
76/* host-side wrapper for one interface setting's parsed descriptors */
77struct usb_host_interface {
78	struct usb_interface_descriptor	desc;
79
80	/* array of desc.bNumEndpoint endpoints associated with this
81	 * interface setting.  these will be in no particular order.
82	 */
83	struct usb_host_endpoint *endpoint;
84
85	char *string;		/* iInterface string, if present */
86	unsigned char *extra;   /* Extra descriptors */
87	int extralen;
88};
89
90enum usb_interface_condition {
91	USB_INTERFACE_UNBOUND = 0,
92	USB_INTERFACE_BINDING,
93	USB_INTERFACE_BOUND,
94	USB_INTERFACE_UNBINDING,
95};
96
97/**
98 * struct usb_interface - what usb device drivers talk to
99 * @altsetting: array of interface structures, one for each alternate
100 *	setting that may be selected.  Each one includes a set of
101 *	endpoint configurations.  They will be in no particular order.
102 * @cur_altsetting: the current altsetting.
103 * @num_altsetting: number of altsettings defined.
104 * @intf_assoc: interface association descriptor
105 * @minor: the minor number assigned to this interface, if this
106 *	interface is bound to a driver that uses the USB major number.
107 *	If this interface does not use the USB major, this field should
108 *	be unused.  The driver should set this value in the probe()
109 *	function of the driver, after it has been assigned a minor
110 *	number from the USB core by calling usb_register_dev().
111 * @condition: binding state of the interface: not bound, binding
112 *	(in probe()), bound to a driver, or unbinding (in disconnect())
113 * @sysfs_files_created: sysfs attributes exist
114 * @ep_devs_created: endpoint child pseudo-devices exist
115 * @unregistering: flag set when the interface is being unregistered
116 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
117 *	capability during autosuspend.
118 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
119 *	has been deferred.
120 * @needs_binding: flag set when the driver should be re-probed or unbound
121 *	following a reset or suspend operation it doesn't support.
122 * @dev: driver model's view of this device
123 * @usb_dev: if an interface is bound to the USB major, this will point
124 *	to the sysfs representation for that device.
125 * @pm_usage_cnt: PM usage counter for this interface
126 * @reset_ws: Used for scheduling resets from atomic context.
127 * @reset_running: set to 1 if the interface is currently running a
128 *      queued reset so that usb_cancel_queued_reset() doesn't try to
129 *      remove from the workqueue when running inside the worker
130 *      thread. See __usb_queue_reset_device().
131 * @resetting_device: USB core reset the device, so use alt setting 0 as
132 *	current; needs bandwidth alloc after reset.
133 *
134 * USB device drivers attach to interfaces on a physical device.  Each
135 * interface encapsulates a single high level function, such as feeding
136 * an audio stream to a speaker or reporting a change in a volume control.
137 * Many USB devices only have one interface.  The protocol used to talk to
138 * an interface's endpoints can be defined in a usb "class" specification,
139 * or by a product's vendor.  The (default) control endpoint is part of
140 * every interface, but is never listed among the interface's descriptors.
141 *
142 * The driver that is bound to the interface can use standard driver model
143 * calls such as dev_get_drvdata() on the dev member of this structure.
144 *
145 * Each interface may have alternate settings.  The initial configuration
146 * of a device sets altsetting 0, but the device driver can change
147 * that setting using usb_set_interface().  Alternate settings are often
148 * used to control the use of periodic endpoints, such as by having
149 * different endpoints use different amounts of reserved USB bandwidth.
150 * All standards-conformant USB devices that use isochronous endpoints
151 * will use them in non-default settings.
152 *
153 * The USB specification says that alternate setting numbers must run from
154 * 0 to one less than the total number of alternate settings.  But some
155 * devices manage to mess this up, and the structures aren't necessarily
156 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
157 * look up an alternate setting in the altsetting array based on its number.
158 */
159struct usb_interface {
160	/* array of alternate settings for this interface,
161	 * stored in no particular order */
162	struct usb_host_interface *altsetting;
163
164	struct usb_host_interface *cur_altsetting;	/* the currently
165					 * active alternate setting */
166	unsigned num_altsetting;	/* number of alternate settings */
167
168	/* If there is an interface association descriptor then it will list
169	 * the associated interfaces */
170	struct usb_interface_assoc_descriptor *intf_assoc;
171
172	int minor;			/* minor number this interface is
173					 * bound to */
174	enum usb_interface_condition condition;		/* state of binding */
175	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
176	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
177	unsigned unregistering:1;	/* unregistration is in progress */
178	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
179	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
180	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
181	unsigned reset_running:1;
182	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
183
184	struct device dev;		/* interface specific device info */
185	struct device *usb_dev;
186	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
187	struct work_struct reset_ws;	/* for resets in atomic context */
188};
189#define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
190
191static inline void *usb_get_intfdata(struct usb_interface *intf)
192{
193	return dev_get_drvdata(&intf->dev);
194}
195
196static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
197{
198	dev_set_drvdata(&intf->dev, data);
199}
200
201struct usb_interface *usb_get_intf(struct usb_interface *intf);
202void usb_put_intf(struct usb_interface *intf);
203
204/* this maximum is arbitrary */
205#define USB_MAXINTERFACES	32
206#define USB_MAXIADS		(USB_MAXINTERFACES/2)
207
208/**
209 * struct usb_interface_cache - long-term representation of a device interface
210 * @num_altsetting: number of altsettings defined.
211 * @ref: reference counter.
212 * @altsetting: variable-length array of interface structures, one for
213 *	each alternate setting that may be selected.  Each one includes a
214 *	set of endpoint configurations.  They will be in no particular order.
215 *
216 * These structures persist for the lifetime of a usb_device, unlike
217 * struct usb_interface (which persists only as long as its configuration
218 * is installed).  The altsetting arrays can be accessed through these
219 * structures at any time, permitting comparison of configurations and
220 * providing support for the /proc/bus/usb/devices pseudo-file.
221 */
222struct usb_interface_cache {
223	unsigned num_altsetting;	/* number of alternate settings */
224	struct kref ref;		/* reference counter */
225
226	/* variable-length array of alternate settings for this interface,
227	 * stored in no particular order */
228	struct usb_host_interface altsetting[0];
229};
230#define	ref_to_usb_interface_cache(r) \
231		container_of(r, struct usb_interface_cache, ref)
232#define	altsetting_to_usb_interface_cache(a) \
233		container_of(a, struct usb_interface_cache, altsetting[0])
234
235/**
236 * struct usb_host_config - representation of a device's configuration
237 * @desc: the device's configuration descriptor.
238 * @string: pointer to the cached version of the iConfiguration string, if
239 *	present for this configuration.
240 * @intf_assoc: list of any interface association descriptors in this config
241 * @interface: array of pointers to usb_interface structures, one for each
242 *	interface in the configuration.  The number of interfaces is stored
243 *	in desc.bNumInterfaces.  These pointers are valid only while the
244 *	the configuration is active.
245 * @intf_cache: array of pointers to usb_interface_cache structures, one
246 *	for each interface in the configuration.  These structures exist
247 *	for the entire life of the device.
248 * @extra: pointer to buffer containing all extra descriptors associated
249 *	with this configuration (those preceding the first interface
250 *	descriptor).
251 * @extralen: length of the extra descriptors buffer.
252 *
253 * USB devices may have multiple configurations, but only one can be active
254 * at any time.  Each encapsulates a different operational environment;
255 * for example, a dual-speed device would have separate configurations for
256 * full-speed and high-speed operation.  The number of configurations
257 * available is stored in the device descriptor as bNumConfigurations.
258 *
259 * A configuration can contain multiple interfaces.  Each corresponds to
260 * a different function of the USB device, and all are available whenever
261 * the configuration is active.  The USB standard says that interfaces
262 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
263 * of devices get this wrong.  In addition, the interface array is not
264 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
265 * look up an interface entry based on its number.
266 *
267 * Device drivers should not attempt to activate configurations.  The choice
268 * of which configuration to install is a policy decision based on such
269 * considerations as available power, functionality provided, and the user's
270 * desires (expressed through userspace tools).  However, drivers can call
271 * usb_reset_configuration() to reinitialize the current configuration and
272 * all its interfaces.
273 */
274struct usb_host_config {
275	struct usb_config_descriptor	desc;
276
277	char *string;		/* iConfiguration string, if present */
278
279	/* List of any Interface Association Descriptors in this
280	 * configuration. */
281	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
282
283	/* the interfaces associated with this configuration,
284	 * stored in no particular order */
285	struct usb_interface *interface[USB_MAXINTERFACES];
286
287	/* Interface information available even when this is not the
288	 * active configuration */
289	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
290
291	unsigned char *extra;   /* Extra descriptors */
292	int extralen;
293};
294
295/* USB2.0 and USB3.0 device BOS descriptor set */
296struct usb_host_bos {
297	struct usb_bos_descriptor	*desc;
298
299	/* wireless cap descriptor is handled by wusb */
300	struct usb_ext_cap_descriptor	*ext_cap;
301	struct usb_ss_cap_descriptor	*ss_cap;
302	struct usb_ss_container_id_descriptor	*ss_id;
303};
304
305int __usb_get_extra_descriptor(char *buffer, unsigned size,
306	unsigned char type, void **ptr);
307#define usb_get_extra_descriptor(ifpoint, type, ptr) \
308				__usb_get_extra_descriptor((ifpoint)->extra, \
309				(ifpoint)->extralen, \
310				type, (void **)ptr)
311
312/* ----------------------------------------------------------------------- */
313
314/* USB device number allocation bitmap */
315struct usb_devmap {
316	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
317};
318
319/*
320 * Allocated per bus (tree of devices) we have:
321 */
322struct usb_bus {
323	struct device *controller;	/* host/master side hardware */
324	int busnum;			/* Bus number (in order of reg) */
325	const char *bus_name;		/* stable id (PCI slot_name etc) */
326	u8 uses_dma;			/* Does the host controller use DMA? */
327	u8 uses_pio_for_control;	/*
328					 * Does the host controller use PIO
329					 * for control transfers?
330					 */
331	u8 otg_port;			/* 0, or number of OTG/HNP port */
332	unsigned is_b_host:1;		/* true during some HNP roleswitches */
333	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
334	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
335
336	int devnum_next;		/* Next open device number in
337					 * round-robin allocation */
338
339	struct usb_devmap devmap;	/* device address allocation map */
340	struct usb_device *root_hub;	/* Root hub */
341	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
342	struct list_head bus_list;	/* list of busses */
343
344	int bandwidth_allocated;	/* on this bus: how much of the time
345					 * reserved for periodic (intr/iso)
346					 * requests is used, on average?
347					 * Units: microseconds/frame.
348					 * Limits: Full/low speed reserve 90%,
349					 * while high speed reserves 80%.
350					 */
351	int bandwidth_int_reqs;		/* number of Interrupt requests */
352	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
353
354#ifdef CONFIG_USB_DEVICEFS
355	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
356#endif
357
358#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
359	struct mon_bus *mon_bus;	/* non-null when associated */
360	int monitored;			/* non-zero when monitored */
361#endif
362};
363
364/* ----------------------------------------------------------------------- */
365
366/* This is arbitrary.
367 * From USB 2.0 spec Table 11-13, offset 7, a hub can
368 * have up to 255 ports. The most yet reported is 10.
369 *
370 * Current Wireless USB host hardware (Intel i1480 for example) allows
371 * up to 22 devices to connect. Upcoming hardware might raise that
372 * limit. Because the arrays need to add a bit for hub status data, we
373 * do 31, so plus one evens out to four bytes.
374 */
375#define USB_MAXCHILDREN		(31)
376
377struct usb_tt;
378
379enum usb_device_removable {
380	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
381	USB_DEVICE_REMOVABLE,
382	USB_DEVICE_FIXED,
383};
384
385/**
386 * struct usb_device - kernel's representation of a USB device
387 * @devnum: device number; address on a USB bus
388 * @devpath: device ID string for use in messages (e.g., /port/...)
389 * @route: tree topology hex string for use with xHCI
390 * @state: device state: configured, not attached, etc.
391 * @speed: device speed: high/full/low (or error)
392 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
393 * @ttport: device port on that tt hub
394 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
395 * @parent: our hub, unless we're the root
396 * @bus: bus we're part of
397 * @ep0: endpoint 0 data (default control pipe)
398 * @dev: generic device interface
399 * @descriptor: USB device descriptor
400 * @bos: USB device BOS descriptor set
401 * @config: all of the device's configs
402 * @actconfig: the active configuration
403 * @ep_in: array of IN endpoints
404 * @ep_out: array of OUT endpoints
405 * @rawdescriptors: raw descriptors for each config
406 * @bus_mA: Current available from the bus
407 * @portnum: parent port number (origin 1)
408 * @level: number of USB hub ancestors
409 * @can_submit: URBs may be submitted
410 * @persist_enabled:  USB_PERSIST enabled for this device
411 * @have_langid: whether string_langid is valid
412 * @authorized: policy has said we can use it;
413 *	(user space) policy determines if we authorize this device to be
414 *	used or not. By default, wired USB devices are authorized.
415 *	WUSB devices are not, until we authorize them from user space.
416 *	FIXME -- complete doc
417 * @authenticated: Crypto authentication passed
418 * @wusb: device is Wireless USB
419 * @lpm_capable: device supports LPM
420 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
421 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
422 * @string_langid: language ID for strings
423 * @product: iProduct string, if present (static)
424 * @manufacturer: iManufacturer string, if present (static)
425 * @serial: iSerialNumber string, if present (static)
426 * @filelist: usbfs files that are open to this device
427 * @usb_classdev: USB class device that was created for usbfs device
428 *	access from userspace
429 * @usbfs_dentry: usbfs dentry entry for the device
430 * @maxchild: number of ports if hub
431 * @children: child devices - USB devices that are attached to this hub
432 * @quirks: quirks of the whole device
433 * @urbnum: number of URBs submitted for the whole device
434 * @active_duration: total time device is not suspended
435 * @connect_time: time device was first connected
436 * @do_remote_wakeup:  remote wakeup should be enabled
437 * @reset_resume: needs reset instead of resume
438 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
439 *	specific data for the device.
440 * @slot_id: Slot ID assigned by xHCI
441 * @removable: Device can be physically removed from this port
442 *
443 * Notes:
444 * Usbcore drivers should not set usbdev->state directly.  Instead use
445 * usb_set_device_state().
446 */
447struct usb_device {
448	int		devnum;
449	char		devpath[16];
450	u32		route;
451	enum usb_device_state	state;
452	enum usb_device_speed	speed;
453
454	struct usb_tt	*tt;
455	int		ttport;
456
457	unsigned int toggle[2];
458
459	struct usb_device *parent;
460	struct usb_bus *bus;
461	struct usb_host_endpoint ep0;
462
463	struct device dev;
464
465	struct usb_device_descriptor descriptor;
466	struct usb_host_bos *bos;
467	struct usb_host_config *config;
468
469	struct usb_host_config *actconfig;
470	struct usb_host_endpoint *ep_in[16];
471	struct usb_host_endpoint *ep_out[16];
472
473	char **rawdescriptors;
474
475	unsigned short bus_mA;
476	u8 portnum;
477	u8 level;
478
479	unsigned can_submit:1;
480	unsigned persist_enabled:1;
481	unsigned have_langid:1;
482	unsigned authorized:1;
483	unsigned authenticated:1;
484	unsigned wusb:1;
485	unsigned lpm_capable:1;
486	unsigned usb2_hw_lpm_capable:1;
487	unsigned usb2_hw_lpm_enabled:1;
488	int string_langid;
489
490	/* static strings from the device */
491	char *product;
492	char *manufacturer;
493	char *serial;
494
495	struct list_head filelist;
496#ifdef CONFIG_USB_DEVICE_CLASS
497	struct device *usb_classdev;
498#endif
499#ifdef CONFIG_USB_DEVICEFS
500	struct dentry *usbfs_dentry;
501#endif
502
503	int maxchild;
504	struct usb_device **children;
505
506	u32 quirks;
507	atomic_t urbnum;
508
509	unsigned long active_duration;
510
511#ifdef CONFIG_PM
512	unsigned long connect_time;
513
514	unsigned do_remote_wakeup:1;
515	unsigned reset_resume:1;
516#endif
517	struct wusb_dev *wusb_dev;
518	int slot_id;
519	enum usb_device_removable removable;
520};
521#define	to_usb_device(d) container_of(d, struct usb_device, dev)
522
523static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
524{
525	return to_usb_device(intf->dev.parent);
526}
527
528extern struct usb_device *usb_get_dev(struct usb_device *dev);
529extern void usb_put_dev(struct usb_device *dev);
530
531/* USB device locking */
532#define usb_lock_device(udev)		device_lock(&(udev)->dev)
533#define usb_unlock_device(udev)		device_unlock(&(udev)->dev)
534#define usb_trylock_device(udev)	device_trylock(&(udev)->dev)
535extern int usb_lock_device_for_reset(struct usb_device *udev,
536				     const struct usb_interface *iface);
537
538/* USB port reset for device reinitialization */
539extern int usb_reset_device(struct usb_device *dev);
540extern void usb_queue_reset_device(struct usb_interface *dev);
541
542
543/* USB autosuspend and autoresume */
544#ifdef CONFIG_USB_SUSPEND
545extern void usb_enable_autosuspend(struct usb_device *udev);
546extern void usb_disable_autosuspend(struct usb_device *udev);
547
548extern int usb_autopm_get_interface(struct usb_interface *intf);
549extern void usb_autopm_put_interface(struct usb_interface *intf);
550extern int usb_autopm_get_interface_async(struct usb_interface *intf);
551extern void usb_autopm_put_interface_async(struct usb_interface *intf);
552extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
553extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
554
555static inline void usb_mark_last_busy(struct usb_device *udev)
556{
557	pm_runtime_mark_last_busy(&udev->dev);
558}
559
560#else
561
562static inline int usb_enable_autosuspend(struct usb_device *udev)
563{ return 0; }
564static inline int usb_disable_autosuspend(struct usb_device *udev)
565{ return 0; }
566
567static inline int usb_autopm_get_interface(struct usb_interface *intf)
568{ return 0; }
569static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
570{ return 0; }
571
572static inline void usb_autopm_put_interface(struct usb_interface *intf)
573{ }
574static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
575{ }
576static inline void usb_autopm_get_interface_no_resume(
577		struct usb_interface *intf)
578{ }
579static inline void usb_autopm_put_interface_no_suspend(
580		struct usb_interface *intf)
581{ }
582static inline void usb_mark_last_busy(struct usb_device *udev)
583{ }
584#endif
585
586/*-------------------------------------------------------------------------*/
587
588/* for drivers using iso endpoints */
589extern int usb_get_current_frame_number(struct usb_device *usb_dev);
590
591/* Sets up a group of bulk endpoints to support multiple stream IDs. */
592extern int usb_alloc_streams(struct usb_interface *interface,
593		struct usb_host_endpoint **eps, unsigned int num_eps,
594		unsigned int num_streams, gfp_t mem_flags);
595
596/* Reverts a group of bulk endpoints back to not using stream IDs. */
597extern void usb_free_streams(struct usb_interface *interface,
598		struct usb_host_endpoint **eps, unsigned int num_eps,
599		gfp_t mem_flags);
600
601/* used these for multi-interface device registration */
602extern int usb_driver_claim_interface(struct usb_driver *driver,
603			struct usb_interface *iface, void *priv);
604
605/**
606 * usb_interface_claimed - returns true iff an interface is claimed
607 * @iface: the interface being checked
608 *
609 * Returns true (nonzero) iff the interface is claimed, else false (zero).
610 * Callers must own the driver model's usb bus readlock.  So driver
611 * probe() entries don't need extra locking, but other call contexts
612 * may need to explicitly claim that lock.
613 *
614 */
615static inline int usb_interface_claimed(struct usb_interface *iface)
616{
617	return (iface->dev.driver != NULL);
618}
619
620extern void usb_driver_release_interface(struct usb_driver *driver,
621			struct usb_interface *iface);
622const struct usb_device_id *usb_match_id(struct usb_interface *interface,
623					 const struct usb_device_id *id);
624extern int usb_match_one_id(struct usb_interface *interface,
625			    const struct usb_device_id *id);
626
627extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
628		int minor);
629extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
630		unsigned ifnum);
631extern struct usb_host_interface *usb_altnum_to_altsetting(
632		const struct usb_interface *intf, unsigned int altnum);
633extern struct usb_host_interface *usb_find_alt_setting(
634		struct usb_host_config *config,
635		unsigned int iface_num,
636		unsigned int alt_num);
637
638
639/**
640 * usb_make_path - returns stable device path in the usb tree
641 * @dev: the device whose path is being constructed
642 * @buf: where to put the string
643 * @size: how big is "buf"?
644 *
645 * Returns length of the string (> 0) or negative if size was too small.
646 *
647 * This identifier is intended to be "stable", reflecting physical paths in
648 * hardware such as physical bus addresses for host controllers or ports on
649 * USB hubs.  That makes it stay the same until systems are physically
650 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
651 * controllers.  Adding and removing devices, including virtual root hubs
652 * in host controller driver modules, does not change these path identifiers;
653 * neither does rebooting or re-enumerating.  These are more useful identifiers
654 * than changeable ("unstable") ones like bus numbers or device addresses.
655 *
656 * With a partial exception for devices connected to USB 2.0 root hubs, these
657 * identifiers are also predictable.  So long as the device tree isn't changed,
658 * plugging any USB device into a given hub port always gives it the same path.
659 * Because of the use of "companion" controllers, devices connected to ports on
660 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
661 * high speed, and a different one if they are full or low speed.
662 */
663static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
664{
665	int actual;
666	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
667			  dev->devpath);
668	return (actual >= (int)size) ? -1 : actual;
669}
670
671/*-------------------------------------------------------------------------*/
672
673#define USB_DEVICE_ID_MATCH_DEVICE \
674		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
675#define USB_DEVICE_ID_MATCH_DEV_RANGE \
676		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
677#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
678		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
679#define USB_DEVICE_ID_MATCH_DEV_INFO \
680		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
681		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
682		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
683#define USB_DEVICE_ID_MATCH_INT_INFO \
684		(USB_DEVICE_ID_MATCH_INT_CLASS | \
685		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
686		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
687
688/**
689 * USB_DEVICE - macro used to describe a specific usb device
690 * @vend: the 16 bit USB Vendor ID
691 * @prod: the 16 bit USB Product ID
692 *
693 * This macro is used to create a struct usb_device_id that matches a
694 * specific device.
695 */
696#define USB_DEVICE(vend, prod) \
697	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
698	.idVendor = (vend), \
699	.idProduct = (prod)
700/**
701 * USB_DEVICE_VER - describe a specific usb device with a version range
702 * @vend: the 16 bit USB Vendor ID
703 * @prod: the 16 bit USB Product ID
704 * @lo: the bcdDevice_lo value
705 * @hi: the bcdDevice_hi value
706 *
707 * This macro is used to create a struct usb_device_id that matches a
708 * specific device, with a version range.
709 */
710#define USB_DEVICE_VER(vend, prod, lo, hi) \
711	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
712	.idVendor = (vend), \
713	.idProduct = (prod), \
714	.bcdDevice_lo = (lo), \
715	.bcdDevice_hi = (hi)
716
717/**
718 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
719 * @vend: the 16 bit USB Vendor ID
720 * @prod: the 16 bit USB Product ID
721 * @pr: bInterfaceProtocol value
722 *
723 * This macro is used to create a struct usb_device_id that matches a
724 * specific interface protocol of devices.
725 */
726#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
727	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
728		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
729	.idVendor = (vend), \
730	.idProduct = (prod), \
731	.bInterfaceProtocol = (pr)
732
733/**
734 * USB_DEVICE_INFO - macro used to describe a class of usb devices
735 * @cl: bDeviceClass value
736 * @sc: bDeviceSubClass value
737 * @pr: bDeviceProtocol value
738 *
739 * This macro is used to create a struct usb_device_id that matches a
740 * specific class of devices.
741 */
742#define USB_DEVICE_INFO(cl, sc, pr) \
743	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
744	.bDeviceClass = (cl), \
745	.bDeviceSubClass = (sc), \
746	.bDeviceProtocol = (pr)
747
748/**
749 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
750 * @cl: bInterfaceClass value
751 * @sc: bInterfaceSubClass value
752 * @pr: bInterfaceProtocol value
753 *
754 * This macro is used to create a struct usb_device_id that matches a
755 * specific class of interfaces.
756 */
757#define USB_INTERFACE_INFO(cl, sc, pr) \
758	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
759	.bInterfaceClass = (cl), \
760	.bInterfaceSubClass = (sc), \
761	.bInterfaceProtocol = (pr)
762
763/**
764 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
765 * @vend: the 16 bit USB Vendor ID
766 * @prod: the 16 bit USB Product ID
767 * @cl: bInterfaceClass value
768 * @sc: bInterfaceSubClass value
769 * @pr: bInterfaceProtocol value
770 *
771 * This macro is used to create a struct usb_device_id that matches a
772 * specific device with a specific class of interfaces.
773 *
774 * This is especially useful when explicitly matching devices that have
775 * vendor specific bDeviceClass values, but standards-compliant interfaces.
776 */
777#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
778	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
779		| USB_DEVICE_ID_MATCH_DEVICE, \
780	.idVendor = (vend), \
781	.idProduct = (prod), \
782	.bInterfaceClass = (cl), \
783	.bInterfaceSubClass = (sc), \
784	.bInterfaceProtocol = (pr)
785
786/* ----------------------------------------------------------------------- */
787
788/* Stuff for dynamic usb ids */
789struct usb_dynids {
790	spinlock_t lock;
791	struct list_head list;
792};
793
794struct usb_dynid {
795	struct list_head node;
796	struct usb_device_id id;
797};
798
799extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
800				struct device_driver *driver,
801				const char *buf, size_t count);
802
803/**
804 * struct usbdrv_wrap - wrapper for driver-model structure
805 * @driver: The driver-model core driver structure.
806 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
807 */
808struct usbdrv_wrap {
809	struct device_driver driver;
810	int for_devices;
811};
812
813/**
814 * struct usb_driver - identifies USB interface driver to usbcore
815 * @name: The driver name should be unique among USB drivers,
816 *	and should normally be the same as the module name.
817 * @probe: Called to see if the driver is willing to manage a particular
818 *	interface on a device.  If it is, probe returns zero and uses
819 *	usb_set_intfdata() to associate driver-specific data with the
820 *	interface.  It may also use usb_set_interface() to specify the
821 *	appropriate altsetting.  If unwilling to manage the interface,
822 *	return -ENODEV, if genuine IO errors occurred, an appropriate
823 *	negative errno value.
824 * @disconnect: Called when the interface is no longer accessible, usually
825 *	because its device has been (or is being) disconnected or the
826 *	driver module is being unloaded.
827 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
828 *	the "usbfs" filesystem.  This lets devices provide ways to
829 *	expose information to user space regardless of where they
830 *	do (or don't) show up otherwise in the filesystem.
831 * @suspend: Called when the device is going to be suspended by the system.
832 * @resume: Called when the device is being resumed by the system.
833 * @reset_resume: Called when the suspended device has been reset instead
834 *	of being resumed.
835 * @pre_reset: Called by usb_reset_device() when the device is about to be
836 *	reset.  This routine must not return until the driver has no active
837 *	URBs for the device, and no more URBs may be submitted until the
838 *	post_reset method is called.
839 * @post_reset: Called by usb_reset_device() after the device
840 *	has been reset
841 * @id_table: USB drivers use ID table to support hotplugging.
842 *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
843 *	or your driver's probe function will never get called.
844 * @dynids: used internally to hold the list of dynamically added device
845 *	ids for this driver.
846 * @drvwrap: Driver-model core structure wrapper.
847 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
848 *	added to this driver by preventing the sysfs file from being created.
849 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
850 *	for interfaces bound to this driver.
851 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
852 *	endpoints before calling the driver's disconnect method.
853 *
854 * USB interface drivers must provide a name, probe() and disconnect()
855 * methods, and an id_table.  Other driver fields are optional.
856 *
857 * The id_table is used in hotplugging.  It holds a set of descriptors,
858 * and specialized data may be associated with each entry.  That table
859 * is used by both user and kernel mode hotplugging support.
860 *
861 * The probe() and disconnect() methods are called in a context where
862 * they can sleep, but they should avoid abusing the privilege.  Most
863 * work to connect to a device should be done when the device is opened,
864 * and undone at the last close.  The disconnect code needs to address
865 * concurrency issues with respect to open() and close() methods, as
866 * well as forcing all pending I/O requests to complete (by unlinking
867 * them as necessary, and blocking until the unlinks complete).
868 */
869struct usb_driver {
870	const char *name;
871
872	int (*probe) (struct usb_interface *intf,
873		      const struct usb_device_id *id);
874
875	void (*disconnect) (struct usb_interface *intf);
876
877	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
878			void *buf);
879
880	int (*suspend) (struct usb_interface *intf, pm_message_t message);
881	int (*resume) (struct usb_interface *intf);
882	int (*reset_resume)(struct usb_interface *intf);
883
884	int (*pre_reset)(struct usb_interface *intf);
885	int (*post_reset)(struct usb_interface *intf);
886
887	const struct usb_device_id *id_table;
888
889	struct usb_dynids dynids;
890	struct usbdrv_wrap drvwrap;
891	unsigned int no_dynamic_id:1;
892	unsigned int supports_autosuspend:1;
893	unsigned int soft_unbind:1;
894};
895#define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
896
897/**
898 * struct usb_device_driver - identifies USB device driver to usbcore
899 * @name: The driver name should be unique among USB drivers,
900 *	and should normally be the same as the module name.
901 * @probe: Called to see if the driver is willing to manage a particular
902 *	device.  If it is, probe returns zero and uses dev_set_drvdata()
903 *	to associate driver-specific data with the device.  If unwilling
904 *	to manage the device, return a negative errno value.
905 * @disconnect: Called when the device is no longer accessible, usually
906 *	because it has been (or is being) disconnected or the driver's
907 *	module is being unloaded.
908 * @suspend: Called when the device is going to be suspended by the system.
909 * @resume: Called when the device is being resumed by the system.
910 * @drvwrap: Driver-model core structure wrapper.
911 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
912 *	for devices bound to this driver.
913 *
914 * USB drivers must provide all the fields listed above except drvwrap.
915 */
916struct usb_device_driver {
917	const char *name;
918
919	int (*probe) (struct usb_device *udev);
920	void (*disconnect) (struct usb_device *udev);
921
922	int (*suspend) (struct usb_device *udev, pm_message_t message);
923	int (*resume) (struct usb_device *udev, pm_message_t message);
924	struct usbdrv_wrap drvwrap;
925	unsigned int supports_autosuspend:1;
926};
927#define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
928		drvwrap.driver)
929
930extern struct bus_type usb_bus_type;
931
932/**
933 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
934 * @name: the usb class device name for this driver.  Will show up in sysfs.
935 * @devnode: Callback to provide a naming hint for a possible
936 *	device node to create.
937 * @fops: pointer to the struct file_operations of this driver.
938 * @minor_base: the start of the minor range for this driver.
939 *
940 * This structure is used for the usb_register_dev() and
941 * usb_unregister_dev() functions, to consolidate a number of the
942 * parameters used for them.
943 */
944struct usb_class_driver {
945	char *name;
946	char *(*devnode)(struct device *dev, umode_t *mode);
947	const struct file_operations *fops;
948	int minor_base;
949};
950
951/*
952 * use these in module_init()/module_exit()
953 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
954 */
955extern int usb_register_driver(struct usb_driver *, struct module *,
956			       const char *);
957
958/* use a define to avoid include chaining to get THIS_MODULE & friends */
959#define usb_register(driver) \
960	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
961
962extern void usb_deregister(struct usb_driver *);
963
964/**
965 * module_usb_driver() - Helper macro for registering a USB driver
966 * @__usb_driver: usb_driver struct
967 *
968 * Helper macro for USB drivers which do not do anything special in module
969 * init/exit. This eliminates a lot of boilerplate. Each module may only
970 * use this macro once, and calling it replaces module_init() and module_exit()
971 */
972#define module_usb_driver(__usb_driver) \
973	module_driver(__usb_driver, usb_register, \
974		       usb_deregister)
975
976extern int usb_register_device_driver(struct usb_device_driver *,
977			struct module *);
978extern void usb_deregister_device_driver(struct usb_device_driver *);
979
980extern int usb_register_dev(struct usb_interface *intf,
981			    struct usb_class_driver *class_driver);
982extern void usb_deregister_dev(struct usb_interface *intf,
983			       struct usb_class_driver *class_driver);
984
985extern int usb_disabled(void);
986
987/* ----------------------------------------------------------------------- */
988
989/*
990 * URB support, for asynchronous request completions
991 */
992
993/*
994 * urb->transfer_flags:
995 *
996 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
997 */
998#define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
999#define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
1000					 * ignored */
1001#define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1002#define URB_NO_FSBR		0x0020	/* UHCI-specific */
1003#define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1004#define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1005					 * needed */
1006#define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1007
1008/* The following flags are used internally by usbcore and HCDs */
1009#define URB_DIR_IN		0x0200	/* Transfer from device to host */
1010#define URB_DIR_OUT		0
1011#define URB_DIR_MASK		URB_DIR_IN
1012
1013#define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1014#define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1015#define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1016#define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1017#define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1018#define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1019#define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1020#define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1021
1022struct usb_iso_packet_descriptor {
1023	unsigned int offset;
1024	unsigned int length;		/* expected length */
1025	unsigned int actual_length;
1026	int status;
1027};
1028
1029struct urb;
1030
1031struct usb_anchor {
1032	struct list_head urb_list;
1033	wait_queue_head_t wait;
1034	spinlock_t lock;
1035	unsigned int poisoned:1;
1036};
1037
1038static inline void init_usb_anchor(struct usb_anchor *anchor)
1039{
1040	INIT_LIST_HEAD(&anchor->urb_list);
1041	init_waitqueue_head(&anchor->wait);
1042	spin_lock_init(&anchor->lock);
1043}
1044
1045typedef void (*usb_complete_t)(struct urb *);
1046
1047/**
1048 * struct urb - USB Request Block
1049 * @urb_list: For use by current owner of the URB.
1050 * @anchor_list: membership in the list of an anchor
1051 * @anchor: to anchor URBs to a common mooring
1052 * @ep: Points to the endpoint's data structure.  Will eventually
1053 *	replace @pipe.
1054 * @pipe: Holds endpoint number, direction, type, and more.
1055 *	Create these values with the eight macros available;
1056 *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1057 *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1058 *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1059 *	numbers range from zero to fifteen.  Note that "in" endpoint two
1060 *	is a different endpoint (and pipe) from "out" endpoint two.
1061 *	The current configuration controls the existence, type, and
1062 *	maximum packet size of any given endpoint.
1063 * @stream_id: the endpoint's stream ID for bulk streams
1064 * @dev: Identifies the USB device to perform the request.
1065 * @status: This is read in non-iso completion functions to get the
1066 *	status of the particular request.  ISO requests only use it
1067 *	to tell whether the URB was unlinked; detailed status for
1068 *	each frame is in the fields of the iso_frame-desc.
1069 * @transfer_flags: A variety of flags may be used to affect how URB
1070 *	submission, unlinking, or operation are handled.  Different
1071 *	kinds of URB can use different flags.
1072 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1073 *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1074 *	(however, do not leave garbage in transfer_buffer even then).
1075 *	This buffer must be suitable for DMA; allocate it with
1076 *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1077 *	of this buffer will be modified.  This buffer is used for the data
1078 *	stage of control transfers.
1079 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1080 *	the device driver is saying that it provided this DMA address,
1081 *	which the host controller driver should use in preference to the
1082 *	transfer_buffer.
1083 * @sg: scatter gather buffer list
1084 * @num_mapped_sgs: (internal) number of mapped sg entries
1085 * @num_sgs: number of entries in the sg list
1086 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1087 *	be broken up into chunks according to the current maximum packet
1088 *	size for the endpoint, which is a function of the configuration
1089 *	and is encoded in the pipe.  When the length is zero, neither
1090 *	transfer_buffer nor transfer_dma is used.
1091 * @actual_length: This is read in non-iso completion functions, and
1092 *	it tells how many bytes (out of transfer_buffer_length) were
1093 *	transferred.  It will normally be the same as requested, unless
1094 *	either an error was reported or a short read was performed.
1095 *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1096 *	short reads be reported as errors.
1097 * @setup_packet: Only used for control transfers, this points to eight bytes
1098 *	of setup data.  Control transfers always start by sending this data
1099 *	to the device.  Then transfer_buffer is read or written, if needed.
1100 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1101 *	this field; setup_packet must point to a valid buffer.
1102 * @start_frame: Returns the initial frame for isochronous transfers.
1103 * @number_of_packets: Lists the number of ISO transfer buffers.
1104 * @interval: Specifies the polling interval for interrupt or isochronous
1105 *	transfers.  The units are frames (milliseconds) for full and low
1106 *	speed devices, and microframes (1/8 millisecond) for highspeed
1107 *	and SuperSpeed devices.
1108 * @error_count: Returns the number of ISO transfers that reported errors.
1109 * @context: For use in completion functions.  This normally points to
1110 *	request-specific driver context.
1111 * @complete: Completion handler. This URB is passed as the parameter to the
1112 *	completion function.  The completion function may then do what
1113 *	it likes with the URB, including resubmitting or freeing it.
1114 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1115 *	collect the transfer status for each buffer.
1116 *
1117 * This structure identifies USB transfer requests.  URBs must be allocated by
1118 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1119 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1120 * are submitted using usb_submit_urb(), and pending requests may be canceled
1121 * using usb_unlink_urb() or usb_kill_urb().
1122 *
1123 * Data Transfer Buffers:
1124 *
1125 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1126 * taken from the general page pool.  That is provided by transfer_buffer
1127 * (control requests also use setup_packet), and host controller drivers
1128 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1129 * mapping operations can be expensive on some platforms (perhaps using a dma
1130 * bounce buffer or talking to an IOMMU),
1131 * although they're cheap on commodity x86 and ppc hardware.
1132 *
1133 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1134 * which tells the host controller driver that no such mapping is needed for
1135 * the transfer_buffer since
1136 * the device driver is DMA-aware.  For example, a device driver might
1137 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1138 * When this transfer flag is provided, host controller drivers will
1139 * attempt to use the dma address found in the transfer_dma
1140 * field rather than determining a dma address themselves.
1141 *
1142 * Note that transfer_buffer must still be set if the controller
1143 * does not support DMA (as indicated by bus.uses_dma) and when talking
1144 * to root hub. If you have to trasfer between highmem zone and the device
1145 * on such controller, create a bounce buffer or bail out with an error.
1146 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1147 * capable, assign NULL to it, so that usbmon knows not to use the value.
1148 * The setup_packet must always be set, so it cannot be located in highmem.
1149 *
1150 * Initialization:
1151 *
1152 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1153 * zero), and complete fields.  All URBs must also initialize
1154 * transfer_buffer and transfer_buffer_length.  They may provide the
1155 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1156 * to be treated as errors; that flag is invalid for write requests.
1157 *
1158 * Bulk URBs may
1159 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1160 * should always terminate with a short packet, even if it means adding an
1161 * extra zero length packet.
1162 *
1163 * Control URBs must provide a valid pointer in the setup_packet field.
1164 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1165 * beforehand.
1166 *
1167 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1168 * or, for highspeed devices, 125 microsecond units)
1169 * to poll for transfers.  After the URB has been submitted, the interval
1170 * field reflects how the transfer was actually scheduled.
1171 * The polling interval may be more frequent than requested.
1172 * For example, some controllers have a maximum interval of 32 milliseconds,
1173 * while others support intervals of up to 1024 milliseconds.
1174 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1175 * endpoints, as well as high speed interrupt endpoints, the encoding of
1176 * the transfer interval in the endpoint descriptor is logarithmic.
1177 * Device drivers must convert that value to linear units themselves.)
1178 *
1179 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1180 * the host controller to schedule the transfer as soon as bandwidth
1181 * utilization allows, and then set start_frame to reflect the actual frame
1182 * selected during submission.  Otherwise drivers must specify the start_frame
1183 * and handle the case where the transfer can't begin then.  However, drivers
1184 * won't know how bandwidth is currently allocated, and while they can
1185 * find the current frame using usb_get_current_frame_number () they can't
1186 * know the range for that frame number.  (Ranges for frame counter values
1187 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1188 *
1189 * Isochronous URBs have a different data transfer model, in part because
1190 * the quality of service is only "best effort".  Callers provide specially
1191 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1192 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1193 * URBs are normally queued, submitted by drivers to arrange that
1194 * transfers are at least double buffered, and then explicitly resubmitted
1195 * in completion handlers, so
1196 * that data (such as audio or video) streams at as constant a rate as the
1197 * host controller scheduler can support.
1198 *
1199 * Completion Callbacks:
1200 *
1201 * The completion callback is made in_interrupt(), and one of the first
1202 * things that a completion handler should do is check the status field.
1203 * The status field is provided for all URBs.  It is used to report
1204 * unlinked URBs, and status for all non-ISO transfers.  It should not
1205 * be examined before the URB is returned to the completion handler.
1206 *
1207 * The context field is normally used to link URBs back to the relevant
1208 * driver or request state.
1209 *
1210 * When the completion callback is invoked for non-isochronous URBs, the
1211 * actual_length field tells how many bytes were transferred.  This field
1212 * is updated even when the URB terminated with an error or was unlinked.
1213 *
1214 * ISO transfer status is reported in the status and actual_length fields
1215 * of the iso_frame_desc array, and the number of errors is reported in
1216 * error_count.  Completion callbacks for ISO transfers will normally
1217 * (re)submit URBs to ensure a constant transfer rate.
1218 *
1219 * Note that even fields marked "public" should not be touched by the driver
1220 * when the urb is owned by the hcd, that is, since the call to
1221 * usb_submit_urb() till the entry into the completion routine.
1222 */
1223struct urb {
1224	/* private: usb core and host controller only fields in the urb */
1225	struct kref kref;		/* reference count of the URB */
1226	void *hcpriv;			/* private data for host controller */
1227	atomic_t use_count;		/* concurrent submissions counter */
1228	atomic_t reject;		/* submissions will fail */
1229	int unlinked;			/* unlink error code */
1230
1231	/* public: documented fields in the urb that can be used by drivers */
1232	struct list_head urb_list;	/* list head for use by the urb's
1233					 * current owner */
1234	struct list_head anchor_list;	/* the URB may be anchored */
1235	struct usb_anchor *anchor;
1236	struct usb_device *dev;		/* (in) pointer to associated device */
1237	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1238	unsigned int pipe;		/* (in) pipe information */
1239	unsigned int stream_id;		/* (in) stream ID */
1240	int status;			/* (return) non-ISO status */
1241	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1242	void *transfer_buffer;		/* (in) associated data buffer */
1243	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1244	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1245	int num_mapped_sgs;		/* (internal) mapped sg entries */
1246	int num_sgs;			/* (in) number of entries in the sg list */
1247	u32 transfer_buffer_length;	/* (in) data buffer length */
1248	u32 actual_length;		/* (return) actual transfer length */
1249	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1250	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1251	int start_frame;		/* (modify) start frame (ISO) */
1252	int number_of_packets;		/* (in) number of ISO packets */
1253	int interval;			/* (modify) transfer interval
1254					 * (INT/ISO) */
1255	int error_count;		/* (return) number of ISO errors */
1256	void *context;			/* (in) context for completion */
1257	usb_complete_t complete;	/* (in) completion routine */
1258	struct usb_iso_packet_descriptor iso_frame_desc[0];
1259					/* (in) ISO ONLY */
1260};
1261
1262/* ----------------------------------------------------------------------- */
1263
1264/**
1265 * usb_fill_control_urb - initializes a control urb
1266 * @urb: pointer to the urb to initialize.
1267 * @dev: pointer to the struct usb_device for this urb.
1268 * @pipe: the endpoint pipe
1269 * @setup_packet: pointer to the setup_packet buffer
1270 * @transfer_buffer: pointer to the transfer buffer
1271 * @buffer_length: length of the transfer buffer
1272 * @complete_fn: pointer to the usb_complete_t function
1273 * @context: what to set the urb context to.
1274 *
1275 * Initializes a control urb with the proper information needed to submit
1276 * it to a device.
1277 */
1278static inline void usb_fill_control_urb(struct urb *urb,
1279					struct usb_device *dev,
1280					unsigned int pipe,
1281					unsigned char *setup_packet,
1282					void *transfer_buffer,
1283					int buffer_length,
1284					usb_complete_t complete_fn,
1285					void *context)
1286{
1287	urb->dev = dev;
1288	urb->pipe = pipe;
1289	urb->setup_packet = setup_packet;
1290	urb->transfer_buffer = transfer_buffer;
1291	urb->transfer_buffer_length = buffer_length;
1292	urb->complete = complete_fn;
1293	urb->context = context;
1294}
1295
1296/**
1297 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1298 * @urb: pointer to the urb to initialize.
1299 * @dev: pointer to the struct usb_device for this urb.
1300 * @pipe: the endpoint pipe
1301 * @transfer_buffer: pointer to the transfer buffer
1302 * @buffer_length: length of the transfer buffer
1303 * @complete_fn: pointer to the usb_complete_t function
1304 * @context: what to set the urb context to.
1305 *
1306 * Initializes a bulk urb with the proper information needed to submit it
1307 * to a device.
1308 */
1309static inline void usb_fill_bulk_urb(struct urb *urb,
1310				     struct usb_device *dev,
1311				     unsigned int pipe,
1312				     void *transfer_buffer,
1313				     int buffer_length,
1314				     usb_complete_t complete_fn,
1315				     void *context)
1316{
1317	urb->dev = dev;
1318	urb->pipe = pipe;
1319	urb->transfer_buffer = transfer_buffer;
1320	urb->transfer_buffer_length = buffer_length;
1321	urb->complete = complete_fn;
1322	urb->context = context;
1323}
1324
1325/**
1326 * usb_fill_int_urb - macro to help initialize a interrupt urb
1327 * @urb: pointer to the urb to initialize.
1328 * @dev: pointer to the struct usb_device for this urb.
1329 * @pipe: the endpoint pipe
1330 * @transfer_buffer: pointer to the transfer buffer
1331 * @buffer_length: length of the transfer buffer
1332 * @complete_fn: pointer to the usb_complete_t function
1333 * @context: what to set the urb context to.
1334 * @interval: what to set the urb interval to, encoded like
1335 *	the endpoint descriptor's bInterval value.
1336 *
1337 * Initializes a interrupt urb with the proper information needed to submit
1338 * it to a device.
1339 *
1340 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1341 * encoding of the endpoint interval, and express polling intervals in
1342 * microframes (eight per millisecond) rather than in frames (one per
1343 * millisecond).
1344 *
1345 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1346 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1347 * through to the host controller, rather than being translated into microframe
1348 * units.
1349 */
1350static inline void usb_fill_int_urb(struct urb *urb,
1351				    struct usb_device *dev,
1352				    unsigned int pipe,
1353				    void *transfer_buffer,
1354				    int buffer_length,
1355				    usb_complete_t complete_fn,
1356				    void *context,
1357				    int interval)
1358{
1359	urb->dev = dev;
1360	urb->pipe = pipe;
1361	urb->transfer_buffer = transfer_buffer;
1362	urb->transfer_buffer_length = buffer_length;
1363	urb->complete = complete_fn;
1364	urb->context = context;
1365	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1366		urb->interval = 1 << (interval - 1);
1367	else
1368		urb->interval = interval;
1369	urb->start_frame = -1;
1370}
1371
1372extern void usb_init_urb(struct urb *urb);
1373extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1374extern void usb_free_urb(struct urb *urb);
1375#define usb_put_urb usb_free_urb
1376extern struct urb *usb_get_urb(struct urb *urb);
1377extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1378extern int usb_unlink_urb(struct urb *urb);
1379extern void usb_kill_urb(struct urb *urb);
1380extern void usb_poison_urb(struct urb *urb);
1381extern void usb_unpoison_urb(struct urb *urb);
1382extern void usb_block_urb(struct urb *urb);
1383extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1384extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1385extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1386extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1387extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1388extern void usb_unanchor_urb(struct urb *urb);
1389extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1390					 unsigned int timeout);
1391extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1392extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1393extern int usb_anchor_empty(struct usb_anchor *anchor);
1394
1395#define usb_unblock_urb	usb_unpoison_urb
1396
1397/**
1398 * usb_urb_dir_in - check if an URB describes an IN transfer
1399 * @urb: URB to be checked
1400 *
1401 * Returns 1 if @urb describes an IN transfer (device-to-host),
1402 * otherwise 0.
1403 */
1404static inline int usb_urb_dir_in(struct urb *urb)
1405{
1406	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1407}
1408
1409/**
1410 * usb_urb_dir_out - check if an URB describes an OUT transfer
1411 * @urb: URB to be checked
1412 *
1413 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1414 * otherwise 0.
1415 */
1416static inline int usb_urb_dir_out(struct urb *urb)
1417{
1418	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1419}
1420
1421void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1422	gfp_t mem_flags, dma_addr_t *dma);
1423void usb_free_coherent(struct usb_device *dev, size_t size,
1424	void *addr, dma_addr_t dma);
1425
1426#if 0
1427struct urb *usb_buffer_map(struct urb *urb);
1428void usb_buffer_dmasync(struct urb *urb);
1429void usb_buffer_unmap(struct urb *urb);
1430#endif
1431
1432struct scatterlist;
1433int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1434		      struct scatterlist *sg, int nents);
1435#if 0
1436void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1437			   struct scatterlist *sg, int n_hw_ents);
1438#endif
1439void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1440			 struct scatterlist *sg, int n_hw_ents);
1441
1442/*-------------------------------------------------------------------*
1443 *                         SYNCHRONOUS CALL SUPPORT                  *
1444 *-------------------------------------------------------------------*/
1445
1446extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1447	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1448	void *data, __u16 size, int timeout);
1449extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1450	void *data, int len, int *actual_length, int timeout);
1451extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1452	void *data, int len, int *actual_length,
1453	int timeout);
1454
1455/* wrappers around usb_control_msg() for the most common standard requests */
1456extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1457	unsigned char descindex, void *buf, int size);
1458extern int usb_get_status(struct usb_device *dev,
1459	int type, int target, void *data);
1460extern int usb_string(struct usb_device *dev, int index,
1461	char *buf, size_t size);
1462
1463/* wrappers that also update important state inside usbcore */
1464extern int usb_clear_halt(struct usb_device *dev, int pipe);
1465extern int usb_reset_configuration(struct usb_device *dev);
1466extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1467extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1468
1469/* this request isn't really synchronous, but it belongs with the others */
1470extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1471
1472/*
1473 * timeouts, in milliseconds, used for sending/receiving control messages
1474 * they typically complete within a few frames (msec) after they're issued
1475 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1476 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1477 */
1478#define USB_CTRL_GET_TIMEOUT	5000
1479#define USB_CTRL_SET_TIMEOUT	5000
1480
1481
1482/**
1483 * struct usb_sg_request - support for scatter/gather I/O
1484 * @status: zero indicates success, else negative errno
1485 * @bytes: counts bytes transferred.
1486 *
1487 * These requests are initialized using usb_sg_init(), and then are used
1488 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1489 * members of the request object aren't for driver access.
1490 *
1491 * The status and bytecount values are valid only after usb_sg_wait()
1492 * returns.  If the status is zero, then the bytecount matches the total
1493 * from the request.
1494 *
1495 * After an error completion, drivers may need to clear a halt condition
1496 * on the endpoint.
1497 */
1498struct usb_sg_request {
1499	int			status;
1500	size_t			bytes;
1501
1502	/* private:
1503	 * members below are private to usbcore,
1504	 * and are not provided for driver access!
1505	 */
1506	spinlock_t		lock;
1507
1508	struct usb_device	*dev;
1509	int			pipe;
1510
1511	int			entries;
1512	struct urb		**urbs;
1513
1514	int			count;
1515	struct completion	complete;
1516};
1517
1518int usb_sg_init(
1519	struct usb_sg_request	*io,
1520	struct usb_device	*dev,
1521	unsigned		pipe,
1522	unsigned		period,
1523	struct scatterlist	*sg,
1524	int			nents,
1525	size_t			length,
1526	gfp_t			mem_flags
1527);
1528void usb_sg_cancel(struct usb_sg_request *io);
1529void usb_sg_wait(struct usb_sg_request *io);
1530
1531
1532/* ----------------------------------------------------------------------- */
1533
1534/*
1535 * For various legacy reasons, Linux has a small cookie that's paired with
1536 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1537 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1538 * an unsigned int encoded as:
1539 *
1540 *  - direction:	bit 7		(0 = Host-to-Device [Out],
1541 *					 1 = Device-to-Host [In] ...
1542 *					like endpoint bEndpointAddress)
1543 *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1544 *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1545 *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1546 *					 10 = control, 11 = bulk)
1547 *
1548 * Given the device address and endpoint descriptor, pipes are redundant.
1549 */
1550
1551/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1552/* (yet ... they're the values used by usbfs) */
1553#define PIPE_ISOCHRONOUS		0
1554#define PIPE_INTERRUPT			1
1555#define PIPE_CONTROL			2
1556#define PIPE_BULK			3
1557
1558#define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1559#define usb_pipeout(pipe)	(!usb_pipein(pipe))
1560
1561#define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1562#define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1563
1564#define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1565#define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1566#define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1567#define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1568#define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1569
1570static inline unsigned int __create_pipe(struct usb_device *dev,
1571		unsigned int endpoint)
1572{
1573	return (dev->devnum << 8) | (endpoint << 15);
1574}
1575
1576/* Create various pipes... */
1577#define usb_sndctrlpipe(dev, endpoint)	\
1578	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1579#define usb_rcvctrlpipe(dev, endpoint)	\
1580	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1581#define usb_sndisocpipe(dev, endpoint)	\
1582	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1583#define usb_rcvisocpipe(dev, endpoint)	\
1584	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1585#define usb_sndbulkpipe(dev, endpoint)	\
1586	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1587#define usb_rcvbulkpipe(dev, endpoint)	\
1588	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1589#define usb_sndintpipe(dev, endpoint)	\
1590	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1591#define usb_rcvintpipe(dev, endpoint)	\
1592	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1593
1594static inline struct usb_host_endpoint *
1595usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1596{
1597	struct usb_host_endpoint **eps;
1598	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1599	return eps[usb_pipeendpoint(pipe)];
1600}
1601
1602/*-------------------------------------------------------------------------*/
1603
1604static inline __u16
1605usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1606{
1607	struct usb_host_endpoint	*ep;
1608	unsigned			epnum = usb_pipeendpoint(pipe);
1609
1610	if (is_out) {
1611		WARN_ON(usb_pipein(pipe));
1612		ep = udev->ep_out[epnum];
1613	} else {
1614		WARN_ON(usb_pipeout(pipe));
1615		ep = udev->ep_in[epnum];
1616	}
1617	if (!ep)
1618		return 0;
1619
1620	/* NOTE:  only 0x07ff bits are for packet size... */
1621	return usb_endpoint_maxp(&ep->desc);
1622}
1623
1624/* ----------------------------------------------------------------------- */
1625
1626/* translate USB error codes to codes user space understands */
1627static inline int usb_translate_errors(int error_code)
1628{
1629	switch (error_code) {
1630	case 0:
1631	case -ENOMEM:
1632	case -ENODEV:
1633		return error_code;
1634	default:
1635		return -EIO;
1636	}
1637}
1638
1639/* Events from the usb core */
1640#define USB_DEVICE_ADD		0x0001
1641#define USB_DEVICE_REMOVE	0x0002
1642#define USB_BUS_ADD		0x0003
1643#define USB_BUS_REMOVE		0x0004
1644extern void usb_register_notify(struct notifier_block *nb);
1645extern void usb_unregister_notify(struct notifier_block *nb);
1646
1647#ifdef DEBUG
1648#define dbg(format, arg...)						\
1649	printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg)
1650#else
1651#define dbg(format, arg...)						\
1652do {									\
1653	if (0)								\
1654		printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \
1655} while (0)
1656#endif
1657
1658#define err(format, arg...)					\
1659	printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg)
1660
1661/* debugfs stuff */
1662extern struct dentry *usb_debug_root;
1663
1664#endif  /* __KERNEL__ */
1665
1666#endif
1667