1// Copyright 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31//
32// Tests for Google Test itself.  This verifies that the basic constructs of
33// Google Test work.
34
35#include "gtest/gtest.h"
36#include <vector>
37#include <ostream>
38
39// Verifies that the command line flag variables can be accessed
40// in code once <gtest/gtest.h> has been #included.
41// Do not move it after other #includes.
42TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
43  bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
44      || testing::GTEST_FLAG(break_on_failure)
45      || testing::GTEST_FLAG(catch_exceptions)
46      || testing::GTEST_FLAG(color) != "unknown"
47      || testing::GTEST_FLAG(filter) != "unknown"
48      || testing::GTEST_FLAG(list_tests)
49      || testing::GTEST_FLAG(output) != "unknown"
50      || testing::GTEST_FLAG(print_time)
51      || testing::GTEST_FLAG(random_seed)
52      || testing::GTEST_FLAG(repeat) > 0
53      || testing::GTEST_FLAG(show_internal_stack_frames)
54      || testing::GTEST_FLAG(shuffle)
55      || testing::GTEST_FLAG(stack_trace_depth) > 0
56      || testing::GTEST_FLAG(stream_result_to) != "unknown"
57      || testing::GTEST_FLAG(throw_on_failure);
58  EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
59}
60
61#include "gtest/gtest-spi.h"
62
63// Indicates that this translation unit is part of Google Test's
64// implementation.  It must come before gtest-internal-inl.h is
65// included, or there will be a compiler error.  This trick is to
66// prevent a user from accidentally including gtest-internal-inl.h in
67// his code.
68#define GTEST_IMPLEMENTATION_ 1
69#include "src/gtest-internal-inl.h"
70#undef GTEST_IMPLEMENTATION_
71
72#include <limits.h>  // For INT_MAX.
73#include <stdlib.h>
74#include <time.h>
75
76#include <map>
77
78namespace testing {
79namespace internal {
80
81// Provides access to otherwise private parts of the TestEventListeners class
82// that are needed to test it.
83class TestEventListenersAccessor {
84 public:
85  static TestEventListener* GetRepeater(TestEventListeners* listeners) {
86    return listeners->repeater();
87  }
88
89  static void SetDefaultResultPrinter(TestEventListeners* listeners,
90                                      TestEventListener* listener) {
91    listeners->SetDefaultResultPrinter(listener);
92  }
93  static void SetDefaultXmlGenerator(TestEventListeners* listeners,
94                                     TestEventListener* listener) {
95    listeners->SetDefaultXmlGenerator(listener);
96  }
97
98  static bool EventForwardingEnabled(const TestEventListeners& listeners) {
99    return listeners.EventForwardingEnabled();
100  }
101
102  static void SuppressEventForwarding(TestEventListeners* listeners) {
103    listeners->SuppressEventForwarding();
104  }
105};
106
107}  // namespace internal
108}  // namespace testing
109
110using testing::AssertionFailure;
111using testing::AssertionResult;
112using testing::AssertionSuccess;
113using testing::DoubleLE;
114using testing::EmptyTestEventListener;
115using testing::FloatLE;
116using testing::GTEST_FLAG(also_run_disabled_tests);
117using testing::GTEST_FLAG(break_on_failure);
118using testing::GTEST_FLAG(catch_exceptions);
119using testing::GTEST_FLAG(color);
120using testing::GTEST_FLAG(death_test_use_fork);
121using testing::GTEST_FLAG(filter);
122using testing::GTEST_FLAG(list_tests);
123using testing::GTEST_FLAG(output);
124using testing::GTEST_FLAG(print_time);
125using testing::GTEST_FLAG(random_seed);
126using testing::GTEST_FLAG(repeat);
127using testing::GTEST_FLAG(show_internal_stack_frames);
128using testing::GTEST_FLAG(shuffle);
129using testing::GTEST_FLAG(stack_trace_depth);
130using testing::GTEST_FLAG(stream_result_to);
131using testing::GTEST_FLAG(throw_on_failure);
132using testing::IsNotSubstring;
133using testing::IsSubstring;
134using testing::Message;
135using testing::ScopedFakeTestPartResultReporter;
136using testing::StaticAssertTypeEq;
137using testing::Test;
138using testing::TestCase;
139using testing::TestEventListeners;
140using testing::TestPartResult;
141using testing::TestPartResultArray;
142using testing::TestProperty;
143using testing::TestResult;
144using testing::UnitTest;
145using testing::kMaxStackTraceDepth;
146using testing::internal::AddReference;
147using testing::internal::AlwaysFalse;
148using testing::internal::AlwaysTrue;
149using testing::internal::AppendUserMessage;
150using testing::internal::ArrayAwareFind;
151using testing::internal::ArrayEq;
152using testing::internal::CodePointToUtf8;
153using testing::internal::CompileAssertTypesEqual;
154using testing::internal::CopyArray;
155using testing::internal::CountIf;
156using testing::internal::EqFailure;
157using testing::internal::FloatingPoint;
158using testing::internal::ForEach;
159using testing::internal::FormatTimeInMillisAsSeconds;
160using testing::internal::GTestFlagSaver;
161using testing::internal::GetCurrentOsStackTraceExceptTop;
162using testing::internal::GetElementOr;
163using testing::internal::GetNextRandomSeed;
164using testing::internal::GetRandomSeedFromFlag;
165using testing::internal::GetTestTypeId;
166using testing::internal::GetTypeId;
167using testing::internal::GetUnitTestImpl;
168using testing::internal::ImplicitlyConvertible;
169using testing::internal::Int32;
170using testing::internal::Int32FromEnvOrDie;
171using testing::internal::IsAProtocolMessage;
172using testing::internal::IsContainer;
173using testing::internal::IsContainerTest;
174using testing::internal::IsNotContainer;
175using testing::internal::NativeArray;
176using testing::internal::ParseInt32Flag;
177using testing::internal::RemoveConst;
178using testing::internal::RemoveReference;
179using testing::internal::ShouldRunTestOnShard;
180using testing::internal::ShouldShard;
181using testing::internal::ShouldUseColor;
182using testing::internal::Shuffle;
183using testing::internal::ShuffleRange;
184using testing::internal::SkipPrefix;
185using testing::internal::StreamableToString;
186using testing::internal::String;
187using testing::internal::TestEventListenersAccessor;
188using testing::internal::TestResultAccessor;
189using testing::internal::UInt32;
190using testing::internal::WideStringToUtf8;
191using testing::internal::kCopy;
192using testing::internal::kMaxRandomSeed;
193using testing::internal::kReference;
194using testing::internal::kTestTypeIdInGoogleTest;
195using testing::internal::scoped_ptr;
196
197#if GTEST_HAS_STREAM_REDIRECTION
198using testing::internal::CaptureStdout;
199using testing::internal::GetCapturedStdout;
200#endif
201
202#if GTEST_IS_THREADSAFE
203using testing::internal::ThreadWithParam;
204#endif
205
206class TestingVector : public std::vector<int> {
207};
208
209::std::ostream& operator<<(::std::ostream& os,
210                           const TestingVector& vector) {
211  os << "{ ";
212  for (size_t i = 0; i < vector.size(); i++) {
213    os << vector[i] << " ";
214  }
215  os << "}";
216  return os;
217}
218
219// This line tests that we can define tests in an unnamed namespace.
220namespace {
221
222TEST(GetRandomSeedFromFlagTest, HandlesZero) {
223  const int seed = GetRandomSeedFromFlag(0);
224  EXPECT_LE(1, seed);
225  EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
226}
227
228TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
229  EXPECT_EQ(1, GetRandomSeedFromFlag(1));
230  EXPECT_EQ(2, GetRandomSeedFromFlag(2));
231  EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
232  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
233            GetRandomSeedFromFlag(kMaxRandomSeed));
234}
235
236TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
237  const int seed1 = GetRandomSeedFromFlag(-1);
238  EXPECT_LE(1, seed1);
239  EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
240
241  const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
242  EXPECT_LE(1, seed2);
243  EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
244}
245
246TEST(GetNextRandomSeedTest, WorksForValidInput) {
247  EXPECT_EQ(2, GetNextRandomSeed(1));
248  EXPECT_EQ(3, GetNextRandomSeed(2));
249  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
250            GetNextRandomSeed(kMaxRandomSeed - 1));
251  EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
252
253  // We deliberately don't test GetNextRandomSeed() with invalid
254  // inputs, as that requires death tests, which are expensive.  This
255  // is fine as GetNextRandomSeed() is internal and has a
256  // straightforward definition.
257}
258
259static void ClearCurrentTestPartResults() {
260  TestResultAccessor::ClearTestPartResults(
261      GetUnitTestImpl()->current_test_result());
262}
263
264// Tests GetTypeId.
265
266TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
267  EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
268  EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
269}
270
271class SubClassOfTest : public Test {};
272class AnotherSubClassOfTest : public Test {};
273
274TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
275  EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
276  EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
277  EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
278  EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
279  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
280  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
281}
282
283// Verifies that GetTestTypeId() returns the same value, no matter it
284// is called from inside Google Test or outside of it.
285TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
286  EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
287}
288
289// Tests FormatTimeInMillisAsSeconds().
290
291TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
292  EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
293}
294
295TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
296  EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
297  EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
298  EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
299  EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
300  EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
301}
302
303TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
304  EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
305  EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
306  EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
307  EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
308  EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
309}
310
311#if GTEST_CAN_COMPARE_NULL
312
313# ifdef __BORLANDC__
314// Silences warnings: "Condition is always true", "Unreachable code"
315#  pragma option push -w-ccc -w-rch
316# endif
317
318// Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
319// pointer literal.
320TEST(NullLiteralTest, IsTrueForNullLiterals) {
321  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
322  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
323  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
324  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
325
326# ifndef __BORLANDC__
327
328  // Some compilers may fail to detect some null pointer literals;
329  // as long as users of the framework don't use such literals, this
330  // is harmless.
331  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1));
332
333# endif
334}
335
336// Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
337// pointer literal.
338TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
339  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
340  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
341  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
342  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
343}
344
345# ifdef __BORLANDC__
346// Restores warnings after previous "#pragma option push" suppressed them.
347#  pragma option pop
348# endif
349
350#endif  // GTEST_CAN_COMPARE_NULL
351//
352// Tests CodePointToUtf8().
353
354// Tests that the NUL character L'\0' is encoded correctly.
355TEST(CodePointToUtf8Test, CanEncodeNul) {
356  char buffer[32];
357  EXPECT_STREQ("", CodePointToUtf8(L'\0', buffer));
358}
359
360// Tests that ASCII characters are encoded correctly.
361TEST(CodePointToUtf8Test, CanEncodeAscii) {
362  char buffer[32];
363  EXPECT_STREQ("a", CodePointToUtf8(L'a', buffer));
364  EXPECT_STREQ("Z", CodePointToUtf8(L'Z', buffer));
365  EXPECT_STREQ("&", CodePointToUtf8(L'&', buffer));
366  EXPECT_STREQ("\x7F", CodePointToUtf8(L'\x7F', buffer));
367}
368
369// Tests that Unicode code-points that have 8 to 11 bits are encoded
370// as 110xxxxx 10xxxxxx.
371TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
372  char buffer[32];
373  // 000 1101 0011 => 110-00011 10-010011
374  EXPECT_STREQ("\xC3\x93", CodePointToUtf8(L'\xD3', buffer));
375
376  // 101 0111 0110 => 110-10101 10-110110
377  // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
378  // in wide strings and wide chars. In order to accomodate them, we have to
379  // introduce such character constants as integers.
380  EXPECT_STREQ("\xD5\xB6",
381               CodePointToUtf8(static_cast<wchar_t>(0x576), buffer));
382}
383
384// Tests that Unicode code-points that have 12 to 16 bits are encoded
385// as 1110xxxx 10xxxxxx 10xxxxxx.
386TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
387  char buffer[32];
388  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
389  EXPECT_STREQ("\xE0\xA3\x93",
390               CodePointToUtf8(static_cast<wchar_t>(0x8D3), buffer));
391
392  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
393  EXPECT_STREQ("\xEC\x9D\x8D",
394               CodePointToUtf8(static_cast<wchar_t>(0xC74D), buffer));
395}
396
397#if !GTEST_WIDE_STRING_USES_UTF16_
398// Tests in this group require a wchar_t to hold > 16 bits, and thus
399// are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
400// 16-bit wide. This code may not compile on those systems.
401
402// Tests that Unicode code-points that have 17 to 21 bits are encoded
403// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
404TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
405  char buffer[32];
406  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
407  EXPECT_STREQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3', buffer));
408
409  // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
410  EXPECT_STREQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400', buffer));
411
412  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
413  EXPECT_STREQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634', buffer));
414}
415
416// Tests that encoding an invalid code-point generates the expected result.
417TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
418  char buffer[32];
419  EXPECT_STREQ("(Invalid Unicode 0x1234ABCD)",
420               CodePointToUtf8(L'\x1234ABCD', buffer));
421}
422
423#endif  // !GTEST_WIDE_STRING_USES_UTF16_
424
425// Tests WideStringToUtf8().
426
427// Tests that the NUL character L'\0' is encoded correctly.
428TEST(WideStringToUtf8Test, CanEncodeNul) {
429  EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
430  EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
431}
432
433// Tests that ASCII strings are encoded correctly.
434TEST(WideStringToUtf8Test, CanEncodeAscii) {
435  EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
436  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
437  EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
438  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
439}
440
441// Tests that Unicode code-points that have 8 to 11 bits are encoded
442// as 110xxxxx 10xxxxxx.
443TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
444  // 000 1101 0011 => 110-00011 10-010011
445  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
446  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
447
448  // 101 0111 0110 => 110-10101 10-110110
449  const wchar_t s[] = { 0x576, '\0' };
450  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
451  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
452}
453
454// Tests that Unicode code-points that have 12 to 16 bits are encoded
455// as 1110xxxx 10xxxxxx 10xxxxxx.
456TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
457  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
458  const wchar_t s1[] = { 0x8D3, '\0' };
459  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
460  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
461
462  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
463  const wchar_t s2[] = { 0xC74D, '\0' };
464  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
465  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
466}
467
468// Tests that the conversion stops when the function encounters \0 character.
469TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
470  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
471}
472
473// Tests that the conversion stops when the function reaches the limit
474// specified by the 'length' parameter.
475TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
476  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
477}
478
479#if !GTEST_WIDE_STRING_USES_UTF16_
480// Tests that Unicode code-points that have 17 to 21 bits are encoded
481// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
482// on the systems using UTF-16 encoding.
483TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
484  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
485  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
486  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
487
488  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
489  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
490  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
491}
492
493// Tests that encoding an invalid code-point generates the expected result.
494TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
495  EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
496               WideStringToUtf8(L"\xABCDFF", -1).c_str());
497}
498#else  // !GTEST_WIDE_STRING_USES_UTF16_
499// Tests that surrogate pairs are encoded correctly on the systems using
500// UTF-16 encoding in the wide strings.
501TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
502  const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
503  EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
504}
505
506// Tests that encoding an invalid UTF-16 surrogate pair
507// generates the expected result.
508TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
509  // Leading surrogate is at the end of the string.
510  const wchar_t s1[] = { 0xD800, '\0' };
511  EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
512  // Leading surrogate is not followed by the trailing surrogate.
513  const wchar_t s2[] = { 0xD800, 'M', '\0' };
514  EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
515  // Trailing surrogate appearas without a leading surrogate.
516  const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
517  EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
518}
519#endif  // !GTEST_WIDE_STRING_USES_UTF16_
520
521// Tests that codepoint concatenation works correctly.
522#if !GTEST_WIDE_STRING_USES_UTF16_
523TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
524  const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
525  EXPECT_STREQ(
526      "\xF4\x88\x98\xB4"
527          "\xEC\x9D\x8D"
528          "\n"
529          "\xD5\xB6"
530          "\xE0\xA3\x93"
531          "\xF4\x88\x98\xB4",
532      WideStringToUtf8(s, -1).c_str());
533}
534#else
535TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
536  const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
537  EXPECT_STREQ(
538      "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
539      WideStringToUtf8(s, -1).c_str());
540}
541#endif  // !GTEST_WIDE_STRING_USES_UTF16_
542
543// Tests the Random class.
544
545TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
546  testing::internal::Random random(42);
547  EXPECT_DEATH_IF_SUPPORTED(
548      random.Generate(0),
549      "Cannot generate a number in the range \\[0, 0\\)");
550  EXPECT_DEATH_IF_SUPPORTED(
551      random.Generate(testing::internal::Random::kMaxRange + 1),
552      "Generation of a number in \\[0, 2147483649\\) was requested, "
553      "but this can only generate numbers in \\[0, 2147483648\\)");
554}
555
556TEST(RandomTest, GeneratesNumbersWithinRange) {
557  const UInt32 kRange = 10000;
558  testing::internal::Random random(12345);
559  for (int i = 0; i < 10; i++) {
560    EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
561  }
562
563  testing::internal::Random random2(testing::internal::Random::kMaxRange);
564  for (int i = 0; i < 10; i++) {
565    EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
566  }
567}
568
569TEST(RandomTest, RepeatsWhenReseeded) {
570  const int kSeed = 123;
571  const int kArraySize = 10;
572  const UInt32 kRange = 10000;
573  UInt32 values[kArraySize];
574
575  testing::internal::Random random(kSeed);
576  for (int i = 0; i < kArraySize; i++) {
577    values[i] = random.Generate(kRange);
578  }
579
580  random.Reseed(kSeed);
581  for (int i = 0; i < kArraySize; i++) {
582    EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
583  }
584}
585
586// Tests STL container utilities.
587
588// Tests CountIf().
589
590static bool IsPositive(int n) { return n > 0; }
591
592TEST(ContainerUtilityTest, CountIf) {
593  std::vector<int> v;
594  EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
595
596  v.push_back(-1);
597  v.push_back(0);
598  EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
599
600  v.push_back(2);
601  v.push_back(-10);
602  v.push_back(10);
603  EXPECT_EQ(2, CountIf(v, IsPositive));
604}
605
606// Tests ForEach().
607
608static int g_sum = 0;
609static void Accumulate(int n) { g_sum += n; }
610
611TEST(ContainerUtilityTest, ForEach) {
612  std::vector<int> v;
613  g_sum = 0;
614  ForEach(v, Accumulate);
615  EXPECT_EQ(0, g_sum);  // Works for an empty container;
616
617  g_sum = 0;
618  v.push_back(1);
619  ForEach(v, Accumulate);
620  EXPECT_EQ(1, g_sum);  // Works for a container with one element.
621
622  g_sum = 0;
623  v.push_back(20);
624  v.push_back(300);
625  ForEach(v, Accumulate);
626  EXPECT_EQ(321, g_sum);
627}
628
629// Tests GetElementOr().
630TEST(ContainerUtilityTest, GetElementOr) {
631  std::vector<char> a;
632  EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
633
634  a.push_back('a');
635  a.push_back('b');
636  EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
637  EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
638  EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
639  EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
640}
641
642TEST(ContainerUtilityDeathTest, ShuffleRange) {
643  std::vector<int> a;
644  a.push_back(0);
645  a.push_back(1);
646  a.push_back(2);
647  testing::internal::Random random(1);
648
649  EXPECT_DEATH_IF_SUPPORTED(
650      ShuffleRange(&random, -1, 1, &a),
651      "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
652  EXPECT_DEATH_IF_SUPPORTED(
653      ShuffleRange(&random, 4, 4, &a),
654      "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
655  EXPECT_DEATH_IF_SUPPORTED(
656      ShuffleRange(&random, 3, 2, &a),
657      "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
658  EXPECT_DEATH_IF_SUPPORTED(
659      ShuffleRange(&random, 3, 4, &a),
660      "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
661}
662
663class VectorShuffleTest : public Test {
664 protected:
665  static const int kVectorSize = 20;
666
667  VectorShuffleTest() : random_(1) {
668    for (int i = 0; i < kVectorSize; i++) {
669      vector_.push_back(i);
670    }
671  }
672
673  static bool VectorIsCorrupt(const TestingVector& vector) {
674    if (kVectorSize != static_cast<int>(vector.size())) {
675      return true;
676    }
677
678    bool found_in_vector[kVectorSize] = { false };
679    for (size_t i = 0; i < vector.size(); i++) {
680      const int e = vector[i];
681      if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
682        return true;
683      }
684      found_in_vector[e] = true;
685    }
686
687    // Vector size is correct, elements' range is correct, no
688    // duplicate elements.  Therefore no corruption has occurred.
689    return false;
690  }
691
692  static bool VectorIsNotCorrupt(const TestingVector& vector) {
693    return !VectorIsCorrupt(vector);
694  }
695
696  static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
697    for (int i = begin; i < end; i++) {
698      if (i != vector[i]) {
699        return true;
700      }
701    }
702    return false;
703  }
704
705  static bool RangeIsUnshuffled(
706      const TestingVector& vector, int begin, int end) {
707    return !RangeIsShuffled(vector, begin, end);
708  }
709
710  static bool VectorIsShuffled(const TestingVector& vector) {
711    return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
712  }
713
714  static bool VectorIsUnshuffled(const TestingVector& vector) {
715    return !VectorIsShuffled(vector);
716  }
717
718  testing::internal::Random random_;
719  TestingVector vector_;
720};  // class VectorShuffleTest
721
722const int VectorShuffleTest::kVectorSize;
723
724TEST_F(VectorShuffleTest, HandlesEmptyRange) {
725  // Tests an empty range at the beginning...
726  ShuffleRange(&random_, 0, 0, &vector_);
727  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
728  ASSERT_PRED1(VectorIsUnshuffled, vector_);
729
730  // ...in the middle...
731  ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
732  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
733  ASSERT_PRED1(VectorIsUnshuffled, vector_);
734
735  // ...at the end...
736  ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
737  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
738  ASSERT_PRED1(VectorIsUnshuffled, vector_);
739
740  // ...and past the end.
741  ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
742  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
743  ASSERT_PRED1(VectorIsUnshuffled, vector_);
744}
745
746TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
747  // Tests a size one range at the beginning...
748  ShuffleRange(&random_, 0, 1, &vector_);
749  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
750  ASSERT_PRED1(VectorIsUnshuffled, vector_);
751
752  // ...in the middle...
753  ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
754  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
755  ASSERT_PRED1(VectorIsUnshuffled, vector_);
756
757  // ...and at the end.
758  ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
759  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
760  ASSERT_PRED1(VectorIsUnshuffled, vector_);
761}
762
763// Because we use our own random number generator and a fixed seed,
764// we can guarantee that the following "random" tests will succeed.
765
766TEST_F(VectorShuffleTest, ShufflesEntireVector) {
767  Shuffle(&random_, &vector_);
768  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
769  EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
770
771  // Tests the first and last elements in particular to ensure that
772  // there are no off-by-one problems in our shuffle algorithm.
773  EXPECT_NE(0, vector_[0]);
774  EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
775}
776
777TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
778  const int kRangeSize = kVectorSize/2;
779
780  ShuffleRange(&random_, 0, kRangeSize, &vector_);
781
782  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
783  EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
784  EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
785}
786
787TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
788  const int kRangeSize = kVectorSize / 2;
789  ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
790
791  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
792  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
793  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
794}
795
796TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
797  int kRangeSize = kVectorSize/3;
798  ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
799
800  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
801  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
802  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
803  EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
804}
805
806TEST_F(VectorShuffleTest, ShufflesRepeatably) {
807  TestingVector vector2;
808  for (int i = 0; i < kVectorSize; i++) {
809    vector2.push_back(i);
810  }
811
812  random_.Reseed(1234);
813  Shuffle(&random_, &vector_);
814  random_.Reseed(1234);
815  Shuffle(&random_, &vector2);
816
817  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
818  ASSERT_PRED1(VectorIsNotCorrupt, vector2);
819
820  for (int i = 0; i < kVectorSize; i++) {
821    EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
822  }
823}
824
825// Tests the size of the AssertHelper class.
826
827TEST(AssertHelperTest, AssertHelperIsSmall) {
828  // To avoid breaking clients that use lots of assertions in one
829  // function, we cannot grow the size of AssertHelper.
830  EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
831}
832
833// Tests the String class.
834
835// Tests String's constructors.
836TEST(StringTest, Constructors) {
837  // Default ctor.
838  String s1;
839  // We aren't using EXPECT_EQ(NULL, s1.c_str()) because comparing
840  // pointers with NULL isn't supported on all platforms.
841  EXPECT_EQ(0U, s1.length());
842  EXPECT_TRUE(NULL == s1.c_str());
843
844  // Implicitly constructs from a C-string.
845  String s2 = "Hi";
846  EXPECT_EQ(2U, s2.length());
847  EXPECT_STREQ("Hi", s2.c_str());
848
849  // Constructs from a C-string and a length.
850  String s3("hello", 3);
851  EXPECT_EQ(3U, s3.length());
852  EXPECT_STREQ("hel", s3.c_str());
853
854  // The empty String should be created when String is constructed with
855  // a NULL pointer and length 0.
856  EXPECT_EQ(0U, String(NULL, 0).length());
857  EXPECT_FALSE(String(NULL, 0).c_str() == NULL);
858
859  // Constructs a String that contains '\0'.
860  String s4("a\0bcd", 4);
861  EXPECT_EQ(4U, s4.length());
862  EXPECT_EQ('a', s4.c_str()[0]);
863  EXPECT_EQ('\0', s4.c_str()[1]);
864  EXPECT_EQ('b', s4.c_str()[2]);
865  EXPECT_EQ('c', s4.c_str()[3]);
866
867  // Copy ctor where the source is NULL.
868  const String null_str;
869  String s5 = null_str;
870  EXPECT_TRUE(s5.c_str() == NULL);
871
872  // Copy ctor where the source isn't NULL.
873  String s6 = s3;
874  EXPECT_EQ(3U, s6.length());
875  EXPECT_STREQ("hel", s6.c_str());
876
877  // Copy ctor where the source contains '\0'.
878  String s7 = s4;
879  EXPECT_EQ(4U, s7.length());
880  EXPECT_EQ('a', s7.c_str()[0]);
881  EXPECT_EQ('\0', s7.c_str()[1]);
882  EXPECT_EQ('b', s7.c_str()[2]);
883  EXPECT_EQ('c', s7.c_str()[3]);
884}
885
886TEST(StringTest, ConvertsFromStdString) {
887  // An empty std::string.
888  const std::string src1("");
889  const String dest1 = src1;
890  EXPECT_EQ(0U, dest1.length());
891  EXPECT_STREQ("", dest1.c_str());
892
893  // A normal std::string.
894  const std::string src2("Hi");
895  const String dest2 = src2;
896  EXPECT_EQ(2U, dest2.length());
897  EXPECT_STREQ("Hi", dest2.c_str());
898
899  // An std::string with an embedded NUL character.
900  const char src3[] = "a\0b";
901  const String dest3 = std::string(src3, sizeof(src3));
902  EXPECT_EQ(sizeof(src3), dest3.length());
903  EXPECT_EQ('a', dest3.c_str()[0]);
904  EXPECT_EQ('\0', dest3.c_str()[1]);
905  EXPECT_EQ('b', dest3.c_str()[2]);
906}
907
908TEST(StringTest, ConvertsToStdString) {
909  // An empty String.
910  const String src1("");
911  const std::string dest1 = src1;
912  EXPECT_EQ("", dest1);
913
914  // A normal String.
915  const String src2("Hi");
916  const std::string dest2 = src2;
917  EXPECT_EQ("Hi", dest2);
918
919  // A String containing a '\0'.
920  const String src3("x\0y", 3);
921  const std::string dest3 = src3;
922  EXPECT_EQ(std::string("x\0y", 3), dest3);
923}
924
925#if GTEST_HAS_GLOBAL_STRING
926
927TEST(StringTest, ConvertsFromGlobalString) {
928  // An empty ::string.
929  const ::string src1("");
930  const String dest1 = src1;
931  EXPECT_EQ(0U, dest1.length());
932  EXPECT_STREQ("", dest1.c_str());
933
934  // A normal ::string.
935  const ::string src2("Hi");
936  const String dest2 = src2;
937  EXPECT_EQ(2U, dest2.length());
938  EXPECT_STREQ("Hi", dest2.c_str());
939
940  // An ::string with an embedded NUL character.
941  const char src3[] = "x\0y";
942  const String dest3 = ::string(src3, sizeof(src3));
943  EXPECT_EQ(sizeof(src3), dest3.length());
944  EXPECT_EQ('x', dest3.c_str()[0]);
945  EXPECT_EQ('\0', dest3.c_str()[1]);
946  EXPECT_EQ('y', dest3.c_str()[2]);
947}
948
949TEST(StringTest, ConvertsToGlobalString) {
950  // An empty String.
951  const String src1("");
952  const ::string dest1 = src1;
953  EXPECT_EQ("", dest1);
954
955  // A normal String.
956  const String src2("Hi");
957  const ::string dest2 = src2;
958  EXPECT_EQ("Hi", dest2);
959
960  const String src3("x\0y", 3);
961  const ::string dest3 = src3;
962  EXPECT_EQ(::string("x\0y", 3), dest3);
963}
964
965#endif  // GTEST_HAS_GLOBAL_STRING
966
967// Tests String::ShowCStringQuoted().
968TEST(StringTest, ShowCStringQuoted) {
969  EXPECT_STREQ("(null)",
970               String::ShowCStringQuoted(NULL).c_str());
971  EXPECT_STREQ("\"\"",
972               String::ShowCStringQuoted("").c_str());
973  EXPECT_STREQ("\"foo\"",
974               String::ShowCStringQuoted("foo").c_str());
975}
976
977// Tests String::empty().
978TEST(StringTest, Empty) {
979  EXPECT_TRUE(String("").empty());
980  EXPECT_FALSE(String().empty());
981  EXPECT_FALSE(String(NULL).empty());
982  EXPECT_FALSE(String("a").empty());
983  EXPECT_FALSE(String("\0", 1).empty());
984}
985
986// Tests String::Compare().
987TEST(StringTest, Compare) {
988  // NULL vs NULL.
989  EXPECT_EQ(0, String().Compare(String()));
990
991  // NULL vs non-NULL.
992  EXPECT_EQ(-1, String().Compare(String("")));
993
994  // Non-NULL vs NULL.
995  EXPECT_EQ(1, String("").Compare(String()));
996
997  // The following covers non-NULL vs non-NULL.
998
999  // "" vs "".
1000  EXPECT_EQ(0, String("").Compare(String("")));
1001
1002  // "" vs non-"".
1003  EXPECT_EQ(-1, String("").Compare(String("\0", 1)));
1004  EXPECT_EQ(-1, String("").Compare(" "));
1005
1006  // Non-"" vs "".
1007  EXPECT_EQ(1, String("a").Compare(String("")));
1008
1009  // The following covers non-"" vs non-"".
1010
1011  // Same length and equal.
1012  EXPECT_EQ(0, String("a").Compare(String("a")));
1013
1014  // Same length and different.
1015  EXPECT_EQ(-1, String("a\0b", 3).Compare(String("a\0c", 3)));
1016  EXPECT_EQ(1, String("b").Compare(String("a")));
1017
1018  // Different lengths.
1019  EXPECT_EQ(-1, String("a").Compare(String("ab")));
1020  EXPECT_EQ(-1, String("a").Compare(String("a\0", 2)));
1021  EXPECT_EQ(1, String("abc").Compare(String("aacd")));
1022}
1023
1024// Tests String::operator==().
1025TEST(StringTest, Equals) {
1026  const String null(NULL);
1027  EXPECT_TRUE(null == NULL);  // NOLINT
1028  EXPECT_FALSE(null == "");  // NOLINT
1029  EXPECT_FALSE(null == "bar");  // NOLINT
1030
1031  const String empty("");
1032  EXPECT_FALSE(empty == NULL);  // NOLINT
1033  EXPECT_TRUE(empty == "");  // NOLINT
1034  EXPECT_FALSE(empty == "bar");  // NOLINT
1035
1036  const String foo("foo");
1037  EXPECT_FALSE(foo == NULL);  // NOLINT
1038  EXPECT_FALSE(foo == "");  // NOLINT
1039  EXPECT_FALSE(foo == "bar");  // NOLINT
1040  EXPECT_TRUE(foo == "foo");  // NOLINT
1041
1042  const String bar("x\0y", 3);
1043  EXPECT_FALSE(bar == "x");
1044}
1045
1046// Tests String::operator!=().
1047TEST(StringTest, NotEquals) {
1048  const String null(NULL);
1049  EXPECT_FALSE(null != NULL);  // NOLINT
1050  EXPECT_TRUE(null != "");  // NOLINT
1051  EXPECT_TRUE(null != "bar");  // NOLINT
1052
1053  const String empty("");
1054  EXPECT_TRUE(empty != NULL);  // NOLINT
1055  EXPECT_FALSE(empty != "");  // NOLINT
1056  EXPECT_TRUE(empty != "bar");  // NOLINT
1057
1058  const String foo("foo");
1059  EXPECT_TRUE(foo != NULL);  // NOLINT
1060  EXPECT_TRUE(foo != "");  // NOLINT
1061  EXPECT_TRUE(foo != "bar");  // NOLINT
1062  EXPECT_FALSE(foo != "foo");  // NOLINT
1063
1064  const String bar("x\0y", 3);
1065  EXPECT_TRUE(bar != "x");
1066}
1067
1068// Tests String::length().
1069TEST(StringTest, Length) {
1070  EXPECT_EQ(0U, String().length());
1071  EXPECT_EQ(0U, String("").length());
1072  EXPECT_EQ(2U, String("ab").length());
1073  EXPECT_EQ(3U, String("a\0b", 3).length());
1074}
1075
1076// Tests String::EndsWith().
1077TEST(StringTest, EndsWith) {
1078  EXPECT_TRUE(String("foobar").EndsWith("bar"));
1079  EXPECT_TRUE(String("foobar").EndsWith(""));
1080  EXPECT_TRUE(String("").EndsWith(""));
1081
1082  EXPECT_FALSE(String("foobar").EndsWith("foo"));
1083  EXPECT_FALSE(String("").EndsWith("foo"));
1084}
1085
1086// Tests String::EndsWithCaseInsensitive().
1087TEST(StringTest, EndsWithCaseInsensitive) {
1088  EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("BAR"));
1089  EXPECT_TRUE(String("foobaR").EndsWithCaseInsensitive("bar"));
1090  EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive(""));
1091  EXPECT_TRUE(String("").EndsWithCaseInsensitive(""));
1092
1093  EXPECT_FALSE(String("Foobar").EndsWithCaseInsensitive("foo"));
1094  EXPECT_FALSE(String("foobar").EndsWithCaseInsensitive("Foo"));
1095  EXPECT_FALSE(String("").EndsWithCaseInsensitive("foo"));
1096}
1097
1098// C++Builder's preprocessor is buggy; it fails to expand macros that
1099// appear in macro parameters after wide char literals.  Provide an alias
1100// for NULL as a workaround.
1101static const wchar_t* const kNull = NULL;
1102
1103// Tests String::CaseInsensitiveWideCStringEquals
1104TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1105  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
1106  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1107  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1108  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1109  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1110  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1111  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1112  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1113}
1114
1115// Tests that NULL can be assigned to a String.
1116TEST(StringTest, CanBeAssignedNULL) {
1117  const String src(NULL);
1118  String dest;
1119
1120  dest = src;
1121  EXPECT_STREQ(NULL, dest.c_str());
1122}
1123
1124// Tests that the empty string "" can be assigned to a String.
1125TEST(StringTest, CanBeAssignedEmpty) {
1126  const String src("");
1127  String dest;
1128
1129  dest = src;
1130  EXPECT_STREQ("", dest.c_str());
1131}
1132
1133// Tests that a non-empty string can be assigned to a String.
1134TEST(StringTest, CanBeAssignedNonEmpty) {
1135  const String src("hello");
1136  String dest;
1137  dest = src;
1138  EXPECT_EQ(5U, dest.length());
1139  EXPECT_STREQ("hello", dest.c_str());
1140
1141  const String src2("x\0y", 3);
1142  String dest2;
1143  dest2 = src2;
1144  EXPECT_EQ(3U, dest2.length());
1145  EXPECT_EQ('x', dest2.c_str()[0]);
1146  EXPECT_EQ('\0', dest2.c_str()[1]);
1147  EXPECT_EQ('y', dest2.c_str()[2]);
1148}
1149
1150// Tests that a String can be assigned to itself.
1151TEST(StringTest, CanBeAssignedSelf) {
1152  String dest("hello");
1153
1154  // Use explicit function call notation here to suppress self-assign warning.
1155  dest.operator=(dest);
1156  EXPECT_STREQ("hello", dest.c_str());
1157}
1158
1159// Sun Studio < 12 incorrectly rejects this code due to an overloading
1160// ambiguity.
1161#if !(defined(__SUNPRO_CC) && __SUNPRO_CC < 0x590)
1162// Tests streaming a String.
1163TEST(StringTest, Streams) {
1164  EXPECT_EQ(StreamableToString(String()), "(null)");
1165  EXPECT_EQ(StreamableToString(String("")), "");
1166  EXPECT_EQ(StreamableToString(String("a\0b", 3)), "a\\0b");
1167}
1168#endif
1169
1170// Tests that String::Format() works.
1171TEST(StringTest, FormatWorks) {
1172  // Normal case: the format spec is valid, the arguments match the
1173  // spec, and the result is < 4095 characters.
1174  EXPECT_STREQ("Hello, 42", String::Format("%s, %d", "Hello", 42).c_str());
1175
1176  // Edge case: the result is 4095 characters.
1177  char buffer[4096];
1178  const size_t kSize = sizeof(buffer);
1179  memset(buffer, 'a', kSize - 1);
1180  buffer[kSize - 1] = '\0';
1181  EXPECT_STREQ(buffer, String::Format("%s", buffer).c_str());
1182
1183  // The result needs to be 4096 characters, exceeding Format()'s limit.
1184  EXPECT_STREQ("<formatting error or buffer exceeded>",
1185               String::Format("x%s", buffer).c_str());
1186
1187#if GTEST_OS_LINUX
1188  // On Linux, invalid format spec should lead to an error message.
1189  // In other environment (e.g. MSVC on Windows), String::Format() may
1190  // simply ignore a bad format spec, so this assertion is run on
1191  // Linux only.
1192  EXPECT_STREQ("<formatting error or buffer exceeded>",
1193               String::Format("%").c_str());
1194#endif
1195}
1196
1197#if GTEST_OS_WINDOWS
1198
1199// Tests String::ShowWideCString().
1200TEST(StringTest, ShowWideCString) {
1201  EXPECT_STREQ("(null)",
1202               String::ShowWideCString(NULL).c_str());
1203  EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1204  EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1205}
1206
1207// Tests String::ShowWideCStringQuoted().
1208TEST(StringTest, ShowWideCStringQuoted) {
1209  EXPECT_STREQ("(null)",
1210               String::ShowWideCStringQuoted(NULL).c_str());
1211  EXPECT_STREQ("L\"\"",
1212               String::ShowWideCStringQuoted(L"").c_str());
1213  EXPECT_STREQ("L\"foo\"",
1214               String::ShowWideCStringQuoted(L"foo").c_str());
1215}
1216
1217# if GTEST_OS_WINDOWS_MOBILE
1218TEST(StringTest, AnsiAndUtf16Null) {
1219  EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1220  EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1221}
1222
1223TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1224  const char* ansi = String::Utf16ToAnsi(L"str");
1225  EXPECT_STREQ("str", ansi);
1226  delete [] ansi;
1227  const WCHAR* utf16 = String::AnsiToUtf16("str");
1228  EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1229  delete [] utf16;
1230}
1231
1232TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1233  const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1234  EXPECT_STREQ(".:\\ \"*?", ansi);
1235  delete [] ansi;
1236  const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1237  EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1238  delete [] utf16;
1239}
1240# endif  // GTEST_OS_WINDOWS_MOBILE
1241
1242#endif  // GTEST_OS_WINDOWS
1243
1244// Tests TestProperty construction.
1245TEST(TestPropertyTest, StringValue) {
1246  TestProperty property("key", "1");
1247  EXPECT_STREQ("key", property.key());
1248  EXPECT_STREQ("1", property.value());
1249}
1250
1251// Tests TestProperty replacing a value.
1252TEST(TestPropertyTest, ReplaceStringValue) {
1253  TestProperty property("key", "1");
1254  EXPECT_STREQ("1", property.value());
1255  property.SetValue("2");
1256  EXPECT_STREQ("2", property.value());
1257}
1258
1259// AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1260// functions (i.e. their definitions cannot be inlined at the call
1261// sites), or C++Builder won't compile the code.
1262static void AddFatalFailure() {
1263  FAIL() << "Expected fatal failure.";
1264}
1265
1266static void AddNonfatalFailure() {
1267  ADD_FAILURE() << "Expected non-fatal failure.";
1268}
1269
1270class ScopedFakeTestPartResultReporterTest : public Test {
1271 public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1272  enum FailureMode {
1273    FATAL_FAILURE,
1274    NONFATAL_FAILURE
1275  };
1276  static void AddFailure(FailureMode failure) {
1277    if (failure == FATAL_FAILURE) {
1278      AddFatalFailure();
1279    } else {
1280      AddNonfatalFailure();
1281    }
1282  }
1283};
1284
1285// Tests that ScopedFakeTestPartResultReporter intercepts test
1286// failures.
1287TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1288  TestPartResultArray results;
1289  {
1290    ScopedFakeTestPartResultReporter reporter(
1291        ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1292        &results);
1293    AddFailure(NONFATAL_FAILURE);
1294    AddFailure(FATAL_FAILURE);
1295  }
1296
1297  EXPECT_EQ(2, results.size());
1298  EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1299  EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1300}
1301
1302TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1303  TestPartResultArray results;
1304  {
1305    // Tests, that the deprecated constructor still works.
1306    ScopedFakeTestPartResultReporter reporter(&results);
1307    AddFailure(NONFATAL_FAILURE);
1308  }
1309  EXPECT_EQ(1, results.size());
1310}
1311
1312#if GTEST_IS_THREADSAFE
1313
1314class ScopedFakeTestPartResultReporterWithThreadsTest
1315  : public ScopedFakeTestPartResultReporterTest {
1316 protected:
1317  static void AddFailureInOtherThread(FailureMode failure) {
1318    ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
1319    thread.Join();
1320  }
1321};
1322
1323TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1324       InterceptsTestFailuresInAllThreads) {
1325  TestPartResultArray results;
1326  {
1327    ScopedFakeTestPartResultReporter reporter(
1328        ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1329    AddFailure(NONFATAL_FAILURE);
1330    AddFailure(FATAL_FAILURE);
1331    AddFailureInOtherThread(NONFATAL_FAILURE);
1332    AddFailureInOtherThread(FATAL_FAILURE);
1333  }
1334
1335  EXPECT_EQ(4, results.size());
1336  EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1337  EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1338  EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1339  EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1340}
1341
1342#endif  // GTEST_IS_THREADSAFE
1343
1344// Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1345// work even if the failure is generated in a called function rather than
1346// the current context.
1347
1348typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1349
1350TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1351  EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1352}
1353
1354#if GTEST_HAS_GLOBAL_STRING
1355TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
1356  EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
1357}
1358#endif
1359
1360TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1361  EXPECT_FATAL_FAILURE(AddFatalFailure(),
1362                       ::std::string("Expected fatal failure."));
1363}
1364
1365TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1366  // We have another test below to verify that the macro catches fatal
1367  // failures generated on another thread.
1368  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1369                                      "Expected fatal failure.");
1370}
1371
1372#ifdef __BORLANDC__
1373// Silences warnings: "Condition is always true"
1374# pragma option push -w-ccc
1375#endif
1376
1377// Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1378// function even when the statement in it contains ASSERT_*.
1379
1380int NonVoidFunction() {
1381  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1382  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1383  return 0;
1384}
1385
1386TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1387  NonVoidFunction();
1388}
1389
1390// Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1391// current function even though 'statement' generates a fatal failure.
1392
1393void DoesNotAbortHelper(bool* aborted) {
1394  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1395  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1396
1397  *aborted = false;
1398}
1399
1400#ifdef __BORLANDC__
1401// Restores warnings after previous "#pragma option push" suppressed them.
1402# pragma option pop
1403#endif
1404
1405TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1406  bool aborted = true;
1407  DoesNotAbortHelper(&aborted);
1408  EXPECT_FALSE(aborted);
1409}
1410
1411// Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1412// statement that contains a macro which expands to code containing an
1413// unprotected comma.
1414
1415static int global_var = 0;
1416#define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1417
1418TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1419#ifndef __BORLANDC__
1420  // ICE's in C++Builder.
1421  EXPECT_FATAL_FAILURE({
1422    GTEST_USE_UNPROTECTED_COMMA_;
1423    AddFatalFailure();
1424  }, "");
1425#endif
1426
1427  EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
1428    GTEST_USE_UNPROTECTED_COMMA_;
1429    AddFatalFailure();
1430  }, "");
1431}
1432
1433// Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1434
1435typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1436
1437TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1438  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1439                          "Expected non-fatal failure.");
1440}
1441
1442#if GTEST_HAS_GLOBAL_STRING
1443TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
1444  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1445                          ::string("Expected non-fatal failure."));
1446}
1447#endif
1448
1449TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1450  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1451                          ::std::string("Expected non-fatal failure."));
1452}
1453
1454TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1455  // We have another test below to verify that the macro catches
1456  // non-fatal failures generated on another thread.
1457  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1458                                         "Expected non-fatal failure.");
1459}
1460
1461// Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1462// statement that contains a macro which expands to code containing an
1463// unprotected comma.
1464TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1465  EXPECT_NONFATAL_FAILURE({
1466    GTEST_USE_UNPROTECTED_COMMA_;
1467    AddNonfatalFailure();
1468  }, "");
1469
1470  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
1471    GTEST_USE_UNPROTECTED_COMMA_;
1472    AddNonfatalFailure();
1473  }, "");
1474}
1475
1476#if GTEST_IS_THREADSAFE
1477
1478typedef ScopedFakeTestPartResultReporterWithThreadsTest
1479    ExpectFailureWithThreadsTest;
1480
1481TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1482  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1483                                      "Expected fatal failure.");
1484}
1485
1486TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1487  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1488      AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1489}
1490
1491#endif  // GTEST_IS_THREADSAFE
1492
1493// Tests the TestProperty class.
1494
1495TEST(TestPropertyTest, ConstructorWorks) {
1496  const TestProperty property("key", "value");
1497  EXPECT_STREQ("key", property.key());
1498  EXPECT_STREQ("value", property.value());
1499}
1500
1501TEST(TestPropertyTest, SetValue) {
1502  TestProperty property("key", "value_1");
1503  EXPECT_STREQ("key", property.key());
1504  property.SetValue("value_2");
1505  EXPECT_STREQ("key", property.key());
1506  EXPECT_STREQ("value_2", property.value());
1507}
1508
1509// Tests the TestResult class
1510
1511// The test fixture for testing TestResult.
1512class TestResultTest : public Test {
1513 protected:
1514  typedef std::vector<TestPartResult> TPRVector;
1515
1516  // We make use of 2 TestPartResult objects,
1517  TestPartResult * pr1, * pr2;
1518
1519  // ... and 3 TestResult objects.
1520  TestResult * r0, * r1, * r2;
1521
1522  virtual void SetUp() {
1523    // pr1 is for success.
1524    pr1 = new TestPartResult(TestPartResult::kSuccess,
1525                             "foo/bar.cc",
1526                             10,
1527                             "Success!");
1528
1529    // pr2 is for fatal failure.
1530    pr2 = new TestPartResult(TestPartResult::kFatalFailure,
1531                             "foo/bar.cc",
1532                             -1,  // This line number means "unknown"
1533                             "Failure!");
1534
1535    // Creates the TestResult objects.
1536    r0 = new TestResult();
1537    r1 = new TestResult();
1538    r2 = new TestResult();
1539
1540    // In order to test TestResult, we need to modify its internal
1541    // state, in particular the TestPartResult vector it holds.
1542    // test_part_results() returns a const reference to this vector.
1543    // We cast it to a non-const object s.t. it can be modified (yes,
1544    // this is a hack).
1545    TPRVector* results1 = const_cast<TPRVector*>(
1546        &TestResultAccessor::test_part_results(*r1));
1547    TPRVector* results2 = const_cast<TPRVector*>(
1548        &TestResultAccessor::test_part_results(*r2));
1549
1550    // r0 is an empty TestResult.
1551
1552    // r1 contains a single SUCCESS TestPartResult.
1553    results1->push_back(*pr1);
1554
1555    // r2 contains a SUCCESS, and a FAILURE.
1556    results2->push_back(*pr1);
1557    results2->push_back(*pr2);
1558  }
1559
1560  virtual void TearDown() {
1561    delete pr1;
1562    delete pr2;
1563
1564    delete r0;
1565    delete r1;
1566    delete r2;
1567  }
1568
1569  // Helper that compares two two TestPartResults.
1570  static void CompareTestPartResult(const TestPartResult& expected,
1571                                    const TestPartResult& actual) {
1572    EXPECT_EQ(expected.type(), actual.type());
1573    EXPECT_STREQ(expected.file_name(), actual.file_name());
1574    EXPECT_EQ(expected.line_number(), actual.line_number());
1575    EXPECT_STREQ(expected.summary(), actual.summary());
1576    EXPECT_STREQ(expected.message(), actual.message());
1577    EXPECT_EQ(expected.passed(), actual.passed());
1578    EXPECT_EQ(expected.failed(), actual.failed());
1579    EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1580    EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1581  }
1582};
1583
1584// Tests TestResult::total_part_count().
1585TEST_F(TestResultTest, total_part_count) {
1586  ASSERT_EQ(0, r0->total_part_count());
1587  ASSERT_EQ(1, r1->total_part_count());
1588  ASSERT_EQ(2, r2->total_part_count());
1589}
1590
1591// Tests TestResult::Passed().
1592TEST_F(TestResultTest, Passed) {
1593  ASSERT_TRUE(r0->Passed());
1594  ASSERT_TRUE(r1->Passed());
1595  ASSERT_FALSE(r2->Passed());
1596}
1597
1598// Tests TestResult::Failed().
1599TEST_F(TestResultTest, Failed) {
1600  ASSERT_FALSE(r0->Failed());
1601  ASSERT_FALSE(r1->Failed());
1602  ASSERT_TRUE(r2->Failed());
1603}
1604
1605// Tests TestResult::GetTestPartResult().
1606
1607typedef TestResultTest TestResultDeathTest;
1608
1609TEST_F(TestResultDeathTest, GetTestPartResult) {
1610  CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1611  CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1612  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1613  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1614}
1615
1616// Tests TestResult has no properties when none are added.
1617TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1618  TestResult test_result;
1619  ASSERT_EQ(0, test_result.test_property_count());
1620}
1621
1622// Tests TestResult has the expected property when added.
1623TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1624  TestResult test_result;
1625  TestProperty property("key_1", "1");
1626  TestResultAccessor::RecordProperty(&test_result, property);
1627  ASSERT_EQ(1, test_result.test_property_count());
1628  const TestProperty& actual_property = test_result.GetTestProperty(0);
1629  EXPECT_STREQ("key_1", actual_property.key());
1630  EXPECT_STREQ("1", actual_property.value());
1631}
1632
1633// Tests TestResult has multiple properties when added.
1634TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1635  TestResult test_result;
1636  TestProperty property_1("key_1", "1");
1637  TestProperty property_2("key_2", "2");
1638  TestResultAccessor::RecordProperty(&test_result, property_1);
1639  TestResultAccessor::RecordProperty(&test_result, property_2);
1640  ASSERT_EQ(2, test_result.test_property_count());
1641  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1642  EXPECT_STREQ("key_1", actual_property_1.key());
1643  EXPECT_STREQ("1", actual_property_1.value());
1644
1645  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1646  EXPECT_STREQ("key_2", actual_property_2.key());
1647  EXPECT_STREQ("2", actual_property_2.value());
1648}
1649
1650// Tests TestResult::RecordProperty() overrides values for duplicate keys.
1651TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1652  TestResult test_result;
1653  TestProperty property_1_1("key_1", "1");
1654  TestProperty property_2_1("key_2", "2");
1655  TestProperty property_1_2("key_1", "12");
1656  TestProperty property_2_2("key_2", "22");
1657  TestResultAccessor::RecordProperty(&test_result, property_1_1);
1658  TestResultAccessor::RecordProperty(&test_result, property_2_1);
1659  TestResultAccessor::RecordProperty(&test_result, property_1_2);
1660  TestResultAccessor::RecordProperty(&test_result, property_2_2);
1661
1662  ASSERT_EQ(2, test_result.test_property_count());
1663  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1664  EXPECT_STREQ("key_1", actual_property_1.key());
1665  EXPECT_STREQ("12", actual_property_1.value());
1666
1667  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1668  EXPECT_STREQ("key_2", actual_property_2.key());
1669  EXPECT_STREQ("22", actual_property_2.value());
1670}
1671
1672// Tests TestResult::GetTestProperty().
1673TEST(TestResultPropertyDeathTest, GetTestProperty) {
1674  TestResult test_result;
1675  TestProperty property_1("key_1", "1");
1676  TestProperty property_2("key_2", "2");
1677  TestProperty property_3("key_3", "3");
1678  TestResultAccessor::RecordProperty(&test_result, property_1);
1679  TestResultAccessor::RecordProperty(&test_result, property_2);
1680  TestResultAccessor::RecordProperty(&test_result, property_3);
1681
1682  const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1683  const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1684  const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1685
1686  EXPECT_STREQ("key_1", fetched_property_1.key());
1687  EXPECT_STREQ("1", fetched_property_1.value());
1688
1689  EXPECT_STREQ("key_2", fetched_property_2.key());
1690  EXPECT_STREQ("2", fetched_property_2.value());
1691
1692  EXPECT_STREQ("key_3", fetched_property_3.key());
1693  EXPECT_STREQ("3", fetched_property_3.value());
1694
1695  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1696  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1697}
1698
1699// When a property using a reserved key is supplied to this function, it tests
1700// that a non-fatal failure is added, a fatal failure is not added, and that the
1701// property is not recorded.
1702void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) {
1703  TestResult test_result;
1704  TestProperty property(key, "1");
1705  EXPECT_NONFATAL_FAILURE(
1706      TestResultAccessor::RecordProperty(&test_result, property),
1707      "Reserved key");
1708  ASSERT_EQ(0, test_result.test_property_count()) << "Not recorded";
1709}
1710
1711// Attempting to recording a property with the Reserved literal "name"
1712// should add a non-fatal failure and the property should not be recorded.
1713TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) {
1714  ExpectNonFatalFailureRecordingPropertyWithReservedKey("name");
1715}
1716
1717// Attempting to recording a property with the Reserved literal "status"
1718// should add a non-fatal failure and the property should not be recorded.
1719TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) {
1720  ExpectNonFatalFailureRecordingPropertyWithReservedKey("status");
1721}
1722
1723// Attempting to recording a property with the Reserved literal "time"
1724// should add a non-fatal failure and the property should not be recorded.
1725TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) {
1726  ExpectNonFatalFailureRecordingPropertyWithReservedKey("time");
1727}
1728
1729// Attempting to recording a property with the Reserved literal "classname"
1730// should add a non-fatal failure and the property should not be recorded.
1731TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) {
1732  ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname");
1733}
1734
1735// Tests that GTestFlagSaver works on Windows and Mac.
1736
1737class GTestFlagSaverTest : public Test {
1738 protected:
1739  // Saves the Google Test flags such that we can restore them later, and
1740  // then sets them to their default values.  This will be called
1741  // before the first test in this test case is run.
1742  static void SetUpTestCase() {
1743    saver_ = new GTestFlagSaver;
1744
1745    GTEST_FLAG(also_run_disabled_tests) = false;
1746    GTEST_FLAG(break_on_failure) = false;
1747    GTEST_FLAG(catch_exceptions) = false;
1748    GTEST_FLAG(death_test_use_fork) = false;
1749    GTEST_FLAG(color) = "auto";
1750    GTEST_FLAG(filter) = "";
1751    GTEST_FLAG(list_tests) = false;
1752    GTEST_FLAG(output) = "";
1753    GTEST_FLAG(print_time) = true;
1754    GTEST_FLAG(random_seed) = 0;
1755    GTEST_FLAG(repeat) = 1;
1756    GTEST_FLAG(shuffle) = false;
1757    GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1758    GTEST_FLAG(stream_result_to) = "";
1759    GTEST_FLAG(throw_on_failure) = false;
1760  }
1761
1762  // Restores the Google Test flags that the tests have modified.  This will
1763  // be called after the last test in this test case is run.
1764  static void TearDownTestCase() {
1765    delete saver_;
1766    saver_ = NULL;
1767  }
1768
1769  // Verifies that the Google Test flags have their default values, and then
1770  // modifies each of them.
1771  void VerifyAndModifyFlags() {
1772    EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1773    EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1774    EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1775    EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1776    EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1777    EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1778    EXPECT_FALSE(GTEST_FLAG(list_tests));
1779    EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1780    EXPECT_TRUE(GTEST_FLAG(print_time));
1781    EXPECT_EQ(0, GTEST_FLAG(random_seed));
1782    EXPECT_EQ(1, GTEST_FLAG(repeat));
1783    EXPECT_FALSE(GTEST_FLAG(shuffle));
1784    EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1785    EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1786    EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1787
1788    GTEST_FLAG(also_run_disabled_tests) = true;
1789    GTEST_FLAG(break_on_failure) = true;
1790    GTEST_FLAG(catch_exceptions) = true;
1791    GTEST_FLAG(color) = "no";
1792    GTEST_FLAG(death_test_use_fork) = true;
1793    GTEST_FLAG(filter) = "abc";
1794    GTEST_FLAG(list_tests) = true;
1795    GTEST_FLAG(output) = "xml:foo.xml";
1796    GTEST_FLAG(print_time) = false;
1797    GTEST_FLAG(random_seed) = 1;
1798    GTEST_FLAG(repeat) = 100;
1799    GTEST_FLAG(shuffle) = true;
1800    GTEST_FLAG(stack_trace_depth) = 1;
1801    GTEST_FLAG(stream_result_to) = "localhost:1234";
1802    GTEST_FLAG(throw_on_failure) = true;
1803  }
1804 private:
1805  // For saving Google Test flags during this test case.
1806  static GTestFlagSaver* saver_;
1807};
1808
1809GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
1810
1811// Google Test doesn't guarantee the order of tests.  The following two
1812// tests are designed to work regardless of their order.
1813
1814// Modifies the Google Test flags in the test body.
1815TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1816  VerifyAndModifyFlags();
1817}
1818
1819// Verifies that the Google Test flags in the body of the previous test were
1820// restored to their original values.
1821TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1822  VerifyAndModifyFlags();
1823}
1824
1825// Sets an environment variable with the given name to the given
1826// value.  If the value argument is "", unsets the environment
1827// variable.  The caller must ensure that both arguments are not NULL.
1828static void SetEnv(const char* name, const char* value) {
1829#if GTEST_OS_WINDOWS_MOBILE
1830  // Environment variables are not supported on Windows CE.
1831  return;
1832#elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1833  // C++Builder's putenv only stores a pointer to its parameter; we have to
1834  // ensure that the string remains valid as long as it might be needed.
1835  // We use an std::map to do so.
1836  static std::map<String, String*> added_env;
1837
1838  // Because putenv stores a pointer to the string buffer, we can't delete the
1839  // previous string (if present) until after it's replaced.
1840  String *prev_env = NULL;
1841  if (added_env.find(name) != added_env.end()) {
1842    prev_env = added_env[name];
1843  }
1844  added_env[name] = new String((Message() << name << "=" << value).GetString());
1845
1846  // The standard signature of putenv accepts a 'char*' argument. Other
1847  // implementations, like C++Builder's, accept a 'const char*'.
1848  // We cast away the 'const' since that would work for both variants.
1849  putenv(const_cast<char*>(added_env[name]->c_str()));
1850  delete prev_env;
1851#elif GTEST_OS_WINDOWS  // If we are on Windows proper.
1852  _putenv((Message() << name << "=" << value).GetString().c_str());
1853#else
1854  if (*value == '\0') {
1855    unsetenv(name);
1856  } else {
1857    setenv(name, value, 1);
1858  }
1859#endif  // GTEST_OS_WINDOWS_MOBILE
1860}
1861
1862#if !GTEST_OS_WINDOWS_MOBILE
1863// Environment variables are not supported on Windows CE.
1864
1865using testing::internal::Int32FromGTestEnv;
1866
1867// Tests Int32FromGTestEnv().
1868
1869// Tests that Int32FromGTestEnv() returns the default value when the
1870// environment variable is not set.
1871TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1872  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1873  EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1874}
1875
1876// Tests that Int32FromGTestEnv() returns the default value when the
1877// environment variable overflows as an Int32.
1878TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1879  printf("(expecting 2 warnings)\n");
1880
1881  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1882  EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1883
1884  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1885  EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1886}
1887
1888// Tests that Int32FromGTestEnv() returns the default value when the
1889// environment variable does not represent a valid decimal integer.
1890TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1891  printf("(expecting 2 warnings)\n");
1892
1893  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1894  EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1895
1896  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1897  EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1898}
1899
1900// Tests that Int32FromGTestEnv() parses and returns the value of the
1901// environment variable when it represents a valid decimal integer in
1902// the range of an Int32.
1903TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1904  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1905  EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1906
1907  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1908  EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1909}
1910#endif  // !GTEST_OS_WINDOWS_MOBILE
1911
1912// Tests ParseInt32Flag().
1913
1914// Tests that ParseInt32Flag() returns false and doesn't change the
1915// output value when the flag has wrong format
1916TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1917  Int32 value = 123;
1918  EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
1919  EXPECT_EQ(123, value);
1920
1921  EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
1922  EXPECT_EQ(123, value);
1923}
1924
1925// Tests that ParseInt32Flag() returns false and doesn't change the
1926// output value when the flag overflows as an Int32.
1927TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1928  printf("(expecting 2 warnings)\n");
1929
1930  Int32 value = 123;
1931  EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
1932  EXPECT_EQ(123, value);
1933
1934  EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
1935  EXPECT_EQ(123, value);
1936}
1937
1938// Tests that ParseInt32Flag() returns false and doesn't change the
1939// output value when the flag does not represent a valid decimal
1940// integer.
1941TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1942  printf("(expecting 2 warnings)\n");
1943
1944  Int32 value = 123;
1945  EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
1946  EXPECT_EQ(123, value);
1947
1948  EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
1949  EXPECT_EQ(123, value);
1950}
1951
1952// Tests that ParseInt32Flag() parses the value of the flag and
1953// returns true when the flag represents a valid decimal integer in
1954// the range of an Int32.
1955TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1956  Int32 value = 123;
1957  EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1958  EXPECT_EQ(456, value);
1959
1960  EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
1961                             "abc", &value));
1962  EXPECT_EQ(-789, value);
1963}
1964
1965// Tests that Int32FromEnvOrDie() parses the value of the var or
1966// returns the correct default.
1967// Environment variables are not supported on Windows CE.
1968#if !GTEST_OS_WINDOWS_MOBILE
1969TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1970  EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1971  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1972  EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1973  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1974  EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1975}
1976#endif  // !GTEST_OS_WINDOWS_MOBILE
1977
1978// Tests that Int32FromEnvOrDie() aborts with an error message
1979// if the variable is not an Int32.
1980TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1981  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1982  EXPECT_DEATH_IF_SUPPORTED(
1983      Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1984      ".*");
1985}
1986
1987// Tests that Int32FromEnvOrDie() aborts with an error message
1988// if the variable cannot be represnted by an Int32.
1989TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1990  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1991  EXPECT_DEATH_IF_SUPPORTED(
1992      Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1993      ".*");
1994}
1995
1996// Tests that ShouldRunTestOnShard() selects all tests
1997// where there is 1 shard.
1998TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1999  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
2000  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
2001  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
2002  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
2003  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
2004}
2005
2006class ShouldShardTest : public testing::Test {
2007 protected:
2008  virtual void SetUp() {
2009    index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
2010    total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
2011  }
2012
2013  virtual void TearDown() {
2014    SetEnv(index_var_, "");
2015    SetEnv(total_var_, "");
2016  }
2017
2018  const char* index_var_;
2019  const char* total_var_;
2020};
2021
2022// Tests that sharding is disabled if neither of the environment variables
2023// are set.
2024TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
2025  SetEnv(index_var_, "");
2026  SetEnv(total_var_, "");
2027
2028  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
2029  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2030}
2031
2032// Tests that sharding is not enabled if total_shards  == 1.
2033TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
2034  SetEnv(index_var_, "0");
2035  SetEnv(total_var_, "1");
2036  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
2037  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2038}
2039
2040// Tests that sharding is enabled if total_shards > 1 and
2041// we are not in a death test subprocess.
2042// Environment variables are not supported on Windows CE.
2043#if !GTEST_OS_WINDOWS_MOBILE
2044TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
2045  SetEnv(index_var_, "4");
2046  SetEnv(total_var_, "22");
2047  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
2048  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2049
2050  SetEnv(index_var_, "8");
2051  SetEnv(total_var_, "9");
2052  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
2053  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2054
2055  SetEnv(index_var_, "0");
2056  SetEnv(total_var_, "9");
2057  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
2058  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2059}
2060#endif  // !GTEST_OS_WINDOWS_MOBILE
2061
2062// Tests that we exit in error if the sharding values are not valid.
2063
2064typedef ShouldShardTest ShouldShardDeathTest;
2065
2066TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
2067  SetEnv(index_var_, "4");
2068  SetEnv(total_var_, "4");
2069  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
2070
2071  SetEnv(index_var_, "4");
2072  SetEnv(total_var_, "-2");
2073  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
2074
2075  SetEnv(index_var_, "5");
2076  SetEnv(total_var_, "");
2077  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
2078
2079  SetEnv(index_var_, "");
2080  SetEnv(total_var_, "5");
2081  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
2082}
2083
2084// Tests that ShouldRunTestOnShard is a partition when 5
2085// shards are used.
2086TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
2087  // Choose an arbitrary number of tests and shards.
2088  const int num_tests = 17;
2089  const int num_shards = 5;
2090
2091  // Check partitioning: each test should be on exactly 1 shard.
2092  for (int test_id = 0; test_id < num_tests; test_id++) {
2093    int prev_selected_shard_index = -1;
2094    for (int shard_index = 0; shard_index < num_shards; shard_index++) {
2095      if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
2096        if (prev_selected_shard_index < 0) {
2097          prev_selected_shard_index = shard_index;
2098        } else {
2099          ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
2100            << shard_index << " are both selected to run test " << test_id;
2101        }
2102      }
2103    }
2104  }
2105
2106  // Check balance: This is not required by the sharding protocol, but is a
2107  // desirable property for performance.
2108  for (int shard_index = 0; shard_index < num_shards; shard_index++) {
2109    int num_tests_on_shard = 0;
2110    for (int test_id = 0; test_id < num_tests; test_id++) {
2111      num_tests_on_shard +=
2112        ShouldRunTestOnShard(num_shards, shard_index, test_id);
2113    }
2114    EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
2115  }
2116}
2117
2118// For the same reason we are not explicitly testing everything in the
2119// Test class, there are no separate tests for the following classes
2120// (except for some trivial cases):
2121//
2122//   TestCase, UnitTest, UnitTestResultPrinter.
2123//
2124// Similarly, there are no separate tests for the following macros:
2125//
2126//   TEST, TEST_F, RUN_ALL_TESTS
2127
2128TEST(UnitTestTest, CanGetOriginalWorkingDir) {
2129  ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
2130  EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
2131}
2132
2133// This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2134// of various arities.  They do not attempt to be exhaustive.  Rather,
2135// view them as smoke tests that can be easily reviewed and verified.
2136// A more complete set of tests for predicate assertions can be found
2137// in gtest_pred_impl_unittest.cc.
2138
2139// First, some predicates and predicate-formatters needed by the tests.
2140
2141// Returns true iff the argument is an even number.
2142bool IsEven(int n) {
2143  return (n % 2) == 0;
2144}
2145
2146// A functor that returns true iff the argument is an even number.
2147struct IsEvenFunctor {
2148  bool operator()(int n) { return IsEven(n); }
2149};
2150
2151// A predicate-formatter function that asserts the argument is an even
2152// number.
2153AssertionResult AssertIsEven(const char* expr, int n) {
2154  if (IsEven(n)) {
2155    return AssertionSuccess();
2156  }
2157
2158  Message msg;
2159  msg << expr << " evaluates to " << n << ", which is not even.";
2160  return AssertionFailure(msg);
2161}
2162
2163// A predicate function that returns AssertionResult for use in
2164// EXPECT/ASSERT_TRUE/FALSE.
2165AssertionResult ResultIsEven(int n) {
2166  if (IsEven(n))
2167    return AssertionSuccess() << n << " is even";
2168  else
2169    return AssertionFailure() << n << " is odd";
2170}
2171
2172// A predicate function that returns AssertionResult but gives no
2173// explanation why it succeeds. Needed for testing that
2174// EXPECT/ASSERT_FALSE handles such functions correctly.
2175AssertionResult ResultIsEvenNoExplanation(int n) {
2176  if (IsEven(n))
2177    return AssertionSuccess();
2178  else
2179    return AssertionFailure() << n << " is odd";
2180}
2181
2182// A predicate-formatter functor that asserts the argument is an even
2183// number.
2184struct AssertIsEvenFunctor {
2185  AssertionResult operator()(const char* expr, int n) {
2186    return AssertIsEven(expr, n);
2187  }
2188};
2189
2190// Returns true iff the sum of the arguments is an even number.
2191bool SumIsEven2(int n1, int n2) {
2192  return IsEven(n1 + n2);
2193}
2194
2195// A functor that returns true iff the sum of the arguments is an even
2196// number.
2197struct SumIsEven3Functor {
2198  bool operator()(int n1, int n2, int n3) {
2199    return IsEven(n1 + n2 + n3);
2200  }
2201};
2202
2203// A predicate-formatter function that asserts the sum of the
2204// arguments is an even number.
2205AssertionResult AssertSumIsEven4(
2206    const char* e1, const char* e2, const char* e3, const char* e4,
2207    int n1, int n2, int n3, int n4) {
2208  const int sum = n1 + n2 + n3 + n4;
2209  if (IsEven(sum)) {
2210    return AssertionSuccess();
2211  }
2212
2213  Message msg;
2214  msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2215      << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2216      << ") evaluates to " << sum << ", which is not even.";
2217  return AssertionFailure(msg);
2218}
2219
2220// A predicate-formatter functor that asserts the sum of the arguments
2221// is an even number.
2222struct AssertSumIsEven5Functor {
2223  AssertionResult operator()(
2224      const char* e1, const char* e2, const char* e3, const char* e4,
2225      const char* e5, int n1, int n2, int n3, int n4, int n5) {
2226    const int sum = n1 + n2 + n3 + n4 + n5;
2227    if (IsEven(sum)) {
2228      return AssertionSuccess();
2229    }
2230
2231    Message msg;
2232    msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2233        << " ("
2234        << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2235        << ") evaluates to " << sum << ", which is not even.";
2236    return AssertionFailure(msg);
2237  }
2238};
2239
2240
2241// Tests unary predicate assertions.
2242
2243// Tests unary predicate assertions that don't use a custom formatter.
2244TEST(Pred1Test, WithoutFormat) {
2245  // Success cases.
2246  EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2247  ASSERT_PRED1(IsEven, 4);
2248
2249  // Failure cases.
2250  EXPECT_NONFATAL_FAILURE({  // NOLINT
2251    EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2252  }, "This failure is expected.");
2253  EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2254                       "evaluates to false");
2255}
2256
2257// Tests unary predicate assertions that use a custom formatter.
2258TEST(Pred1Test, WithFormat) {
2259  // Success cases.
2260  EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2261  ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2262    << "This failure is UNEXPECTED!";
2263
2264  // Failure cases.
2265  const int n = 5;
2266  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2267                          "n evaluates to 5, which is not even.");
2268  EXPECT_FATAL_FAILURE({  // NOLINT
2269    ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2270  }, "This failure is expected.");
2271}
2272
2273// Tests that unary predicate assertions evaluates their arguments
2274// exactly once.
2275TEST(Pred1Test, SingleEvaluationOnFailure) {
2276  // A success case.
2277  static int n = 0;
2278  EXPECT_PRED1(IsEven, n++);
2279  EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2280
2281  // A failure case.
2282  EXPECT_FATAL_FAILURE({  // NOLINT
2283    ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2284        << "This failure is expected.";
2285  }, "This failure is expected.");
2286  EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2287}
2288
2289
2290// Tests predicate assertions whose arity is >= 2.
2291
2292// Tests predicate assertions that don't use a custom formatter.
2293TEST(PredTest, WithoutFormat) {
2294  // Success cases.
2295  ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2296  EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2297
2298  // Failure cases.
2299  const int n1 = 1;
2300  const int n2 = 2;
2301  EXPECT_NONFATAL_FAILURE({  // NOLINT
2302    EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2303  }, "This failure is expected.");
2304  EXPECT_FATAL_FAILURE({  // NOLINT
2305    ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2306  }, "evaluates to false");
2307}
2308
2309// Tests predicate assertions that use a custom formatter.
2310TEST(PredTest, WithFormat) {
2311  // Success cases.
2312  ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2313    "This failure is UNEXPECTED!";
2314  EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2315
2316  // Failure cases.
2317  const int n1 = 1;
2318  const int n2 = 2;
2319  const int n3 = 4;
2320  const int n4 = 6;
2321  EXPECT_NONFATAL_FAILURE({  // NOLINT
2322    EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2323  }, "evaluates to 13, which is not even.");
2324  EXPECT_FATAL_FAILURE({  // NOLINT
2325    ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2326        << "This failure is expected.";
2327  }, "This failure is expected.");
2328}
2329
2330// Tests that predicate assertions evaluates their arguments
2331// exactly once.
2332TEST(PredTest, SingleEvaluationOnFailure) {
2333  // A success case.
2334  int n1 = 0;
2335  int n2 = 0;
2336  EXPECT_PRED2(SumIsEven2, n1++, n2++);
2337  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2338  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2339
2340  // Another success case.
2341  n1 = n2 = 0;
2342  int n3 = 0;
2343  int n4 = 0;
2344  int n5 = 0;
2345  ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2346                      n1++, n2++, n3++, n4++, n5++)
2347                        << "This failure is UNEXPECTED!";
2348  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2349  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2350  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2351  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2352  EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2353
2354  // A failure case.
2355  n1 = n2 = n3 = 0;
2356  EXPECT_NONFATAL_FAILURE({  // NOLINT
2357    EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2358        << "This failure is expected.";
2359  }, "This failure is expected.");
2360  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2361  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2362  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2363
2364  // Another failure case.
2365  n1 = n2 = n3 = n4 = 0;
2366  EXPECT_NONFATAL_FAILURE({  // NOLINT
2367    EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2368  }, "evaluates to 1, which is not even.");
2369  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2370  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2371  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2372  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2373}
2374
2375
2376// Some helper functions for testing using overloaded/template
2377// functions with ASSERT_PREDn and EXPECT_PREDn.
2378
2379bool IsPositive(double x) {
2380  return x > 0;
2381}
2382
2383template <typename T>
2384bool IsNegative(T x) {
2385  return x < 0;
2386}
2387
2388template <typename T1, typename T2>
2389bool GreaterThan(T1 x1, T2 x2) {
2390  return x1 > x2;
2391}
2392
2393// Tests that overloaded functions can be used in *_PRED* as long as
2394// their types are explicitly specified.
2395TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2396  // C++Builder requires C-style casts rather than static_cast.
2397  EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
2398  ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2399}
2400
2401// Tests that template functions can be used in *_PRED* as long as
2402// their types are explicitly specified.
2403TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2404  EXPECT_PRED1(IsNegative<int>, -5);
2405  // Makes sure that we can handle templates with more than one
2406  // parameter.
2407  ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2408}
2409
2410
2411// Some helper functions for testing using overloaded/template
2412// functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2413
2414AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2415  return n > 0 ? AssertionSuccess() :
2416      AssertionFailure(Message() << "Failure");
2417}
2418
2419AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2420  return x > 0 ? AssertionSuccess() :
2421      AssertionFailure(Message() << "Failure");
2422}
2423
2424template <typename T>
2425AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2426  return x < 0 ? AssertionSuccess() :
2427      AssertionFailure(Message() << "Failure");
2428}
2429
2430template <typename T1, typename T2>
2431AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2432                             const T1& x1, const T2& x2) {
2433  return x1 == x2 ? AssertionSuccess() :
2434      AssertionFailure(Message() << "Failure");
2435}
2436
2437// Tests that overloaded functions can be used in *_PRED_FORMAT*
2438// without explicitly specifying their types.
2439TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2440  EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2441  ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2442}
2443
2444// Tests that template functions can be used in *_PRED_FORMAT* without
2445// explicitly specifying their types.
2446TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2447  EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2448  ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2449}
2450
2451
2452// Tests string assertions.
2453
2454// Tests ASSERT_STREQ with non-NULL arguments.
2455TEST(StringAssertionTest, ASSERT_STREQ) {
2456  const char * const p1 = "good";
2457  ASSERT_STREQ(p1, p1);
2458
2459  // Let p2 have the same content as p1, but be at a different address.
2460  const char p2[] = "good";
2461  ASSERT_STREQ(p1, p2);
2462
2463  EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2464                       "Expected: \"bad\"");
2465}
2466
2467// Tests ASSERT_STREQ with NULL arguments.
2468TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2469  ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
2470  EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
2471                       "non-null");
2472}
2473
2474// Tests ASSERT_STREQ with NULL arguments.
2475TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2476  EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
2477                       "non-null");
2478}
2479
2480// Tests ASSERT_STRNE.
2481TEST(StringAssertionTest, ASSERT_STRNE) {
2482  ASSERT_STRNE("hi", "Hi");
2483  ASSERT_STRNE("Hi", NULL);
2484  ASSERT_STRNE(NULL, "Hi");
2485  ASSERT_STRNE("", NULL);
2486  ASSERT_STRNE(NULL, "");
2487  ASSERT_STRNE("", "Hi");
2488  ASSERT_STRNE("Hi", "");
2489  EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2490                       "\"Hi\" vs \"Hi\"");
2491}
2492
2493// Tests ASSERT_STRCASEEQ.
2494TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2495  ASSERT_STRCASEEQ("hi", "Hi");
2496  ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
2497
2498  ASSERT_STRCASEEQ("", "");
2499  EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
2500                       "(ignoring case)");
2501}
2502
2503// Tests ASSERT_STRCASENE.
2504TEST(StringAssertionTest, ASSERT_STRCASENE) {
2505  ASSERT_STRCASENE("hi1", "Hi2");
2506  ASSERT_STRCASENE("Hi", NULL);
2507  ASSERT_STRCASENE(NULL, "Hi");
2508  ASSERT_STRCASENE("", NULL);
2509  ASSERT_STRCASENE(NULL, "");
2510  ASSERT_STRCASENE("", "Hi");
2511  ASSERT_STRCASENE("Hi", "");
2512  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
2513                       "(ignoring case)");
2514}
2515
2516// Tests *_STREQ on wide strings.
2517TEST(StringAssertionTest, STREQ_Wide) {
2518  // NULL strings.
2519  ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
2520
2521  // Empty strings.
2522  ASSERT_STREQ(L"", L"");
2523
2524  // Non-null vs NULL.
2525  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
2526                          "non-null");
2527
2528  // Equal strings.
2529  EXPECT_STREQ(L"Hi", L"Hi");
2530
2531  // Unequal strings.
2532  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2533                          "Abc");
2534
2535  // Strings containing wide characters.
2536  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2537                          "abc");
2538}
2539
2540// Tests *_STRNE on wide strings.
2541TEST(StringAssertionTest, STRNE_Wide) {
2542  // NULL strings.
2543  EXPECT_NONFATAL_FAILURE({  // NOLINT
2544    EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
2545  }, "");
2546
2547  // Empty strings.
2548  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
2549                          "L\"\"");
2550
2551  // Non-null vs NULL.
2552  ASSERT_STRNE(L"non-null", NULL);
2553
2554  // Equal strings.
2555  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2556                          "L\"Hi\"");
2557
2558  // Unequal strings.
2559  EXPECT_STRNE(L"abc", L"Abc");
2560
2561  // Strings containing wide characters.
2562  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2563                          "abc");
2564}
2565
2566// Tests for ::testing::IsSubstring().
2567
2568// Tests that IsSubstring() returns the correct result when the input
2569// argument type is const char*.
2570TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2571  EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
2572  EXPECT_FALSE(IsSubstring("", "", "b", NULL));
2573  EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2574
2575  EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
2576  EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2577}
2578
2579// Tests that IsSubstring() returns the correct result when the input
2580// argument type is const wchar_t*.
2581TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2582  EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2583  EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2584  EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2585
2586  EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
2587  EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2588}
2589
2590// Tests that IsSubstring() generates the correct message when the input
2591// argument type is const char*.
2592TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2593  EXPECT_STREQ("Value of: needle_expr\n"
2594               "  Actual: \"needle\"\n"
2595               "Expected: a substring of haystack_expr\n"
2596               "Which is: \"haystack\"",
2597               IsSubstring("needle_expr", "haystack_expr",
2598                           "needle", "haystack").failure_message());
2599}
2600
2601// Tests that IsSubstring returns the correct result when the input
2602// argument type is ::std::string.
2603TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2604  EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2605  EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2606}
2607
2608#if GTEST_HAS_STD_WSTRING
2609// Tests that IsSubstring returns the correct result when the input
2610// argument type is ::std::wstring.
2611TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2612  EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2613  EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2614}
2615
2616// Tests that IsSubstring() generates the correct message when the input
2617// argument type is ::std::wstring.
2618TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2619  EXPECT_STREQ("Value of: needle_expr\n"
2620               "  Actual: L\"needle\"\n"
2621               "Expected: a substring of haystack_expr\n"
2622               "Which is: L\"haystack\"",
2623               IsSubstring(
2624                   "needle_expr", "haystack_expr",
2625                   ::std::wstring(L"needle"), L"haystack").failure_message());
2626}
2627
2628#endif  // GTEST_HAS_STD_WSTRING
2629
2630// Tests for ::testing::IsNotSubstring().
2631
2632// Tests that IsNotSubstring() returns the correct result when the input
2633// argument type is const char*.
2634TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2635  EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2636  EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2637}
2638
2639// Tests that IsNotSubstring() returns the correct result when the input
2640// argument type is const wchar_t*.
2641TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2642  EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2643  EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2644}
2645
2646// Tests that IsNotSubstring() generates the correct message when the input
2647// argument type is const wchar_t*.
2648TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2649  EXPECT_STREQ("Value of: needle_expr\n"
2650               "  Actual: L\"needle\"\n"
2651               "Expected: not a substring of haystack_expr\n"
2652               "Which is: L\"two needles\"",
2653               IsNotSubstring(
2654                   "needle_expr", "haystack_expr",
2655                   L"needle", L"two needles").failure_message());
2656}
2657
2658// Tests that IsNotSubstring returns the correct result when the input
2659// argument type is ::std::string.
2660TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2661  EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2662  EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2663}
2664
2665// Tests that IsNotSubstring() generates the correct message when the input
2666// argument type is ::std::string.
2667TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2668  EXPECT_STREQ("Value of: needle_expr\n"
2669               "  Actual: \"needle\"\n"
2670               "Expected: not a substring of haystack_expr\n"
2671               "Which is: \"two needles\"",
2672               IsNotSubstring(
2673                   "needle_expr", "haystack_expr",
2674                   ::std::string("needle"), "two needles").failure_message());
2675}
2676
2677#if GTEST_HAS_STD_WSTRING
2678
2679// Tests that IsNotSubstring returns the correct result when the input
2680// argument type is ::std::wstring.
2681TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2682  EXPECT_FALSE(
2683      IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2684  EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2685}
2686
2687#endif  // GTEST_HAS_STD_WSTRING
2688
2689// Tests floating-point assertions.
2690
2691template <typename RawType>
2692class FloatingPointTest : public Test {
2693 protected:
2694
2695  // Pre-calculated numbers to be used by the tests.
2696  struct TestValues {
2697    RawType close_to_positive_zero;
2698    RawType close_to_negative_zero;
2699    RawType further_from_negative_zero;
2700
2701    RawType close_to_one;
2702    RawType further_from_one;
2703
2704    RawType infinity;
2705    RawType close_to_infinity;
2706    RawType further_from_infinity;
2707
2708    RawType nan1;
2709    RawType nan2;
2710  };
2711
2712  typedef typename testing::internal::FloatingPoint<RawType> Floating;
2713  typedef typename Floating::Bits Bits;
2714
2715  virtual void SetUp() {
2716    const size_t max_ulps = Floating::kMaxUlps;
2717
2718    // The bits that represent 0.0.
2719    const Bits zero_bits = Floating(0).bits();
2720
2721    // Makes some numbers close to 0.0.
2722    values_.close_to_positive_zero = Floating::ReinterpretBits(
2723        zero_bits + max_ulps/2);
2724    values_.close_to_negative_zero = -Floating::ReinterpretBits(
2725        zero_bits + max_ulps - max_ulps/2);
2726    values_.further_from_negative_zero = -Floating::ReinterpretBits(
2727        zero_bits + max_ulps + 1 - max_ulps/2);
2728
2729    // The bits that represent 1.0.
2730    const Bits one_bits = Floating(1).bits();
2731
2732    // Makes some numbers close to 1.0.
2733    values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2734    values_.further_from_one = Floating::ReinterpretBits(
2735        one_bits + max_ulps + 1);
2736
2737    // +infinity.
2738    values_.infinity = Floating::Infinity();
2739
2740    // The bits that represent +infinity.
2741    const Bits infinity_bits = Floating(values_.infinity).bits();
2742
2743    // Makes some numbers close to infinity.
2744    values_.close_to_infinity = Floating::ReinterpretBits(
2745        infinity_bits - max_ulps);
2746    values_.further_from_infinity = Floating::ReinterpretBits(
2747        infinity_bits - max_ulps - 1);
2748
2749    // Makes some NAN's.  Sets the most significant bit of the fraction so that
2750    // our NaN's are quiet; trying to process a signaling NaN would raise an
2751    // exception if our environment enables floating point exceptions.
2752    values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2753        | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2754    values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2755        | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2756  }
2757
2758  void TestSize() {
2759    EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2760  }
2761
2762  static TestValues values_;
2763};
2764
2765template <typename RawType>
2766typename FloatingPointTest<RawType>::TestValues
2767    FloatingPointTest<RawType>::values_;
2768
2769// Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2770typedef FloatingPointTest<float> FloatTest;
2771
2772// Tests that the size of Float::Bits matches the size of float.
2773TEST_F(FloatTest, Size) {
2774  TestSize();
2775}
2776
2777// Tests comparing with +0 and -0.
2778TEST_F(FloatTest, Zeros) {
2779  EXPECT_FLOAT_EQ(0.0, -0.0);
2780  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
2781                          "1.0");
2782  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
2783                       "1.5");
2784}
2785
2786// Tests comparing numbers close to 0.
2787//
2788// This ensures that *_FLOAT_EQ handles the sign correctly and no
2789// overflow occurs when comparing numbers whose absolute value is very
2790// small.
2791TEST_F(FloatTest, AlmostZeros) {
2792  // In C++Builder, names within local classes (such as used by
2793  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2794  // scoping class.  Use a static local alias as a workaround.
2795  // We use the assignment syntax since some compilers, like Sun Studio,
2796  // don't allow initializing references using construction syntax
2797  // (parentheses).
2798  static const FloatTest::TestValues& v = this->values_;
2799
2800  EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2801  EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2802  EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2803
2804  EXPECT_FATAL_FAILURE({  // NOLINT
2805    ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2806                    v.further_from_negative_zero);
2807  }, "v.further_from_negative_zero");
2808}
2809
2810// Tests comparing numbers close to each other.
2811TEST_F(FloatTest, SmallDiff) {
2812  EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2813  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2814                          "values_.further_from_one");
2815}
2816
2817// Tests comparing numbers far apart.
2818TEST_F(FloatTest, LargeDiff) {
2819  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
2820                          "3.0");
2821}
2822
2823// Tests comparing with infinity.
2824//
2825// This ensures that no overflow occurs when comparing numbers whose
2826// absolute value is very large.
2827TEST_F(FloatTest, Infinity) {
2828  EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2829  EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2830#if !GTEST_OS_SYMBIAN
2831  // Nokia's STLport crashes if we try to output infinity or NaN.
2832  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2833                          "-values_.infinity");
2834
2835  // This is interesting as the representations of infinity and nan1
2836  // are only 1 DLP apart.
2837  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2838                          "values_.nan1");
2839#endif  // !GTEST_OS_SYMBIAN
2840}
2841
2842// Tests that comparing with NAN always returns false.
2843TEST_F(FloatTest, NaN) {
2844#if !GTEST_OS_SYMBIAN
2845// Nokia's STLport crashes if we try to output infinity or NaN.
2846
2847  // In C++Builder, names within local classes (such as used by
2848  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2849  // scoping class.  Use a static local alias as a workaround.
2850  // We use the assignment syntax since some compilers, like Sun Studio,
2851  // don't allow initializing references using construction syntax
2852  // (parentheses).
2853  static const FloatTest::TestValues& v = this->values_;
2854
2855  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2856                          "v.nan1");
2857  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2858                          "v.nan2");
2859  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
2860                          "v.nan1");
2861
2862  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2863                       "v.infinity");
2864#endif  // !GTEST_OS_SYMBIAN
2865}
2866
2867// Tests that *_FLOAT_EQ are reflexive.
2868TEST_F(FloatTest, Reflexive) {
2869  EXPECT_FLOAT_EQ(0.0, 0.0);
2870  EXPECT_FLOAT_EQ(1.0, 1.0);
2871  ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2872}
2873
2874// Tests that *_FLOAT_EQ are commutative.
2875TEST_F(FloatTest, Commutative) {
2876  // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2877  EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2878
2879  // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2880  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2881                          "1.0");
2882}
2883
2884// Tests EXPECT_NEAR.
2885TEST_F(FloatTest, EXPECT_NEAR) {
2886  EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2887  EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2888  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2889                          "The difference between 1.0f and 1.5f is 0.5, "
2890                          "which exceeds 0.25f");
2891  // To work around a bug in gcc 2.95.0, there is intentionally no
2892  // space after the first comma in the previous line.
2893}
2894
2895// Tests ASSERT_NEAR.
2896TEST_F(FloatTest, ASSERT_NEAR) {
2897  ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2898  ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2899  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2900                       "The difference between 1.0f and 1.5f is 0.5, "
2901                       "which exceeds 0.25f");
2902  // To work around a bug in gcc 2.95.0, there is intentionally no
2903  // space after the first comma in the previous line.
2904}
2905
2906// Tests the cases where FloatLE() should succeed.
2907TEST_F(FloatTest, FloatLESucceeds) {
2908  EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2909  ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2910
2911  // or when val1 is greater than, but almost equals to, val2.
2912  EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2913}
2914
2915// Tests the cases where FloatLE() should fail.
2916TEST_F(FloatTest, FloatLEFails) {
2917  // When val1 is greater than val2 by a large margin,
2918  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2919                          "(2.0f) <= (1.0f)");
2920
2921  // or by a small yet non-negligible margin,
2922  EXPECT_NONFATAL_FAILURE({  // NOLINT
2923    EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2924  }, "(values_.further_from_one) <= (1.0f)");
2925
2926#if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2927  // Nokia's STLport crashes if we try to output infinity or NaN.
2928  // C++Builder gives bad results for ordered comparisons involving NaNs
2929  // due to compiler bugs.
2930  EXPECT_NONFATAL_FAILURE({  // NOLINT
2931    EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2932  }, "(values_.nan1) <= (values_.infinity)");
2933  EXPECT_NONFATAL_FAILURE({  // NOLINT
2934    EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2935  }, "(-values_.infinity) <= (values_.nan1)");
2936  EXPECT_FATAL_FAILURE({  // NOLINT
2937    ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2938  }, "(values_.nan1) <= (values_.nan1)");
2939#endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2940}
2941
2942// Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2943typedef FloatingPointTest<double> DoubleTest;
2944
2945// Tests that the size of Double::Bits matches the size of double.
2946TEST_F(DoubleTest, Size) {
2947  TestSize();
2948}
2949
2950// Tests comparing with +0 and -0.
2951TEST_F(DoubleTest, Zeros) {
2952  EXPECT_DOUBLE_EQ(0.0, -0.0);
2953  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
2954                          "1.0");
2955  EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
2956                       "1.0");
2957}
2958
2959// Tests comparing numbers close to 0.
2960//
2961// This ensures that *_DOUBLE_EQ handles the sign correctly and no
2962// overflow occurs when comparing numbers whose absolute value is very
2963// small.
2964TEST_F(DoubleTest, AlmostZeros) {
2965  // In C++Builder, names within local classes (such as used by
2966  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2967  // scoping class.  Use a static local alias as a workaround.
2968  // We use the assignment syntax since some compilers, like Sun Studio,
2969  // don't allow initializing references using construction syntax
2970  // (parentheses).
2971  static const DoubleTest::TestValues& v = this->values_;
2972
2973  EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2974  EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
2975  EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2976
2977  EXPECT_FATAL_FAILURE({  // NOLINT
2978    ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
2979                     v.further_from_negative_zero);
2980  }, "v.further_from_negative_zero");
2981}
2982
2983// Tests comparing numbers close to each other.
2984TEST_F(DoubleTest, SmallDiff) {
2985  EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
2986  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
2987                          "values_.further_from_one");
2988}
2989
2990// Tests comparing numbers far apart.
2991TEST_F(DoubleTest, LargeDiff) {
2992  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
2993                          "3.0");
2994}
2995
2996// Tests comparing with infinity.
2997//
2998// This ensures that no overflow occurs when comparing numbers whose
2999// absolute value is very large.
3000TEST_F(DoubleTest, Infinity) {
3001  EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3002  EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3003#if !GTEST_OS_SYMBIAN
3004  // Nokia's STLport crashes if we try to output infinity or NaN.
3005  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3006                          "-values_.infinity");
3007
3008  // This is interesting as the representations of infinity_ and nan1_
3009  // are only 1 DLP apart.
3010  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3011                          "values_.nan1");
3012#endif  // !GTEST_OS_SYMBIAN
3013}
3014
3015// Tests that comparing with NAN always returns false.
3016TEST_F(DoubleTest, NaN) {
3017#if !GTEST_OS_SYMBIAN
3018  // In C++Builder, names within local classes (such as used by
3019  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
3020  // scoping class.  Use a static local alias as a workaround.
3021  // We use the assignment syntax since some compilers, like Sun Studio,
3022  // don't allow initializing references using construction syntax
3023  // (parentheses).
3024  static const DoubleTest::TestValues& v = this->values_;
3025
3026  // Nokia's STLport crashes if we try to output infinity or NaN.
3027  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
3028                          "v.nan1");
3029  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3030  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3031  EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3032                       "v.infinity");
3033#endif  // !GTEST_OS_SYMBIAN
3034}
3035
3036// Tests that *_DOUBLE_EQ are reflexive.
3037TEST_F(DoubleTest, Reflexive) {
3038  EXPECT_DOUBLE_EQ(0.0, 0.0);
3039  EXPECT_DOUBLE_EQ(1.0, 1.0);
3040#if !GTEST_OS_SYMBIAN
3041  // Nokia's STLport crashes if we try to output infinity or NaN.
3042  ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3043#endif  // !GTEST_OS_SYMBIAN
3044}
3045
3046// Tests that *_DOUBLE_EQ are commutative.
3047TEST_F(DoubleTest, Commutative) {
3048  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3049  EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3050
3051  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3052  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3053                          "1.0");
3054}
3055
3056// Tests EXPECT_NEAR.
3057TEST_F(DoubleTest, EXPECT_NEAR) {
3058  EXPECT_NEAR(-1.0, -1.1, 0.2);
3059  EXPECT_NEAR(2.0, 3.0, 1.0);
3060  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3061                          "The difference between 1.0 and 1.5 is 0.5, "
3062                          "which exceeds 0.25");
3063  // To work around a bug in gcc 2.95.0, there is intentionally no
3064  // space after the first comma in the previous statement.
3065}
3066
3067// Tests ASSERT_NEAR.
3068TEST_F(DoubleTest, ASSERT_NEAR) {
3069  ASSERT_NEAR(-1.0, -1.1, 0.2);
3070  ASSERT_NEAR(2.0, 3.0, 1.0);
3071  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3072                       "The difference between 1.0 and 1.5 is 0.5, "
3073                       "which exceeds 0.25");
3074  // To work around a bug in gcc 2.95.0, there is intentionally no
3075  // space after the first comma in the previous statement.
3076}
3077
3078// Tests the cases where DoubleLE() should succeed.
3079TEST_F(DoubleTest, DoubleLESucceeds) {
3080  EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3081  ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3082
3083  // or when val1 is greater than, but almost equals to, val2.
3084  EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3085}
3086
3087// Tests the cases where DoubleLE() should fail.
3088TEST_F(DoubleTest, DoubleLEFails) {
3089  // When val1 is greater than val2 by a large margin,
3090  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3091                          "(2.0) <= (1.0)");
3092
3093  // or by a small yet non-negligible margin,
3094  EXPECT_NONFATAL_FAILURE({  // NOLINT
3095    EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3096  }, "(values_.further_from_one) <= (1.0)");
3097
3098#if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3099  // Nokia's STLport crashes if we try to output infinity or NaN.
3100  // C++Builder gives bad results for ordered comparisons involving NaNs
3101  // due to compiler bugs.
3102  EXPECT_NONFATAL_FAILURE({  // NOLINT
3103    EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3104  }, "(values_.nan1) <= (values_.infinity)");
3105  EXPECT_NONFATAL_FAILURE({  // NOLINT
3106    EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3107  }, " (-values_.infinity) <= (values_.nan1)");
3108  EXPECT_FATAL_FAILURE({  // NOLINT
3109    ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3110  }, "(values_.nan1) <= (values_.nan1)");
3111#endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3112}
3113
3114
3115// Verifies that a test or test case whose name starts with DISABLED_ is
3116// not run.
3117
3118// A test whose name starts with DISABLED_.
3119// Should not run.
3120TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3121  FAIL() << "Unexpected failure: Disabled test should not be run.";
3122}
3123
3124// A test whose name does not start with DISABLED_.
3125// Should run.
3126TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3127  EXPECT_EQ(1, 1);
3128}
3129
3130// A test case whose name starts with DISABLED_.
3131// Should not run.
3132TEST(DISABLED_TestCase, TestShouldNotRun) {
3133  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3134}
3135
3136// A test case and test whose names start with DISABLED_.
3137// Should not run.
3138TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
3139  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3140}
3141
3142// Check that when all tests in a test case are disabled, SetupTestCase() and
3143// TearDownTestCase() are not called.
3144class DisabledTestsTest : public Test {
3145 protected:
3146  static void SetUpTestCase() {
3147    FAIL() << "Unexpected failure: All tests disabled in test case. "
3148              "SetupTestCase() should not be called.";
3149  }
3150
3151  static void TearDownTestCase() {
3152    FAIL() << "Unexpected failure: All tests disabled in test case. "
3153              "TearDownTestCase() should not be called.";
3154  }
3155};
3156
3157TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3158  FAIL() << "Unexpected failure: Disabled test should not be run.";
3159}
3160
3161TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3162  FAIL() << "Unexpected failure: Disabled test should not be run.";
3163}
3164
3165// Tests that disabled typed tests aren't run.
3166
3167#if GTEST_HAS_TYPED_TEST
3168
3169template <typename T>
3170class TypedTest : public Test {
3171};
3172
3173typedef testing::Types<int, double> NumericTypes;
3174TYPED_TEST_CASE(TypedTest, NumericTypes);
3175
3176TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3177  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3178}
3179
3180template <typename T>
3181class DISABLED_TypedTest : public Test {
3182};
3183
3184TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
3185
3186TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3187  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3188}
3189
3190#endif  // GTEST_HAS_TYPED_TEST
3191
3192// Tests that disabled type-parameterized tests aren't run.
3193
3194#if GTEST_HAS_TYPED_TEST_P
3195
3196template <typename T>
3197class TypedTestP : public Test {
3198};
3199
3200TYPED_TEST_CASE_P(TypedTestP);
3201
3202TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3203  FAIL() << "Unexpected failure: "
3204         << "Disabled type-parameterized test should not run.";
3205}
3206
3207REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
3208
3209INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
3210
3211template <typename T>
3212class DISABLED_TypedTestP : public Test {
3213};
3214
3215TYPED_TEST_CASE_P(DISABLED_TypedTestP);
3216
3217TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3218  FAIL() << "Unexpected failure: "
3219         << "Disabled type-parameterized test should not run.";
3220}
3221
3222REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
3223
3224INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
3225
3226#endif  // GTEST_HAS_TYPED_TEST_P
3227
3228// Tests that assertion macros evaluate their arguments exactly once.
3229
3230class SingleEvaluationTest : public Test {
3231 public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3232  // This helper function is needed by the FailedASSERT_STREQ test
3233  // below.  It's public to work around C++Builder's bug with scoping local
3234  // classes.
3235  static void CompareAndIncrementCharPtrs() {
3236    ASSERT_STREQ(p1_++, p2_++);
3237  }
3238
3239  // This helper function is needed by the FailedASSERT_NE test below.  It's
3240  // public to work around C++Builder's bug with scoping local classes.
3241  static void CompareAndIncrementInts() {
3242    ASSERT_NE(a_++, b_++);
3243  }
3244
3245 protected:
3246  SingleEvaluationTest() {
3247    p1_ = s1_;
3248    p2_ = s2_;
3249    a_ = 0;
3250    b_ = 0;
3251  }
3252
3253  static const char* const s1_;
3254  static const char* const s2_;
3255  static const char* p1_;
3256  static const char* p2_;
3257
3258  static int a_;
3259  static int b_;
3260};
3261
3262const char* const SingleEvaluationTest::s1_ = "01234";
3263const char* const SingleEvaluationTest::s2_ = "abcde";
3264const char* SingleEvaluationTest::p1_;
3265const char* SingleEvaluationTest::p2_;
3266int SingleEvaluationTest::a_;
3267int SingleEvaluationTest::b_;
3268
3269// Tests that when ASSERT_STREQ fails, it evaluates its arguments
3270// exactly once.
3271TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3272  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3273                       "p2_++");
3274  EXPECT_EQ(s1_ + 1, p1_);
3275  EXPECT_EQ(s2_ + 1, p2_);
3276}
3277
3278// Tests that string assertion arguments are evaluated exactly once.
3279TEST_F(SingleEvaluationTest, ASSERT_STR) {
3280  // successful EXPECT_STRNE
3281  EXPECT_STRNE(p1_++, p2_++);
3282  EXPECT_EQ(s1_ + 1, p1_);
3283  EXPECT_EQ(s2_ + 1, p2_);
3284
3285  // failed EXPECT_STRCASEEQ
3286  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
3287                          "ignoring case");
3288  EXPECT_EQ(s1_ + 2, p1_);
3289  EXPECT_EQ(s2_ + 2, p2_);
3290}
3291
3292// Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3293// once.
3294TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3295  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3296                       "(a_++) != (b_++)");
3297  EXPECT_EQ(1, a_);
3298  EXPECT_EQ(1, b_);
3299}
3300
3301// Tests that assertion arguments are evaluated exactly once.
3302TEST_F(SingleEvaluationTest, OtherCases) {
3303  // successful EXPECT_TRUE
3304  EXPECT_TRUE(0 == a_++);  // NOLINT
3305  EXPECT_EQ(1, a_);
3306
3307  // failed EXPECT_TRUE
3308  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3309  EXPECT_EQ(2, a_);
3310
3311  // successful EXPECT_GT
3312  EXPECT_GT(a_++, b_++);
3313  EXPECT_EQ(3, a_);
3314  EXPECT_EQ(1, b_);
3315
3316  // failed EXPECT_LT
3317  EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3318  EXPECT_EQ(4, a_);
3319  EXPECT_EQ(2, b_);
3320
3321  // successful ASSERT_TRUE
3322  ASSERT_TRUE(0 < a_++);  // NOLINT
3323  EXPECT_EQ(5, a_);
3324
3325  // successful ASSERT_GT
3326  ASSERT_GT(a_++, b_++);
3327  EXPECT_EQ(6, a_);
3328  EXPECT_EQ(3, b_);
3329}
3330
3331#if GTEST_HAS_EXCEPTIONS
3332
3333void ThrowAnInteger() {
3334  throw 1;
3335}
3336
3337// Tests that assertion arguments are evaluated exactly once.
3338TEST_F(SingleEvaluationTest, ExceptionTests) {
3339  // successful EXPECT_THROW
3340  EXPECT_THROW({  // NOLINT
3341    a_++;
3342    ThrowAnInteger();
3343  }, int);
3344  EXPECT_EQ(1, a_);
3345
3346  // failed EXPECT_THROW, throws different
3347  EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
3348    a_++;
3349    ThrowAnInteger();
3350  }, bool), "throws a different type");
3351  EXPECT_EQ(2, a_);
3352
3353  // failed EXPECT_THROW, throws nothing
3354  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3355  EXPECT_EQ(3, a_);
3356
3357  // successful EXPECT_NO_THROW
3358  EXPECT_NO_THROW(a_++);
3359  EXPECT_EQ(4, a_);
3360
3361  // failed EXPECT_NO_THROW
3362  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3363    a_++;
3364    ThrowAnInteger();
3365  }), "it throws");
3366  EXPECT_EQ(5, a_);
3367
3368  // successful EXPECT_ANY_THROW
3369  EXPECT_ANY_THROW({  // NOLINT
3370    a_++;
3371    ThrowAnInteger();
3372  });
3373  EXPECT_EQ(6, a_);
3374
3375  // failed EXPECT_ANY_THROW
3376  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3377  EXPECT_EQ(7, a_);
3378}
3379
3380#endif  // GTEST_HAS_EXCEPTIONS
3381
3382// Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3383class NoFatalFailureTest : public Test {
3384 protected:
3385  void Succeeds() {}
3386  void FailsNonFatal() {
3387    ADD_FAILURE() << "some non-fatal failure";
3388  }
3389  void Fails() {
3390    FAIL() << "some fatal failure";
3391  }
3392
3393  void DoAssertNoFatalFailureOnFails() {
3394    ASSERT_NO_FATAL_FAILURE(Fails());
3395    ADD_FAILURE() << "shold not reach here.";
3396  }
3397
3398  void DoExpectNoFatalFailureOnFails() {
3399    EXPECT_NO_FATAL_FAILURE(Fails());
3400    ADD_FAILURE() << "other failure";
3401  }
3402};
3403
3404TEST_F(NoFatalFailureTest, NoFailure) {
3405  EXPECT_NO_FATAL_FAILURE(Succeeds());
3406  ASSERT_NO_FATAL_FAILURE(Succeeds());
3407}
3408
3409TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3410  EXPECT_NONFATAL_FAILURE(
3411      EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3412      "some non-fatal failure");
3413  EXPECT_NONFATAL_FAILURE(
3414      ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3415      "some non-fatal failure");
3416}
3417
3418TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3419  TestPartResultArray gtest_failures;
3420  {
3421    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3422    DoAssertNoFatalFailureOnFails();
3423  }
3424  ASSERT_EQ(2, gtest_failures.size());
3425  EXPECT_EQ(TestPartResult::kFatalFailure,
3426            gtest_failures.GetTestPartResult(0).type());
3427  EXPECT_EQ(TestPartResult::kFatalFailure,
3428            gtest_failures.GetTestPartResult(1).type());
3429  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3430                      gtest_failures.GetTestPartResult(0).message());
3431  EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3432                      gtest_failures.GetTestPartResult(1).message());
3433}
3434
3435TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3436  TestPartResultArray gtest_failures;
3437  {
3438    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3439    DoExpectNoFatalFailureOnFails();
3440  }
3441  ASSERT_EQ(3, gtest_failures.size());
3442  EXPECT_EQ(TestPartResult::kFatalFailure,
3443            gtest_failures.GetTestPartResult(0).type());
3444  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3445            gtest_failures.GetTestPartResult(1).type());
3446  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3447            gtest_failures.GetTestPartResult(2).type());
3448  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3449                      gtest_failures.GetTestPartResult(0).message());
3450  EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3451                      gtest_failures.GetTestPartResult(1).message());
3452  EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3453                      gtest_failures.GetTestPartResult(2).message());
3454}
3455
3456TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3457  TestPartResultArray gtest_failures;
3458  {
3459    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3460    EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3461  }
3462  ASSERT_EQ(2, gtest_failures.size());
3463  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3464            gtest_failures.GetTestPartResult(0).type());
3465  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3466            gtest_failures.GetTestPartResult(1).type());
3467  EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3468                      gtest_failures.GetTestPartResult(0).message());
3469  EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3470                      gtest_failures.GetTestPartResult(1).message());
3471}
3472
3473// Tests non-string assertions.
3474
3475// Tests EqFailure(), used for implementing *EQ* assertions.
3476TEST(AssertionTest, EqFailure) {
3477  const String foo_val("5"), bar_val("6");
3478  const String msg1(
3479      EqFailure("foo", "bar", foo_val, bar_val, false)
3480      .failure_message());
3481  EXPECT_STREQ(
3482      "Value of: bar\n"
3483      "  Actual: 6\n"
3484      "Expected: foo\n"
3485      "Which is: 5",
3486      msg1.c_str());
3487
3488  const String msg2(
3489      EqFailure("foo", "6", foo_val, bar_val, false)
3490      .failure_message());
3491  EXPECT_STREQ(
3492      "Value of: 6\n"
3493      "Expected: foo\n"
3494      "Which is: 5",
3495      msg2.c_str());
3496
3497  const String msg3(
3498      EqFailure("5", "bar", foo_val, bar_val, false)
3499      .failure_message());
3500  EXPECT_STREQ(
3501      "Value of: bar\n"
3502      "  Actual: 6\n"
3503      "Expected: 5",
3504      msg3.c_str());
3505
3506  const String msg4(
3507      EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3508  EXPECT_STREQ(
3509      "Value of: 6\n"
3510      "Expected: 5",
3511      msg4.c_str());
3512
3513  const String msg5(
3514      EqFailure("foo", "bar",
3515                String("\"x\""), String("\"y\""),
3516                true).failure_message());
3517  EXPECT_STREQ(
3518      "Value of: bar\n"
3519      "  Actual: \"y\"\n"
3520      "Expected: foo (ignoring case)\n"
3521      "Which is: \"x\"",
3522      msg5.c_str());
3523}
3524
3525// Tests AppendUserMessage(), used for implementing the *EQ* macros.
3526TEST(AssertionTest, AppendUserMessage) {
3527  const String foo("foo");
3528
3529  Message msg;
3530  EXPECT_STREQ("foo",
3531               AppendUserMessage(foo, msg).c_str());
3532
3533  msg << "bar";
3534  EXPECT_STREQ("foo\nbar",
3535               AppendUserMessage(foo, msg).c_str());
3536}
3537
3538#ifdef __BORLANDC__
3539// Silences warnings: "Condition is always true", "Unreachable code"
3540# pragma option push -w-ccc -w-rch
3541#endif
3542
3543// Tests ASSERT_TRUE.
3544TEST(AssertionTest, ASSERT_TRUE) {
3545  ASSERT_TRUE(2 > 1);  // NOLINT
3546  EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
3547                       "2 < 1");
3548}
3549
3550// Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
3551TEST(AssertionTest, AssertTrueWithAssertionResult) {
3552  ASSERT_TRUE(ResultIsEven(2));
3553#ifndef __BORLANDC__
3554  // ICE's in C++Builder.
3555  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3556                       "Value of: ResultIsEven(3)\n"
3557                       "  Actual: false (3 is odd)\n"
3558                       "Expected: true");
3559#endif
3560  ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3561  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3562                       "Value of: ResultIsEvenNoExplanation(3)\n"
3563                       "  Actual: false (3 is odd)\n"
3564                       "Expected: true");
3565}
3566
3567// Tests ASSERT_FALSE.
3568TEST(AssertionTest, ASSERT_FALSE) {
3569  ASSERT_FALSE(2 < 1);  // NOLINT
3570  EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3571                       "Value of: 2 > 1\n"
3572                       "  Actual: true\n"
3573                       "Expected: false");
3574}
3575
3576// Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
3577TEST(AssertionTest, AssertFalseWithAssertionResult) {
3578  ASSERT_FALSE(ResultIsEven(3));
3579#ifndef __BORLANDC__
3580  // ICE's in C++Builder.
3581  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3582                       "Value of: ResultIsEven(2)\n"
3583                       "  Actual: true (2 is even)\n"
3584                       "Expected: false");
3585#endif
3586  ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3587  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3588                       "Value of: ResultIsEvenNoExplanation(2)\n"
3589                       "  Actual: true\n"
3590                       "Expected: false");
3591}
3592
3593#ifdef __BORLANDC__
3594// Restores warnings after previous "#pragma option push" supressed them
3595# pragma option pop
3596#endif
3597
3598// Tests using ASSERT_EQ on double values.  The purpose is to make
3599// sure that the specialization we did for integer and anonymous enums
3600// isn't used for double arguments.
3601TEST(ExpectTest, ASSERT_EQ_Double) {
3602  // A success.
3603  ASSERT_EQ(5.6, 5.6);
3604
3605  // A failure.
3606  EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3607                       "5.1");
3608}
3609
3610// Tests ASSERT_EQ.
3611TEST(AssertionTest, ASSERT_EQ) {
3612  ASSERT_EQ(5, 2 + 3);
3613  EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3614                       "Value of: 2*3\n"
3615                       "  Actual: 6\n"
3616                       "Expected: 5");
3617}
3618
3619// Tests ASSERT_EQ(NULL, pointer).
3620#if GTEST_CAN_COMPARE_NULL
3621TEST(AssertionTest, ASSERT_EQ_NULL) {
3622  // A success.
3623  const char* p = NULL;
3624  // Some older GCC versions may issue a spurious waring in this or the next
3625  // assertion statement. This warning should not be suppressed with
3626  // static_cast since the test verifies the ability to use bare NULL as the
3627  // expected parameter to the macro.
3628  ASSERT_EQ(NULL, p);
3629
3630  // A failure.
3631  static int n = 0;
3632  EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
3633                       "Value of: &n\n");
3634}
3635#endif  // GTEST_CAN_COMPARE_NULL
3636
3637// Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3638// treated as a null pointer by the compiler, we need to make sure
3639// that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3640// ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
3641TEST(ExpectTest, ASSERT_EQ_0) {
3642  int n = 0;
3643
3644  // A success.
3645  ASSERT_EQ(0, n);
3646
3647  // A failure.
3648  EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
3649                       "Expected: 0");
3650}
3651
3652// Tests ASSERT_NE.
3653TEST(AssertionTest, ASSERT_NE) {
3654  ASSERT_NE(6, 7);
3655  EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3656                       "Expected: ('a') != ('a'), "
3657                       "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3658}
3659
3660// Tests ASSERT_LE.
3661TEST(AssertionTest, ASSERT_LE) {
3662  ASSERT_LE(2, 3);
3663  ASSERT_LE(2, 2);
3664  EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
3665                       "Expected: (2) <= (0), actual: 2 vs 0");
3666}
3667
3668// Tests ASSERT_LT.
3669TEST(AssertionTest, ASSERT_LT) {
3670  ASSERT_LT(2, 3);
3671  EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
3672                       "Expected: (2) < (2), actual: 2 vs 2");
3673}
3674
3675// Tests ASSERT_GE.
3676TEST(AssertionTest, ASSERT_GE) {
3677  ASSERT_GE(2, 1);
3678  ASSERT_GE(2, 2);
3679  EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
3680                       "Expected: (2) >= (3), actual: 2 vs 3");
3681}
3682
3683// Tests ASSERT_GT.
3684TEST(AssertionTest, ASSERT_GT) {
3685  ASSERT_GT(2, 1);
3686  EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
3687                       "Expected: (2) > (2), actual: 2 vs 2");
3688}
3689
3690#if GTEST_HAS_EXCEPTIONS
3691
3692void ThrowNothing() {}
3693
3694// Tests ASSERT_THROW.
3695TEST(AssertionTest, ASSERT_THROW) {
3696  ASSERT_THROW(ThrowAnInteger(), int);
3697
3698# ifndef __BORLANDC__
3699
3700  // ICE's in C++Builder 2007 and 2009.
3701  EXPECT_FATAL_FAILURE(
3702      ASSERT_THROW(ThrowAnInteger(), bool),
3703      "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3704      "  Actual: it throws a different type.");
3705# endif
3706
3707  EXPECT_FATAL_FAILURE(
3708      ASSERT_THROW(ThrowNothing(), bool),
3709      "Expected: ThrowNothing() throws an exception of type bool.\n"
3710      "  Actual: it throws nothing.");
3711}
3712
3713// Tests ASSERT_NO_THROW.
3714TEST(AssertionTest, ASSERT_NO_THROW) {
3715  ASSERT_NO_THROW(ThrowNothing());
3716  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3717                       "Expected: ThrowAnInteger() doesn't throw an exception."
3718                       "\n  Actual: it throws.");
3719}
3720
3721// Tests ASSERT_ANY_THROW.
3722TEST(AssertionTest, ASSERT_ANY_THROW) {
3723  ASSERT_ANY_THROW(ThrowAnInteger());
3724  EXPECT_FATAL_FAILURE(
3725      ASSERT_ANY_THROW(ThrowNothing()),
3726      "Expected: ThrowNothing() throws an exception.\n"
3727      "  Actual: it doesn't.");
3728}
3729
3730#endif  // GTEST_HAS_EXCEPTIONS
3731
3732// Makes sure we deal with the precedence of <<.  This test should
3733// compile.
3734TEST(AssertionTest, AssertPrecedence) {
3735  ASSERT_EQ(1 < 2, true);
3736  bool false_value = false;
3737  ASSERT_EQ(true && false_value, false);
3738}
3739
3740// A subroutine used by the following test.
3741void TestEq1(int x) {
3742  ASSERT_EQ(1, x);
3743}
3744
3745// Tests calling a test subroutine that's not part of a fixture.
3746TEST(AssertionTest, NonFixtureSubroutine) {
3747  EXPECT_FATAL_FAILURE(TestEq1(2),
3748                       "Value of: x");
3749}
3750
3751// An uncopyable class.
3752class Uncopyable {
3753 public:
3754  explicit Uncopyable(int a_value) : value_(a_value) {}
3755
3756  int value() const { return value_; }
3757  bool operator==(const Uncopyable& rhs) const {
3758    return value() == rhs.value();
3759  }
3760 private:
3761  // This constructor deliberately has no implementation, as we don't
3762  // want this class to be copyable.
3763  Uncopyable(const Uncopyable&);  // NOLINT
3764
3765  int value_;
3766};
3767
3768::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3769  return os << value.value();
3770}
3771
3772
3773bool IsPositiveUncopyable(const Uncopyable& x) {
3774  return x.value() > 0;
3775}
3776
3777// A subroutine used by the following test.
3778void TestAssertNonPositive() {
3779  Uncopyable y(-1);
3780  ASSERT_PRED1(IsPositiveUncopyable, y);
3781}
3782// A subroutine used by the following test.
3783void TestAssertEqualsUncopyable() {
3784  Uncopyable x(5);
3785  Uncopyable y(-1);
3786  ASSERT_EQ(x, y);
3787}
3788
3789// Tests that uncopyable objects can be used in assertions.
3790TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3791  Uncopyable x(5);
3792  ASSERT_PRED1(IsPositiveUncopyable, x);
3793  ASSERT_EQ(x, x);
3794  EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3795    "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3796  EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3797    "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3798}
3799
3800// Tests that uncopyable objects can be used in expects.
3801TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3802  Uncopyable x(5);
3803  EXPECT_PRED1(IsPositiveUncopyable, x);
3804  Uncopyable y(-1);
3805  EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3806    "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3807  EXPECT_EQ(x, x);
3808  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3809    "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3810}
3811
3812enum NamedEnum {
3813  kE1 = 0,
3814  kE2 = 1
3815};
3816
3817TEST(AssertionTest, NamedEnum) {
3818  EXPECT_EQ(kE1, kE1);
3819  EXPECT_LT(kE1, kE2);
3820  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3821  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
3822}
3823
3824// The version of gcc used in XCode 2.2 has a bug and doesn't allow
3825// anonymous enums in assertions.  Therefore the following test is not
3826// done on Mac.
3827// Sun Studio also rejects this code.
3828#if !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3829
3830// Tests using assertions with anonymous enums.
3831enum {
3832  kCaseA = -1,
3833
3834# if GTEST_OS_LINUX
3835
3836  // We want to test the case where the size of the anonymous enum is
3837  // larger than sizeof(int), to make sure our implementation of the
3838  // assertions doesn't truncate the enums.  However, MSVC
3839  // (incorrectly) doesn't allow an enum value to exceed the range of
3840  // an int, so this has to be conditionally compiled.
3841  //
3842  // On Linux, kCaseB and kCaseA have the same value when truncated to
3843  // int size.  We want to test whether this will confuse the
3844  // assertions.
3845  kCaseB = testing::internal::kMaxBiggestInt,
3846
3847# else
3848
3849  kCaseB = INT_MAX,
3850
3851# endif  // GTEST_OS_LINUX
3852
3853  kCaseC = 42,
3854};
3855
3856TEST(AssertionTest, AnonymousEnum) {
3857# if GTEST_OS_LINUX
3858
3859  EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3860
3861# endif  // GTEST_OS_LINUX
3862
3863  EXPECT_EQ(kCaseA, kCaseA);
3864  EXPECT_NE(kCaseA, kCaseB);
3865  EXPECT_LT(kCaseA, kCaseB);
3866  EXPECT_LE(kCaseA, kCaseB);
3867  EXPECT_GT(kCaseB, kCaseA);
3868  EXPECT_GE(kCaseA, kCaseA);
3869  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3870                          "(kCaseA) >= (kCaseB)");
3871  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
3872                          "-1 vs 42");
3873
3874  ASSERT_EQ(kCaseA, kCaseA);
3875  ASSERT_NE(kCaseA, kCaseB);
3876  ASSERT_LT(kCaseA, kCaseB);
3877  ASSERT_LE(kCaseA, kCaseB);
3878  ASSERT_GT(kCaseB, kCaseA);
3879  ASSERT_GE(kCaseA, kCaseA);
3880
3881# ifndef __BORLANDC__
3882
3883  // ICE's in C++Builder.
3884  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
3885                       "Value of: kCaseB");
3886  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3887                       "Actual: 42");
3888# endif
3889
3890  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3891                       "Which is: -1");
3892}
3893
3894#endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3895
3896#if GTEST_OS_WINDOWS
3897
3898static HRESULT UnexpectedHRESULTFailure() {
3899  return E_UNEXPECTED;
3900}
3901
3902static HRESULT OkHRESULTSuccess() {
3903  return S_OK;
3904}
3905
3906static HRESULT FalseHRESULTSuccess() {
3907  return S_FALSE;
3908}
3909
3910// HRESULT assertion tests test both zero and non-zero
3911// success codes as well as failure message for each.
3912//
3913// Windows CE doesn't support message texts.
3914TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
3915  EXPECT_HRESULT_SUCCEEDED(S_OK);
3916  EXPECT_HRESULT_SUCCEEDED(S_FALSE);
3917
3918  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3919    "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3920    "  Actual: 0x8000FFFF");
3921}
3922
3923TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
3924  ASSERT_HRESULT_SUCCEEDED(S_OK);
3925  ASSERT_HRESULT_SUCCEEDED(S_FALSE);
3926
3927  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3928    "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3929    "  Actual: 0x8000FFFF");
3930}
3931
3932TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
3933  EXPECT_HRESULT_FAILED(E_UNEXPECTED);
3934
3935  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
3936    "Expected: (OkHRESULTSuccess()) fails.\n"
3937    "  Actual: 0x00000000");
3938  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
3939    "Expected: (FalseHRESULTSuccess()) fails.\n"
3940    "  Actual: 0x00000001");
3941}
3942
3943TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
3944  ASSERT_HRESULT_FAILED(E_UNEXPECTED);
3945
3946# ifndef __BORLANDC__
3947
3948  // ICE's in C++Builder 2007 and 2009.
3949  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
3950    "Expected: (OkHRESULTSuccess()) fails.\n"
3951    "  Actual: 0x00000000");
3952# endif
3953
3954  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
3955    "Expected: (FalseHRESULTSuccess()) fails.\n"
3956    "  Actual: 0x00000001");
3957}
3958
3959// Tests that streaming to the HRESULT macros works.
3960TEST(HRESULTAssertionTest, Streaming) {
3961  EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3962  ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3963  EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3964  ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3965
3966  EXPECT_NONFATAL_FAILURE(
3967      EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3968      "expected failure");
3969
3970# ifndef __BORLANDC__
3971
3972  // ICE's in C++Builder 2007 and 2009.
3973  EXPECT_FATAL_FAILURE(
3974      ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3975      "expected failure");
3976# endif
3977
3978  EXPECT_NONFATAL_FAILURE(
3979      EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
3980      "expected failure");
3981
3982  EXPECT_FATAL_FAILURE(
3983      ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
3984      "expected failure");
3985}
3986
3987#endif  // GTEST_OS_WINDOWS
3988
3989#ifdef __BORLANDC__
3990// Silences warnings: "Condition is always true", "Unreachable code"
3991# pragma option push -w-ccc -w-rch
3992#endif
3993
3994// Tests that the assertion macros behave like single statements.
3995TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
3996  if (AlwaysFalse())
3997    ASSERT_TRUE(false) << "This should never be executed; "
3998                          "It's a compilation test only.";
3999
4000  if (AlwaysTrue())
4001    EXPECT_FALSE(false);
4002  else
4003    ;  // NOLINT
4004
4005  if (AlwaysFalse())
4006    ASSERT_LT(1, 3);
4007
4008  if (AlwaysFalse())
4009    ;  // NOLINT
4010  else
4011    EXPECT_GT(3, 2) << "";
4012}
4013
4014#if GTEST_HAS_EXCEPTIONS
4015// Tests that the compiler will not complain about unreachable code in the
4016// EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
4017TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4018  int n = 0;
4019
4020  EXPECT_THROW(throw 1, int);
4021  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4022  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4023  EXPECT_NO_THROW(n++);
4024  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4025  EXPECT_ANY_THROW(throw 1);
4026  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4027}
4028
4029TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4030  if (AlwaysFalse())
4031    EXPECT_THROW(ThrowNothing(), bool);
4032
4033  if (AlwaysTrue())
4034    EXPECT_THROW(ThrowAnInteger(), int);
4035  else
4036    ;  // NOLINT
4037
4038  if (AlwaysFalse())
4039    EXPECT_NO_THROW(ThrowAnInteger());
4040
4041  if (AlwaysTrue())
4042    EXPECT_NO_THROW(ThrowNothing());
4043  else
4044    ;  // NOLINT
4045
4046  if (AlwaysFalse())
4047    EXPECT_ANY_THROW(ThrowNothing());
4048
4049  if (AlwaysTrue())
4050    EXPECT_ANY_THROW(ThrowAnInteger());
4051  else
4052    ;  // NOLINT
4053}
4054#endif  // GTEST_HAS_EXCEPTIONS
4055
4056TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4057  if (AlwaysFalse())
4058    EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4059                                    << "It's a compilation test only.";
4060  else
4061    ;  // NOLINT
4062
4063  if (AlwaysFalse())
4064    ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4065  else
4066    ;  // NOLINT
4067
4068  if (AlwaysTrue())
4069    EXPECT_NO_FATAL_FAILURE(SUCCEED());
4070  else
4071    ;  // NOLINT
4072
4073  if (AlwaysFalse())
4074    ;  // NOLINT
4075  else
4076    ASSERT_NO_FATAL_FAILURE(SUCCEED());
4077}
4078
4079// Tests that the assertion macros work well with switch statements.
4080TEST(AssertionSyntaxTest, WorksWithSwitch) {
4081  switch (0) {
4082    case 1:
4083      break;
4084    default:
4085      ASSERT_TRUE(true);
4086  }
4087
4088  switch (0)
4089    case 0:
4090      EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4091
4092  // Binary assertions are implemented using a different code path
4093  // than the Boolean assertions.  Hence we test them separately.
4094  switch (0) {
4095    case 1:
4096    default:
4097      ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4098  }
4099
4100  switch (0)
4101    case 0:
4102      EXPECT_NE(1, 2);
4103}
4104
4105#if GTEST_HAS_EXCEPTIONS
4106
4107void ThrowAString() {
4108    throw "String";
4109}
4110
4111// Test that the exception assertion macros compile and work with const
4112// type qualifier.
4113TEST(AssertionSyntaxTest, WorksWithConst) {
4114    ASSERT_THROW(ThrowAString(), const char*);
4115
4116    EXPECT_THROW(ThrowAString(), const char*);
4117}
4118
4119#endif  // GTEST_HAS_EXCEPTIONS
4120
4121}  // namespace
4122
4123namespace testing {
4124
4125// Tests that Google Test tracks SUCCEED*.
4126TEST(SuccessfulAssertionTest, SUCCEED) {
4127  SUCCEED();
4128  SUCCEED() << "OK";
4129  EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4130}
4131
4132// Tests that Google Test doesn't track successful EXPECT_*.
4133TEST(SuccessfulAssertionTest, EXPECT) {
4134  EXPECT_TRUE(true);
4135  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4136}
4137
4138// Tests that Google Test doesn't track successful EXPECT_STR*.
4139TEST(SuccessfulAssertionTest, EXPECT_STR) {
4140  EXPECT_STREQ("", "");
4141  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4142}
4143
4144// Tests that Google Test doesn't track successful ASSERT_*.
4145TEST(SuccessfulAssertionTest, ASSERT) {
4146  ASSERT_TRUE(true);
4147  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4148}
4149
4150// Tests that Google Test doesn't track successful ASSERT_STR*.
4151TEST(SuccessfulAssertionTest, ASSERT_STR) {
4152  ASSERT_STREQ("", "");
4153  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4154}
4155
4156}  // namespace testing
4157
4158namespace {
4159
4160// Tests EXPECT_TRUE.
4161TEST(ExpectTest, EXPECT_TRUE) {
4162  EXPECT_TRUE(2 > 1);  // NOLINT
4163  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4164                          "Value of: 2 < 1\n"
4165                          "  Actual: false\n"
4166                          "Expected: true");
4167  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
4168                          "2 > 3");
4169}
4170
4171// Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
4172TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4173  EXPECT_TRUE(ResultIsEven(2));
4174  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4175                          "Value of: ResultIsEven(3)\n"
4176                          "  Actual: false (3 is odd)\n"
4177                          "Expected: true");
4178  EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4179  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4180                          "Value of: ResultIsEvenNoExplanation(3)\n"
4181                          "  Actual: false (3 is odd)\n"
4182                          "Expected: true");
4183}
4184
4185// Tests EXPECT_FALSE.
4186TEST(ExpectTest, EXPECT_FALSE) {
4187  EXPECT_FALSE(2 < 1);  // NOLINT
4188  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4189                          "Value of: 2 > 1\n"
4190                          "  Actual: true\n"
4191                          "Expected: false");
4192  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
4193                          "2 < 3");
4194}
4195
4196// Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
4197TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4198  EXPECT_FALSE(ResultIsEven(3));
4199  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4200                          "Value of: ResultIsEven(2)\n"
4201                          "  Actual: true (2 is even)\n"
4202                          "Expected: false");
4203  EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4204  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4205                          "Value of: ResultIsEvenNoExplanation(2)\n"
4206                          "  Actual: true\n"
4207                          "Expected: false");
4208}
4209
4210#ifdef __BORLANDC__
4211// Restores warnings after previous "#pragma option push" supressed them
4212# pragma option pop
4213#endif
4214
4215// Tests EXPECT_EQ.
4216TEST(ExpectTest, EXPECT_EQ) {
4217  EXPECT_EQ(5, 2 + 3);
4218  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4219                          "Value of: 2*3\n"
4220                          "  Actual: 6\n"
4221                          "Expected: 5");
4222  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
4223                          "2 - 3");
4224}
4225
4226// Tests using EXPECT_EQ on double values.  The purpose is to make
4227// sure that the specialization we did for integer and anonymous enums
4228// isn't used for double arguments.
4229TEST(ExpectTest, EXPECT_EQ_Double) {
4230  // A success.
4231  EXPECT_EQ(5.6, 5.6);
4232
4233  // A failure.
4234  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
4235                          "5.1");
4236}
4237
4238#if GTEST_CAN_COMPARE_NULL
4239// Tests EXPECT_EQ(NULL, pointer).
4240TEST(ExpectTest, EXPECT_EQ_NULL) {
4241  // A success.
4242  const char* p = NULL;
4243  // Some older GCC versions may issue a spurious warning in this or the next
4244  // assertion statement. This warning should not be suppressed with
4245  // static_cast since the test verifies the ability to use bare NULL as the
4246  // expected parameter to the macro.
4247  EXPECT_EQ(NULL, p);
4248
4249  // A failure.
4250  int n = 0;
4251  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
4252                          "Value of: &n\n");
4253}
4254#endif  // GTEST_CAN_COMPARE_NULL
4255
4256// Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4257// treated as a null pointer by the compiler, we need to make sure
4258// that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4259// EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
4260TEST(ExpectTest, EXPECT_EQ_0) {
4261  int n = 0;
4262
4263  // A success.
4264  EXPECT_EQ(0, n);
4265
4266  // A failure.
4267  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
4268                          "Expected: 0");
4269}
4270
4271// Tests EXPECT_NE.
4272TEST(ExpectTest, EXPECT_NE) {
4273  EXPECT_NE(6, 7);
4274
4275  EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4276                          "Expected: ('a') != ('a'), "
4277                          "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4278  EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
4279                          "2");
4280  char* const p0 = NULL;
4281  EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
4282                          "p0");
4283  // Only way to get the Nokia compiler to compile the cast
4284  // is to have a separate void* variable first. Putting
4285  // the two casts on the same line doesn't work, neither does
4286  // a direct C-style to char*.
4287  void* pv1 = (void*)0x1234;  // NOLINT
4288  char* const p1 = reinterpret_cast<char*>(pv1);
4289  EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
4290                          "p1");
4291}
4292
4293// Tests EXPECT_LE.
4294TEST(ExpectTest, EXPECT_LE) {
4295  EXPECT_LE(2, 3);
4296  EXPECT_LE(2, 2);
4297  EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4298                          "Expected: (2) <= (0), actual: 2 vs 0");
4299  EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
4300                          "(1.1) <= (0.9)");
4301}
4302
4303// Tests EXPECT_LT.
4304TEST(ExpectTest, EXPECT_LT) {
4305  EXPECT_LT(2, 3);
4306  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4307                          "Expected: (2) < (2), actual: 2 vs 2");
4308  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
4309                          "(2) < (1)");
4310}
4311
4312// Tests EXPECT_GE.
4313TEST(ExpectTest, EXPECT_GE) {
4314  EXPECT_GE(2, 1);
4315  EXPECT_GE(2, 2);
4316  EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4317                          "Expected: (2) >= (3), actual: 2 vs 3");
4318  EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
4319                          "(0.9) >= (1.1)");
4320}
4321
4322// Tests EXPECT_GT.
4323TEST(ExpectTest, EXPECT_GT) {
4324  EXPECT_GT(2, 1);
4325  EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4326                          "Expected: (2) > (2), actual: 2 vs 2");
4327  EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
4328                          "(2) > (3)");
4329}
4330
4331#if GTEST_HAS_EXCEPTIONS
4332
4333// Tests EXPECT_THROW.
4334TEST(ExpectTest, EXPECT_THROW) {
4335  EXPECT_THROW(ThrowAnInteger(), int);
4336  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4337                          "Expected: ThrowAnInteger() throws an exception of "
4338                          "type bool.\n  Actual: it throws a different type.");
4339  EXPECT_NONFATAL_FAILURE(
4340      EXPECT_THROW(ThrowNothing(), bool),
4341      "Expected: ThrowNothing() throws an exception of type bool.\n"
4342      "  Actual: it throws nothing.");
4343}
4344
4345// Tests EXPECT_NO_THROW.
4346TEST(ExpectTest, EXPECT_NO_THROW) {
4347  EXPECT_NO_THROW(ThrowNothing());
4348  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4349                          "Expected: ThrowAnInteger() doesn't throw an "
4350                          "exception.\n  Actual: it throws.");
4351}
4352
4353// Tests EXPECT_ANY_THROW.
4354TEST(ExpectTest, EXPECT_ANY_THROW) {
4355  EXPECT_ANY_THROW(ThrowAnInteger());
4356  EXPECT_NONFATAL_FAILURE(
4357      EXPECT_ANY_THROW(ThrowNothing()),
4358      "Expected: ThrowNothing() throws an exception.\n"
4359      "  Actual: it doesn't.");
4360}
4361
4362#endif  // GTEST_HAS_EXCEPTIONS
4363
4364// Make sure we deal with the precedence of <<.
4365TEST(ExpectTest, ExpectPrecedence) {
4366  EXPECT_EQ(1 < 2, true);
4367  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4368                          "Value of: true && false");
4369}
4370
4371
4372// Tests the StreamableToString() function.
4373
4374// Tests using StreamableToString() on a scalar.
4375TEST(StreamableToStringTest, Scalar) {
4376  EXPECT_STREQ("5", StreamableToString(5).c_str());
4377}
4378
4379// Tests using StreamableToString() on a non-char pointer.
4380TEST(StreamableToStringTest, Pointer) {
4381  int n = 0;
4382  int* p = &n;
4383  EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4384}
4385
4386// Tests using StreamableToString() on a NULL non-char pointer.
4387TEST(StreamableToStringTest, NullPointer) {
4388  int* p = NULL;
4389  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4390}
4391
4392// Tests using StreamableToString() on a C string.
4393TEST(StreamableToStringTest, CString) {
4394  EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4395}
4396
4397// Tests using StreamableToString() on a NULL C string.
4398TEST(StreamableToStringTest, NullCString) {
4399  char* p = NULL;
4400  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4401}
4402
4403// Tests using streamable values as assertion messages.
4404
4405// Tests using std::string as an assertion message.
4406TEST(StreamableTest, string) {
4407  static const std::string str(
4408      "This failure message is a std::string, and is expected.");
4409  EXPECT_FATAL_FAILURE(FAIL() << str,
4410                       str.c_str());
4411}
4412
4413// Tests that we can output strings containing embedded NULs.
4414// Limited to Linux because we can only do this with std::string's.
4415TEST(StreamableTest, stringWithEmbeddedNUL) {
4416  static const char char_array_with_nul[] =
4417      "Here's a NUL\0 and some more string";
4418  static const std::string string_with_nul(char_array_with_nul,
4419                                           sizeof(char_array_with_nul)
4420                                           - 1);  // drops the trailing NUL
4421  EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4422                       "Here's a NUL\\0 and some more string");
4423}
4424
4425// Tests that we can output a NUL char.
4426TEST(StreamableTest, NULChar) {
4427  EXPECT_FATAL_FAILURE({  // NOLINT
4428    FAIL() << "A NUL" << '\0' << " and some more string";
4429  }, "A NUL\\0 and some more string");
4430}
4431
4432// Tests using int as an assertion message.
4433TEST(StreamableTest, int) {
4434  EXPECT_FATAL_FAILURE(FAIL() << 900913,
4435                       "900913");
4436}
4437
4438// Tests using NULL char pointer as an assertion message.
4439//
4440// In MSVC, streaming a NULL char * causes access violation.  Google Test
4441// implemented a workaround (substituting "(null)" for NULL).  This
4442// tests whether the workaround works.
4443TEST(StreamableTest, NullCharPtr) {
4444  EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
4445                       "(null)");
4446}
4447
4448// Tests that basic IO manipulators (endl, ends, and flush) can be
4449// streamed to testing::Message.
4450TEST(StreamableTest, BasicIoManip) {
4451  EXPECT_FATAL_FAILURE({  // NOLINT
4452    FAIL() << "Line 1." << std::endl
4453           << "A NUL char " << std::ends << std::flush << " in line 2.";
4454  }, "Line 1.\nA NUL char \\0 in line 2.");
4455}
4456
4457// Tests the macros that haven't been covered so far.
4458
4459void AddFailureHelper(bool* aborted) {
4460  *aborted = true;
4461  ADD_FAILURE() << "Failure";
4462  *aborted = false;
4463}
4464
4465// Tests ADD_FAILURE.
4466TEST(MacroTest, ADD_FAILURE) {
4467  bool aborted = true;
4468  EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4469                          "Failure");
4470  EXPECT_FALSE(aborted);
4471}
4472
4473// Tests ADD_FAILURE_AT.
4474TEST(MacroTest, ADD_FAILURE_AT) {
4475  // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4476  // the failure message contains the user-streamed part.
4477  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4478
4479  // Verifies that the user-streamed part is optional.
4480  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4481
4482  // Unfortunately, we cannot verify that the failure message contains
4483  // the right file path and line number the same way, as
4484  // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4485  // line number.  Instead, we do that in gtest_output_test_.cc.
4486}
4487
4488// Tests FAIL.
4489TEST(MacroTest, FAIL) {
4490  EXPECT_FATAL_FAILURE(FAIL(),
4491                       "Failed");
4492  EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4493                       "Intentional failure.");
4494}
4495
4496// Tests SUCCEED
4497TEST(MacroTest, SUCCEED) {
4498  SUCCEED();
4499  SUCCEED() << "Explicit success.";
4500}
4501
4502
4503// Tests for EXPECT_EQ() and ASSERT_EQ().
4504//
4505// These tests fail *intentionally*, s.t. the failure messages can be
4506// generated and tested.
4507//
4508// We have different tests for different argument types.
4509
4510// Tests using bool values in {EXPECT|ASSERT}_EQ.
4511TEST(EqAssertionTest, Bool) {
4512  EXPECT_EQ(true,  true);
4513  EXPECT_FATAL_FAILURE({
4514      bool false_value = false;
4515      ASSERT_EQ(false_value, true);
4516    }, "Value of: true");
4517}
4518
4519// Tests using int values in {EXPECT|ASSERT}_EQ.
4520TEST(EqAssertionTest, Int) {
4521  ASSERT_EQ(32, 32);
4522  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
4523                          "33");
4524}
4525
4526// Tests using time_t values in {EXPECT|ASSERT}_EQ.
4527TEST(EqAssertionTest, Time_T) {
4528  EXPECT_EQ(static_cast<time_t>(0),
4529            static_cast<time_t>(0));
4530  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4531                                 static_cast<time_t>(1234)),
4532                       "1234");
4533}
4534
4535// Tests using char values in {EXPECT|ASSERT}_EQ.
4536TEST(EqAssertionTest, Char) {
4537  ASSERT_EQ('z', 'z');
4538  const char ch = 'b';
4539  EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
4540                          "ch");
4541  EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
4542                          "ch");
4543}
4544
4545// Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
4546TEST(EqAssertionTest, WideChar) {
4547  EXPECT_EQ(L'b', L'b');
4548
4549  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4550                          "Value of: L'x'\n"
4551                          "  Actual: L'x' (120, 0x78)\n"
4552                          "Expected: L'\0'\n"
4553                          "Which is: L'\0' (0, 0x0)");
4554
4555  static wchar_t wchar;
4556  wchar = L'b';
4557  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4558                          "wchar");
4559  wchar = 0x8119;
4560  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4561                       "Value of: wchar");
4562}
4563
4564// Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
4565TEST(EqAssertionTest, StdString) {
4566  // Compares a const char* to an std::string that has identical
4567  // content.
4568  ASSERT_EQ("Test", ::std::string("Test"));
4569
4570  // Compares two identical std::strings.
4571  static const ::std::string str1("A * in the middle");
4572  static const ::std::string str2(str1);
4573  EXPECT_EQ(str1, str2);
4574
4575  // Compares a const char* to an std::string that has different
4576  // content
4577  EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4578                          "::std::string(\"test\")");
4579
4580  // Compares an std::string to a char* that has different content.
4581  char* const p1 = const_cast<char*>("foo");
4582  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
4583                          "p1");
4584
4585  // Compares two std::strings that have different contents, one of
4586  // which having a NUL character in the middle.  This should fail.
4587  static ::std::string str3(str1);
4588  str3.at(2) = '\0';
4589  EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4590                       "Value of: str3\n"
4591                       "  Actual: \"A \\0 in the middle\"");
4592}
4593
4594#if GTEST_HAS_STD_WSTRING
4595
4596// Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
4597TEST(EqAssertionTest, StdWideString) {
4598  // Compares two identical std::wstrings.
4599  const ::std::wstring wstr1(L"A * in the middle");
4600  const ::std::wstring wstr2(wstr1);
4601  ASSERT_EQ(wstr1, wstr2);
4602
4603  // Compares an std::wstring to a const wchar_t* that has identical
4604  // content.
4605  const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4606  EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4607
4608  // Compares an std::wstring to a const wchar_t* that has different
4609  // content.
4610  const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4611  EXPECT_NONFATAL_FAILURE({  // NOLINT
4612    EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4613  }, "kTestX8120");
4614
4615  // Compares two std::wstrings that have different contents, one of
4616  // which having a NUL character in the middle.
4617  ::std::wstring wstr3(wstr1);
4618  wstr3.at(2) = L'\0';
4619  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4620                          "wstr3");
4621
4622  // Compares a wchar_t* to an std::wstring that has different
4623  // content.
4624  EXPECT_FATAL_FAILURE({  // NOLINT
4625    ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4626  }, "");
4627}
4628
4629#endif  // GTEST_HAS_STD_WSTRING
4630
4631#if GTEST_HAS_GLOBAL_STRING
4632// Tests using ::string values in {EXPECT|ASSERT}_EQ.
4633TEST(EqAssertionTest, GlobalString) {
4634  // Compares a const char* to a ::string that has identical content.
4635  EXPECT_EQ("Test", ::string("Test"));
4636
4637  // Compares two identical ::strings.
4638  const ::string str1("A * in the middle");
4639  const ::string str2(str1);
4640  ASSERT_EQ(str1, str2);
4641
4642  // Compares a ::string to a const char* that has different content.
4643  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
4644                          "test");
4645
4646  // Compares two ::strings that have different contents, one of which
4647  // having a NUL character in the middle.
4648  ::string str3(str1);
4649  str3.at(2) = '\0';
4650  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
4651                          "str3");
4652
4653  // Compares a ::string to a char* that has different content.
4654  EXPECT_FATAL_FAILURE({  // NOLINT
4655    ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
4656  }, "");
4657}
4658
4659#endif  // GTEST_HAS_GLOBAL_STRING
4660
4661#if GTEST_HAS_GLOBAL_WSTRING
4662
4663// Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
4664TEST(EqAssertionTest, GlobalWideString) {
4665  // Compares two identical ::wstrings.
4666  static const ::wstring wstr1(L"A * in the middle");
4667  static const ::wstring wstr2(wstr1);
4668  EXPECT_EQ(wstr1, wstr2);
4669
4670  // Compares a const wchar_t* to a ::wstring that has identical content.
4671  const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4672  ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
4673
4674  // Compares a const wchar_t* to a ::wstring that has different
4675  // content.
4676  const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4677  EXPECT_NONFATAL_FAILURE({  // NOLINT
4678    EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
4679  }, "Test\\x8119");
4680
4681  // Compares a wchar_t* to a ::wstring that has different content.
4682  wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
4683  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
4684                          "bar");
4685
4686  // Compares two ::wstrings that have different contents, one of which
4687  // having a NUL character in the middle.
4688  static ::wstring wstr3;
4689  wstr3 = wstr1;
4690  wstr3.at(2) = L'\0';
4691  EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
4692                       "wstr3");
4693}
4694
4695#endif  // GTEST_HAS_GLOBAL_WSTRING
4696
4697// Tests using char pointers in {EXPECT|ASSERT}_EQ.
4698TEST(EqAssertionTest, CharPointer) {
4699  char* const p0 = NULL;
4700  // Only way to get the Nokia compiler to compile the cast
4701  // is to have a separate void* variable first. Putting
4702  // the two casts on the same line doesn't work, neither does
4703  // a direct C-style to char*.
4704  void* pv1 = (void*)0x1234;  // NOLINT
4705  void* pv2 = (void*)0xABC0;  // NOLINT
4706  char* const p1 = reinterpret_cast<char*>(pv1);
4707  char* const p2 = reinterpret_cast<char*>(pv2);
4708  ASSERT_EQ(p1, p1);
4709
4710  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4711                          "Value of: p2");
4712  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4713                          "p2");
4714  EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4715                                 reinterpret_cast<char*>(0xABC0)),
4716                       "ABC0");
4717}
4718
4719// Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
4720TEST(EqAssertionTest, WideCharPointer) {
4721  wchar_t* const p0 = NULL;
4722  // Only way to get the Nokia compiler to compile the cast
4723  // is to have a separate void* variable first. Putting
4724  // the two casts on the same line doesn't work, neither does
4725  // a direct C-style to char*.
4726  void* pv1 = (void*)0x1234;  // NOLINT
4727  void* pv2 = (void*)0xABC0;  // NOLINT
4728  wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4729  wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4730  EXPECT_EQ(p0, p0);
4731
4732  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4733                          "Value of: p2");
4734  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4735                          "p2");
4736  void* pv3 = (void*)0x1234;  // NOLINT
4737  void* pv4 = (void*)0xABC0;  // NOLINT
4738  const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4739  const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4740  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
4741                          "p4");
4742}
4743
4744// Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
4745TEST(EqAssertionTest, OtherPointer) {
4746  ASSERT_EQ(static_cast<const int*>(NULL),
4747            static_cast<const int*>(NULL));
4748  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
4749                                 reinterpret_cast<const int*>(0x1234)),
4750                       "0x1234");
4751}
4752
4753// A class that supports binary comparison operators but not streaming.
4754class UnprintableChar {
4755 public:
4756  explicit UnprintableChar(char ch) : char_(ch) {}
4757
4758  bool operator==(const UnprintableChar& rhs) const {
4759    return char_ == rhs.char_;
4760  }
4761  bool operator!=(const UnprintableChar& rhs) const {
4762    return char_ != rhs.char_;
4763  }
4764  bool operator<(const UnprintableChar& rhs) const {
4765    return char_ < rhs.char_;
4766  }
4767  bool operator<=(const UnprintableChar& rhs) const {
4768    return char_ <= rhs.char_;
4769  }
4770  bool operator>(const UnprintableChar& rhs) const {
4771    return char_ > rhs.char_;
4772  }
4773  bool operator>=(const UnprintableChar& rhs) const {
4774    return char_ >= rhs.char_;
4775  }
4776
4777 private:
4778  char char_;
4779};
4780
4781// Tests that ASSERT_EQ() and friends don't require the arguments to
4782// be printable.
4783TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4784  const UnprintableChar x('x'), y('y');
4785  ASSERT_EQ(x, x);
4786  EXPECT_NE(x, y);
4787  ASSERT_LT(x, y);
4788  EXPECT_LE(x, y);
4789  ASSERT_GT(y, x);
4790  EXPECT_GE(x, x);
4791
4792  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4793  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4794  EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4795  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4796  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4797
4798  // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4799  // variables, so we have to write UnprintableChar('x') instead of x.
4800#ifndef __BORLANDC__
4801  // ICE's in C++Builder.
4802  EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4803                       "1-byte object <78>");
4804  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4805                       "1-byte object <78>");
4806#endif
4807  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4808                       "1-byte object <79>");
4809  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4810                       "1-byte object <78>");
4811  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4812                       "1-byte object <79>");
4813}
4814
4815// Tests the FRIEND_TEST macro.
4816
4817// This class has a private member we want to test.  We will test it
4818// both in a TEST and in a TEST_F.
4819class Foo {
4820 public:
4821  Foo() {}
4822
4823 private:
4824  int Bar() const { return 1; }
4825
4826  // Declares the friend tests that can access the private member
4827  // Bar().
4828  FRIEND_TEST(FRIEND_TEST_Test, TEST);
4829  FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4830};
4831
4832// Tests that the FRIEND_TEST declaration allows a TEST to access a
4833// class's private members.  This should compile.
4834TEST(FRIEND_TEST_Test, TEST) {
4835  ASSERT_EQ(1, Foo().Bar());
4836}
4837
4838// The fixture needed to test using FRIEND_TEST with TEST_F.
4839class FRIEND_TEST_Test2 : public Test {
4840 protected:
4841  Foo foo;
4842};
4843
4844// Tests that the FRIEND_TEST declaration allows a TEST_F to access a
4845// class's private members.  This should compile.
4846TEST_F(FRIEND_TEST_Test2, TEST_F) {
4847  ASSERT_EQ(1, foo.Bar());
4848}
4849
4850// Tests the life cycle of Test objects.
4851
4852// The test fixture for testing the life cycle of Test objects.
4853//
4854// This class counts the number of live test objects that uses this
4855// fixture.
4856class TestLifeCycleTest : public Test {
4857 protected:
4858  // Constructor.  Increments the number of test objects that uses
4859  // this fixture.
4860  TestLifeCycleTest() { count_++; }
4861
4862  // Destructor.  Decrements the number of test objects that uses this
4863  // fixture.
4864  ~TestLifeCycleTest() { count_--; }
4865
4866  // Returns the number of live test objects that uses this fixture.
4867  int count() const { return count_; }
4868
4869 private:
4870  static int count_;
4871};
4872
4873int TestLifeCycleTest::count_ = 0;
4874
4875// Tests the life cycle of test objects.
4876TEST_F(TestLifeCycleTest, Test1) {
4877  // There should be only one test object in this test case that's
4878  // currently alive.
4879  ASSERT_EQ(1, count());
4880}
4881
4882// Tests the life cycle of test objects.
4883TEST_F(TestLifeCycleTest, Test2) {
4884  // After Test1 is done and Test2 is started, there should still be
4885  // only one live test object, as the object for Test1 should've been
4886  // deleted.
4887  ASSERT_EQ(1, count());
4888}
4889
4890}  // namespace
4891
4892// Tests that the copy constructor works when it is NOT optimized away by
4893// the compiler.
4894TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
4895  // Checks that the copy constructor doesn't try to dereference NULL pointers
4896  // in the source object.
4897  AssertionResult r1 = AssertionSuccess();
4898  AssertionResult r2 = r1;
4899  // The following line is added to prevent the compiler from optimizing
4900  // away the constructor call.
4901  r1 << "abc";
4902
4903  AssertionResult r3 = r1;
4904  EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
4905  EXPECT_STREQ("abc", r1.message());
4906}
4907
4908// Tests that AssertionSuccess and AssertionFailure construct
4909// AssertionResult objects as expected.
4910TEST(AssertionResultTest, ConstructionWorks) {
4911  AssertionResult r1 = AssertionSuccess();
4912  EXPECT_TRUE(r1);
4913  EXPECT_STREQ("", r1.message());
4914
4915  AssertionResult r2 = AssertionSuccess() << "abc";
4916  EXPECT_TRUE(r2);
4917  EXPECT_STREQ("abc", r2.message());
4918
4919  AssertionResult r3 = AssertionFailure();
4920  EXPECT_FALSE(r3);
4921  EXPECT_STREQ("", r3.message());
4922
4923  AssertionResult r4 = AssertionFailure() << "def";
4924  EXPECT_FALSE(r4);
4925  EXPECT_STREQ("def", r4.message());
4926
4927  AssertionResult r5 = AssertionFailure(Message() << "ghi");
4928  EXPECT_FALSE(r5);
4929  EXPECT_STREQ("ghi", r5.message());
4930}
4931
4932// Tests that the negation flips the predicate result but keeps the message.
4933TEST(AssertionResultTest, NegationWorks) {
4934  AssertionResult r1 = AssertionSuccess() << "abc";
4935  EXPECT_FALSE(!r1);
4936  EXPECT_STREQ("abc", (!r1).message());
4937
4938  AssertionResult r2 = AssertionFailure() << "def";
4939  EXPECT_TRUE(!r2);
4940  EXPECT_STREQ("def", (!r2).message());
4941}
4942
4943TEST(AssertionResultTest, StreamingWorks) {
4944  AssertionResult r = AssertionSuccess();
4945  r << "abc" << 'd' << 0 << true;
4946  EXPECT_STREQ("abcd0true", r.message());
4947}
4948
4949TEST(AssertionResultTest, CanStreamOstreamManipulators) {
4950  AssertionResult r = AssertionSuccess();
4951  r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
4952  EXPECT_STREQ("Data\n\\0Will be visible", r.message());
4953}
4954
4955// Tests streaming a user type whose definition and operator << are
4956// both in the global namespace.
4957class Base {
4958 public:
4959  explicit Base(int an_x) : x_(an_x) {}
4960  int x() const { return x_; }
4961 private:
4962  int x_;
4963};
4964std::ostream& operator<<(std::ostream& os,
4965                         const Base& val) {
4966  return os << val.x();
4967}
4968std::ostream& operator<<(std::ostream& os,
4969                         const Base* pointer) {
4970  return os << "(" << pointer->x() << ")";
4971}
4972
4973TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
4974  Message msg;
4975  Base a(1);
4976
4977  msg << a << &a;  // Uses ::operator<<.
4978  EXPECT_STREQ("1(1)", msg.GetString().c_str());
4979}
4980
4981// Tests streaming a user type whose definition and operator<< are
4982// both in an unnamed namespace.
4983namespace {
4984class MyTypeInUnnamedNameSpace : public Base {
4985 public:
4986  explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
4987};
4988std::ostream& operator<<(std::ostream& os,
4989                         const MyTypeInUnnamedNameSpace& val) {
4990  return os << val.x();
4991}
4992std::ostream& operator<<(std::ostream& os,
4993                         const MyTypeInUnnamedNameSpace* pointer) {
4994  return os << "(" << pointer->x() << ")";
4995}
4996}  // namespace
4997
4998TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
4999  Message msg;
5000  MyTypeInUnnamedNameSpace a(1);
5001
5002  msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5003  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5004}
5005
5006// Tests streaming a user type whose definition and operator<< are
5007// both in a user namespace.
5008namespace namespace1 {
5009class MyTypeInNameSpace1 : public Base {
5010 public:
5011  explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5012};
5013std::ostream& operator<<(std::ostream& os,
5014                         const MyTypeInNameSpace1& val) {
5015  return os << val.x();
5016}
5017std::ostream& operator<<(std::ostream& os,
5018                         const MyTypeInNameSpace1* pointer) {
5019  return os << "(" << pointer->x() << ")";
5020}
5021}  // namespace namespace1
5022
5023TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5024  Message msg;
5025  namespace1::MyTypeInNameSpace1 a(1);
5026
5027  msg << a << &a;  // Uses namespace1::operator<<.
5028  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5029}
5030
5031// Tests streaming a user type whose definition is in a user namespace
5032// but whose operator<< is in the global namespace.
5033namespace namespace2 {
5034class MyTypeInNameSpace2 : public ::Base {
5035 public:
5036  explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5037};
5038}  // namespace namespace2
5039std::ostream& operator<<(std::ostream& os,
5040                         const namespace2::MyTypeInNameSpace2& val) {
5041  return os << val.x();
5042}
5043std::ostream& operator<<(std::ostream& os,
5044                         const namespace2::MyTypeInNameSpace2* pointer) {
5045  return os << "(" << pointer->x() << ")";
5046}
5047
5048TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5049  Message msg;
5050  namespace2::MyTypeInNameSpace2 a(1);
5051
5052  msg << a << &a;  // Uses ::operator<<.
5053  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5054}
5055
5056// Tests streaming NULL pointers to testing::Message.
5057TEST(MessageTest, NullPointers) {
5058  Message msg;
5059  char* const p1 = NULL;
5060  unsigned char* const p2 = NULL;
5061  int* p3 = NULL;
5062  double* p4 = NULL;
5063  bool* p5 = NULL;
5064  Message* p6 = NULL;
5065
5066  msg << p1 << p2 << p3 << p4 << p5 << p6;
5067  ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5068               msg.GetString().c_str());
5069}
5070
5071// Tests streaming wide strings to testing::Message.
5072TEST(MessageTest, WideStrings) {
5073  // Streams a NULL of type const wchar_t*.
5074  const wchar_t* const_wstr = NULL;
5075  EXPECT_STREQ("(null)",
5076               (Message() << const_wstr).GetString().c_str());
5077
5078  // Streams a NULL of type wchar_t*.
5079  wchar_t* wstr = NULL;
5080  EXPECT_STREQ("(null)",
5081               (Message() << wstr).GetString().c_str());
5082
5083  // Streams a non-NULL of type const wchar_t*.
5084  const_wstr = L"abc\x8119";
5085  EXPECT_STREQ("abc\xe8\x84\x99",
5086               (Message() << const_wstr).GetString().c_str());
5087
5088  // Streams a non-NULL of type wchar_t*.
5089  wstr = const_cast<wchar_t*>(const_wstr);
5090  EXPECT_STREQ("abc\xe8\x84\x99",
5091               (Message() << wstr).GetString().c_str());
5092}
5093
5094
5095// This line tests that we can define tests in the testing namespace.
5096namespace testing {
5097
5098// Tests the TestInfo class.
5099
5100class TestInfoTest : public Test {
5101 protected:
5102  static const TestInfo* GetTestInfo(const char* test_name) {
5103    const TestCase* const test_case = GetUnitTestImpl()->
5104        GetTestCase("TestInfoTest", "", NULL, NULL);
5105
5106    for (int i = 0; i < test_case->total_test_count(); ++i) {
5107      const TestInfo* const test_info = test_case->GetTestInfo(i);
5108      if (strcmp(test_name, test_info->name()) == 0)
5109        return test_info;
5110    }
5111    return NULL;
5112  }
5113
5114  static const TestResult* GetTestResult(
5115      const TestInfo* test_info) {
5116    return test_info->result();
5117  }
5118};
5119
5120// Tests TestInfo::test_case_name() and TestInfo::name().
5121TEST_F(TestInfoTest, Names) {
5122  const TestInfo* const test_info = GetTestInfo("Names");
5123
5124  ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
5125  ASSERT_STREQ("Names", test_info->name());
5126}
5127
5128// Tests TestInfo::result().
5129TEST_F(TestInfoTest, result) {
5130  const TestInfo* const test_info = GetTestInfo("result");
5131
5132  // Initially, there is no TestPartResult for this test.
5133  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5134
5135  // After the previous assertion, there is still none.
5136  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5137}
5138
5139// Tests setting up and tearing down a test case.
5140
5141class SetUpTestCaseTest : public Test {
5142 protected:
5143  // This will be called once before the first test in this test case
5144  // is run.
5145  static void SetUpTestCase() {
5146    printf("Setting up the test case . . .\n");
5147
5148    // Initializes some shared resource.  In this simple example, we
5149    // just create a C string.  More complex stuff can be done if
5150    // desired.
5151    shared_resource_ = "123";
5152
5153    // Increments the number of test cases that have been set up.
5154    counter_++;
5155
5156    // SetUpTestCase() should be called only once.
5157    EXPECT_EQ(1, counter_);
5158  }
5159
5160  // This will be called once after the last test in this test case is
5161  // run.
5162  static void TearDownTestCase() {
5163    printf("Tearing down the test case . . .\n");
5164
5165    // Decrements the number of test cases that have been set up.
5166    counter_--;
5167
5168    // TearDownTestCase() should be called only once.
5169    EXPECT_EQ(0, counter_);
5170
5171    // Cleans up the shared resource.
5172    shared_resource_ = NULL;
5173  }
5174
5175  // This will be called before each test in this test case.
5176  virtual void SetUp() {
5177    // SetUpTestCase() should be called only once, so counter_ should
5178    // always be 1.
5179    EXPECT_EQ(1, counter_);
5180  }
5181
5182  // Number of test cases that have been set up.
5183  static int counter_;
5184
5185  // Some resource to be shared by all tests in this test case.
5186  static const char* shared_resource_;
5187};
5188
5189int SetUpTestCaseTest::counter_ = 0;
5190const char* SetUpTestCaseTest::shared_resource_ = NULL;
5191
5192// A test that uses the shared resource.
5193TEST_F(SetUpTestCaseTest, Test1) {
5194  EXPECT_STRNE(NULL, shared_resource_);
5195}
5196
5197// Another test that uses the shared resource.
5198TEST_F(SetUpTestCaseTest, Test2) {
5199  EXPECT_STREQ("123", shared_resource_);
5200}
5201
5202// The InitGoogleTestTest test case tests testing::InitGoogleTest().
5203
5204// The Flags struct stores a copy of all Google Test flags.
5205struct Flags {
5206  // Constructs a Flags struct where each flag has its default value.
5207  Flags() : also_run_disabled_tests(false),
5208            break_on_failure(false),
5209            catch_exceptions(false),
5210            death_test_use_fork(false),
5211            filter(""),
5212            list_tests(false),
5213            output(""),
5214            print_time(true),
5215            random_seed(0),
5216            repeat(1),
5217            shuffle(false),
5218            stack_trace_depth(kMaxStackTraceDepth),
5219            stream_result_to(""),
5220            throw_on_failure(false) {}
5221
5222  // Factory methods.
5223
5224  // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5225  // the given value.
5226  static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5227    Flags flags;
5228    flags.also_run_disabled_tests = also_run_disabled_tests;
5229    return flags;
5230  }
5231
5232  // Creates a Flags struct where the gtest_break_on_failure flag has
5233  // the given value.
5234  static Flags BreakOnFailure(bool break_on_failure) {
5235    Flags flags;
5236    flags.break_on_failure = break_on_failure;
5237    return flags;
5238  }
5239
5240  // Creates a Flags struct where the gtest_catch_exceptions flag has
5241  // the given value.
5242  static Flags CatchExceptions(bool catch_exceptions) {
5243    Flags flags;
5244    flags.catch_exceptions = catch_exceptions;
5245    return flags;
5246  }
5247
5248  // Creates a Flags struct where the gtest_death_test_use_fork flag has
5249  // the given value.
5250  static Flags DeathTestUseFork(bool death_test_use_fork) {
5251    Flags flags;
5252    flags.death_test_use_fork = death_test_use_fork;
5253    return flags;
5254  }
5255
5256  // Creates a Flags struct where the gtest_filter flag has the given
5257  // value.
5258  static Flags Filter(const char* filter) {
5259    Flags flags;
5260    flags.filter = filter;
5261    return flags;
5262  }
5263
5264  // Creates a Flags struct where the gtest_list_tests flag has the
5265  // given value.
5266  static Flags ListTests(bool list_tests) {
5267    Flags flags;
5268    flags.list_tests = list_tests;
5269    return flags;
5270  }
5271
5272  // Creates a Flags struct where the gtest_output flag has the given
5273  // value.
5274  static Flags Output(const char* output) {
5275    Flags flags;
5276    flags.output = output;
5277    return flags;
5278  }
5279
5280  // Creates a Flags struct where the gtest_print_time flag has the given
5281  // value.
5282  static Flags PrintTime(bool print_time) {
5283    Flags flags;
5284    flags.print_time = print_time;
5285    return flags;
5286  }
5287
5288  // Creates a Flags struct where the gtest_random_seed flag has
5289  // the given value.
5290  static Flags RandomSeed(Int32 random_seed) {
5291    Flags flags;
5292    flags.random_seed = random_seed;
5293    return flags;
5294  }
5295
5296  // Creates a Flags struct where the gtest_repeat flag has the given
5297  // value.
5298  static Flags Repeat(Int32 repeat) {
5299    Flags flags;
5300    flags.repeat = repeat;
5301    return flags;
5302  }
5303
5304  // Creates a Flags struct where the gtest_shuffle flag has
5305  // the given value.
5306  static Flags Shuffle(bool shuffle) {
5307    Flags flags;
5308    flags.shuffle = shuffle;
5309    return flags;
5310  }
5311
5312  // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5313  // the given value.
5314  static Flags StackTraceDepth(Int32 stack_trace_depth) {
5315    Flags flags;
5316    flags.stack_trace_depth = stack_trace_depth;
5317    return flags;
5318  }
5319
5320  // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5321  // the given value.
5322  static Flags StreamResultTo(const char* stream_result_to) {
5323    Flags flags;
5324    flags.stream_result_to = stream_result_to;
5325    return flags;
5326  }
5327
5328  // Creates a Flags struct where the gtest_throw_on_failure flag has
5329  // the given value.
5330  static Flags ThrowOnFailure(bool throw_on_failure) {
5331    Flags flags;
5332    flags.throw_on_failure = throw_on_failure;
5333    return flags;
5334  }
5335
5336  // These fields store the flag values.
5337  bool also_run_disabled_tests;
5338  bool break_on_failure;
5339  bool catch_exceptions;
5340  bool death_test_use_fork;
5341  const char* filter;
5342  bool list_tests;
5343  const char* output;
5344  bool print_time;
5345  Int32 random_seed;
5346  Int32 repeat;
5347  bool shuffle;
5348  Int32 stack_trace_depth;
5349  const char* stream_result_to;
5350  bool throw_on_failure;
5351};
5352
5353// Fixture for testing InitGoogleTest().
5354class InitGoogleTestTest : public Test {
5355 protected:
5356  // Clears the flags before each test.
5357  virtual void SetUp() {
5358    GTEST_FLAG(also_run_disabled_tests) = false;
5359    GTEST_FLAG(break_on_failure) = false;
5360    GTEST_FLAG(catch_exceptions) = false;
5361    GTEST_FLAG(death_test_use_fork) = false;
5362    GTEST_FLAG(filter) = "";
5363    GTEST_FLAG(list_tests) = false;
5364    GTEST_FLAG(output) = "";
5365    GTEST_FLAG(print_time) = true;
5366    GTEST_FLAG(random_seed) = 0;
5367    GTEST_FLAG(repeat) = 1;
5368    GTEST_FLAG(shuffle) = false;
5369    GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5370    GTEST_FLAG(stream_result_to) = "";
5371    GTEST_FLAG(throw_on_failure) = false;
5372  }
5373
5374  // Asserts that two narrow or wide string arrays are equal.
5375  template <typename CharType>
5376  static void AssertStringArrayEq(size_t size1, CharType** array1,
5377                                  size_t size2, CharType** array2) {
5378    ASSERT_EQ(size1, size2) << " Array sizes different.";
5379
5380    for (size_t i = 0; i != size1; i++) {
5381      ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5382    }
5383  }
5384
5385  // Verifies that the flag values match the expected values.
5386  static void CheckFlags(const Flags& expected) {
5387    EXPECT_EQ(expected.also_run_disabled_tests,
5388              GTEST_FLAG(also_run_disabled_tests));
5389    EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5390    EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5391    EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5392    EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5393    EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5394    EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5395    EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5396    EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5397    EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5398    EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5399    EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5400    EXPECT_STREQ(expected.stream_result_to,
5401                 GTEST_FLAG(stream_result_to).c_str());
5402    EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5403  }
5404
5405  // Parses a command line (specified by argc1 and argv1), then
5406  // verifies that the flag values are expected and that the
5407  // recognized flags are removed from the command line.
5408  template <typename CharType>
5409  static void TestParsingFlags(int argc1, const CharType** argv1,
5410                               int argc2, const CharType** argv2,
5411                               const Flags& expected, bool should_print_help) {
5412    const bool saved_help_flag = ::testing::internal::g_help_flag;
5413    ::testing::internal::g_help_flag = false;
5414
5415#if GTEST_HAS_STREAM_REDIRECTION
5416    CaptureStdout();
5417#endif
5418
5419    // Parses the command line.
5420    internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5421
5422#if GTEST_HAS_STREAM_REDIRECTION
5423    const String captured_stdout = GetCapturedStdout();
5424#endif
5425
5426    // Verifies the flag values.
5427    CheckFlags(expected);
5428
5429    // Verifies that the recognized flags are removed from the command
5430    // line.
5431    AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5432
5433    // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5434    // help message for the flags it recognizes.
5435    EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5436
5437#if GTEST_HAS_STREAM_REDIRECTION
5438    const char* const expected_help_fragment =
5439        "This program contains tests written using";
5440    if (should_print_help) {
5441      EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5442    } else {
5443      EXPECT_PRED_FORMAT2(IsNotSubstring,
5444                          expected_help_fragment, captured_stdout);
5445    }
5446#endif  // GTEST_HAS_STREAM_REDIRECTION
5447
5448    ::testing::internal::g_help_flag = saved_help_flag;
5449  }
5450
5451  // This macro wraps TestParsingFlags s.t. the user doesn't need
5452  // to specify the array sizes.
5453
5454#define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5455  TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5456                   sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5457                   expected, should_print_help)
5458};
5459
5460// Tests parsing an empty command line.
5461TEST_F(InitGoogleTestTest, Empty) {
5462  const char* argv[] = {
5463    NULL
5464  };
5465
5466  const char* argv2[] = {
5467    NULL
5468  };
5469
5470  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5471}
5472
5473// Tests parsing a command line that has no flag.
5474TEST_F(InitGoogleTestTest, NoFlag) {
5475  const char* argv[] = {
5476    "foo.exe",
5477    NULL
5478  };
5479
5480  const char* argv2[] = {
5481    "foo.exe",
5482    NULL
5483  };
5484
5485  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5486}
5487
5488// Tests parsing a bad --gtest_filter flag.
5489TEST_F(InitGoogleTestTest, FilterBad) {
5490  const char* argv[] = {
5491    "foo.exe",
5492    "--gtest_filter",
5493    NULL
5494  };
5495
5496  const char* argv2[] = {
5497    "foo.exe",
5498    "--gtest_filter",
5499    NULL
5500  };
5501
5502  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5503}
5504
5505// Tests parsing an empty --gtest_filter flag.
5506TEST_F(InitGoogleTestTest, FilterEmpty) {
5507  const char* argv[] = {
5508    "foo.exe",
5509    "--gtest_filter=",
5510    NULL
5511  };
5512
5513  const char* argv2[] = {
5514    "foo.exe",
5515    NULL
5516  };
5517
5518  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5519}
5520
5521// Tests parsing a non-empty --gtest_filter flag.
5522TEST_F(InitGoogleTestTest, FilterNonEmpty) {
5523  const char* argv[] = {
5524    "foo.exe",
5525    "--gtest_filter=abc",
5526    NULL
5527  };
5528
5529  const char* argv2[] = {
5530    "foo.exe",
5531    NULL
5532  };
5533
5534  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5535}
5536
5537// Tests parsing --gtest_break_on_failure.
5538TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
5539  const char* argv[] = {
5540    "foo.exe",
5541    "--gtest_break_on_failure",
5542    NULL
5543};
5544
5545  const char* argv2[] = {
5546    "foo.exe",
5547    NULL
5548  };
5549
5550  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5551}
5552
5553// Tests parsing --gtest_break_on_failure=0.
5554TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
5555  const char* argv[] = {
5556    "foo.exe",
5557    "--gtest_break_on_failure=0",
5558    NULL
5559  };
5560
5561  const char* argv2[] = {
5562    "foo.exe",
5563    NULL
5564  };
5565
5566  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5567}
5568
5569// Tests parsing --gtest_break_on_failure=f.
5570TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
5571  const char* argv[] = {
5572    "foo.exe",
5573    "--gtest_break_on_failure=f",
5574    NULL
5575  };
5576
5577  const char* argv2[] = {
5578    "foo.exe",
5579    NULL
5580  };
5581
5582  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5583}
5584
5585// Tests parsing --gtest_break_on_failure=F.
5586TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
5587  const char* argv[] = {
5588    "foo.exe",
5589    "--gtest_break_on_failure=F",
5590    NULL
5591  };
5592
5593  const char* argv2[] = {
5594    "foo.exe",
5595    NULL
5596  };
5597
5598  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5599}
5600
5601// Tests parsing a --gtest_break_on_failure flag that has a "true"
5602// definition.
5603TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
5604  const char* argv[] = {
5605    "foo.exe",
5606    "--gtest_break_on_failure=1",
5607    NULL
5608  };
5609
5610  const char* argv2[] = {
5611    "foo.exe",
5612    NULL
5613  };
5614
5615  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5616}
5617
5618// Tests parsing --gtest_catch_exceptions.
5619TEST_F(InitGoogleTestTest, CatchExceptions) {
5620  const char* argv[] = {
5621    "foo.exe",
5622    "--gtest_catch_exceptions",
5623    NULL
5624  };
5625
5626  const char* argv2[] = {
5627    "foo.exe",
5628    NULL
5629  };
5630
5631  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5632}
5633
5634// Tests parsing --gtest_death_test_use_fork.
5635TEST_F(InitGoogleTestTest, DeathTestUseFork) {
5636  const char* argv[] = {
5637    "foo.exe",
5638    "--gtest_death_test_use_fork",
5639    NULL
5640  };
5641
5642  const char* argv2[] = {
5643    "foo.exe",
5644    NULL
5645  };
5646
5647  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5648}
5649
5650// Tests having the same flag twice with different values.  The
5651// expected behavior is that the one coming last takes precedence.
5652TEST_F(InitGoogleTestTest, DuplicatedFlags) {
5653  const char* argv[] = {
5654    "foo.exe",
5655    "--gtest_filter=a",
5656    "--gtest_filter=b",
5657    NULL
5658  };
5659
5660  const char* argv2[] = {
5661    "foo.exe",
5662    NULL
5663  };
5664
5665  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5666}
5667
5668// Tests having an unrecognized flag on the command line.
5669TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
5670  const char* argv[] = {
5671    "foo.exe",
5672    "--gtest_break_on_failure",
5673    "bar",  // Unrecognized by Google Test.
5674    "--gtest_filter=b",
5675    NULL
5676  };
5677
5678  const char* argv2[] = {
5679    "foo.exe",
5680    "bar",
5681    NULL
5682  };
5683
5684  Flags flags;
5685  flags.break_on_failure = true;
5686  flags.filter = "b";
5687  GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5688}
5689
5690// Tests having a --gtest_list_tests flag
5691TEST_F(InitGoogleTestTest, ListTestsFlag) {
5692    const char* argv[] = {
5693      "foo.exe",
5694      "--gtest_list_tests",
5695      NULL
5696    };
5697
5698    const char* argv2[] = {
5699      "foo.exe",
5700      NULL
5701    };
5702
5703    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5704}
5705
5706// Tests having a --gtest_list_tests flag with a "true" value
5707TEST_F(InitGoogleTestTest, ListTestsTrue) {
5708    const char* argv[] = {
5709      "foo.exe",
5710      "--gtest_list_tests=1",
5711      NULL
5712    };
5713
5714    const char* argv2[] = {
5715      "foo.exe",
5716      NULL
5717    };
5718
5719    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5720}
5721
5722// Tests having a --gtest_list_tests flag with a "false" value
5723TEST_F(InitGoogleTestTest, ListTestsFalse) {
5724    const char* argv[] = {
5725      "foo.exe",
5726      "--gtest_list_tests=0",
5727      NULL
5728    };
5729
5730    const char* argv2[] = {
5731      "foo.exe",
5732      NULL
5733    };
5734
5735    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5736}
5737
5738// Tests parsing --gtest_list_tests=f.
5739TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
5740  const char* argv[] = {
5741    "foo.exe",
5742    "--gtest_list_tests=f",
5743    NULL
5744  };
5745
5746  const char* argv2[] = {
5747    "foo.exe",
5748    NULL
5749  };
5750
5751  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5752}
5753
5754// Tests parsing --gtest_list_tests=F.
5755TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
5756  const char* argv[] = {
5757    "foo.exe",
5758    "--gtest_list_tests=F",
5759    NULL
5760  };
5761
5762  const char* argv2[] = {
5763    "foo.exe",
5764    NULL
5765  };
5766
5767  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5768}
5769
5770// Tests parsing --gtest_output (invalid).
5771TEST_F(InitGoogleTestTest, OutputEmpty) {
5772  const char* argv[] = {
5773    "foo.exe",
5774    "--gtest_output",
5775    NULL
5776  };
5777
5778  const char* argv2[] = {
5779    "foo.exe",
5780    "--gtest_output",
5781    NULL
5782  };
5783
5784  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
5785}
5786
5787// Tests parsing --gtest_output=xml
5788TEST_F(InitGoogleTestTest, OutputXml) {
5789  const char* argv[] = {
5790    "foo.exe",
5791    "--gtest_output=xml",
5792    NULL
5793  };
5794
5795  const char* argv2[] = {
5796    "foo.exe",
5797    NULL
5798  };
5799
5800  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5801}
5802
5803// Tests parsing --gtest_output=xml:file
5804TEST_F(InitGoogleTestTest, OutputXmlFile) {
5805  const char* argv[] = {
5806    "foo.exe",
5807    "--gtest_output=xml:file",
5808    NULL
5809  };
5810
5811  const char* argv2[] = {
5812    "foo.exe",
5813    NULL
5814  };
5815
5816  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
5817}
5818
5819// Tests parsing --gtest_output=xml:directory/path/
5820TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
5821  const char* argv[] = {
5822    "foo.exe",
5823    "--gtest_output=xml:directory/path/",
5824    NULL
5825  };
5826
5827  const char* argv2[] = {
5828    "foo.exe",
5829    NULL
5830  };
5831
5832  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5833                            Flags::Output("xml:directory/path/"), false);
5834}
5835
5836// Tests having a --gtest_print_time flag
5837TEST_F(InitGoogleTestTest, PrintTimeFlag) {
5838    const char* argv[] = {
5839      "foo.exe",
5840      "--gtest_print_time",
5841      NULL
5842    };
5843
5844    const char* argv2[] = {
5845      "foo.exe",
5846      NULL
5847    };
5848
5849    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5850}
5851
5852// Tests having a --gtest_print_time flag with a "true" value
5853TEST_F(InitGoogleTestTest, PrintTimeTrue) {
5854    const char* argv[] = {
5855      "foo.exe",
5856      "--gtest_print_time=1",
5857      NULL
5858    };
5859
5860    const char* argv2[] = {
5861      "foo.exe",
5862      NULL
5863    };
5864
5865    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5866}
5867
5868// Tests having a --gtest_print_time flag with a "false" value
5869TEST_F(InitGoogleTestTest, PrintTimeFalse) {
5870    const char* argv[] = {
5871      "foo.exe",
5872      "--gtest_print_time=0",
5873      NULL
5874    };
5875
5876    const char* argv2[] = {
5877      "foo.exe",
5878      NULL
5879    };
5880
5881    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5882}
5883
5884// Tests parsing --gtest_print_time=f.
5885TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
5886  const char* argv[] = {
5887    "foo.exe",
5888    "--gtest_print_time=f",
5889    NULL
5890  };
5891
5892  const char* argv2[] = {
5893    "foo.exe",
5894    NULL
5895  };
5896
5897  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5898}
5899
5900// Tests parsing --gtest_print_time=F.
5901TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
5902  const char* argv[] = {
5903    "foo.exe",
5904    "--gtest_print_time=F",
5905    NULL
5906  };
5907
5908  const char* argv2[] = {
5909    "foo.exe",
5910    NULL
5911  };
5912
5913  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5914}
5915
5916// Tests parsing --gtest_random_seed=number
5917TEST_F(InitGoogleTestTest, RandomSeed) {
5918  const char* argv[] = {
5919    "foo.exe",
5920    "--gtest_random_seed=1000",
5921    NULL
5922  };
5923
5924  const char* argv2[] = {
5925    "foo.exe",
5926    NULL
5927  };
5928
5929  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
5930}
5931
5932// Tests parsing --gtest_repeat=number
5933TEST_F(InitGoogleTestTest, Repeat) {
5934  const char* argv[] = {
5935    "foo.exe",
5936    "--gtest_repeat=1000",
5937    NULL
5938  };
5939
5940  const char* argv2[] = {
5941    "foo.exe",
5942    NULL
5943  };
5944
5945  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
5946}
5947
5948// Tests having a --gtest_also_run_disabled_tests flag
5949TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
5950    const char* argv[] = {
5951      "foo.exe",
5952      "--gtest_also_run_disabled_tests",
5953      NULL
5954    };
5955
5956    const char* argv2[] = {
5957      "foo.exe",
5958      NULL
5959    };
5960
5961    GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5962                              Flags::AlsoRunDisabledTests(true), false);
5963}
5964
5965// Tests having a --gtest_also_run_disabled_tests flag with a "true" value
5966TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
5967    const char* argv[] = {
5968      "foo.exe",
5969      "--gtest_also_run_disabled_tests=1",
5970      NULL
5971    };
5972
5973    const char* argv2[] = {
5974      "foo.exe",
5975      NULL
5976    };
5977
5978    GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5979                              Flags::AlsoRunDisabledTests(true), false);
5980}
5981
5982// Tests having a --gtest_also_run_disabled_tests flag with a "false" value
5983TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
5984    const char* argv[] = {
5985      "foo.exe",
5986      "--gtest_also_run_disabled_tests=0",
5987      NULL
5988    };
5989
5990    const char* argv2[] = {
5991      "foo.exe",
5992      NULL
5993    };
5994
5995    GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5996                              Flags::AlsoRunDisabledTests(false), false);
5997}
5998
5999// Tests parsing --gtest_shuffle.
6000TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
6001  const char* argv[] = {
6002    "foo.exe",
6003    "--gtest_shuffle",
6004    NULL
6005};
6006
6007  const char* argv2[] = {
6008    "foo.exe",
6009    NULL
6010  };
6011
6012  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6013}
6014
6015// Tests parsing --gtest_shuffle=0.
6016TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
6017  const char* argv[] = {
6018    "foo.exe",
6019    "--gtest_shuffle=0",
6020    NULL
6021  };
6022
6023  const char* argv2[] = {
6024    "foo.exe",
6025    NULL
6026  };
6027
6028  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6029}
6030
6031// Tests parsing a --gtest_shuffle flag that has a "true"
6032// definition.
6033TEST_F(InitGoogleTestTest, ShuffleTrue) {
6034  const char* argv[] = {
6035    "foo.exe",
6036    "--gtest_shuffle=1",
6037    NULL
6038  };
6039
6040  const char* argv2[] = {
6041    "foo.exe",
6042    NULL
6043  };
6044
6045  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6046}
6047
6048// Tests parsing --gtest_stack_trace_depth=number.
6049TEST_F(InitGoogleTestTest, StackTraceDepth) {
6050  const char* argv[] = {
6051    "foo.exe",
6052    "--gtest_stack_trace_depth=5",
6053    NULL
6054  };
6055
6056  const char* argv2[] = {
6057    "foo.exe",
6058    NULL
6059  };
6060
6061  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6062}
6063
6064TEST_F(InitGoogleTestTest, StreamResultTo) {
6065  const char* argv[] = {
6066    "foo.exe",
6067    "--gtest_stream_result_to=localhost:1234",
6068    NULL
6069  };
6070
6071  const char* argv2[] = {
6072    "foo.exe",
6073    NULL
6074  };
6075
6076  GTEST_TEST_PARSING_FLAGS_(
6077      argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6078}
6079
6080// Tests parsing --gtest_throw_on_failure.
6081TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
6082  const char* argv[] = {
6083    "foo.exe",
6084    "--gtest_throw_on_failure",
6085    NULL
6086};
6087
6088  const char* argv2[] = {
6089    "foo.exe",
6090    NULL
6091  };
6092
6093  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6094}
6095
6096// Tests parsing --gtest_throw_on_failure=0.
6097TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
6098  const char* argv[] = {
6099    "foo.exe",
6100    "--gtest_throw_on_failure=0",
6101    NULL
6102  };
6103
6104  const char* argv2[] = {
6105    "foo.exe",
6106    NULL
6107  };
6108
6109  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6110}
6111
6112// Tests parsing a --gtest_throw_on_failure flag that has a "true"
6113// definition.
6114TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
6115  const char* argv[] = {
6116    "foo.exe",
6117    "--gtest_throw_on_failure=1",
6118    NULL
6119  };
6120
6121  const char* argv2[] = {
6122    "foo.exe",
6123    NULL
6124  };
6125
6126  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6127}
6128
6129#if GTEST_OS_WINDOWS
6130// Tests parsing wide strings.
6131TEST_F(InitGoogleTestTest, WideStrings) {
6132  const wchar_t* argv[] = {
6133    L"foo.exe",
6134    L"--gtest_filter=Foo*",
6135    L"--gtest_list_tests=1",
6136    L"--gtest_break_on_failure",
6137    L"--non_gtest_flag",
6138    NULL
6139  };
6140
6141  const wchar_t* argv2[] = {
6142    L"foo.exe",
6143    L"--non_gtest_flag",
6144    NULL
6145  };
6146
6147  Flags expected_flags;
6148  expected_flags.break_on_failure = true;
6149  expected_flags.filter = "Foo*";
6150  expected_flags.list_tests = true;
6151
6152  GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6153}
6154#endif  // GTEST_OS_WINDOWS
6155
6156// Tests current_test_info() in UnitTest.
6157class CurrentTestInfoTest : public Test {
6158 protected:
6159  // Tests that current_test_info() returns NULL before the first test in
6160  // the test case is run.
6161  static void SetUpTestCase() {
6162    // There should be no tests running at this point.
6163    const TestInfo* test_info =
6164      UnitTest::GetInstance()->current_test_info();
6165    EXPECT_TRUE(test_info == NULL)
6166        << "There should be no tests running at this point.";
6167  }
6168
6169  // Tests that current_test_info() returns NULL after the last test in
6170  // the test case has run.
6171  static void TearDownTestCase() {
6172    const TestInfo* test_info =
6173      UnitTest::GetInstance()->current_test_info();
6174    EXPECT_TRUE(test_info == NULL)
6175        << "There should be no tests running at this point.";
6176  }
6177};
6178
6179// Tests that current_test_info() returns TestInfo for currently running
6180// test by checking the expected test name against the actual one.
6181TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
6182  const TestInfo* test_info =
6183    UnitTest::GetInstance()->current_test_info();
6184  ASSERT_TRUE(NULL != test_info)
6185      << "There is a test running so we should have a valid TestInfo.";
6186  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6187      << "Expected the name of the currently running test case.";
6188  EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
6189      << "Expected the name of the currently running test.";
6190}
6191
6192// Tests that current_test_info() returns TestInfo for currently running
6193// test by checking the expected test name against the actual one.  We
6194// use this test to see that the TestInfo object actually changed from
6195// the previous invocation.
6196TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
6197  const TestInfo* test_info =
6198    UnitTest::GetInstance()->current_test_info();
6199  ASSERT_TRUE(NULL != test_info)
6200      << "There is a test running so we should have a valid TestInfo.";
6201  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6202      << "Expected the name of the currently running test case.";
6203  EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
6204      << "Expected the name of the currently running test.";
6205}
6206
6207}  // namespace testing
6208
6209// These two lines test that we can define tests in a namespace that
6210// has the name "testing" and is nested in another namespace.
6211namespace my_namespace {
6212namespace testing {
6213
6214// Makes sure that TEST knows to use ::testing::Test instead of
6215// ::my_namespace::testing::Test.
6216class Test {};
6217
6218// Makes sure that an assertion knows to use ::testing::Message instead of
6219// ::my_namespace::testing::Message.
6220class Message {};
6221
6222// Makes sure that an assertion knows to use
6223// ::testing::AssertionResult instead of
6224// ::my_namespace::testing::AssertionResult.
6225class AssertionResult {};
6226
6227// Tests that an assertion that should succeed works as expected.
6228TEST(NestedTestingNamespaceTest, Success) {
6229  EXPECT_EQ(1, 1) << "This shouldn't fail.";
6230}
6231
6232// Tests that an assertion that should fail works as expected.
6233TEST(NestedTestingNamespaceTest, Failure) {
6234  EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6235                       "This failure is expected.");
6236}
6237
6238}  // namespace testing
6239}  // namespace my_namespace
6240
6241// Tests that one can call superclass SetUp and TearDown methods--
6242// that is, that they are not private.
6243// No tests are based on this fixture; the test "passes" if it compiles
6244// successfully.
6245class ProtectedFixtureMethodsTest : public Test {
6246 protected:
6247  virtual void SetUp() {
6248    Test::SetUp();
6249  }
6250  virtual void TearDown() {
6251    Test::TearDown();
6252  }
6253};
6254
6255// StreamingAssertionsTest tests the streaming versions of a representative
6256// sample of assertions.
6257TEST(StreamingAssertionsTest, Unconditional) {
6258  SUCCEED() << "expected success";
6259  EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6260                          "expected failure");
6261  EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6262                       "expected failure");
6263}
6264
6265#ifdef __BORLANDC__
6266// Silences warnings: "Condition is always true", "Unreachable code"
6267# pragma option push -w-ccc -w-rch
6268#endif
6269
6270TEST(StreamingAssertionsTest, Truth) {
6271  EXPECT_TRUE(true) << "unexpected failure";
6272  ASSERT_TRUE(true) << "unexpected failure";
6273  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6274                          "expected failure");
6275  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6276                       "expected failure");
6277}
6278
6279TEST(StreamingAssertionsTest, Truth2) {
6280  EXPECT_FALSE(false) << "unexpected failure";
6281  ASSERT_FALSE(false) << "unexpected failure";
6282  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6283                          "expected failure");
6284  EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6285                       "expected failure");
6286}
6287
6288#ifdef __BORLANDC__
6289// Restores warnings after previous "#pragma option push" supressed them
6290# pragma option pop
6291#endif
6292
6293TEST(StreamingAssertionsTest, IntegerEquals) {
6294  EXPECT_EQ(1, 1) << "unexpected failure";
6295  ASSERT_EQ(1, 1) << "unexpected failure";
6296  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6297                          "expected failure");
6298  EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6299                       "expected failure");
6300}
6301
6302TEST(StreamingAssertionsTest, IntegerLessThan) {
6303  EXPECT_LT(1, 2) << "unexpected failure";
6304  ASSERT_LT(1, 2) << "unexpected failure";
6305  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6306                          "expected failure");
6307  EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6308                       "expected failure");
6309}
6310
6311TEST(StreamingAssertionsTest, StringsEqual) {
6312  EXPECT_STREQ("foo", "foo") << "unexpected failure";
6313  ASSERT_STREQ("foo", "foo") << "unexpected failure";
6314  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6315                          "expected failure");
6316  EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6317                       "expected failure");
6318}
6319
6320TEST(StreamingAssertionsTest, StringsNotEqual) {
6321  EXPECT_STRNE("foo", "bar") << "unexpected failure";
6322  ASSERT_STRNE("foo", "bar") << "unexpected failure";
6323  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6324                          "expected failure");
6325  EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6326                       "expected failure");
6327}
6328
6329TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6330  EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6331  ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6332  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6333                          "expected failure");
6334  EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6335                       "expected failure");
6336}
6337
6338TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6339  EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6340  ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6341  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6342                          "expected failure");
6343  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6344                       "expected failure");
6345}
6346
6347TEST(StreamingAssertionsTest, FloatingPointEquals) {
6348  EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6349  ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6350  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6351                          "expected failure");
6352  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6353                       "expected failure");
6354}
6355
6356#if GTEST_HAS_EXCEPTIONS
6357
6358TEST(StreamingAssertionsTest, Throw) {
6359  EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6360  ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6361  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6362                          "expected failure", "expected failure");
6363  EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6364                       "expected failure", "expected failure");
6365}
6366
6367TEST(StreamingAssertionsTest, NoThrow) {
6368  EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6369  ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6370  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6371                          "expected failure", "expected failure");
6372  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6373                       "expected failure", "expected failure");
6374}
6375
6376TEST(StreamingAssertionsTest, AnyThrow) {
6377  EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6378  ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6379  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6380                          "expected failure", "expected failure");
6381  EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6382                       "expected failure", "expected failure");
6383}
6384
6385#endif  // GTEST_HAS_EXCEPTIONS
6386
6387// Tests that Google Test correctly decides whether to use colors in the output.
6388
6389TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6390  GTEST_FLAG(color) = "yes";
6391
6392  SetEnv("TERM", "xterm");  // TERM supports colors.
6393  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6394  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6395
6396  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6397  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6398  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6399}
6400
6401TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6402  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6403
6404  GTEST_FLAG(color) = "True";
6405  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6406
6407  GTEST_FLAG(color) = "t";
6408  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6409
6410  GTEST_FLAG(color) = "1";
6411  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6412}
6413
6414TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6415  GTEST_FLAG(color) = "no";
6416
6417  SetEnv("TERM", "xterm");  // TERM supports colors.
6418  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6419  EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6420
6421  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6422  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6423  EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6424}
6425
6426TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6427  SetEnv("TERM", "xterm");  // TERM supports colors.
6428
6429  GTEST_FLAG(color) = "F";
6430  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6431
6432  GTEST_FLAG(color) = "0";
6433  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6434
6435  GTEST_FLAG(color) = "unknown";
6436  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6437}
6438
6439TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6440  GTEST_FLAG(color) = "auto";
6441
6442  SetEnv("TERM", "xterm");  // TERM supports colors.
6443  EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6444  EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6445}
6446
6447TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6448  GTEST_FLAG(color) = "auto";
6449
6450#if GTEST_OS_WINDOWS
6451  // On Windows, we ignore the TERM variable as it's usually not set.
6452
6453  SetEnv("TERM", "dumb");
6454  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6455
6456  SetEnv("TERM", "");
6457  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6458
6459  SetEnv("TERM", "xterm");
6460  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6461#else
6462  // On non-Windows platforms, we rely on TERM to determine if the
6463  // terminal supports colors.
6464
6465  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6466  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6467
6468  SetEnv("TERM", "emacs");  // TERM doesn't support colors.
6469  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6470
6471  SetEnv("TERM", "vt100");  // TERM doesn't support colors.
6472  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6473
6474  SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
6475  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6476
6477  SetEnv("TERM", "xterm");  // TERM supports colors.
6478  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6479
6480  SetEnv("TERM", "xterm-color");  // TERM supports colors.
6481  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6482
6483  SetEnv("TERM", "xterm-256color");  // TERM supports colors.
6484  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6485
6486  SetEnv("TERM", "screen");  // TERM supports colors.
6487  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6488
6489  SetEnv("TERM", "linux");  // TERM supports colors.
6490  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6491
6492  SetEnv("TERM", "cygwin");  // TERM supports colors.
6493  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6494#endif  // GTEST_OS_WINDOWS
6495}
6496
6497// Verifies that StaticAssertTypeEq works in a namespace scope.
6498
6499static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6500static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6501    StaticAssertTypeEq<const int, const int>();
6502
6503// Verifies that StaticAssertTypeEq works in a class.
6504
6505template <typename T>
6506class StaticAssertTypeEqTestHelper {
6507 public:
6508  StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6509};
6510
6511TEST(StaticAssertTypeEqTest, WorksInClass) {
6512  StaticAssertTypeEqTestHelper<bool>();
6513}
6514
6515// Verifies that StaticAssertTypeEq works inside a function.
6516
6517typedef int IntAlias;
6518
6519TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6520  StaticAssertTypeEq<int, IntAlias>();
6521  StaticAssertTypeEq<int*, IntAlias*>();
6522}
6523
6524TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
6525  testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
6526
6527  // We don't have a stack walker in Google Test yet.
6528  EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
6529  EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
6530}
6531
6532TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6533  EXPECT_FALSE(HasNonfatalFailure());
6534}
6535
6536static void FailFatally() { FAIL(); }
6537
6538TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6539  FailFatally();
6540  const bool has_nonfatal_failure = HasNonfatalFailure();
6541  ClearCurrentTestPartResults();
6542  EXPECT_FALSE(has_nonfatal_failure);
6543}
6544
6545TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6546  ADD_FAILURE();
6547  const bool has_nonfatal_failure = HasNonfatalFailure();
6548  ClearCurrentTestPartResults();
6549  EXPECT_TRUE(has_nonfatal_failure);
6550}
6551
6552TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6553  FailFatally();
6554  ADD_FAILURE();
6555  const bool has_nonfatal_failure = HasNonfatalFailure();
6556  ClearCurrentTestPartResults();
6557  EXPECT_TRUE(has_nonfatal_failure);
6558}
6559
6560// A wrapper for calling HasNonfatalFailure outside of a test body.
6561static bool HasNonfatalFailureHelper() {
6562  return testing::Test::HasNonfatalFailure();
6563}
6564
6565TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6566  EXPECT_FALSE(HasNonfatalFailureHelper());
6567}
6568
6569TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6570  ADD_FAILURE();
6571  const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6572  ClearCurrentTestPartResults();
6573  EXPECT_TRUE(has_nonfatal_failure);
6574}
6575
6576TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6577  EXPECT_FALSE(HasFailure());
6578}
6579
6580TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6581  FailFatally();
6582  const bool has_failure = HasFailure();
6583  ClearCurrentTestPartResults();
6584  EXPECT_TRUE(has_failure);
6585}
6586
6587TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6588  ADD_FAILURE();
6589  const bool has_failure = HasFailure();
6590  ClearCurrentTestPartResults();
6591  EXPECT_TRUE(has_failure);
6592}
6593
6594TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6595  FailFatally();
6596  ADD_FAILURE();
6597  const bool has_failure = HasFailure();
6598  ClearCurrentTestPartResults();
6599  EXPECT_TRUE(has_failure);
6600}
6601
6602// A wrapper for calling HasFailure outside of a test body.
6603static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6604
6605TEST(HasFailureTest, WorksOutsideOfTestBody) {
6606  EXPECT_FALSE(HasFailureHelper());
6607}
6608
6609TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6610  ADD_FAILURE();
6611  const bool has_failure = HasFailureHelper();
6612  ClearCurrentTestPartResults();
6613  EXPECT_TRUE(has_failure);
6614}
6615
6616class TestListener : public EmptyTestEventListener {
6617 public:
6618  TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
6619  TestListener(int* on_start_counter, bool* is_destroyed)
6620      : on_start_counter_(on_start_counter),
6621        is_destroyed_(is_destroyed) {}
6622
6623  virtual ~TestListener() {
6624    if (is_destroyed_)
6625      *is_destroyed_ = true;
6626  }
6627
6628 protected:
6629  virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6630    if (on_start_counter_ != NULL)
6631      (*on_start_counter_)++;
6632  }
6633
6634 private:
6635  int* on_start_counter_;
6636  bool* is_destroyed_;
6637};
6638
6639// Tests the constructor.
6640TEST(TestEventListenersTest, ConstructionWorks) {
6641  TestEventListeners listeners;
6642
6643  EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
6644  EXPECT_TRUE(listeners.default_result_printer() == NULL);
6645  EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6646}
6647
6648// Tests that the TestEventListeners destructor deletes all the listeners it
6649// owns.
6650TEST(TestEventListenersTest, DestructionWorks) {
6651  bool default_result_printer_is_destroyed = false;
6652  bool default_xml_printer_is_destroyed = false;
6653  bool extra_listener_is_destroyed = false;
6654  TestListener* default_result_printer = new TestListener(
6655      NULL, &default_result_printer_is_destroyed);
6656  TestListener* default_xml_printer = new TestListener(
6657      NULL, &default_xml_printer_is_destroyed);
6658  TestListener* extra_listener = new TestListener(
6659      NULL, &extra_listener_is_destroyed);
6660
6661  {
6662    TestEventListeners listeners;
6663    TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6664                                                        default_result_printer);
6665    TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6666                                                       default_xml_printer);
6667    listeners.Append(extra_listener);
6668  }
6669  EXPECT_TRUE(default_result_printer_is_destroyed);
6670  EXPECT_TRUE(default_xml_printer_is_destroyed);
6671  EXPECT_TRUE(extra_listener_is_destroyed);
6672}
6673
6674// Tests that a listener Append'ed to a TestEventListeners list starts
6675// receiving events.
6676TEST(TestEventListenersTest, Append) {
6677  int on_start_counter = 0;
6678  bool is_destroyed = false;
6679  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6680  {
6681    TestEventListeners listeners;
6682    listeners.Append(listener);
6683    TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6684        *UnitTest::GetInstance());
6685    EXPECT_EQ(1, on_start_counter);
6686  }
6687  EXPECT_TRUE(is_destroyed);
6688}
6689
6690// Tests that listeners receive events in the order they were appended to
6691// the list, except for *End requests, which must be received in the reverse
6692// order.
6693class SequenceTestingListener : public EmptyTestEventListener {
6694 public:
6695  SequenceTestingListener(std::vector<String>* vector, const char* id)
6696      : vector_(vector), id_(id) {}
6697
6698 protected:
6699  virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6700    vector_->push_back(GetEventDescription("OnTestProgramStart"));
6701  }
6702
6703  virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
6704    vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6705  }
6706
6707  virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
6708                                    int /*iteration*/) {
6709    vector_->push_back(GetEventDescription("OnTestIterationStart"));
6710  }
6711
6712  virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6713                                  int /*iteration*/) {
6714    vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6715  }
6716
6717 private:
6718  String GetEventDescription(const char* method) {
6719    Message message;
6720    message << id_ << "." << method;
6721    return message.GetString();
6722  }
6723
6724  std::vector<String>* vector_;
6725  const char* const id_;
6726
6727  GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
6728};
6729
6730TEST(EventListenerTest, AppendKeepsOrder) {
6731  std::vector<String> vec;
6732  TestEventListeners listeners;
6733  listeners.Append(new SequenceTestingListener(&vec, "1st"));
6734  listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6735  listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6736
6737  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6738      *UnitTest::GetInstance());
6739  ASSERT_EQ(3U, vec.size());
6740  EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6741  EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6742  EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6743
6744  vec.clear();
6745  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
6746      *UnitTest::GetInstance());
6747  ASSERT_EQ(3U, vec.size());
6748  EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6749  EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6750  EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6751
6752  vec.clear();
6753  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
6754      *UnitTest::GetInstance(), 0);
6755  ASSERT_EQ(3U, vec.size());
6756  EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6757  EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6758  EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6759
6760  vec.clear();
6761  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
6762      *UnitTest::GetInstance(), 0);
6763  ASSERT_EQ(3U, vec.size());
6764  EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6765  EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6766  EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6767}
6768
6769// Tests that a listener removed from a TestEventListeners list stops receiving
6770// events and is not deleted when the list is destroyed.
6771TEST(TestEventListenersTest, Release) {
6772  int on_start_counter = 0;
6773  bool is_destroyed = false;
6774  // Although Append passes the ownership of this object to the list,
6775  // the following calls release it, and we need to delete it before the
6776  // test ends.
6777  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6778  {
6779    TestEventListeners listeners;
6780    listeners.Append(listener);
6781    EXPECT_EQ(listener, listeners.Release(listener));
6782    TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6783        *UnitTest::GetInstance());
6784    EXPECT_TRUE(listeners.Release(listener) == NULL);
6785  }
6786  EXPECT_EQ(0, on_start_counter);
6787  EXPECT_FALSE(is_destroyed);
6788  delete listener;
6789}
6790
6791// Tests that no events are forwarded when event forwarding is disabled.
6792TEST(EventListenerTest, SuppressEventForwarding) {
6793  int on_start_counter = 0;
6794  TestListener* listener = new TestListener(&on_start_counter, NULL);
6795
6796  TestEventListeners listeners;
6797  listeners.Append(listener);
6798  ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6799  TestEventListenersAccessor::SuppressEventForwarding(&listeners);
6800  ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6801  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6802      *UnitTest::GetInstance());
6803  EXPECT_EQ(0, on_start_counter);
6804}
6805
6806// Tests that events generated by Google Test are not forwarded in
6807// death test subprocesses.
6808TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
6809  EXPECT_DEATH_IF_SUPPORTED({
6810      GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
6811          *GetUnitTestImpl()->listeners())) << "expected failure";},
6812      "expected failure");
6813}
6814
6815// Tests that a listener installed via SetDefaultResultPrinter() starts
6816// receiving events and is returned via default_result_printer() and that
6817// the previous default_result_printer is removed from the list and deleted.
6818TEST(EventListenerTest, default_result_printer) {
6819  int on_start_counter = 0;
6820  bool is_destroyed = false;
6821  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6822
6823  TestEventListeners listeners;
6824  TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
6825
6826  EXPECT_EQ(listener, listeners.default_result_printer());
6827
6828  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6829      *UnitTest::GetInstance());
6830
6831  EXPECT_EQ(1, on_start_counter);
6832
6833  // Replacing default_result_printer with something else should remove it
6834  // from the list and destroy it.
6835  TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
6836
6837  EXPECT_TRUE(listeners.default_result_printer() == NULL);
6838  EXPECT_TRUE(is_destroyed);
6839
6840  // After broadcasting an event the counter is still the same, indicating
6841  // the listener is not in the list anymore.
6842  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6843      *UnitTest::GetInstance());
6844  EXPECT_EQ(1, on_start_counter);
6845}
6846
6847// Tests that the default_result_printer listener stops receiving events
6848// when removed via Release and that is not owned by the list anymore.
6849TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
6850  int on_start_counter = 0;
6851  bool is_destroyed = false;
6852  // Although Append passes the ownership of this object to the list,
6853  // the following calls release it, and we need to delete it before the
6854  // test ends.
6855  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6856  {
6857    TestEventListeners listeners;
6858    TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
6859
6860    EXPECT_EQ(listener, listeners.Release(listener));
6861    EXPECT_TRUE(listeners.default_result_printer() == NULL);
6862    EXPECT_FALSE(is_destroyed);
6863
6864    // Broadcasting events now should not affect default_result_printer.
6865    TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6866        *UnitTest::GetInstance());
6867    EXPECT_EQ(0, on_start_counter);
6868  }
6869  // Destroying the list should not affect the listener now, too.
6870  EXPECT_FALSE(is_destroyed);
6871  delete listener;
6872}
6873
6874// Tests that a listener installed via SetDefaultXmlGenerator() starts
6875// receiving events and is returned via default_xml_generator() and that
6876// the previous default_xml_generator is removed from the list and deleted.
6877TEST(EventListenerTest, default_xml_generator) {
6878  int on_start_counter = 0;
6879  bool is_destroyed = false;
6880  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6881
6882  TestEventListeners listeners;
6883  TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
6884
6885  EXPECT_EQ(listener, listeners.default_xml_generator());
6886
6887  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6888      *UnitTest::GetInstance());
6889
6890  EXPECT_EQ(1, on_start_counter);
6891
6892  // Replacing default_xml_generator with something else should remove it
6893  // from the list and destroy it.
6894  TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
6895
6896  EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6897  EXPECT_TRUE(is_destroyed);
6898
6899  // After broadcasting an event the counter is still the same, indicating
6900  // the listener is not in the list anymore.
6901  TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6902      *UnitTest::GetInstance());
6903  EXPECT_EQ(1, on_start_counter);
6904}
6905
6906// Tests that the default_xml_generator listener stops receiving events
6907// when removed via Release and that is not owned by the list anymore.
6908TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
6909  int on_start_counter = 0;
6910  bool is_destroyed = false;
6911  // Although Append passes the ownership of this object to the list,
6912  // the following calls release it, and we need to delete it before the
6913  // test ends.
6914  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6915  {
6916    TestEventListeners listeners;
6917    TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
6918
6919    EXPECT_EQ(listener, listeners.Release(listener));
6920    EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6921    EXPECT_FALSE(is_destroyed);
6922
6923    // Broadcasting events now should not affect default_xml_generator.
6924    TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6925        *UnitTest::GetInstance());
6926    EXPECT_EQ(0, on_start_counter);
6927  }
6928  // Destroying the list should not affect the listener now, too.
6929  EXPECT_FALSE(is_destroyed);
6930  delete listener;
6931}
6932
6933// Sanity tests to ensure that the alternative, verbose spellings of
6934// some of the macros work.  We don't test them thoroughly as that
6935// would be quite involved.  Since their implementations are
6936// straightforward, and they are rarely used, we'll just rely on the
6937// users to tell us when they are broken.
6938GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
6939  GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
6940
6941  // GTEST_FAIL is the same as FAIL.
6942  EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
6943                       "An expected failure");
6944
6945  // GTEST_ASSERT_XY is the same as ASSERT_XY.
6946
6947  GTEST_ASSERT_EQ(0, 0);
6948  EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
6949                       "An expected failure");
6950  EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
6951                       "An expected failure");
6952
6953  GTEST_ASSERT_NE(0, 1);
6954  GTEST_ASSERT_NE(1, 0);
6955  EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
6956                       "An expected failure");
6957
6958  GTEST_ASSERT_LE(0, 0);
6959  GTEST_ASSERT_LE(0, 1);
6960  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
6961                       "An expected failure");
6962
6963  GTEST_ASSERT_LT(0, 1);
6964  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
6965                       "An expected failure");
6966  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
6967                       "An expected failure");
6968
6969  GTEST_ASSERT_GE(0, 0);
6970  GTEST_ASSERT_GE(1, 0);
6971  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
6972                       "An expected failure");
6973
6974  GTEST_ASSERT_GT(1, 0);
6975  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
6976                       "An expected failure");
6977  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
6978                       "An expected failure");
6979}
6980
6981// Tests for internal utilities necessary for implementation of the universal
6982// printing.
6983// TODO(vladl@google.com): Find a better home for them.
6984
6985class ConversionHelperBase {};
6986class ConversionHelperDerived : public ConversionHelperBase {};
6987
6988// Tests that IsAProtocolMessage<T>::value is a compile-time constant.
6989TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
6990  GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
6991                        const_true);
6992  GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
6993}
6994
6995// Tests that IsAProtocolMessage<T>::value is true when T is
6996// proto2::Message or a sub-class of it.
6997TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
6998  EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
6999  EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
7000}
7001
7002// Tests that IsAProtocolMessage<T>::value is false when T is neither
7003// ProtocolMessage nor a sub-class of it.
7004TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7005  EXPECT_FALSE(IsAProtocolMessage<int>::value);
7006  EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
7007}
7008
7009// Tests that CompileAssertTypesEqual compiles when the type arguments are
7010// equal.
7011TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
7012  CompileAssertTypesEqual<void, void>();
7013  CompileAssertTypesEqual<int*, int*>();
7014}
7015
7016// Tests that RemoveReference does not affect non-reference types.
7017TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
7018  CompileAssertTypesEqual<int, RemoveReference<int>::type>();
7019  CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
7020}
7021
7022// Tests that RemoveReference removes reference from reference types.
7023TEST(RemoveReferenceTest, RemovesReference) {
7024  CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
7025  CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
7026}
7027
7028// Tests GTEST_REMOVE_REFERENCE_.
7029
7030template <typename T1, typename T2>
7031void TestGTestRemoveReference() {
7032  CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
7033}
7034
7035TEST(RemoveReferenceTest, MacroVersion) {
7036  TestGTestRemoveReference<int, int>();
7037  TestGTestRemoveReference<const char, const char&>();
7038}
7039
7040
7041// Tests that RemoveConst does not affect non-const types.
7042TEST(RemoveConstTest, DoesNotAffectNonConstType) {
7043  CompileAssertTypesEqual<int, RemoveConst<int>::type>();
7044  CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
7045}
7046
7047// Tests that RemoveConst removes const from const types.
7048TEST(RemoveConstTest, RemovesConst) {
7049  CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
7050  CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
7051  CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
7052}
7053
7054// Tests GTEST_REMOVE_CONST_.
7055
7056template <typename T1, typename T2>
7057void TestGTestRemoveConst() {
7058  CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
7059}
7060
7061TEST(RemoveConstTest, MacroVersion) {
7062  TestGTestRemoveConst<int, int>();
7063  TestGTestRemoveConst<double&, double&>();
7064  TestGTestRemoveConst<char, const char>();
7065}
7066
7067// Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7068
7069template <typename T1, typename T2>
7070void TestGTestRemoveReferenceAndConst() {
7071  CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
7072}
7073
7074TEST(RemoveReferenceToConstTest, Works) {
7075  TestGTestRemoveReferenceAndConst<int, int>();
7076  TestGTestRemoveReferenceAndConst<double, double&>();
7077  TestGTestRemoveReferenceAndConst<char, const char>();
7078  TestGTestRemoveReferenceAndConst<char, const char&>();
7079  TestGTestRemoveReferenceAndConst<const char*, const char*>();
7080}
7081
7082// Tests that AddReference does not affect reference types.
7083TEST(AddReferenceTest, DoesNotAffectReferenceType) {
7084  CompileAssertTypesEqual<int&, AddReference<int&>::type>();
7085  CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
7086}
7087
7088// Tests that AddReference adds reference to non-reference types.
7089TEST(AddReferenceTest, AddsReference) {
7090  CompileAssertTypesEqual<int&, AddReference<int>::type>();
7091  CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
7092}
7093
7094// Tests GTEST_ADD_REFERENCE_.
7095
7096template <typename T1, typename T2>
7097void TestGTestAddReference() {
7098  CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
7099}
7100
7101TEST(AddReferenceTest, MacroVersion) {
7102  TestGTestAddReference<int&, int>();
7103  TestGTestAddReference<const char&, const char&>();
7104}
7105
7106// Tests GTEST_REFERENCE_TO_CONST_.
7107
7108template <typename T1, typename T2>
7109void TestGTestReferenceToConst() {
7110  CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
7111}
7112
7113TEST(GTestReferenceToConstTest, Works) {
7114  TestGTestReferenceToConst<const char&, char>();
7115  TestGTestReferenceToConst<const int&, const int>();
7116  TestGTestReferenceToConst<const double&, double>();
7117  TestGTestReferenceToConst<const String&, const String&>();
7118}
7119
7120// Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
7121TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
7122  GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
7123  GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
7124                        const_false);
7125}
7126
7127// Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
7128// be implicitly converted to T2.
7129TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
7130  EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
7131  EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
7132  EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
7133  EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
7134  EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
7135                                     const ConversionHelperBase&>::value));
7136  EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
7137                                     ConversionHelperBase>::value));
7138}
7139
7140// Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
7141// cannot be implicitly converted to T2.
7142TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
7143  EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
7144  EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
7145  EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
7146  EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
7147                                      ConversionHelperDerived&>::value));
7148}
7149
7150// Tests IsContainerTest.
7151
7152class NonContainer {};
7153
7154TEST(IsContainerTestTest, WorksForNonContainer) {
7155  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7156  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7157  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7158}
7159
7160TEST(IsContainerTestTest, WorksForContainer) {
7161  EXPECT_EQ(sizeof(IsContainer),
7162            sizeof(IsContainerTest<std::vector<bool> >(0)));
7163  EXPECT_EQ(sizeof(IsContainer),
7164            sizeof(IsContainerTest<std::map<int, double> >(0)));
7165}
7166
7167// Tests ArrayEq().
7168
7169TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7170  EXPECT_TRUE(ArrayEq(5, 5L));
7171  EXPECT_FALSE(ArrayEq('a', 0));
7172}
7173
7174TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7175  const int a[] = { 0, 1 };
7176  long b[] = { 0, 1 };
7177  EXPECT_TRUE(ArrayEq(a, b));
7178  EXPECT_TRUE(ArrayEq(a, 2, b));
7179
7180  b[0] = 2;
7181  EXPECT_FALSE(ArrayEq(a, b));
7182  EXPECT_FALSE(ArrayEq(a, 1, b));
7183}
7184
7185TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7186  const char a[][3] = { "hi", "lo" };
7187  const char b[][3] = { "hi", "lo" };
7188  const char c[][3] = { "hi", "li" };
7189
7190  EXPECT_TRUE(ArrayEq(a, b));
7191  EXPECT_TRUE(ArrayEq(a, 2, b));
7192
7193  EXPECT_FALSE(ArrayEq(a, c));
7194  EXPECT_FALSE(ArrayEq(a, 2, c));
7195}
7196
7197// Tests ArrayAwareFind().
7198
7199TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7200  const char a[] = "hello";
7201  EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7202  EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7203}
7204
7205TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7206  int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7207  const int b[2] = { 2, 3 };
7208  EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7209
7210  const int c[2] = { 6, 7 };
7211  EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7212}
7213
7214// Tests CopyArray().
7215
7216TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7217  int n = 0;
7218  CopyArray('a', &n);
7219  EXPECT_EQ('a', n);
7220}
7221
7222TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7223  const char a[3] = "hi";
7224  int b[3];
7225#ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7226  CopyArray(a, &b);
7227  EXPECT_TRUE(ArrayEq(a, b));
7228#endif
7229
7230  int c[3];
7231  CopyArray(a, 3, c);
7232  EXPECT_TRUE(ArrayEq(a, c));
7233}
7234
7235TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7236  const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7237  int b[2][3];
7238#ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7239  CopyArray(a, &b);
7240  EXPECT_TRUE(ArrayEq(a, b));
7241#endif
7242
7243  int c[2][3];
7244  CopyArray(a, 2, c);
7245  EXPECT_TRUE(ArrayEq(a, c));
7246}
7247
7248// Tests NativeArray.
7249
7250TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7251  const int a[3] = { 0, 1, 2 };
7252  NativeArray<int> na(a, 3, kReference);
7253  EXPECT_EQ(3U, na.size());
7254  EXPECT_EQ(a, na.begin());
7255}
7256
7257TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7258  typedef int Array[2];
7259  Array* a = new Array[1];
7260  (*a)[0] = 0;
7261  (*a)[1] = 1;
7262  NativeArray<int> na(*a, 2, kCopy);
7263  EXPECT_NE(*a, na.begin());
7264  delete[] a;
7265  EXPECT_EQ(0, na.begin()[0]);
7266  EXPECT_EQ(1, na.begin()[1]);
7267
7268  // We rely on the heap checker to verify that na deletes the copy of
7269  // array.
7270}
7271
7272TEST(NativeArrayTest, TypeMembersAreCorrect) {
7273  StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7274  StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7275
7276  StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7277  StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7278}
7279
7280TEST(NativeArrayTest, MethodsWork) {
7281  const int a[3] = { 0, 1, 2 };
7282  NativeArray<int> na(a, 3, kCopy);
7283  ASSERT_EQ(3U, na.size());
7284  EXPECT_EQ(3, na.end() - na.begin());
7285
7286  NativeArray<int>::const_iterator it = na.begin();
7287  EXPECT_EQ(0, *it);
7288  ++it;
7289  EXPECT_EQ(1, *it);
7290  it++;
7291  EXPECT_EQ(2, *it);
7292  ++it;
7293  EXPECT_EQ(na.end(), it);
7294
7295  EXPECT_TRUE(na == na);
7296
7297  NativeArray<int> na2(a, 3, kReference);
7298  EXPECT_TRUE(na == na2);
7299
7300  const int b1[3] = { 0, 1, 1 };
7301  const int b2[4] = { 0, 1, 2, 3 };
7302  EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference));
7303  EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy));
7304}
7305
7306TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7307  const char a[2][3] = { "hi", "lo" };
7308  NativeArray<char[3]> na(a, 2, kReference);
7309  ASSERT_EQ(2U, na.size());
7310  EXPECT_EQ(a, na.begin());
7311}
7312
7313// Tests SkipPrefix().
7314
7315TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7316  const char* const str = "hello";
7317
7318  const char* p = str;
7319  EXPECT_TRUE(SkipPrefix("", &p));
7320  EXPECT_EQ(str, p);
7321
7322  p = str;
7323  EXPECT_TRUE(SkipPrefix("hell", &p));
7324  EXPECT_EQ(str + 4, p);
7325}
7326
7327TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7328  const char* const str = "world";
7329
7330  const char* p = str;
7331  EXPECT_FALSE(SkipPrefix("W", &p));
7332  EXPECT_EQ(str, p);
7333
7334  p = str;
7335  EXPECT_FALSE(SkipPrefix("world!", &p));
7336  EXPECT_EQ(str, p);
7337}
7338