1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DelayedDiagnostic.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Sema/AnalysisBasedWarnings.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExprObjC.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Lex/LiteralSupport.h"
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/Designator.h"
39#include "clang/Sema/Scope.h"
40#include "clang/Sema/ScopeInfo.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/SemaFixItUtils.h"
43#include "clang/Sema/Template.h"
44#include "TreeTransform.h"
45using namespace clang;
46using namespace sema;
47
48/// \brief Determine whether the use of this declaration is valid, without
49/// emitting diagnostics.
50bool Sema::CanUseDecl(NamedDecl *D) {
51  // See if this is an auto-typed variable whose initializer we are parsing.
52  if (ParsingInitForAutoVars.count(D))
53    return false;
54
55  // See if this is a deleted function.
56  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
57    if (FD->isDeleted())
58      return false;
59  }
60
61  // See if this function is unavailable.
62  if (D->getAvailability() == AR_Unavailable &&
63      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
64    return false;
65
66  return true;
67}
68
69static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
70  // Warn if this is used but marked unused.
71  if (D->hasAttr<UnusedAttr>()) {
72    const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
73    if (!DC->hasAttr<UnusedAttr>())
74      S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
75  }
76}
77
78static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
79                              NamedDecl *D, SourceLocation Loc,
80                              const ObjCInterfaceDecl *UnknownObjCClass) {
81  // See if this declaration is unavailable or deprecated.
82  std::string Message;
83  AvailabilityResult Result = D->getAvailability(&Message);
84  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
85    if (Result == AR_Available) {
86      const DeclContext *DC = ECD->getDeclContext();
87      if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
88        Result = TheEnumDecl->getAvailability(&Message);
89    }
90
91  switch (Result) {
92    case AR_Available:
93    case AR_NotYetIntroduced:
94      break;
95
96    case AR_Deprecated:
97      S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
98      break;
99
100    case AR_Unavailable:
101      if (S.getCurContextAvailability() != AR_Unavailable) {
102        if (Message.empty()) {
103          if (!UnknownObjCClass)
104            S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
105          else
106            S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
107              << D->getDeclName();
108        }
109        else
110          S.Diag(Loc, diag::err_unavailable_message)
111            << D->getDeclName() << Message;
112          S.Diag(D->getLocation(), diag::note_unavailable_here)
113          << isa<FunctionDecl>(D) << false;
114      }
115      break;
116    }
117    return Result;
118}
119
120/// \brief Emit a note explaining that this function is deleted or unavailable.
121void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
122  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
123
124  if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
125    // If the method was explicitly defaulted, point at that declaration.
126    if (!Method->isImplicit())
127      Diag(Decl->getLocation(), diag::note_implicitly_deleted);
128
129    // Try to diagnose why this special member function was implicitly
130    // deleted. This might fail, if that reason no longer applies.
131    CXXSpecialMember CSM = getSpecialMember(Method);
132    if (CSM != CXXInvalid)
133      ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
134
135    return;
136  }
137
138  Diag(Decl->getLocation(), diag::note_unavailable_here)
139    << 1 << Decl->isDeleted();
140}
141
142/// \brief Determine whether a FunctionDecl was ever declared with an
143/// explicit storage class.
144static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
145  for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
146                                     E = D->redecls_end();
147       I != E; ++I) {
148    if (I->getStorageClassAsWritten() != SC_None)
149      return true;
150  }
151  return false;
152}
153
154/// \brief Check whether we're in an extern inline function and referring to a
155/// variable or function with internal linkage (C11 6.7.4p3).
156///
157/// This is only a warning because we used to silently accept this code, but
158/// in many cases it will not behave correctly. This is not enabled in C++ mode
159/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
160/// and so while there may still be user mistakes, most of the time we can't
161/// prove that there are errors.
162static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
163                                                      const NamedDecl *D,
164                                                      SourceLocation Loc) {
165  // This is disabled under C++; there are too many ways for this to fire in
166  // contexts where the warning is a false positive, or where it is technically
167  // correct but benign.
168  if (S.getLangOpts().CPlusPlus)
169    return;
170
171  // Check if this is an inlined function or method.
172  FunctionDecl *Current = S.getCurFunctionDecl();
173  if (!Current)
174    return;
175  if (!Current->isInlined())
176    return;
177  if (Current->getLinkage() != ExternalLinkage)
178    return;
179
180  // Check if the decl has internal linkage.
181  if (D->getLinkage() != InternalLinkage)
182    return;
183
184  // Downgrade from ExtWarn to Extension if
185  //  (1) the supposedly external inline function is in the main file,
186  //      and probably won't be included anywhere else.
187  //  (2) the thing we're referencing is a pure function.
188  //  (3) the thing we're referencing is another inline function.
189  // This last can give us false negatives, but it's better than warning on
190  // wrappers for simple C library functions.
191  const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
192  bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
193  if (!DowngradeWarning && UsedFn)
194    DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
195
196  S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
197                               : diag::warn_internal_in_extern_inline)
198    << /*IsVar=*/!UsedFn << D;
199
200  // Suggest "static" on the inline function, if possible.
201  if (!hasAnyExplicitStorageClass(Current)) {
202    const FunctionDecl *FirstDecl = Current->getCanonicalDecl();
203    SourceLocation DeclBegin = FirstDecl->getSourceRange().getBegin();
204    S.Diag(DeclBegin, diag::note_convert_inline_to_static)
205      << Current << FixItHint::CreateInsertion(DeclBegin, "static ");
206  }
207
208  S.Diag(D->getCanonicalDecl()->getLocation(),
209         diag::note_internal_decl_declared_here)
210    << D;
211}
212
213/// \brief Determine whether the use of this declaration is valid, and
214/// emit any corresponding diagnostics.
215///
216/// This routine diagnoses various problems with referencing
217/// declarations that can occur when using a declaration. For example,
218/// it might warn if a deprecated or unavailable declaration is being
219/// used, or produce an error (and return true) if a C++0x deleted
220/// function is being used.
221///
222/// \returns true if there was an error (this declaration cannot be
223/// referenced), false otherwise.
224///
225bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
226                             const ObjCInterfaceDecl *UnknownObjCClass) {
227  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
228    // If there were any diagnostics suppressed by template argument deduction,
229    // emit them now.
230    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
231      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
232    if (Pos != SuppressedDiagnostics.end()) {
233      SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
234      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
235        Diag(Suppressed[I].first, Suppressed[I].second);
236
237      // Clear out the list of suppressed diagnostics, so that we don't emit
238      // them again for this specialization. However, we don't obsolete this
239      // entry from the table, because we want to avoid ever emitting these
240      // diagnostics again.
241      Suppressed.clear();
242    }
243  }
244
245  // See if this is an auto-typed variable whose initializer we are parsing.
246  if (ParsingInitForAutoVars.count(D)) {
247    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
248      << D->getDeclName();
249    return true;
250  }
251
252  // See if this is a deleted function.
253  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
254    if (FD->isDeleted()) {
255      Diag(Loc, diag::err_deleted_function_use);
256      NoteDeletedFunction(FD);
257      return true;
258    }
259  }
260  DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
261
262  DiagnoseUnusedOfDecl(*this, D, Loc);
263
264  diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
265
266  return false;
267}
268
269/// \brief Retrieve the message suffix that should be added to a
270/// diagnostic complaining about the given function being deleted or
271/// unavailable.
272std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
273  // FIXME: C++0x implicitly-deleted special member functions could be
274  // detected here so that we could improve diagnostics to say, e.g.,
275  // "base class 'A' had a deleted copy constructor".
276  if (FD->isDeleted())
277    return std::string();
278
279  std::string Message;
280  if (FD->getAvailability(&Message))
281    return ": " + Message;
282
283  return std::string();
284}
285
286/// DiagnoseSentinelCalls - This routine checks whether a call or
287/// message-send is to a declaration with the sentinel attribute, and
288/// if so, it checks that the requirements of the sentinel are
289/// satisfied.
290void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
291                                 Expr **args, unsigned numArgs) {
292  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
293  if (!attr)
294    return;
295
296  // The number of formal parameters of the declaration.
297  unsigned numFormalParams;
298
299  // The kind of declaration.  This is also an index into a %select in
300  // the diagnostic.
301  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
302
303  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
304    numFormalParams = MD->param_size();
305    calleeType = CT_Method;
306  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
307    numFormalParams = FD->param_size();
308    calleeType = CT_Function;
309  } else if (isa<VarDecl>(D)) {
310    QualType type = cast<ValueDecl>(D)->getType();
311    const FunctionType *fn = 0;
312    if (const PointerType *ptr = type->getAs<PointerType>()) {
313      fn = ptr->getPointeeType()->getAs<FunctionType>();
314      if (!fn) return;
315      calleeType = CT_Function;
316    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
317      fn = ptr->getPointeeType()->castAs<FunctionType>();
318      calleeType = CT_Block;
319    } else {
320      return;
321    }
322
323    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
324      numFormalParams = proto->getNumArgs();
325    } else {
326      numFormalParams = 0;
327    }
328  } else {
329    return;
330  }
331
332  // "nullPos" is the number of formal parameters at the end which
333  // effectively count as part of the variadic arguments.  This is
334  // useful if you would prefer to not have *any* formal parameters,
335  // but the language forces you to have at least one.
336  unsigned nullPos = attr->getNullPos();
337  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
338  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
339
340  // The number of arguments which should follow the sentinel.
341  unsigned numArgsAfterSentinel = attr->getSentinel();
342
343  // If there aren't enough arguments for all the formal parameters,
344  // the sentinel, and the args after the sentinel, complain.
345  if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
346    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
347    Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
348    return;
349  }
350
351  // Otherwise, find the sentinel expression.
352  Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
353  if (!sentinelExpr) return;
354  if (sentinelExpr->isValueDependent()) return;
355  if (Context.isSentinelNullExpr(sentinelExpr)) return;
356
357  // Pick a reasonable string to insert.  Optimistically use 'nil' or
358  // 'NULL' if those are actually defined in the context.  Only use
359  // 'nil' for ObjC methods, where it's much more likely that the
360  // variadic arguments form a list of object pointers.
361  SourceLocation MissingNilLoc
362    = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
363  std::string NullValue;
364  if (calleeType == CT_Method &&
365      PP.getIdentifierInfo("nil")->hasMacroDefinition())
366    NullValue = "nil";
367  else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
368    NullValue = "NULL";
369  else
370    NullValue = "(void*) 0";
371
372  if (MissingNilLoc.isInvalid())
373    Diag(Loc, diag::warn_missing_sentinel) << calleeType;
374  else
375    Diag(MissingNilLoc, diag::warn_missing_sentinel)
376      << calleeType
377      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
378  Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
379}
380
381SourceRange Sema::getExprRange(Expr *E) const {
382  return E ? E->getSourceRange() : SourceRange();
383}
384
385//===----------------------------------------------------------------------===//
386//  Standard Promotions and Conversions
387//===----------------------------------------------------------------------===//
388
389/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
390ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
391  // Handle any placeholder expressions which made it here.
392  if (E->getType()->isPlaceholderType()) {
393    ExprResult result = CheckPlaceholderExpr(E);
394    if (result.isInvalid()) return ExprError();
395    E = result.take();
396  }
397
398  QualType Ty = E->getType();
399  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
400
401  if (Ty->isFunctionType())
402    E = ImpCastExprToType(E, Context.getPointerType(Ty),
403                          CK_FunctionToPointerDecay).take();
404  else if (Ty->isArrayType()) {
405    // In C90 mode, arrays only promote to pointers if the array expression is
406    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
407    // type 'array of type' is converted to an expression that has type 'pointer
408    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
409    // that has type 'array of type' ...".  The relevant change is "an lvalue"
410    // (C90) to "an expression" (C99).
411    //
412    // C++ 4.2p1:
413    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
414    // T" can be converted to an rvalue of type "pointer to T".
415    //
416    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
417      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
418                            CK_ArrayToPointerDecay).take();
419  }
420  return Owned(E);
421}
422
423static void CheckForNullPointerDereference(Sema &S, Expr *E) {
424  // Check to see if we are dereferencing a null pointer.  If so,
425  // and if not volatile-qualified, this is undefined behavior that the
426  // optimizer will delete, so warn about it.  People sometimes try to use this
427  // to get a deterministic trap and are surprised by clang's behavior.  This
428  // only handles the pattern "*null", which is a very syntactic check.
429  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
430    if (UO->getOpcode() == UO_Deref &&
431        UO->getSubExpr()->IgnoreParenCasts()->
432          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
433        !UO->getType().isVolatileQualified()) {
434    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
435                          S.PDiag(diag::warn_indirection_through_null)
436                            << UO->getSubExpr()->getSourceRange());
437    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
438                        S.PDiag(diag::note_indirection_through_null));
439  }
440}
441
442ExprResult Sema::DefaultLvalueConversion(Expr *E) {
443  // Handle any placeholder expressions which made it here.
444  if (E->getType()->isPlaceholderType()) {
445    ExprResult result = CheckPlaceholderExpr(E);
446    if (result.isInvalid()) return ExprError();
447    E = result.take();
448  }
449
450  // C++ [conv.lval]p1:
451  //   A glvalue of a non-function, non-array type T can be
452  //   converted to a prvalue.
453  if (!E->isGLValue()) return Owned(E);
454
455  QualType T = E->getType();
456  assert(!T.isNull() && "r-value conversion on typeless expression?");
457
458  // We don't want to throw lvalue-to-rvalue casts on top of
459  // expressions of certain types in C++.
460  if (getLangOpts().CPlusPlus &&
461      (E->getType() == Context.OverloadTy ||
462       T->isDependentType() ||
463       T->isRecordType()))
464    return Owned(E);
465
466  // The C standard is actually really unclear on this point, and
467  // DR106 tells us what the result should be but not why.  It's
468  // generally best to say that void types just doesn't undergo
469  // lvalue-to-rvalue at all.  Note that expressions of unqualified
470  // 'void' type are never l-values, but qualified void can be.
471  if (T->isVoidType())
472    return Owned(E);
473
474  CheckForNullPointerDereference(*this, E);
475
476  // C++ [conv.lval]p1:
477  //   [...] If T is a non-class type, the type of the prvalue is the
478  //   cv-unqualified version of T. Otherwise, the type of the
479  //   rvalue is T.
480  //
481  // C99 6.3.2.1p2:
482  //   If the lvalue has qualified type, the value has the unqualified
483  //   version of the type of the lvalue; otherwise, the value has the
484  //   type of the lvalue.
485  if (T.hasQualifiers())
486    T = T.getUnqualifiedType();
487
488  UpdateMarkingForLValueToRValue(E);
489
490  ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
491                                                  E, 0, VK_RValue));
492
493  // C11 6.3.2.1p2:
494  //   ... if the lvalue has atomic type, the value has the non-atomic version
495  //   of the type of the lvalue ...
496  if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
497    T = Atomic->getValueType().getUnqualifiedType();
498    Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
499                                         Res.get(), 0, VK_RValue));
500  }
501
502  return Res;
503}
504
505ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
506  ExprResult Res = DefaultFunctionArrayConversion(E);
507  if (Res.isInvalid())
508    return ExprError();
509  Res = DefaultLvalueConversion(Res.take());
510  if (Res.isInvalid())
511    return ExprError();
512  return Res;
513}
514
515
516/// UsualUnaryConversions - Performs various conversions that are common to most
517/// operators (C99 6.3). The conversions of array and function types are
518/// sometimes suppressed. For example, the array->pointer conversion doesn't
519/// apply if the array is an argument to the sizeof or address (&) operators.
520/// In these instances, this routine should *not* be called.
521ExprResult Sema::UsualUnaryConversions(Expr *E) {
522  // First, convert to an r-value.
523  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
524  if (Res.isInvalid())
525    return Owned(E);
526  E = Res.take();
527
528  QualType Ty = E->getType();
529  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
530
531  // Half FP is a bit different: it's a storage-only type, meaning that any
532  // "use" of it should be promoted to float.
533  if (Ty->isHalfType())
534    return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
535
536  // Try to perform integral promotions if the object has a theoretically
537  // promotable type.
538  if (Ty->isIntegralOrUnscopedEnumerationType()) {
539    // C99 6.3.1.1p2:
540    //
541    //   The following may be used in an expression wherever an int or
542    //   unsigned int may be used:
543    //     - an object or expression with an integer type whose integer
544    //       conversion rank is less than or equal to the rank of int
545    //       and unsigned int.
546    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
547    //
548    //   If an int can represent all values of the original type, the
549    //   value is converted to an int; otherwise, it is converted to an
550    //   unsigned int. These are called the integer promotions. All
551    //   other types are unchanged by the integer promotions.
552
553    QualType PTy = Context.isPromotableBitField(E);
554    if (!PTy.isNull()) {
555      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
556      return Owned(E);
557    }
558    if (Ty->isPromotableIntegerType()) {
559      QualType PT = Context.getPromotedIntegerType(Ty);
560      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
561      return Owned(E);
562    }
563  }
564  return Owned(E);
565}
566
567/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
568/// do not have a prototype. Arguments that have type float are promoted to
569/// double. All other argument types are converted by UsualUnaryConversions().
570ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
571  QualType Ty = E->getType();
572  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
573
574  ExprResult Res = UsualUnaryConversions(E);
575  if (Res.isInvalid())
576    return Owned(E);
577  E = Res.take();
578
579  // If this is a 'float' (CVR qualified or typedef) promote to double.
580  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
581    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
582
583  // C++ performs lvalue-to-rvalue conversion as a default argument
584  // promotion, even on class types, but note:
585  //   C++11 [conv.lval]p2:
586  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
587  //     operand or a subexpression thereof the value contained in the
588  //     referenced object is not accessed. Otherwise, if the glvalue
589  //     has a class type, the conversion copy-initializes a temporary
590  //     of type T from the glvalue and the result of the conversion
591  //     is a prvalue for the temporary.
592  // FIXME: add some way to gate this entire thing for correctness in
593  // potentially potentially evaluated contexts.
594  if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
595    ExprResult Temp = PerformCopyInitialization(
596                       InitializedEntity::InitializeTemporary(E->getType()),
597                                                E->getExprLoc(),
598                                                Owned(E));
599    if (Temp.isInvalid())
600      return ExprError();
601    E = Temp.get();
602  }
603
604  return Owned(E);
605}
606
607/// Determine the degree of POD-ness for an expression.
608/// Incomplete types are considered POD, since this check can be performed
609/// when we're in an unevaluated context.
610Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
611  if (Ty->isIncompleteType()) {
612    if (Ty->isObjCObjectType())
613      return VAK_Invalid;
614    return VAK_Valid;
615  }
616
617  if (Ty.isCXX98PODType(Context))
618    return VAK_Valid;
619
620  // C++0x [expr.call]p7:
621  //   Passing a potentially-evaluated argument of class type (Clause 9)
622  //   having a non-trivial copy constructor, a non-trivial move constructor,
623  //   or a non-trivial destructor, with no corresponding parameter,
624  //   is conditionally-supported with implementation-defined semantics.
625  if (getLangOpts().CPlusPlus0x && !Ty->isDependentType())
626    if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
627      if (Record->hasTrivialCopyConstructor() &&
628          Record->hasTrivialMoveConstructor() &&
629          Record->hasTrivialDestructor())
630        return VAK_ValidInCXX11;
631
632  if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
633    return VAK_Valid;
634  return VAK_Invalid;
635}
636
637bool Sema::variadicArgumentPODCheck(const Expr *E, VariadicCallType CT) {
638  // Don't allow one to pass an Objective-C interface to a vararg.
639  const QualType & Ty = E->getType();
640
641  // Complain about passing non-POD types through varargs.
642  switch (isValidVarArgType(Ty)) {
643  case VAK_Valid:
644    break;
645  case VAK_ValidInCXX11:
646    DiagRuntimeBehavior(E->getLocStart(), 0,
647        PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
648        << E->getType() << CT);
649    break;
650  case VAK_Invalid: {
651    if (Ty->isObjCObjectType())
652      return DiagRuntimeBehavior(E->getLocStart(), 0,
653                          PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
654                            << Ty << CT);
655
656    return DiagRuntimeBehavior(E->getLocStart(), 0,
657                   PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
658                   << getLangOpts().CPlusPlus0x << Ty << CT);
659  }
660  }
661  // c++ rules are enforced elsewhere.
662  return false;
663}
664
665/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
666/// will create a trap if the resulting type is not a POD type.
667ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
668                                                  FunctionDecl *FDecl) {
669  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
670    // Strip the unbridged-cast placeholder expression off, if applicable.
671    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
672        (CT == VariadicMethod ||
673         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
674      E = stripARCUnbridgedCast(E);
675
676    // Otherwise, do normal placeholder checking.
677    } else {
678      ExprResult ExprRes = CheckPlaceholderExpr(E);
679      if (ExprRes.isInvalid())
680        return ExprError();
681      E = ExprRes.take();
682    }
683  }
684
685  ExprResult ExprRes = DefaultArgumentPromotion(E);
686  if (ExprRes.isInvalid())
687    return ExprError();
688  E = ExprRes.take();
689
690  // Diagnostics regarding non-POD argument types are
691  // emitted along with format string checking in Sema::CheckFunctionCall().
692  if (isValidVarArgType(E->getType()) == VAK_Invalid) {
693    // Turn this into a trap.
694    CXXScopeSpec SS;
695    SourceLocation TemplateKWLoc;
696    UnqualifiedId Name;
697    Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
698                       E->getLocStart());
699    ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
700                                          Name, true, false);
701    if (TrapFn.isInvalid())
702      return ExprError();
703
704    ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
705                                    E->getLocStart(), MultiExprArg(),
706                                    E->getLocEnd());
707    if (Call.isInvalid())
708      return ExprError();
709
710    ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
711                                  Call.get(), E);
712    if (Comma.isInvalid())
713      return ExprError();
714    return Comma.get();
715  }
716
717  if (!getLangOpts().CPlusPlus &&
718      RequireCompleteType(E->getExprLoc(), E->getType(),
719                          diag::err_call_incomplete_argument))
720    return ExprError();
721
722  return Owned(E);
723}
724
725/// \brief Converts an integer to complex float type.  Helper function of
726/// UsualArithmeticConversions()
727///
728/// \return false if the integer expression is an integer type and is
729/// successfully converted to the complex type.
730static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
731                                                  ExprResult &ComplexExpr,
732                                                  QualType IntTy,
733                                                  QualType ComplexTy,
734                                                  bool SkipCast) {
735  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
736  if (SkipCast) return false;
737  if (IntTy->isIntegerType()) {
738    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
739    IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
740    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
741                                  CK_FloatingRealToComplex);
742  } else {
743    assert(IntTy->isComplexIntegerType());
744    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
745                                  CK_IntegralComplexToFloatingComplex);
746  }
747  return false;
748}
749
750/// \brief Takes two complex float types and converts them to the same type.
751/// Helper function of UsualArithmeticConversions()
752static QualType
753handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
754                                            ExprResult &RHS, QualType LHSType,
755                                            QualType RHSType,
756                                            bool IsCompAssign) {
757  int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
758
759  if (order < 0) {
760    // _Complex float -> _Complex double
761    if (!IsCompAssign)
762      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
763    return RHSType;
764  }
765  if (order > 0)
766    // _Complex float -> _Complex double
767    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
768  return LHSType;
769}
770
771/// \brief Converts otherExpr to complex float and promotes complexExpr if
772/// necessary.  Helper function of UsualArithmeticConversions()
773static QualType handleOtherComplexFloatConversion(Sema &S,
774                                                  ExprResult &ComplexExpr,
775                                                  ExprResult &OtherExpr,
776                                                  QualType ComplexTy,
777                                                  QualType OtherTy,
778                                                  bool ConvertComplexExpr,
779                                                  bool ConvertOtherExpr) {
780  int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
781
782  // If just the complexExpr is complex, the otherExpr needs to be converted,
783  // and the complexExpr might need to be promoted.
784  if (order > 0) { // complexExpr is wider
785    // float -> _Complex double
786    if (ConvertOtherExpr) {
787      QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
788      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
789      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
790                                      CK_FloatingRealToComplex);
791    }
792    return ComplexTy;
793  }
794
795  // otherTy is at least as wide.  Find its corresponding complex type.
796  QualType result = (order == 0 ? ComplexTy :
797                                  S.Context.getComplexType(OtherTy));
798
799  // double -> _Complex double
800  if (ConvertOtherExpr)
801    OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
802                                    CK_FloatingRealToComplex);
803
804  // _Complex float -> _Complex double
805  if (ConvertComplexExpr && order < 0)
806    ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
807                                      CK_FloatingComplexCast);
808
809  return result;
810}
811
812/// \brief Handle arithmetic conversion with complex types.  Helper function of
813/// UsualArithmeticConversions()
814static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
815                                             ExprResult &RHS, QualType LHSType,
816                                             QualType RHSType,
817                                             bool IsCompAssign) {
818  // if we have an integer operand, the result is the complex type.
819  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
820                                             /*skipCast*/false))
821    return LHSType;
822  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
823                                             /*skipCast*/IsCompAssign))
824    return RHSType;
825
826  // This handles complex/complex, complex/float, or float/complex.
827  // When both operands are complex, the shorter operand is converted to the
828  // type of the longer, and that is the type of the result. This corresponds
829  // to what is done when combining two real floating-point operands.
830  // The fun begins when size promotion occur across type domains.
831  // From H&S 6.3.4: When one operand is complex and the other is a real
832  // floating-point type, the less precise type is converted, within it's
833  // real or complex domain, to the precision of the other type. For example,
834  // when combining a "long double" with a "double _Complex", the
835  // "double _Complex" is promoted to "long double _Complex".
836
837  bool LHSComplexFloat = LHSType->isComplexType();
838  bool RHSComplexFloat = RHSType->isComplexType();
839
840  // If both are complex, just cast to the more precise type.
841  if (LHSComplexFloat && RHSComplexFloat)
842    return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
843                                                       LHSType, RHSType,
844                                                       IsCompAssign);
845
846  // If only one operand is complex, promote it if necessary and convert the
847  // other operand to complex.
848  if (LHSComplexFloat)
849    return handleOtherComplexFloatConversion(
850        S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
851        /*convertOtherExpr*/ true);
852
853  assert(RHSComplexFloat);
854  return handleOtherComplexFloatConversion(
855      S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
856      /*convertOtherExpr*/ !IsCompAssign);
857}
858
859/// \brief Hande arithmetic conversion from integer to float.  Helper function
860/// of UsualArithmeticConversions()
861static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
862                                           ExprResult &IntExpr,
863                                           QualType FloatTy, QualType IntTy,
864                                           bool ConvertFloat, bool ConvertInt) {
865  if (IntTy->isIntegerType()) {
866    if (ConvertInt)
867      // Convert intExpr to the lhs floating point type.
868      IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
869                                    CK_IntegralToFloating);
870    return FloatTy;
871  }
872
873  // Convert both sides to the appropriate complex float.
874  assert(IntTy->isComplexIntegerType());
875  QualType result = S.Context.getComplexType(FloatTy);
876
877  // _Complex int -> _Complex float
878  if (ConvertInt)
879    IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
880                                  CK_IntegralComplexToFloatingComplex);
881
882  // float -> _Complex float
883  if (ConvertFloat)
884    FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
885                                    CK_FloatingRealToComplex);
886
887  return result;
888}
889
890/// \brief Handle arithmethic conversion with floating point types.  Helper
891/// function of UsualArithmeticConversions()
892static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
893                                      ExprResult &RHS, QualType LHSType,
894                                      QualType RHSType, bool IsCompAssign) {
895  bool LHSFloat = LHSType->isRealFloatingType();
896  bool RHSFloat = RHSType->isRealFloatingType();
897
898  // If we have two real floating types, convert the smaller operand
899  // to the bigger result.
900  if (LHSFloat && RHSFloat) {
901    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
902    if (order > 0) {
903      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
904      return LHSType;
905    }
906
907    assert(order < 0 && "illegal float comparison");
908    if (!IsCompAssign)
909      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
910    return RHSType;
911  }
912
913  if (LHSFloat)
914    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
915                                      /*convertFloat=*/!IsCompAssign,
916                                      /*convertInt=*/ true);
917  assert(RHSFloat);
918  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
919                                    /*convertInt=*/ true,
920                                    /*convertFloat=*/!IsCompAssign);
921}
922
923/// \brief Handle conversions with GCC complex int extension.  Helper function
924/// of UsualArithmeticConversions()
925// FIXME: if the operands are (int, _Complex long), we currently
926// don't promote the complex.  Also, signedness?
927static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
928                                           ExprResult &RHS, QualType LHSType,
929                                           QualType RHSType,
930                                           bool IsCompAssign) {
931  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
932  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
933
934  if (LHSComplexInt && RHSComplexInt) {
935    int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
936                                              RHSComplexInt->getElementType());
937    assert(order && "inequal types with equal element ordering");
938    if (order > 0) {
939      // _Complex int -> _Complex long
940      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
941      return LHSType;
942    }
943
944    if (!IsCompAssign)
945      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
946    return RHSType;
947  }
948
949  if (LHSComplexInt) {
950    // int -> _Complex int
951    // FIXME: This needs to take integer ranks into account
952    RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
953                              CK_IntegralCast);
954    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
955    return LHSType;
956  }
957
958  assert(RHSComplexInt);
959  // int -> _Complex int
960  // FIXME: This needs to take integer ranks into account
961  if (!IsCompAssign) {
962    LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
963                              CK_IntegralCast);
964    LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
965  }
966  return RHSType;
967}
968
969/// \brief Handle integer arithmetic conversions.  Helper function of
970/// UsualArithmeticConversions()
971static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
972                                        ExprResult &RHS, QualType LHSType,
973                                        QualType RHSType, bool IsCompAssign) {
974  // The rules for this case are in C99 6.3.1.8
975  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
976  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
977  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
978  if (LHSSigned == RHSSigned) {
979    // Same signedness; use the higher-ranked type
980    if (order >= 0) {
981      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
982      return LHSType;
983    } else if (!IsCompAssign)
984      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
985    return RHSType;
986  } else if (order != (LHSSigned ? 1 : -1)) {
987    // The unsigned type has greater than or equal rank to the
988    // signed type, so use the unsigned type
989    if (RHSSigned) {
990      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
991      return LHSType;
992    } else if (!IsCompAssign)
993      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
994    return RHSType;
995  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
996    // The two types are different widths; if we are here, that
997    // means the signed type is larger than the unsigned type, so
998    // use the signed type.
999    if (LHSSigned) {
1000      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
1001      return LHSType;
1002    } else if (!IsCompAssign)
1003      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
1004    return RHSType;
1005  } else {
1006    // The signed type is higher-ranked than the unsigned type,
1007    // but isn't actually any bigger (like unsigned int and long
1008    // on most 32-bit systems).  Use the unsigned type corresponding
1009    // to the signed type.
1010    QualType result =
1011      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1012    RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
1013    if (!IsCompAssign)
1014      LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
1015    return result;
1016  }
1017}
1018
1019/// UsualArithmeticConversions - Performs various conversions that are common to
1020/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1021/// routine returns the first non-arithmetic type found. The client is
1022/// responsible for emitting appropriate error diagnostics.
1023/// FIXME: verify the conversion rules for "complex int" are consistent with
1024/// GCC.
1025QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1026                                          bool IsCompAssign) {
1027  if (!IsCompAssign) {
1028    LHS = UsualUnaryConversions(LHS.take());
1029    if (LHS.isInvalid())
1030      return QualType();
1031  }
1032
1033  RHS = UsualUnaryConversions(RHS.take());
1034  if (RHS.isInvalid())
1035    return QualType();
1036
1037  // For conversion purposes, we ignore any qualifiers.
1038  // For example, "const float" and "float" are equivalent.
1039  QualType LHSType =
1040    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1041  QualType RHSType =
1042    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1043
1044  // For conversion purposes, we ignore any atomic qualifier on the LHS.
1045  if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1046    LHSType = AtomicLHS->getValueType();
1047
1048  // If both types are identical, no conversion is needed.
1049  if (LHSType == RHSType)
1050    return LHSType;
1051
1052  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1053  // The caller can deal with this (e.g. pointer + int).
1054  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1055    return QualType();
1056
1057  // Apply unary and bitfield promotions to the LHS's type.
1058  QualType LHSUnpromotedType = LHSType;
1059  if (LHSType->isPromotableIntegerType())
1060    LHSType = Context.getPromotedIntegerType(LHSType);
1061  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1062  if (!LHSBitfieldPromoteTy.isNull())
1063    LHSType = LHSBitfieldPromoteTy;
1064  if (LHSType != LHSUnpromotedType && !IsCompAssign)
1065    LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
1066
1067  // If both types are identical, no conversion is needed.
1068  if (LHSType == RHSType)
1069    return LHSType;
1070
1071  // At this point, we have two different arithmetic types.
1072
1073  // Handle complex types first (C99 6.3.1.8p1).
1074  if (LHSType->isComplexType() || RHSType->isComplexType())
1075    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1076                                        IsCompAssign);
1077
1078  // Now handle "real" floating types (i.e. float, double, long double).
1079  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1080    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1081                                 IsCompAssign);
1082
1083  // Handle GCC complex int extension.
1084  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1085    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1086                                      IsCompAssign);
1087
1088  // Finally, we have two differing integer types.
1089  return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
1090                                 IsCompAssign);
1091}
1092
1093//===----------------------------------------------------------------------===//
1094//  Semantic Analysis for various Expression Types
1095//===----------------------------------------------------------------------===//
1096
1097
1098ExprResult
1099Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1100                                SourceLocation DefaultLoc,
1101                                SourceLocation RParenLoc,
1102                                Expr *ControllingExpr,
1103                                MultiTypeArg ArgTypes,
1104                                MultiExprArg ArgExprs) {
1105  unsigned NumAssocs = ArgTypes.size();
1106  assert(NumAssocs == ArgExprs.size());
1107
1108  ParsedType *ParsedTypes = ArgTypes.data();
1109  Expr **Exprs = ArgExprs.data();
1110
1111  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1112  for (unsigned i = 0; i < NumAssocs; ++i) {
1113    if (ParsedTypes[i])
1114      (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1115    else
1116      Types[i] = 0;
1117  }
1118
1119  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1120                                             ControllingExpr, Types, Exprs,
1121                                             NumAssocs);
1122  delete [] Types;
1123  return ER;
1124}
1125
1126ExprResult
1127Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1128                                 SourceLocation DefaultLoc,
1129                                 SourceLocation RParenLoc,
1130                                 Expr *ControllingExpr,
1131                                 TypeSourceInfo **Types,
1132                                 Expr **Exprs,
1133                                 unsigned NumAssocs) {
1134  bool TypeErrorFound = false,
1135       IsResultDependent = ControllingExpr->isTypeDependent(),
1136       ContainsUnexpandedParameterPack
1137         = ControllingExpr->containsUnexpandedParameterPack();
1138
1139  for (unsigned i = 0; i < NumAssocs; ++i) {
1140    if (Exprs[i]->containsUnexpandedParameterPack())
1141      ContainsUnexpandedParameterPack = true;
1142
1143    if (Types[i]) {
1144      if (Types[i]->getType()->containsUnexpandedParameterPack())
1145        ContainsUnexpandedParameterPack = true;
1146
1147      if (Types[i]->getType()->isDependentType()) {
1148        IsResultDependent = true;
1149      } else {
1150        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1151        // complete object type other than a variably modified type."
1152        unsigned D = 0;
1153        if (Types[i]->getType()->isIncompleteType())
1154          D = diag::err_assoc_type_incomplete;
1155        else if (!Types[i]->getType()->isObjectType())
1156          D = diag::err_assoc_type_nonobject;
1157        else if (Types[i]->getType()->isVariablyModifiedType())
1158          D = diag::err_assoc_type_variably_modified;
1159
1160        if (D != 0) {
1161          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1162            << Types[i]->getTypeLoc().getSourceRange()
1163            << Types[i]->getType();
1164          TypeErrorFound = true;
1165        }
1166
1167        // C11 6.5.1.1p2 "No two generic associations in the same generic
1168        // selection shall specify compatible types."
1169        for (unsigned j = i+1; j < NumAssocs; ++j)
1170          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1171              Context.typesAreCompatible(Types[i]->getType(),
1172                                         Types[j]->getType())) {
1173            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1174                 diag::err_assoc_compatible_types)
1175              << Types[j]->getTypeLoc().getSourceRange()
1176              << Types[j]->getType()
1177              << Types[i]->getType();
1178            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1179                 diag::note_compat_assoc)
1180              << Types[i]->getTypeLoc().getSourceRange()
1181              << Types[i]->getType();
1182            TypeErrorFound = true;
1183          }
1184      }
1185    }
1186  }
1187  if (TypeErrorFound)
1188    return ExprError();
1189
1190  // If we determined that the generic selection is result-dependent, don't
1191  // try to compute the result expression.
1192  if (IsResultDependent)
1193    return Owned(new (Context) GenericSelectionExpr(
1194                   Context, KeyLoc, ControllingExpr,
1195                   llvm::makeArrayRef(Types, NumAssocs),
1196                   llvm::makeArrayRef(Exprs, NumAssocs),
1197                   DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack));
1198
1199  SmallVector<unsigned, 1> CompatIndices;
1200  unsigned DefaultIndex = -1U;
1201  for (unsigned i = 0; i < NumAssocs; ++i) {
1202    if (!Types[i])
1203      DefaultIndex = i;
1204    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1205                                        Types[i]->getType()))
1206      CompatIndices.push_back(i);
1207  }
1208
1209  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1210  // type compatible with at most one of the types named in its generic
1211  // association list."
1212  if (CompatIndices.size() > 1) {
1213    // We strip parens here because the controlling expression is typically
1214    // parenthesized in macro definitions.
1215    ControllingExpr = ControllingExpr->IgnoreParens();
1216    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1217      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1218      << (unsigned) CompatIndices.size();
1219    for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1220         E = CompatIndices.end(); I != E; ++I) {
1221      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1222           diag::note_compat_assoc)
1223        << Types[*I]->getTypeLoc().getSourceRange()
1224        << Types[*I]->getType();
1225    }
1226    return ExprError();
1227  }
1228
1229  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1230  // its controlling expression shall have type compatible with exactly one of
1231  // the types named in its generic association list."
1232  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1233    // We strip parens here because the controlling expression is typically
1234    // parenthesized in macro definitions.
1235    ControllingExpr = ControllingExpr->IgnoreParens();
1236    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1237      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1238    return ExprError();
1239  }
1240
1241  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1242  // type name that is compatible with the type of the controlling expression,
1243  // then the result expression of the generic selection is the expression
1244  // in that generic association. Otherwise, the result expression of the
1245  // generic selection is the expression in the default generic association."
1246  unsigned ResultIndex =
1247    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1248
1249  return Owned(new (Context) GenericSelectionExpr(
1250                 Context, KeyLoc, ControllingExpr,
1251                 llvm::makeArrayRef(Types, NumAssocs),
1252                 llvm::makeArrayRef(Exprs, NumAssocs),
1253                 DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack,
1254                 ResultIndex));
1255}
1256
1257/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1258/// location of the token and the offset of the ud-suffix within it.
1259static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1260                                     unsigned Offset) {
1261  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1262                                        S.getLangOpts());
1263}
1264
1265/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1266/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1267static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1268                                                 IdentifierInfo *UDSuffix,
1269                                                 SourceLocation UDSuffixLoc,
1270                                                 ArrayRef<Expr*> Args,
1271                                                 SourceLocation LitEndLoc) {
1272  assert(Args.size() <= 2 && "too many arguments for literal operator");
1273
1274  QualType ArgTy[2];
1275  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1276    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1277    if (ArgTy[ArgIdx]->isArrayType())
1278      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1279  }
1280
1281  DeclarationName OpName =
1282    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1283  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1284  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1285
1286  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1287  if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1288                              /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1289    return ExprError();
1290
1291  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1292}
1293
1294/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1295/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1296/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1297/// multiple tokens.  However, the common case is that StringToks points to one
1298/// string.
1299///
1300ExprResult
1301Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1302                         Scope *UDLScope) {
1303  assert(NumStringToks && "Must have at least one string!");
1304
1305  StringLiteralParser Literal(StringToks, NumStringToks, PP);
1306  if (Literal.hadError)
1307    return ExprError();
1308
1309  SmallVector<SourceLocation, 4> StringTokLocs;
1310  for (unsigned i = 0; i != NumStringToks; ++i)
1311    StringTokLocs.push_back(StringToks[i].getLocation());
1312
1313  QualType StrTy = Context.CharTy;
1314  if (Literal.isWide())
1315    StrTy = Context.getWCharType();
1316  else if (Literal.isUTF16())
1317    StrTy = Context.Char16Ty;
1318  else if (Literal.isUTF32())
1319    StrTy = Context.Char32Ty;
1320  else if (Literal.isPascal())
1321    StrTy = Context.UnsignedCharTy;
1322
1323  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1324  if (Literal.isWide())
1325    Kind = StringLiteral::Wide;
1326  else if (Literal.isUTF8())
1327    Kind = StringLiteral::UTF8;
1328  else if (Literal.isUTF16())
1329    Kind = StringLiteral::UTF16;
1330  else if (Literal.isUTF32())
1331    Kind = StringLiteral::UTF32;
1332
1333  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1334  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1335    StrTy.addConst();
1336
1337  // Get an array type for the string, according to C99 6.4.5.  This includes
1338  // the nul terminator character as well as the string length for pascal
1339  // strings.
1340  StrTy = Context.getConstantArrayType(StrTy,
1341                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1342                                       ArrayType::Normal, 0);
1343
1344  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1345  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1346                                             Kind, Literal.Pascal, StrTy,
1347                                             &StringTokLocs[0],
1348                                             StringTokLocs.size());
1349  if (Literal.getUDSuffix().empty())
1350    return Owned(Lit);
1351
1352  // We're building a user-defined literal.
1353  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1354  SourceLocation UDSuffixLoc =
1355    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1356                   Literal.getUDSuffixOffset());
1357
1358  // Make sure we're allowed user-defined literals here.
1359  if (!UDLScope)
1360    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1361
1362  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1363  //   operator "" X (str, len)
1364  QualType SizeType = Context.getSizeType();
1365  llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1366  IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1367                                                  StringTokLocs[0]);
1368  Expr *Args[] = { Lit, LenArg };
1369  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1370                                        Args, StringTokLocs.back());
1371}
1372
1373ExprResult
1374Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1375                       SourceLocation Loc,
1376                       const CXXScopeSpec *SS) {
1377  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1378  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1379}
1380
1381/// BuildDeclRefExpr - Build an expression that references a
1382/// declaration that does not require a closure capture.
1383ExprResult
1384Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1385                       const DeclarationNameInfo &NameInfo,
1386                       const CXXScopeSpec *SS) {
1387  if (getLangOpts().CUDA)
1388    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1389      if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1390        CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1391                           CalleeTarget = IdentifyCUDATarget(Callee);
1392        if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1393          Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1394            << CalleeTarget << D->getIdentifier() << CallerTarget;
1395          Diag(D->getLocation(), diag::note_previous_decl)
1396            << D->getIdentifier();
1397          return ExprError();
1398        }
1399      }
1400
1401  bool refersToEnclosingScope =
1402    (CurContext != D->getDeclContext() &&
1403     D->getDeclContext()->isFunctionOrMethod());
1404
1405  DeclRefExpr *E = DeclRefExpr::Create(Context,
1406                                       SS ? SS->getWithLocInContext(Context)
1407                                              : NestedNameSpecifierLoc(),
1408                                       SourceLocation(),
1409                                       D, refersToEnclosingScope,
1410                                       NameInfo, Ty, VK);
1411
1412  MarkDeclRefReferenced(E);
1413
1414  // Just in case we're building an illegal pointer-to-member.
1415  FieldDecl *FD = dyn_cast<FieldDecl>(D);
1416  if (FD && FD->isBitField())
1417    E->setObjectKind(OK_BitField);
1418
1419  return Owned(E);
1420}
1421
1422/// Decomposes the given name into a DeclarationNameInfo, its location, and
1423/// possibly a list of template arguments.
1424///
1425/// If this produces template arguments, it is permitted to call
1426/// DecomposeTemplateName.
1427///
1428/// This actually loses a lot of source location information for
1429/// non-standard name kinds; we should consider preserving that in
1430/// some way.
1431void
1432Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1433                             TemplateArgumentListInfo &Buffer,
1434                             DeclarationNameInfo &NameInfo,
1435                             const TemplateArgumentListInfo *&TemplateArgs) {
1436  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1437    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1438    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1439
1440    ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1441                                       Id.TemplateId->NumArgs);
1442    translateTemplateArguments(TemplateArgsPtr, Buffer);
1443
1444    TemplateName TName = Id.TemplateId->Template.get();
1445    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1446    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1447    TemplateArgs = &Buffer;
1448  } else {
1449    NameInfo = GetNameFromUnqualifiedId(Id);
1450    TemplateArgs = 0;
1451  }
1452}
1453
1454/// Diagnose an empty lookup.
1455///
1456/// \return false if new lookup candidates were found
1457bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1458                               CorrectionCandidateCallback &CCC,
1459                               TemplateArgumentListInfo *ExplicitTemplateArgs,
1460                               llvm::ArrayRef<Expr *> Args) {
1461  DeclarationName Name = R.getLookupName();
1462
1463  unsigned diagnostic = diag::err_undeclared_var_use;
1464  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1465  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1466      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1467      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1468    diagnostic = diag::err_undeclared_use;
1469    diagnostic_suggest = diag::err_undeclared_use_suggest;
1470  }
1471
1472  // If the original lookup was an unqualified lookup, fake an
1473  // unqualified lookup.  This is useful when (for example) the
1474  // original lookup would not have found something because it was a
1475  // dependent name.
1476  DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1477    ? CurContext : 0;
1478  while (DC) {
1479    if (isa<CXXRecordDecl>(DC)) {
1480      LookupQualifiedName(R, DC);
1481
1482      if (!R.empty()) {
1483        // Don't give errors about ambiguities in this lookup.
1484        R.suppressDiagnostics();
1485
1486        // During a default argument instantiation the CurContext points
1487        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1488        // function parameter list, hence add an explicit check.
1489        bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1490                              ActiveTemplateInstantiations.back().Kind ==
1491            ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1492        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1493        bool isInstance = CurMethod &&
1494                          CurMethod->isInstance() &&
1495                          DC == CurMethod->getParent() && !isDefaultArgument;
1496
1497
1498        // Give a code modification hint to insert 'this->'.
1499        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1500        // Actually quite difficult!
1501        if (getLangOpts().MicrosoftMode)
1502          diagnostic = diag::warn_found_via_dependent_bases_lookup;
1503        if (isInstance) {
1504          Diag(R.getNameLoc(), diagnostic) << Name
1505            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1506          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1507              CallsUndergoingInstantiation.back()->getCallee());
1508
1509
1510          CXXMethodDecl *DepMethod;
1511          if (CurMethod->getTemplatedKind() ==
1512              FunctionDecl::TK_FunctionTemplateSpecialization)
1513            DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1514                getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1515          else
1516            DepMethod = cast<CXXMethodDecl>(
1517                CurMethod->getInstantiatedFromMemberFunction());
1518          assert(DepMethod && "No template pattern found");
1519
1520          QualType DepThisType = DepMethod->getThisType(Context);
1521          CheckCXXThisCapture(R.getNameLoc());
1522          CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1523                                     R.getNameLoc(), DepThisType, false);
1524          TemplateArgumentListInfo TList;
1525          if (ULE->hasExplicitTemplateArgs())
1526            ULE->copyTemplateArgumentsInto(TList);
1527
1528          CXXScopeSpec SS;
1529          SS.Adopt(ULE->getQualifierLoc());
1530          CXXDependentScopeMemberExpr *DepExpr =
1531              CXXDependentScopeMemberExpr::Create(
1532                  Context, DepThis, DepThisType, true, SourceLocation(),
1533                  SS.getWithLocInContext(Context),
1534                  ULE->getTemplateKeywordLoc(), 0,
1535                  R.getLookupNameInfo(),
1536                  ULE->hasExplicitTemplateArgs() ? &TList : 0);
1537          CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1538        } else {
1539          Diag(R.getNameLoc(), diagnostic) << Name;
1540        }
1541
1542        // Do we really want to note all of these?
1543        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1544          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1545
1546        // Return true if we are inside a default argument instantiation
1547        // and the found name refers to an instance member function, otherwise
1548        // the function calling DiagnoseEmptyLookup will try to create an
1549        // implicit member call and this is wrong for default argument.
1550        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1551          Diag(R.getNameLoc(), diag::err_member_call_without_object);
1552          return true;
1553        }
1554
1555        // Tell the callee to try to recover.
1556        return false;
1557      }
1558
1559      R.clear();
1560    }
1561
1562    // In Microsoft mode, if we are performing lookup from within a friend
1563    // function definition declared at class scope then we must set
1564    // DC to the lexical parent to be able to search into the parent
1565    // class.
1566    if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1567        cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1568        DC->getLexicalParent()->isRecord())
1569      DC = DC->getLexicalParent();
1570    else
1571      DC = DC->getParent();
1572  }
1573
1574  // We didn't find anything, so try to correct for a typo.
1575  TypoCorrection Corrected;
1576  if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1577                                    S, &SS, CCC))) {
1578    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1579    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1580    R.setLookupName(Corrected.getCorrection());
1581
1582    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1583      if (Corrected.isOverloaded()) {
1584        OverloadCandidateSet OCS(R.getNameLoc());
1585        OverloadCandidateSet::iterator Best;
1586        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1587                                        CDEnd = Corrected.end();
1588             CD != CDEnd; ++CD) {
1589          if (FunctionTemplateDecl *FTD =
1590                   dyn_cast<FunctionTemplateDecl>(*CD))
1591            AddTemplateOverloadCandidate(
1592                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1593                Args, OCS);
1594          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1595            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1596              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1597                                   Args, OCS);
1598        }
1599        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1600          case OR_Success:
1601            ND = Best->Function;
1602            break;
1603          default:
1604            break;
1605        }
1606      }
1607      R.addDecl(ND);
1608      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1609        if (SS.isEmpty())
1610          Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1611            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1612        else
1613          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1614            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1615            << SS.getRange()
1616            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1617        if (ND)
1618          Diag(ND->getLocation(), diag::note_previous_decl)
1619            << CorrectedQuotedStr;
1620
1621        // Tell the callee to try to recover.
1622        return false;
1623      }
1624
1625      if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1626        // FIXME: If we ended up with a typo for a type name or
1627        // Objective-C class name, we're in trouble because the parser
1628        // is in the wrong place to recover. Suggest the typo
1629        // correction, but don't make it a fix-it since we're not going
1630        // to recover well anyway.
1631        if (SS.isEmpty())
1632          Diag(R.getNameLoc(), diagnostic_suggest)
1633            << Name << CorrectedQuotedStr;
1634        else
1635          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1636            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1637            << SS.getRange();
1638
1639        // Don't try to recover; it won't work.
1640        return true;
1641      }
1642    } else {
1643      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1644      // because we aren't able to recover.
1645      if (SS.isEmpty())
1646        Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1647      else
1648        Diag(R.getNameLoc(), diag::err_no_member_suggest)
1649        << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1650        << SS.getRange();
1651      return true;
1652    }
1653  }
1654  R.clear();
1655
1656  // Emit a special diagnostic for failed member lookups.
1657  // FIXME: computing the declaration context might fail here (?)
1658  if (!SS.isEmpty()) {
1659    Diag(R.getNameLoc(), diag::err_no_member)
1660      << Name << computeDeclContext(SS, false)
1661      << SS.getRange();
1662    return true;
1663  }
1664
1665  // Give up, we can't recover.
1666  Diag(R.getNameLoc(), diagnostic) << Name;
1667  return true;
1668}
1669
1670ExprResult Sema::ActOnIdExpression(Scope *S,
1671                                   CXXScopeSpec &SS,
1672                                   SourceLocation TemplateKWLoc,
1673                                   UnqualifiedId &Id,
1674                                   bool HasTrailingLParen,
1675                                   bool IsAddressOfOperand,
1676                                   CorrectionCandidateCallback *CCC) {
1677  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1678         "cannot be direct & operand and have a trailing lparen");
1679
1680  if (SS.isInvalid())
1681    return ExprError();
1682
1683  TemplateArgumentListInfo TemplateArgsBuffer;
1684
1685  // Decompose the UnqualifiedId into the following data.
1686  DeclarationNameInfo NameInfo;
1687  const TemplateArgumentListInfo *TemplateArgs;
1688  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1689
1690  DeclarationName Name = NameInfo.getName();
1691  IdentifierInfo *II = Name.getAsIdentifierInfo();
1692  SourceLocation NameLoc = NameInfo.getLoc();
1693
1694  // C++ [temp.dep.expr]p3:
1695  //   An id-expression is type-dependent if it contains:
1696  //     -- an identifier that was declared with a dependent type,
1697  //        (note: handled after lookup)
1698  //     -- a template-id that is dependent,
1699  //        (note: handled in BuildTemplateIdExpr)
1700  //     -- a conversion-function-id that specifies a dependent type,
1701  //     -- a nested-name-specifier that contains a class-name that
1702  //        names a dependent type.
1703  // Determine whether this is a member of an unknown specialization;
1704  // we need to handle these differently.
1705  bool DependentID = false;
1706  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1707      Name.getCXXNameType()->isDependentType()) {
1708    DependentID = true;
1709  } else if (SS.isSet()) {
1710    if (DeclContext *DC = computeDeclContext(SS, false)) {
1711      if (RequireCompleteDeclContext(SS, DC))
1712        return ExprError();
1713    } else {
1714      DependentID = true;
1715    }
1716  }
1717
1718  if (DependentID)
1719    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1720                                      IsAddressOfOperand, TemplateArgs);
1721
1722  // Perform the required lookup.
1723  LookupResult R(*this, NameInfo,
1724                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1725                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1726  if (TemplateArgs) {
1727    // Lookup the template name again to correctly establish the context in
1728    // which it was found. This is really unfortunate as we already did the
1729    // lookup to determine that it was a template name in the first place. If
1730    // this becomes a performance hit, we can work harder to preserve those
1731    // results until we get here but it's likely not worth it.
1732    bool MemberOfUnknownSpecialization;
1733    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1734                       MemberOfUnknownSpecialization);
1735
1736    if (MemberOfUnknownSpecialization ||
1737        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1738      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1739                                        IsAddressOfOperand, TemplateArgs);
1740  } else {
1741    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1742    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1743
1744    // If the result might be in a dependent base class, this is a dependent
1745    // id-expression.
1746    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1747      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1748                                        IsAddressOfOperand, TemplateArgs);
1749
1750    // If this reference is in an Objective-C method, then we need to do
1751    // some special Objective-C lookup, too.
1752    if (IvarLookupFollowUp) {
1753      ExprResult E(LookupInObjCMethod(R, S, II, true));
1754      if (E.isInvalid())
1755        return ExprError();
1756
1757      if (Expr *Ex = E.takeAs<Expr>())
1758        return Owned(Ex);
1759    }
1760  }
1761
1762  if (R.isAmbiguous())
1763    return ExprError();
1764
1765  // Determine whether this name might be a candidate for
1766  // argument-dependent lookup.
1767  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1768
1769  if (R.empty() && !ADL) {
1770    // Otherwise, this could be an implicitly declared function reference (legal
1771    // in C90, extension in C99, forbidden in C++).
1772    if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1773      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1774      if (D) R.addDecl(D);
1775    }
1776
1777    // If this name wasn't predeclared and if this is not a function
1778    // call, diagnose the problem.
1779    if (R.empty()) {
1780
1781      // In Microsoft mode, if we are inside a template class member function
1782      // and we can't resolve an identifier then assume the identifier is type
1783      // dependent. The goal is to postpone name lookup to instantiation time
1784      // to be able to search into type dependent base classes.
1785      if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1786          isa<CXXMethodDecl>(CurContext))
1787        return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1788                                          IsAddressOfOperand, TemplateArgs);
1789
1790      CorrectionCandidateCallback DefaultValidator;
1791      if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1792        return ExprError();
1793
1794      assert(!R.empty() &&
1795             "DiagnoseEmptyLookup returned false but added no results");
1796
1797      // If we found an Objective-C instance variable, let
1798      // LookupInObjCMethod build the appropriate expression to
1799      // reference the ivar.
1800      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1801        R.clear();
1802        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1803        // In a hopelessly buggy code, Objective-C instance variable
1804        // lookup fails and no expression will be built to reference it.
1805        if (!E.isInvalid() && !E.get())
1806          return ExprError();
1807        return E;
1808      }
1809    }
1810  }
1811
1812  // This is guaranteed from this point on.
1813  assert(!R.empty() || ADL);
1814
1815  // Check whether this might be a C++ implicit instance member access.
1816  // C++ [class.mfct.non-static]p3:
1817  //   When an id-expression that is not part of a class member access
1818  //   syntax and not used to form a pointer to member is used in the
1819  //   body of a non-static member function of class X, if name lookup
1820  //   resolves the name in the id-expression to a non-static non-type
1821  //   member of some class C, the id-expression is transformed into a
1822  //   class member access expression using (*this) as the
1823  //   postfix-expression to the left of the . operator.
1824  //
1825  // But we don't actually need to do this for '&' operands if R
1826  // resolved to a function or overloaded function set, because the
1827  // expression is ill-formed if it actually works out to be a
1828  // non-static member function:
1829  //
1830  // C++ [expr.ref]p4:
1831  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1832  //   [t]he expression can be used only as the left-hand operand of a
1833  //   member function call.
1834  //
1835  // There are other safeguards against such uses, but it's important
1836  // to get this right here so that we don't end up making a
1837  // spuriously dependent expression if we're inside a dependent
1838  // instance method.
1839  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1840    bool MightBeImplicitMember;
1841    if (!IsAddressOfOperand)
1842      MightBeImplicitMember = true;
1843    else if (!SS.isEmpty())
1844      MightBeImplicitMember = false;
1845    else if (R.isOverloadedResult())
1846      MightBeImplicitMember = false;
1847    else if (R.isUnresolvableResult())
1848      MightBeImplicitMember = true;
1849    else
1850      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1851                              isa<IndirectFieldDecl>(R.getFoundDecl());
1852
1853    if (MightBeImplicitMember)
1854      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1855                                             R, TemplateArgs);
1856  }
1857
1858  if (TemplateArgs || TemplateKWLoc.isValid())
1859    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1860
1861  return BuildDeclarationNameExpr(SS, R, ADL);
1862}
1863
1864/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1865/// declaration name, generally during template instantiation.
1866/// There's a large number of things which don't need to be done along
1867/// this path.
1868ExprResult
1869Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1870                                        const DeclarationNameInfo &NameInfo) {
1871  DeclContext *DC;
1872  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1873    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1874                                     NameInfo, /*TemplateArgs=*/0);
1875
1876  if (RequireCompleteDeclContext(SS, DC))
1877    return ExprError();
1878
1879  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1880  LookupQualifiedName(R, DC);
1881
1882  if (R.isAmbiguous())
1883    return ExprError();
1884
1885  if (R.empty()) {
1886    Diag(NameInfo.getLoc(), diag::err_no_member)
1887      << NameInfo.getName() << DC << SS.getRange();
1888    return ExprError();
1889  }
1890
1891  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1892}
1893
1894/// LookupInObjCMethod - The parser has read a name in, and Sema has
1895/// detected that we're currently inside an ObjC method.  Perform some
1896/// additional lookup.
1897///
1898/// Ideally, most of this would be done by lookup, but there's
1899/// actually quite a lot of extra work involved.
1900///
1901/// Returns a null sentinel to indicate trivial success.
1902ExprResult
1903Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1904                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1905  SourceLocation Loc = Lookup.getNameLoc();
1906  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1907
1908  // There are two cases to handle here.  1) scoped lookup could have failed,
1909  // in which case we should look for an ivar.  2) scoped lookup could have
1910  // found a decl, but that decl is outside the current instance method (i.e.
1911  // a global variable).  In these two cases, we do a lookup for an ivar with
1912  // this name, if the lookup sucedes, we replace it our current decl.
1913
1914  // If we're in a class method, we don't normally want to look for
1915  // ivars.  But if we don't find anything else, and there's an
1916  // ivar, that's an error.
1917  bool IsClassMethod = CurMethod->isClassMethod();
1918
1919  bool LookForIvars;
1920  if (Lookup.empty())
1921    LookForIvars = true;
1922  else if (IsClassMethod)
1923    LookForIvars = false;
1924  else
1925    LookForIvars = (Lookup.isSingleResult() &&
1926                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1927  ObjCInterfaceDecl *IFace = 0;
1928  if (LookForIvars) {
1929    IFace = CurMethod->getClassInterface();
1930    ObjCInterfaceDecl *ClassDeclared;
1931    ObjCIvarDecl *IV = 0;
1932    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
1933      // Diagnose using an ivar in a class method.
1934      if (IsClassMethod)
1935        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1936                         << IV->getDeclName());
1937
1938      // If we're referencing an invalid decl, just return this as a silent
1939      // error node.  The error diagnostic was already emitted on the decl.
1940      if (IV->isInvalidDecl())
1941        return ExprError();
1942
1943      // Check if referencing a field with __attribute__((deprecated)).
1944      if (DiagnoseUseOfDecl(IV, Loc))
1945        return ExprError();
1946
1947      // Diagnose the use of an ivar outside of the declaring class.
1948      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1949          !declaresSameEntity(ClassDeclared, IFace) &&
1950          !getLangOpts().DebuggerSupport)
1951        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1952
1953      // FIXME: This should use a new expr for a direct reference, don't
1954      // turn this into Self->ivar, just return a BareIVarExpr or something.
1955      IdentifierInfo &II = Context.Idents.get("self");
1956      UnqualifiedId SelfName;
1957      SelfName.setIdentifier(&II, SourceLocation());
1958      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
1959      CXXScopeSpec SelfScopeSpec;
1960      SourceLocation TemplateKWLoc;
1961      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
1962                                              SelfName, false, false);
1963      if (SelfExpr.isInvalid())
1964        return ExprError();
1965
1966      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
1967      if (SelfExpr.isInvalid())
1968        return ExprError();
1969
1970      MarkAnyDeclReferenced(Loc, IV);
1971
1972      ObjCMethodFamily MF = CurMethod->getMethodFamily();
1973      if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize)
1974        Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
1975      return Owned(new (Context)
1976                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1977                                   SelfExpr.take(), true, true));
1978    }
1979  } else if (CurMethod->isInstanceMethod()) {
1980    // We should warn if a local variable hides an ivar.
1981    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
1982      ObjCInterfaceDecl *ClassDeclared;
1983      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1984        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1985            declaresSameEntity(IFace, ClassDeclared))
1986          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1987      }
1988    }
1989  } else if (Lookup.isSingleResult() &&
1990             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
1991    // If accessing a stand-alone ivar in a class method, this is an error.
1992    if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
1993      return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1994                       << IV->getDeclName());
1995  }
1996
1997  if (Lookup.empty() && II && AllowBuiltinCreation) {
1998    // FIXME. Consolidate this with similar code in LookupName.
1999    if (unsigned BuiltinID = II->getBuiltinID()) {
2000      if (!(getLangOpts().CPlusPlus &&
2001            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2002        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2003                                           S, Lookup.isForRedeclaration(),
2004                                           Lookup.getNameLoc());
2005        if (D) Lookup.addDecl(D);
2006      }
2007    }
2008  }
2009  // Sentinel value saying that we didn't do anything special.
2010  return Owned((Expr*) 0);
2011}
2012
2013/// \brief Cast a base object to a member's actual type.
2014///
2015/// Logically this happens in three phases:
2016///
2017/// * First we cast from the base type to the naming class.
2018///   The naming class is the class into which we were looking
2019///   when we found the member;  it's the qualifier type if a
2020///   qualifier was provided, and otherwise it's the base type.
2021///
2022/// * Next we cast from the naming class to the declaring class.
2023///   If the member we found was brought into a class's scope by
2024///   a using declaration, this is that class;  otherwise it's
2025///   the class declaring the member.
2026///
2027/// * Finally we cast from the declaring class to the "true"
2028///   declaring class of the member.  This conversion does not
2029///   obey access control.
2030ExprResult
2031Sema::PerformObjectMemberConversion(Expr *From,
2032                                    NestedNameSpecifier *Qualifier,
2033                                    NamedDecl *FoundDecl,
2034                                    NamedDecl *Member) {
2035  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2036  if (!RD)
2037    return Owned(From);
2038
2039  QualType DestRecordType;
2040  QualType DestType;
2041  QualType FromRecordType;
2042  QualType FromType = From->getType();
2043  bool PointerConversions = false;
2044  if (isa<FieldDecl>(Member)) {
2045    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2046
2047    if (FromType->getAs<PointerType>()) {
2048      DestType = Context.getPointerType(DestRecordType);
2049      FromRecordType = FromType->getPointeeType();
2050      PointerConversions = true;
2051    } else {
2052      DestType = DestRecordType;
2053      FromRecordType = FromType;
2054    }
2055  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2056    if (Method->isStatic())
2057      return Owned(From);
2058
2059    DestType = Method->getThisType(Context);
2060    DestRecordType = DestType->getPointeeType();
2061
2062    if (FromType->getAs<PointerType>()) {
2063      FromRecordType = FromType->getPointeeType();
2064      PointerConversions = true;
2065    } else {
2066      FromRecordType = FromType;
2067      DestType = DestRecordType;
2068    }
2069  } else {
2070    // No conversion necessary.
2071    return Owned(From);
2072  }
2073
2074  if (DestType->isDependentType() || FromType->isDependentType())
2075    return Owned(From);
2076
2077  // If the unqualified types are the same, no conversion is necessary.
2078  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2079    return Owned(From);
2080
2081  SourceRange FromRange = From->getSourceRange();
2082  SourceLocation FromLoc = FromRange.getBegin();
2083
2084  ExprValueKind VK = From->getValueKind();
2085
2086  // C++ [class.member.lookup]p8:
2087  //   [...] Ambiguities can often be resolved by qualifying a name with its
2088  //   class name.
2089  //
2090  // If the member was a qualified name and the qualified referred to a
2091  // specific base subobject type, we'll cast to that intermediate type
2092  // first and then to the object in which the member is declared. That allows
2093  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2094  //
2095  //   class Base { public: int x; };
2096  //   class Derived1 : public Base { };
2097  //   class Derived2 : public Base { };
2098  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2099  //
2100  //   void VeryDerived::f() {
2101  //     x = 17; // error: ambiguous base subobjects
2102  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2103  //   }
2104  if (Qualifier) {
2105    QualType QType = QualType(Qualifier->getAsType(), 0);
2106    assert(!QType.isNull() && "lookup done with dependent qualifier?");
2107    assert(QType->isRecordType() && "lookup done with non-record type");
2108
2109    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2110
2111    // In C++98, the qualifier type doesn't actually have to be a base
2112    // type of the object type, in which case we just ignore it.
2113    // Otherwise build the appropriate casts.
2114    if (IsDerivedFrom(FromRecordType, QRecordType)) {
2115      CXXCastPath BasePath;
2116      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2117                                       FromLoc, FromRange, &BasePath))
2118        return ExprError();
2119
2120      if (PointerConversions)
2121        QType = Context.getPointerType(QType);
2122      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2123                               VK, &BasePath).take();
2124
2125      FromType = QType;
2126      FromRecordType = QRecordType;
2127
2128      // If the qualifier type was the same as the destination type,
2129      // we're done.
2130      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2131        return Owned(From);
2132    }
2133  }
2134
2135  bool IgnoreAccess = false;
2136
2137  // If we actually found the member through a using declaration, cast
2138  // down to the using declaration's type.
2139  //
2140  // Pointer equality is fine here because only one declaration of a
2141  // class ever has member declarations.
2142  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2143    assert(isa<UsingShadowDecl>(FoundDecl));
2144    QualType URecordType = Context.getTypeDeclType(
2145                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2146
2147    // We only need to do this if the naming-class to declaring-class
2148    // conversion is non-trivial.
2149    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2150      assert(IsDerivedFrom(FromRecordType, URecordType));
2151      CXXCastPath BasePath;
2152      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2153                                       FromLoc, FromRange, &BasePath))
2154        return ExprError();
2155
2156      QualType UType = URecordType;
2157      if (PointerConversions)
2158        UType = Context.getPointerType(UType);
2159      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2160                               VK, &BasePath).take();
2161      FromType = UType;
2162      FromRecordType = URecordType;
2163    }
2164
2165    // We don't do access control for the conversion from the
2166    // declaring class to the true declaring class.
2167    IgnoreAccess = true;
2168  }
2169
2170  CXXCastPath BasePath;
2171  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2172                                   FromLoc, FromRange, &BasePath,
2173                                   IgnoreAccess))
2174    return ExprError();
2175
2176  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2177                           VK, &BasePath);
2178}
2179
2180bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2181                                      const LookupResult &R,
2182                                      bool HasTrailingLParen) {
2183  // Only when used directly as the postfix-expression of a call.
2184  if (!HasTrailingLParen)
2185    return false;
2186
2187  // Never if a scope specifier was provided.
2188  if (SS.isSet())
2189    return false;
2190
2191  // Only in C++ or ObjC++.
2192  if (!getLangOpts().CPlusPlus)
2193    return false;
2194
2195  // Turn off ADL when we find certain kinds of declarations during
2196  // normal lookup:
2197  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2198    NamedDecl *D = *I;
2199
2200    // C++0x [basic.lookup.argdep]p3:
2201    //     -- a declaration of a class member
2202    // Since using decls preserve this property, we check this on the
2203    // original decl.
2204    if (D->isCXXClassMember())
2205      return false;
2206
2207    // C++0x [basic.lookup.argdep]p3:
2208    //     -- a block-scope function declaration that is not a
2209    //        using-declaration
2210    // NOTE: we also trigger this for function templates (in fact, we
2211    // don't check the decl type at all, since all other decl types
2212    // turn off ADL anyway).
2213    if (isa<UsingShadowDecl>(D))
2214      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2215    else if (D->getDeclContext()->isFunctionOrMethod())
2216      return false;
2217
2218    // C++0x [basic.lookup.argdep]p3:
2219    //     -- a declaration that is neither a function or a function
2220    //        template
2221    // And also for builtin functions.
2222    if (isa<FunctionDecl>(D)) {
2223      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2224
2225      // But also builtin functions.
2226      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2227        return false;
2228    } else if (!isa<FunctionTemplateDecl>(D))
2229      return false;
2230  }
2231
2232  return true;
2233}
2234
2235
2236/// Diagnoses obvious problems with the use of the given declaration
2237/// as an expression.  This is only actually called for lookups that
2238/// were not overloaded, and it doesn't promise that the declaration
2239/// will in fact be used.
2240static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2241  if (isa<TypedefNameDecl>(D)) {
2242    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2243    return true;
2244  }
2245
2246  if (isa<ObjCInterfaceDecl>(D)) {
2247    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2248    return true;
2249  }
2250
2251  if (isa<NamespaceDecl>(D)) {
2252    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2253    return true;
2254  }
2255
2256  return false;
2257}
2258
2259ExprResult
2260Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2261                               LookupResult &R,
2262                               bool NeedsADL) {
2263  // If this is a single, fully-resolved result and we don't need ADL,
2264  // just build an ordinary singleton decl ref.
2265  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2266    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2267                                    R.getFoundDecl());
2268
2269  // We only need to check the declaration if there's exactly one
2270  // result, because in the overloaded case the results can only be
2271  // functions and function templates.
2272  if (R.isSingleResult() &&
2273      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2274    return ExprError();
2275
2276  // Otherwise, just build an unresolved lookup expression.  Suppress
2277  // any lookup-related diagnostics; we'll hash these out later, when
2278  // we've picked a target.
2279  R.suppressDiagnostics();
2280
2281  UnresolvedLookupExpr *ULE
2282    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2283                                   SS.getWithLocInContext(Context),
2284                                   R.getLookupNameInfo(),
2285                                   NeedsADL, R.isOverloadedResult(),
2286                                   R.begin(), R.end());
2287
2288  return Owned(ULE);
2289}
2290
2291/// \brief Complete semantic analysis for a reference to the given declaration.
2292ExprResult
2293Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2294                               const DeclarationNameInfo &NameInfo,
2295                               NamedDecl *D) {
2296  assert(D && "Cannot refer to a NULL declaration");
2297  assert(!isa<FunctionTemplateDecl>(D) &&
2298         "Cannot refer unambiguously to a function template");
2299
2300  SourceLocation Loc = NameInfo.getLoc();
2301  if (CheckDeclInExpr(*this, Loc, D))
2302    return ExprError();
2303
2304  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2305    // Specifically diagnose references to class templates that are missing
2306    // a template argument list.
2307    Diag(Loc, diag::err_template_decl_ref)
2308      << Template << SS.getRange();
2309    Diag(Template->getLocation(), diag::note_template_decl_here);
2310    return ExprError();
2311  }
2312
2313  // Make sure that we're referring to a value.
2314  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2315  if (!VD) {
2316    Diag(Loc, diag::err_ref_non_value)
2317      << D << SS.getRange();
2318    Diag(D->getLocation(), diag::note_declared_at);
2319    return ExprError();
2320  }
2321
2322  // Check whether this declaration can be used. Note that we suppress
2323  // this check when we're going to perform argument-dependent lookup
2324  // on this function name, because this might not be the function
2325  // that overload resolution actually selects.
2326  if (DiagnoseUseOfDecl(VD, Loc))
2327    return ExprError();
2328
2329  // Only create DeclRefExpr's for valid Decl's.
2330  if (VD->isInvalidDecl())
2331    return ExprError();
2332
2333  // Handle members of anonymous structs and unions.  If we got here,
2334  // and the reference is to a class member indirect field, then this
2335  // must be the subject of a pointer-to-member expression.
2336  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2337    if (!indirectField->isCXXClassMember())
2338      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2339                                                      indirectField);
2340
2341  {
2342    QualType type = VD->getType();
2343    ExprValueKind valueKind = VK_RValue;
2344
2345    switch (D->getKind()) {
2346    // Ignore all the non-ValueDecl kinds.
2347#define ABSTRACT_DECL(kind)
2348#define VALUE(type, base)
2349#define DECL(type, base) \
2350    case Decl::type:
2351#include "clang/AST/DeclNodes.inc"
2352      llvm_unreachable("invalid value decl kind");
2353
2354    // These shouldn't make it here.
2355    case Decl::ObjCAtDefsField:
2356    case Decl::ObjCIvar:
2357      llvm_unreachable("forming non-member reference to ivar?");
2358
2359    // Enum constants are always r-values and never references.
2360    // Unresolved using declarations are dependent.
2361    case Decl::EnumConstant:
2362    case Decl::UnresolvedUsingValue:
2363      valueKind = VK_RValue;
2364      break;
2365
2366    // Fields and indirect fields that got here must be for
2367    // pointer-to-member expressions; we just call them l-values for
2368    // internal consistency, because this subexpression doesn't really
2369    // exist in the high-level semantics.
2370    case Decl::Field:
2371    case Decl::IndirectField:
2372      assert(getLangOpts().CPlusPlus &&
2373             "building reference to field in C?");
2374
2375      // These can't have reference type in well-formed programs, but
2376      // for internal consistency we do this anyway.
2377      type = type.getNonReferenceType();
2378      valueKind = VK_LValue;
2379      break;
2380
2381    // Non-type template parameters are either l-values or r-values
2382    // depending on the type.
2383    case Decl::NonTypeTemplateParm: {
2384      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2385        type = reftype->getPointeeType();
2386        valueKind = VK_LValue; // even if the parameter is an r-value reference
2387        break;
2388      }
2389
2390      // For non-references, we need to strip qualifiers just in case
2391      // the template parameter was declared as 'const int' or whatever.
2392      valueKind = VK_RValue;
2393      type = type.getUnqualifiedType();
2394      break;
2395    }
2396
2397    case Decl::Var:
2398      // In C, "extern void blah;" is valid and is an r-value.
2399      if (!getLangOpts().CPlusPlus &&
2400          !type.hasQualifiers() &&
2401          type->isVoidType()) {
2402        valueKind = VK_RValue;
2403        break;
2404      }
2405      // fallthrough
2406
2407    case Decl::ImplicitParam:
2408    case Decl::ParmVar: {
2409      // These are always l-values.
2410      valueKind = VK_LValue;
2411      type = type.getNonReferenceType();
2412
2413      // FIXME: Does the addition of const really only apply in
2414      // potentially-evaluated contexts? Since the variable isn't actually
2415      // captured in an unevaluated context, it seems that the answer is no.
2416      if (!isUnevaluatedContext()) {
2417        QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2418        if (!CapturedType.isNull())
2419          type = CapturedType;
2420      }
2421
2422      break;
2423    }
2424
2425    case Decl::Function: {
2426      if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2427        if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2428          type = Context.BuiltinFnTy;
2429          valueKind = VK_RValue;
2430          break;
2431        }
2432      }
2433
2434      const FunctionType *fty = type->castAs<FunctionType>();
2435
2436      // If we're referring to a function with an __unknown_anytype
2437      // result type, make the entire expression __unknown_anytype.
2438      if (fty->getResultType() == Context.UnknownAnyTy) {
2439        type = Context.UnknownAnyTy;
2440        valueKind = VK_RValue;
2441        break;
2442      }
2443
2444      // Functions are l-values in C++.
2445      if (getLangOpts().CPlusPlus) {
2446        valueKind = VK_LValue;
2447        break;
2448      }
2449
2450      // C99 DR 316 says that, if a function type comes from a
2451      // function definition (without a prototype), that type is only
2452      // used for checking compatibility. Therefore, when referencing
2453      // the function, we pretend that we don't have the full function
2454      // type.
2455      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2456          isa<FunctionProtoType>(fty))
2457        type = Context.getFunctionNoProtoType(fty->getResultType(),
2458                                              fty->getExtInfo());
2459
2460      // Functions are r-values in C.
2461      valueKind = VK_RValue;
2462      break;
2463    }
2464
2465    case Decl::CXXMethod:
2466      // If we're referring to a method with an __unknown_anytype
2467      // result type, make the entire expression __unknown_anytype.
2468      // This should only be possible with a type written directly.
2469      if (const FunctionProtoType *proto
2470            = dyn_cast<FunctionProtoType>(VD->getType()))
2471        if (proto->getResultType() == Context.UnknownAnyTy) {
2472          type = Context.UnknownAnyTy;
2473          valueKind = VK_RValue;
2474          break;
2475        }
2476
2477      // C++ methods are l-values if static, r-values if non-static.
2478      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2479        valueKind = VK_LValue;
2480        break;
2481      }
2482      // fallthrough
2483
2484    case Decl::CXXConversion:
2485    case Decl::CXXDestructor:
2486    case Decl::CXXConstructor:
2487      valueKind = VK_RValue;
2488      break;
2489    }
2490
2491    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2492  }
2493}
2494
2495ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2496  PredefinedExpr::IdentType IT;
2497
2498  switch (Kind) {
2499  default: llvm_unreachable("Unknown simple primary expr!");
2500  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2501  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2502  case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
2503  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2504  }
2505
2506  // Pre-defined identifiers are of type char[x], where x is the length of the
2507  // string.
2508
2509  Decl *currentDecl = getCurFunctionOrMethodDecl();
2510  if (!currentDecl && getCurBlock())
2511    currentDecl = getCurBlock()->TheDecl;
2512  if (!currentDecl) {
2513    Diag(Loc, diag::ext_predef_outside_function);
2514    currentDecl = Context.getTranslationUnitDecl();
2515  }
2516
2517  QualType ResTy;
2518  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2519    ResTy = Context.DependentTy;
2520  } else {
2521    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2522
2523    llvm::APInt LengthI(32, Length + 1);
2524    if (IT == PredefinedExpr::LFunction)
2525      ResTy = Context.WCharTy.withConst();
2526    else
2527      ResTy = Context.CharTy.withConst();
2528    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2529  }
2530  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2531}
2532
2533ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2534  SmallString<16> CharBuffer;
2535  bool Invalid = false;
2536  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2537  if (Invalid)
2538    return ExprError();
2539
2540  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2541                            PP, Tok.getKind());
2542  if (Literal.hadError())
2543    return ExprError();
2544
2545  QualType Ty;
2546  if (Literal.isWide())
2547    Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2548  else if (Literal.isUTF16())
2549    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2550  else if (Literal.isUTF32())
2551    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2552  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2553    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
2554  else
2555    Ty = Context.CharTy;  // 'x' -> char in C++
2556
2557  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2558  if (Literal.isWide())
2559    Kind = CharacterLiteral::Wide;
2560  else if (Literal.isUTF16())
2561    Kind = CharacterLiteral::UTF16;
2562  else if (Literal.isUTF32())
2563    Kind = CharacterLiteral::UTF32;
2564
2565  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2566                                             Tok.getLocation());
2567
2568  if (Literal.getUDSuffix().empty())
2569    return Owned(Lit);
2570
2571  // We're building a user-defined literal.
2572  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2573  SourceLocation UDSuffixLoc =
2574    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2575
2576  // Make sure we're allowed user-defined literals here.
2577  if (!UDLScope)
2578    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2579
2580  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2581  //   operator "" X (ch)
2582  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2583                                        llvm::makeArrayRef(&Lit, 1),
2584                                        Tok.getLocation());
2585}
2586
2587ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2588  unsigned IntSize = Context.getTargetInfo().getIntWidth();
2589  return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2590                                      Context.IntTy, Loc));
2591}
2592
2593static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2594                                  QualType Ty, SourceLocation Loc) {
2595  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2596
2597  using llvm::APFloat;
2598  APFloat Val(Format);
2599
2600  APFloat::opStatus result = Literal.GetFloatValue(Val);
2601
2602  // Overflow is always an error, but underflow is only an error if
2603  // we underflowed to zero (APFloat reports denormals as underflow).
2604  if ((result & APFloat::opOverflow) ||
2605      ((result & APFloat::opUnderflow) && Val.isZero())) {
2606    unsigned diagnostic;
2607    SmallString<20> buffer;
2608    if (result & APFloat::opOverflow) {
2609      diagnostic = diag::warn_float_overflow;
2610      APFloat::getLargest(Format).toString(buffer);
2611    } else {
2612      diagnostic = diag::warn_float_underflow;
2613      APFloat::getSmallest(Format).toString(buffer);
2614    }
2615
2616    S.Diag(Loc, diagnostic)
2617      << Ty
2618      << StringRef(buffer.data(), buffer.size());
2619  }
2620
2621  bool isExact = (result == APFloat::opOK);
2622  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2623}
2624
2625ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2626  // Fast path for a single digit (which is quite common).  A single digit
2627  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2628  if (Tok.getLength() == 1) {
2629    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2630    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2631  }
2632
2633  SmallString<512> IntegerBuffer;
2634  // Add padding so that NumericLiteralParser can overread by one character.
2635  IntegerBuffer.resize(Tok.getLength()+1);
2636  const char *ThisTokBegin = &IntegerBuffer[0];
2637
2638  // Get the spelling of the token, which eliminates trigraphs, etc.
2639  bool Invalid = false;
2640  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2641  if (Invalid)
2642    return ExprError();
2643
2644  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2645                               Tok.getLocation(), PP);
2646  if (Literal.hadError)
2647    return ExprError();
2648
2649  if (Literal.hasUDSuffix()) {
2650    // We're building a user-defined literal.
2651    IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2652    SourceLocation UDSuffixLoc =
2653      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2654
2655    // Make sure we're allowed user-defined literals here.
2656    if (!UDLScope)
2657      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2658
2659    QualType CookedTy;
2660    if (Literal.isFloatingLiteral()) {
2661      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2662      // long double, the literal is treated as a call of the form
2663      //   operator "" X (f L)
2664      CookedTy = Context.LongDoubleTy;
2665    } else {
2666      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2667      // unsigned long long, the literal is treated as a call of the form
2668      //   operator "" X (n ULL)
2669      CookedTy = Context.UnsignedLongLongTy;
2670    }
2671
2672    DeclarationName OpName =
2673      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2674    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2675    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2676
2677    // Perform literal operator lookup to determine if we're building a raw
2678    // literal or a cooked one.
2679    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2680    switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2681                                  /*AllowRawAndTemplate*/true)) {
2682    case LOLR_Error:
2683      return ExprError();
2684
2685    case LOLR_Cooked: {
2686      Expr *Lit;
2687      if (Literal.isFloatingLiteral()) {
2688        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2689      } else {
2690        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2691        if (Literal.GetIntegerValue(ResultVal))
2692          Diag(Tok.getLocation(), diag::warn_integer_too_large);
2693        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2694                                     Tok.getLocation());
2695      }
2696      return BuildLiteralOperatorCall(R, OpNameInfo,
2697                                      llvm::makeArrayRef(&Lit, 1),
2698                                      Tok.getLocation());
2699    }
2700
2701    case LOLR_Raw: {
2702      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2703      // literal is treated as a call of the form
2704      //   operator "" X ("n")
2705      SourceLocation TokLoc = Tok.getLocation();
2706      unsigned Length = Literal.getUDSuffixOffset();
2707      QualType StrTy = Context.getConstantArrayType(
2708          Context.CharTy, llvm::APInt(32, Length + 1),
2709          ArrayType::Normal, 0);
2710      Expr *Lit = StringLiteral::Create(
2711          Context, StringRef(ThisTokBegin, Length), StringLiteral::Ascii,
2712          /*Pascal*/false, StrTy, &TokLoc, 1);
2713      return BuildLiteralOperatorCall(R, OpNameInfo,
2714                                      llvm::makeArrayRef(&Lit, 1), TokLoc);
2715    }
2716
2717    case LOLR_Template:
2718      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2719      // template), L is treated as a call fo the form
2720      //   operator "" X <'c1', 'c2', ... 'ck'>()
2721      // where n is the source character sequence c1 c2 ... ck.
2722      TemplateArgumentListInfo ExplicitArgs;
2723      unsigned CharBits = Context.getIntWidth(Context.CharTy);
2724      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2725      llvm::APSInt Value(CharBits, CharIsUnsigned);
2726      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2727        Value = ThisTokBegin[I];
2728        TemplateArgument Arg(Context, Value, Context.CharTy);
2729        TemplateArgumentLocInfo ArgInfo;
2730        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2731      }
2732      return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2733                                      Tok.getLocation(), &ExplicitArgs);
2734    }
2735
2736    llvm_unreachable("unexpected literal operator lookup result");
2737  }
2738
2739  Expr *Res;
2740
2741  if (Literal.isFloatingLiteral()) {
2742    QualType Ty;
2743    if (Literal.isFloat)
2744      Ty = Context.FloatTy;
2745    else if (!Literal.isLong)
2746      Ty = Context.DoubleTy;
2747    else
2748      Ty = Context.LongDoubleTy;
2749
2750    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2751
2752    if (Ty == Context.DoubleTy) {
2753      if (getLangOpts().SinglePrecisionConstants) {
2754        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2755      } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2756        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2757        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2758      }
2759    }
2760  } else if (!Literal.isIntegerLiteral()) {
2761    return ExprError();
2762  } else {
2763    QualType Ty;
2764
2765    // long long is a C99 feature.
2766    if (!getLangOpts().C99 && Literal.isLongLong)
2767      Diag(Tok.getLocation(),
2768           getLangOpts().CPlusPlus0x ?
2769             diag::warn_cxx98_compat_longlong : diag::ext_longlong);
2770
2771    // Get the value in the widest-possible width.
2772    unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
2773    // The microsoft literal suffix extensions support 128-bit literals, which
2774    // may be wider than [u]intmax_t.
2775    if (Literal.isMicrosoftInteger && MaxWidth < 128)
2776      MaxWidth = 128;
2777    llvm::APInt ResultVal(MaxWidth, 0);
2778
2779    if (Literal.GetIntegerValue(ResultVal)) {
2780      // If this value didn't fit into uintmax_t, warn and force to ull.
2781      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2782      Ty = Context.UnsignedLongLongTy;
2783      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2784             "long long is not intmax_t?");
2785    } else {
2786      // If this value fits into a ULL, try to figure out what else it fits into
2787      // according to the rules of C99 6.4.4.1p5.
2788
2789      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2790      // be an unsigned int.
2791      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2792
2793      // Check from smallest to largest, picking the smallest type we can.
2794      unsigned Width = 0;
2795      if (!Literal.isLong && !Literal.isLongLong) {
2796        // Are int/unsigned possibilities?
2797        unsigned IntSize = Context.getTargetInfo().getIntWidth();
2798
2799        // Does it fit in a unsigned int?
2800        if (ResultVal.isIntN(IntSize)) {
2801          // Does it fit in a signed int?
2802          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2803            Ty = Context.IntTy;
2804          else if (AllowUnsigned)
2805            Ty = Context.UnsignedIntTy;
2806          Width = IntSize;
2807        }
2808      }
2809
2810      // Are long/unsigned long possibilities?
2811      if (Ty.isNull() && !Literal.isLongLong) {
2812        unsigned LongSize = Context.getTargetInfo().getLongWidth();
2813
2814        // Does it fit in a unsigned long?
2815        if (ResultVal.isIntN(LongSize)) {
2816          // Does it fit in a signed long?
2817          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2818            Ty = Context.LongTy;
2819          else if (AllowUnsigned)
2820            Ty = Context.UnsignedLongTy;
2821          Width = LongSize;
2822        }
2823      }
2824
2825      // Check long long if needed.
2826      if (Ty.isNull()) {
2827        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2828
2829        // Does it fit in a unsigned long long?
2830        if (ResultVal.isIntN(LongLongSize)) {
2831          // Does it fit in a signed long long?
2832          // To be compatible with MSVC, hex integer literals ending with the
2833          // LL or i64 suffix are always signed in Microsoft mode.
2834          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2835              (getLangOpts().MicrosoftExt && Literal.isLongLong)))
2836            Ty = Context.LongLongTy;
2837          else if (AllowUnsigned)
2838            Ty = Context.UnsignedLongLongTy;
2839          Width = LongLongSize;
2840        }
2841      }
2842
2843      // If it doesn't fit in unsigned long long, and we're using Microsoft
2844      // extensions, then its a 128-bit integer literal.
2845      if (Ty.isNull() && Literal.isMicrosoftInteger) {
2846        if (Literal.isUnsigned)
2847          Ty = Context.UnsignedInt128Ty;
2848        else
2849          Ty = Context.Int128Ty;
2850        Width = 128;
2851      }
2852
2853      // If we still couldn't decide a type, we probably have something that
2854      // does not fit in a signed long long, but has no U suffix.
2855      if (Ty.isNull()) {
2856        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2857        Ty = Context.UnsignedLongLongTy;
2858        Width = Context.getTargetInfo().getLongLongWidth();
2859      }
2860
2861      if (ResultVal.getBitWidth() != Width)
2862        ResultVal = ResultVal.trunc(Width);
2863    }
2864    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2865  }
2866
2867  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2868  if (Literal.isImaginary)
2869    Res = new (Context) ImaginaryLiteral(Res,
2870                                        Context.getComplexType(Res->getType()));
2871
2872  return Owned(Res);
2873}
2874
2875ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2876  assert((E != 0) && "ActOnParenExpr() missing expr");
2877  return Owned(new (Context) ParenExpr(L, R, E));
2878}
2879
2880static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2881                                         SourceLocation Loc,
2882                                         SourceRange ArgRange) {
2883  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2884  // scalar or vector data type argument..."
2885  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2886  // type (C99 6.2.5p18) or void.
2887  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2888    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2889      << T << ArgRange;
2890    return true;
2891  }
2892
2893  assert((T->isVoidType() || !T->isIncompleteType()) &&
2894         "Scalar types should always be complete");
2895  return false;
2896}
2897
2898static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2899                                           SourceLocation Loc,
2900                                           SourceRange ArgRange,
2901                                           UnaryExprOrTypeTrait TraitKind) {
2902  // C99 6.5.3.4p1:
2903  if (T->isFunctionType()) {
2904    // alignof(function) is allowed as an extension.
2905    if (TraitKind == UETT_SizeOf)
2906      S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2907    return false;
2908  }
2909
2910  // Allow sizeof(void)/alignof(void) as an extension.
2911  if (T->isVoidType()) {
2912    S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2913    return false;
2914  }
2915
2916  return true;
2917}
2918
2919static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2920                                             SourceLocation Loc,
2921                                             SourceRange ArgRange,
2922                                             UnaryExprOrTypeTrait TraitKind) {
2923  // Reject sizeof(interface) and sizeof(interface<proto>) if the
2924  // runtime doesn't allow it.
2925  if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
2926    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
2927      << T << (TraitKind == UETT_SizeOf)
2928      << ArgRange;
2929    return true;
2930  }
2931
2932  return false;
2933}
2934
2935/// \brief Check the constrains on expression operands to unary type expression
2936/// and type traits.
2937///
2938/// Completes any types necessary and validates the constraints on the operand
2939/// expression. The logic mostly mirrors the type-based overload, but may modify
2940/// the expression as it completes the type for that expression through template
2941/// instantiation, etc.
2942bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
2943                                            UnaryExprOrTypeTrait ExprKind) {
2944  QualType ExprTy = E->getType();
2945
2946  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2947  //   the result is the size of the referenced type."
2948  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2949  //   result shall be the alignment of the referenced type."
2950  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2951    ExprTy = Ref->getPointeeType();
2952
2953  if (ExprKind == UETT_VecStep)
2954    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
2955                                        E->getSourceRange());
2956
2957  // Whitelist some types as extensions
2958  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
2959                                      E->getSourceRange(), ExprKind))
2960    return false;
2961
2962  if (RequireCompleteExprType(E,
2963                              diag::err_sizeof_alignof_incomplete_type,
2964                              ExprKind, E->getSourceRange()))
2965    return true;
2966
2967  // Completeing the expression's type may have changed it.
2968  ExprTy = E->getType();
2969  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2970    ExprTy = Ref->getPointeeType();
2971
2972  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
2973                                       E->getSourceRange(), ExprKind))
2974    return true;
2975
2976  if (ExprKind == UETT_SizeOf) {
2977    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
2978      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
2979        QualType OType = PVD->getOriginalType();
2980        QualType Type = PVD->getType();
2981        if (Type->isPointerType() && OType->isArrayType()) {
2982          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
2983            << Type << OType;
2984          Diag(PVD->getLocation(), diag::note_declared_at);
2985        }
2986      }
2987    }
2988  }
2989
2990  return false;
2991}
2992
2993/// \brief Check the constraints on operands to unary expression and type
2994/// traits.
2995///
2996/// This will complete any types necessary, and validate the various constraints
2997/// on those operands.
2998///
2999/// The UsualUnaryConversions() function is *not* called by this routine.
3000/// C99 6.3.2.1p[2-4] all state:
3001///   Except when it is the operand of the sizeof operator ...
3002///
3003/// C++ [expr.sizeof]p4
3004///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3005///   standard conversions are not applied to the operand of sizeof.
3006///
3007/// This policy is followed for all of the unary trait expressions.
3008bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3009                                            SourceLocation OpLoc,
3010                                            SourceRange ExprRange,
3011                                            UnaryExprOrTypeTrait ExprKind) {
3012  if (ExprType->isDependentType())
3013    return false;
3014
3015  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3016  //   the result is the size of the referenced type."
3017  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3018  //   result shall be the alignment of the referenced type."
3019  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3020    ExprType = Ref->getPointeeType();
3021
3022  if (ExprKind == UETT_VecStep)
3023    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3024
3025  // Whitelist some types as extensions
3026  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3027                                      ExprKind))
3028    return false;
3029
3030  if (RequireCompleteType(OpLoc, ExprType,
3031                          diag::err_sizeof_alignof_incomplete_type,
3032                          ExprKind, ExprRange))
3033    return true;
3034
3035  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3036                                       ExprKind))
3037    return true;
3038
3039  return false;
3040}
3041
3042static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3043  E = E->IgnoreParens();
3044
3045  // alignof decl is always ok.
3046  if (isa<DeclRefExpr>(E))
3047    return false;
3048
3049  // Cannot know anything else if the expression is dependent.
3050  if (E->isTypeDependent())
3051    return false;
3052
3053  if (E->getBitField()) {
3054    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3055       << 1 << E->getSourceRange();
3056    return true;
3057  }
3058
3059  // Alignment of a field access is always okay, so long as it isn't a
3060  // bit-field.
3061  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
3062    if (isa<FieldDecl>(ME->getMemberDecl()))
3063      return false;
3064
3065  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3066}
3067
3068bool Sema::CheckVecStepExpr(Expr *E) {
3069  E = E->IgnoreParens();
3070
3071  // Cannot know anything else if the expression is dependent.
3072  if (E->isTypeDependent())
3073    return false;
3074
3075  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3076}
3077
3078/// \brief Build a sizeof or alignof expression given a type operand.
3079ExprResult
3080Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3081                                     SourceLocation OpLoc,
3082                                     UnaryExprOrTypeTrait ExprKind,
3083                                     SourceRange R) {
3084  if (!TInfo)
3085    return ExprError();
3086
3087  QualType T = TInfo->getType();
3088
3089  if (!T->isDependentType() &&
3090      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3091    return ExprError();
3092
3093  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3094  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3095                                                      Context.getSizeType(),
3096                                                      OpLoc, R.getEnd()));
3097}
3098
3099/// \brief Build a sizeof or alignof expression given an expression
3100/// operand.
3101ExprResult
3102Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3103                                     UnaryExprOrTypeTrait ExprKind) {
3104  ExprResult PE = CheckPlaceholderExpr(E);
3105  if (PE.isInvalid())
3106    return ExprError();
3107
3108  E = PE.get();
3109
3110  // Verify that the operand is valid.
3111  bool isInvalid = false;
3112  if (E->isTypeDependent()) {
3113    // Delay type-checking for type-dependent expressions.
3114  } else if (ExprKind == UETT_AlignOf) {
3115    isInvalid = CheckAlignOfExpr(*this, E);
3116  } else if (ExprKind == UETT_VecStep) {
3117    isInvalid = CheckVecStepExpr(E);
3118  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
3119    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3120    isInvalid = true;
3121  } else {
3122    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3123  }
3124
3125  if (isInvalid)
3126    return ExprError();
3127
3128  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3129    PE = TranformToPotentiallyEvaluated(E);
3130    if (PE.isInvalid()) return ExprError();
3131    E = PE.take();
3132  }
3133
3134  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3135  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3136      ExprKind, E, Context.getSizeType(), OpLoc,
3137      E->getSourceRange().getEnd()));
3138}
3139
3140/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3141/// expr and the same for @c alignof and @c __alignof
3142/// Note that the ArgRange is invalid if isType is false.
3143ExprResult
3144Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3145                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
3146                                    void *TyOrEx, const SourceRange &ArgRange) {
3147  // If error parsing type, ignore.
3148  if (TyOrEx == 0) return ExprError();
3149
3150  if (IsType) {
3151    TypeSourceInfo *TInfo;
3152    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3153    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3154  }
3155
3156  Expr *ArgEx = (Expr *)TyOrEx;
3157  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3158  return Result;
3159}
3160
3161static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3162                                     bool IsReal) {
3163  if (V.get()->isTypeDependent())
3164    return S.Context.DependentTy;
3165
3166  // _Real and _Imag are only l-values for normal l-values.
3167  if (V.get()->getObjectKind() != OK_Ordinary) {
3168    V = S.DefaultLvalueConversion(V.take());
3169    if (V.isInvalid())
3170      return QualType();
3171  }
3172
3173  // These operators return the element type of a complex type.
3174  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3175    return CT->getElementType();
3176
3177  // Otherwise they pass through real integer and floating point types here.
3178  if (V.get()->getType()->isArithmeticType())
3179    return V.get()->getType();
3180
3181  // Test for placeholders.
3182  ExprResult PR = S.CheckPlaceholderExpr(V.get());
3183  if (PR.isInvalid()) return QualType();
3184  if (PR.get() != V.get()) {
3185    V = PR;
3186    return CheckRealImagOperand(S, V, Loc, IsReal);
3187  }
3188
3189  // Reject anything else.
3190  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3191    << (IsReal ? "__real" : "__imag");
3192  return QualType();
3193}
3194
3195
3196
3197ExprResult
3198Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3199                          tok::TokenKind Kind, Expr *Input) {
3200  UnaryOperatorKind Opc;
3201  switch (Kind) {
3202  default: llvm_unreachable("Unknown unary op!");
3203  case tok::plusplus:   Opc = UO_PostInc; break;
3204  case tok::minusminus: Opc = UO_PostDec; break;
3205  }
3206
3207  // Since this might is a postfix expression, get rid of ParenListExprs.
3208  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3209  if (Result.isInvalid()) return ExprError();
3210  Input = Result.take();
3211
3212  return BuildUnaryOp(S, OpLoc, Opc, Input);
3213}
3214
3215/// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3216///
3217/// \return true on error
3218static bool checkArithmeticOnObjCPointer(Sema &S,
3219                                         SourceLocation opLoc,
3220                                         Expr *op) {
3221  assert(op->getType()->isObjCObjectPointerType());
3222  if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
3223    return false;
3224
3225  S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3226    << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3227    << op->getSourceRange();
3228  return true;
3229}
3230
3231ExprResult
3232Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
3233                              Expr *Idx, SourceLocation RLoc) {
3234  // Since this might be a postfix expression, get rid of ParenListExprs.
3235  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3236  if (Result.isInvalid()) return ExprError();
3237  Base = Result.take();
3238
3239  Expr *LHSExp = Base, *RHSExp = Idx;
3240
3241  if (getLangOpts().CPlusPlus &&
3242      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
3243    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3244                                                  Context.DependentTy,
3245                                                  VK_LValue, OK_Ordinary,
3246                                                  RLoc));
3247  }
3248
3249  if (getLangOpts().CPlusPlus &&
3250      (LHSExp->getType()->isRecordType() ||
3251       LHSExp->getType()->isEnumeralType() ||
3252       RHSExp->getType()->isRecordType() ||
3253       RHSExp->getType()->isEnumeralType()) &&
3254      !LHSExp->getType()->isObjCObjectPointerType()) {
3255    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3256  }
3257
3258  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3259}
3260
3261ExprResult
3262Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3263                                      Expr *Idx, SourceLocation RLoc) {
3264  Expr *LHSExp = Base;
3265  Expr *RHSExp = Idx;
3266
3267  // Perform default conversions.
3268  if (!LHSExp->getType()->getAs<VectorType>()) {
3269    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3270    if (Result.isInvalid())
3271      return ExprError();
3272    LHSExp = Result.take();
3273  }
3274  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3275  if (Result.isInvalid())
3276    return ExprError();
3277  RHSExp = Result.take();
3278
3279  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3280  ExprValueKind VK = VK_LValue;
3281  ExprObjectKind OK = OK_Ordinary;
3282
3283  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3284  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3285  // in the subscript position. As a result, we need to derive the array base
3286  // and index from the expression types.
3287  Expr *BaseExpr, *IndexExpr;
3288  QualType ResultType;
3289  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3290    BaseExpr = LHSExp;
3291    IndexExpr = RHSExp;
3292    ResultType = Context.DependentTy;
3293  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3294    BaseExpr = LHSExp;
3295    IndexExpr = RHSExp;
3296    ResultType = PTy->getPointeeType();
3297  } else if (const ObjCObjectPointerType *PTy =
3298               LHSTy->getAs<ObjCObjectPointerType>()) {
3299    BaseExpr = LHSExp;
3300    IndexExpr = RHSExp;
3301
3302    // Use custom logic if this should be the pseudo-object subscript
3303    // expression.
3304    if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
3305      return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3306
3307    ResultType = PTy->getPointeeType();
3308    if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3309      Diag(LLoc, diag::err_subscript_nonfragile_interface)
3310        << ResultType << BaseExpr->getSourceRange();
3311      return ExprError();
3312    }
3313  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3314     // Handle the uncommon case of "123[Ptr]".
3315    BaseExpr = RHSExp;
3316    IndexExpr = LHSExp;
3317    ResultType = PTy->getPointeeType();
3318  } else if (const ObjCObjectPointerType *PTy =
3319               RHSTy->getAs<ObjCObjectPointerType>()) {
3320     // Handle the uncommon case of "123[Ptr]".
3321    BaseExpr = RHSExp;
3322    IndexExpr = LHSExp;
3323    ResultType = PTy->getPointeeType();
3324    if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3325      Diag(LLoc, diag::err_subscript_nonfragile_interface)
3326        << ResultType << BaseExpr->getSourceRange();
3327      return ExprError();
3328    }
3329  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3330    BaseExpr = LHSExp;    // vectors: V[123]
3331    IndexExpr = RHSExp;
3332    VK = LHSExp->getValueKind();
3333    if (VK != VK_RValue)
3334      OK = OK_VectorComponent;
3335
3336    // FIXME: need to deal with const...
3337    ResultType = VTy->getElementType();
3338  } else if (LHSTy->isArrayType()) {
3339    // If we see an array that wasn't promoted by
3340    // DefaultFunctionArrayLvalueConversion, it must be an array that
3341    // wasn't promoted because of the C90 rule that doesn't
3342    // allow promoting non-lvalue arrays.  Warn, then
3343    // force the promotion here.
3344    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3345        LHSExp->getSourceRange();
3346    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3347                               CK_ArrayToPointerDecay).take();
3348    LHSTy = LHSExp->getType();
3349
3350    BaseExpr = LHSExp;
3351    IndexExpr = RHSExp;
3352    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3353  } else if (RHSTy->isArrayType()) {
3354    // Same as previous, except for 123[f().a] case
3355    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3356        RHSExp->getSourceRange();
3357    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3358                               CK_ArrayToPointerDecay).take();
3359    RHSTy = RHSExp->getType();
3360
3361    BaseExpr = RHSExp;
3362    IndexExpr = LHSExp;
3363    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3364  } else {
3365    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3366       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3367  }
3368  // C99 6.5.2.1p1
3369  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3370    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3371                     << IndexExpr->getSourceRange());
3372
3373  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3374       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3375         && !IndexExpr->isTypeDependent())
3376    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3377
3378  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3379  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3380  // type. Note that Functions are not objects, and that (in C99 parlance)
3381  // incomplete types are not object types.
3382  if (ResultType->isFunctionType()) {
3383    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3384      << ResultType << BaseExpr->getSourceRange();
3385    return ExprError();
3386  }
3387
3388  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3389    // GNU extension: subscripting on pointer to void
3390    Diag(LLoc, diag::ext_gnu_subscript_void_type)
3391      << BaseExpr->getSourceRange();
3392
3393    // C forbids expressions of unqualified void type from being l-values.
3394    // See IsCForbiddenLValueType.
3395    if (!ResultType.hasQualifiers()) VK = VK_RValue;
3396  } else if (!ResultType->isDependentType() &&
3397      RequireCompleteType(LLoc, ResultType,
3398                          diag::err_subscript_incomplete_type, BaseExpr))
3399    return ExprError();
3400
3401  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3402         !ResultType.isCForbiddenLValueType());
3403
3404  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3405                                                ResultType, VK, OK, RLoc));
3406}
3407
3408ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3409                                        FunctionDecl *FD,
3410                                        ParmVarDecl *Param) {
3411  if (Param->hasUnparsedDefaultArg()) {
3412    Diag(CallLoc,
3413         diag::err_use_of_default_argument_to_function_declared_later) <<
3414      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3415    Diag(UnparsedDefaultArgLocs[Param],
3416         diag::note_default_argument_declared_here);
3417    return ExprError();
3418  }
3419
3420  if (Param->hasUninstantiatedDefaultArg()) {
3421    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3422
3423    EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
3424                                                 Param);
3425
3426    // Instantiate the expression.
3427    MultiLevelTemplateArgumentList ArgList
3428      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3429
3430    std::pair<const TemplateArgument *, unsigned> Innermost
3431      = ArgList.getInnermost();
3432    InstantiatingTemplate Inst(*this, CallLoc, Param,
3433                               ArrayRef<TemplateArgument>(Innermost.first,
3434                                                          Innermost.second));
3435    if (Inst)
3436      return ExprError();
3437
3438    ExprResult Result;
3439    {
3440      // C++ [dcl.fct.default]p5:
3441      //   The names in the [default argument] expression are bound, and
3442      //   the semantic constraints are checked, at the point where the
3443      //   default argument expression appears.
3444      ContextRAII SavedContext(*this, FD);
3445      LocalInstantiationScope Local(*this);
3446      Result = SubstExpr(UninstExpr, ArgList);
3447    }
3448    if (Result.isInvalid())
3449      return ExprError();
3450
3451    // Check the expression as an initializer for the parameter.
3452    InitializedEntity Entity
3453      = InitializedEntity::InitializeParameter(Context, Param);
3454    InitializationKind Kind
3455      = InitializationKind::CreateCopy(Param->getLocation(),
3456             /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3457    Expr *ResultE = Result.takeAs<Expr>();
3458
3459    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3460    Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
3461    if (Result.isInvalid())
3462      return ExprError();
3463
3464    Expr *Arg = Result.takeAs<Expr>();
3465    CheckImplicitConversions(Arg, Param->getOuterLocStart());
3466    // Build the default argument expression.
3467    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3468  }
3469
3470  // If the default expression creates temporaries, we need to
3471  // push them to the current stack of expression temporaries so they'll
3472  // be properly destroyed.
3473  // FIXME: We should really be rebuilding the default argument with new
3474  // bound temporaries; see the comment in PR5810.
3475  // We don't need to do that with block decls, though, because
3476  // blocks in default argument expression can never capture anything.
3477  if (isa<ExprWithCleanups>(Param->getInit())) {
3478    // Set the "needs cleanups" bit regardless of whether there are
3479    // any explicit objects.
3480    ExprNeedsCleanups = true;
3481
3482    // Append all the objects to the cleanup list.  Right now, this
3483    // should always be a no-op, because blocks in default argument
3484    // expressions should never be able to capture anything.
3485    assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3486           "default argument expression has capturing blocks?");
3487  }
3488
3489  // We already type-checked the argument, so we know it works.
3490  // Just mark all of the declarations in this potentially-evaluated expression
3491  // as being "referenced".
3492  MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3493                                   /*SkipLocalVariables=*/true);
3494  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3495}
3496
3497
3498Sema::VariadicCallType
3499Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
3500                          Expr *Fn) {
3501  if (Proto && Proto->isVariadic()) {
3502    if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
3503      return VariadicConstructor;
3504    else if (Fn && Fn->getType()->isBlockPointerType())
3505      return VariadicBlock;
3506    else if (FDecl) {
3507      if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3508        if (Method->isInstance())
3509          return VariadicMethod;
3510    }
3511    return VariadicFunction;
3512  }
3513  return VariadicDoesNotApply;
3514}
3515
3516/// ConvertArgumentsForCall - Converts the arguments specified in
3517/// Args/NumArgs to the parameter types of the function FDecl with
3518/// function prototype Proto. Call is the call expression itself, and
3519/// Fn is the function expression. For a C++ member function, this
3520/// routine does not attempt to convert the object argument. Returns
3521/// true if the call is ill-formed.
3522bool
3523Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3524                              FunctionDecl *FDecl,
3525                              const FunctionProtoType *Proto,
3526                              Expr **Args, unsigned NumArgs,
3527                              SourceLocation RParenLoc,
3528                              bool IsExecConfig) {
3529  // Bail out early if calling a builtin with custom typechecking.
3530  // We don't need to do this in the
3531  if (FDecl)
3532    if (unsigned ID = FDecl->getBuiltinID())
3533      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3534        return false;
3535
3536  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3537  // assignment, to the types of the corresponding parameter, ...
3538  unsigned NumArgsInProto = Proto->getNumArgs();
3539  bool Invalid = false;
3540  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3541  unsigned FnKind = Fn->getType()->isBlockPointerType()
3542                       ? 1 /* block */
3543                       : (IsExecConfig ? 3 /* kernel function (exec config) */
3544                                       : 0 /* function */);
3545
3546  // If too few arguments are available (and we don't have default
3547  // arguments for the remaining parameters), don't make the call.
3548  if (NumArgs < NumArgsInProto) {
3549    if (NumArgs < MinArgs) {
3550      if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3551        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3552                          ? diag::err_typecheck_call_too_few_args_one
3553                          : diag::err_typecheck_call_too_few_args_at_least_one)
3554          << FnKind
3555          << FDecl->getParamDecl(0) << Fn->getSourceRange();
3556      else
3557        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3558                          ? diag::err_typecheck_call_too_few_args
3559                          : diag::err_typecheck_call_too_few_args_at_least)
3560          << FnKind
3561          << MinArgs << NumArgs << Fn->getSourceRange();
3562
3563      // Emit the location of the prototype.
3564      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3565        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3566          << FDecl;
3567
3568      return true;
3569    }
3570    Call->setNumArgs(Context, NumArgsInProto);
3571  }
3572
3573  // If too many are passed and not variadic, error on the extras and drop
3574  // them.
3575  if (NumArgs > NumArgsInProto) {
3576    if (!Proto->isVariadic()) {
3577      if (NumArgsInProto == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3578        Diag(Args[NumArgsInProto]->getLocStart(),
3579             MinArgs == NumArgsInProto
3580               ? diag::err_typecheck_call_too_many_args_one
3581               : diag::err_typecheck_call_too_many_args_at_most_one)
3582          << FnKind
3583          << FDecl->getParamDecl(0) << NumArgs << Fn->getSourceRange()
3584          << SourceRange(Args[NumArgsInProto]->getLocStart(),
3585                         Args[NumArgs-1]->getLocEnd());
3586      else
3587        Diag(Args[NumArgsInProto]->getLocStart(),
3588             MinArgs == NumArgsInProto
3589               ? diag::err_typecheck_call_too_many_args
3590               : diag::err_typecheck_call_too_many_args_at_most)
3591          << FnKind
3592          << NumArgsInProto << NumArgs << Fn->getSourceRange()
3593          << SourceRange(Args[NumArgsInProto]->getLocStart(),
3594                         Args[NumArgs-1]->getLocEnd());
3595
3596      // Emit the location of the prototype.
3597      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3598        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3599          << FDecl;
3600
3601      // This deletes the extra arguments.
3602      Call->setNumArgs(Context, NumArgsInProto);
3603      return true;
3604    }
3605  }
3606  SmallVector<Expr *, 8> AllArgs;
3607  VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
3608
3609  Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3610                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3611  if (Invalid)
3612    return true;
3613  unsigned TotalNumArgs = AllArgs.size();
3614  for (unsigned i = 0; i < TotalNumArgs; ++i)
3615    Call->setArg(i, AllArgs[i]);
3616
3617  return false;
3618}
3619
3620bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3621                                  FunctionDecl *FDecl,
3622                                  const FunctionProtoType *Proto,
3623                                  unsigned FirstProtoArg,
3624                                  Expr **Args, unsigned NumArgs,
3625                                  SmallVector<Expr *, 8> &AllArgs,
3626                                  VariadicCallType CallType,
3627                                  bool AllowExplicit) {
3628  unsigned NumArgsInProto = Proto->getNumArgs();
3629  unsigned NumArgsToCheck = NumArgs;
3630  bool Invalid = false;
3631  if (NumArgs != NumArgsInProto)
3632    // Use default arguments for missing arguments
3633    NumArgsToCheck = NumArgsInProto;
3634  unsigned ArgIx = 0;
3635  // Continue to check argument types (even if we have too few/many args).
3636  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3637    QualType ProtoArgType = Proto->getArgType(i);
3638
3639    Expr *Arg;
3640    ParmVarDecl *Param;
3641    if (ArgIx < NumArgs) {
3642      Arg = Args[ArgIx++];
3643
3644      if (RequireCompleteType(Arg->getLocStart(),
3645                              ProtoArgType,
3646                              diag::err_call_incomplete_argument, Arg))
3647        return true;
3648
3649      // Pass the argument
3650      Param = 0;
3651      if (FDecl && i < FDecl->getNumParams())
3652        Param = FDecl->getParamDecl(i);
3653
3654      // Strip the unbridged-cast placeholder expression off, if applicable.
3655      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3656          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3657          (!Param || !Param->hasAttr<CFConsumedAttr>()))
3658        Arg = stripARCUnbridgedCast(Arg);
3659
3660      InitializedEntity Entity =
3661        Param? InitializedEntity::InitializeParameter(Context, Param)
3662             : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3663                                                      Proto->isArgConsumed(i));
3664      ExprResult ArgE = PerformCopyInitialization(Entity,
3665                                                  SourceLocation(),
3666                                                  Owned(Arg),
3667                                                  /*TopLevelOfInitList=*/false,
3668                                                  AllowExplicit);
3669      if (ArgE.isInvalid())
3670        return true;
3671
3672      Arg = ArgE.takeAs<Expr>();
3673    } else {
3674      Param = FDecl->getParamDecl(i);
3675
3676      ExprResult ArgExpr =
3677        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3678      if (ArgExpr.isInvalid())
3679        return true;
3680
3681      Arg = ArgExpr.takeAs<Expr>();
3682    }
3683
3684    // Check for array bounds violations for each argument to the call. This
3685    // check only triggers warnings when the argument isn't a more complex Expr
3686    // with its own checking, such as a BinaryOperator.
3687    CheckArrayAccess(Arg);
3688
3689    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3690    CheckStaticArrayArgument(CallLoc, Param, Arg);
3691
3692    AllArgs.push_back(Arg);
3693  }
3694
3695  // If this is a variadic call, handle args passed through "...".
3696  if (CallType != VariadicDoesNotApply) {
3697    // Assume that extern "C" functions with variadic arguments that
3698    // return __unknown_anytype aren't *really* variadic.
3699    if (Proto->getResultType() == Context.UnknownAnyTy &&
3700        FDecl && FDecl->isExternC()) {
3701      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3702        ExprResult arg;
3703        if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3704          arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3705        else
3706          arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3707        Invalid |= arg.isInvalid();
3708        AllArgs.push_back(arg.take());
3709      }
3710
3711    // Otherwise do argument promotion, (C99 6.5.2.2p7).
3712    } else {
3713      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3714        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3715                                                          FDecl);
3716        Invalid |= Arg.isInvalid();
3717        AllArgs.push_back(Arg.take());
3718      }
3719    }
3720
3721    // Check for array bounds violations.
3722    for (unsigned i = ArgIx; i != NumArgs; ++i)
3723      CheckArrayAccess(Args[i]);
3724  }
3725  return Invalid;
3726}
3727
3728static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3729  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3730  if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
3731    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3732      << ATL->getLocalSourceRange();
3733}
3734
3735/// CheckStaticArrayArgument - If the given argument corresponds to a static
3736/// array parameter, check that it is non-null, and that if it is formed by
3737/// array-to-pointer decay, the underlying array is sufficiently large.
3738///
3739/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3740/// array type derivation, then for each call to the function, the value of the
3741/// corresponding actual argument shall provide access to the first element of
3742/// an array with at least as many elements as specified by the size expression.
3743void
3744Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3745                               ParmVarDecl *Param,
3746                               const Expr *ArgExpr) {
3747  // Static array parameters are not supported in C++.
3748  if (!Param || getLangOpts().CPlusPlus)
3749    return;
3750
3751  QualType OrigTy = Param->getOriginalType();
3752
3753  const ArrayType *AT = Context.getAsArrayType(OrigTy);
3754  if (!AT || AT->getSizeModifier() != ArrayType::Static)
3755    return;
3756
3757  if (ArgExpr->isNullPointerConstant(Context,
3758                                     Expr::NPC_NeverValueDependent)) {
3759    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3760    DiagnoseCalleeStaticArrayParam(*this, Param);
3761    return;
3762  }
3763
3764  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3765  if (!CAT)
3766    return;
3767
3768  const ConstantArrayType *ArgCAT =
3769    Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3770  if (!ArgCAT)
3771    return;
3772
3773  if (ArgCAT->getSize().ult(CAT->getSize())) {
3774    Diag(CallLoc, diag::warn_static_array_too_small)
3775      << ArgExpr->getSourceRange()
3776      << (unsigned) ArgCAT->getSize().getZExtValue()
3777      << (unsigned) CAT->getSize().getZExtValue();
3778    DiagnoseCalleeStaticArrayParam(*this, Param);
3779  }
3780}
3781
3782/// Given a function expression of unknown-any type, try to rebuild it
3783/// to have a function type.
3784static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3785
3786/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3787/// This provides the location of the left/right parens and a list of comma
3788/// locations.
3789ExprResult
3790Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3791                    MultiExprArg ArgExprs, SourceLocation RParenLoc,
3792                    Expr *ExecConfig, bool IsExecConfig) {
3793  // Since this might be a postfix expression, get rid of ParenListExprs.
3794  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3795  if (Result.isInvalid()) return ExprError();
3796  Fn = Result.take();
3797
3798  if (getLangOpts().CPlusPlus) {
3799    // If this is a pseudo-destructor expression, build the call immediately.
3800    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3801      if (!ArgExprs.empty()) {
3802        // Pseudo-destructor calls should not have any arguments.
3803        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3804          << FixItHint::CreateRemoval(
3805                                    SourceRange(ArgExprs[0]->getLocStart(),
3806                                                ArgExprs.back()->getLocEnd()));
3807      }
3808
3809      return Owned(new (Context) CallExpr(Context, Fn, MultiExprArg(),
3810                                          Context.VoidTy, VK_RValue,
3811                                          RParenLoc));
3812    }
3813
3814    // Determine whether this is a dependent call inside a C++ template,
3815    // in which case we won't do any semantic analysis now.
3816    // FIXME: Will need to cache the results of name lookup (including ADL) in
3817    // Fn.
3818    bool Dependent = false;
3819    if (Fn->isTypeDependent())
3820      Dependent = true;
3821    else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
3822      Dependent = true;
3823
3824    if (Dependent) {
3825      if (ExecConfig) {
3826        return Owned(new (Context) CUDAKernelCallExpr(
3827            Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
3828            Context.DependentTy, VK_RValue, RParenLoc));
3829      } else {
3830        return Owned(new (Context) CallExpr(Context, Fn, ArgExprs,
3831                                            Context.DependentTy, VK_RValue,
3832                                            RParenLoc));
3833      }
3834    }
3835
3836    // Determine whether this is a call to an object (C++ [over.call.object]).
3837    if (Fn->getType()->isRecordType())
3838      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc,
3839                                                ArgExprs.data(),
3840                                                ArgExprs.size(), RParenLoc));
3841
3842    if (Fn->getType() == Context.UnknownAnyTy) {
3843      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3844      if (result.isInvalid()) return ExprError();
3845      Fn = result.take();
3846    }
3847
3848    if (Fn->getType() == Context.BoundMemberTy) {
3849      return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
3850                                       ArgExprs.size(), RParenLoc);
3851    }
3852  }
3853
3854  // Check for overloaded calls.  This can happen even in C due to extensions.
3855  if (Fn->getType() == Context.OverloadTy) {
3856    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3857
3858    // We aren't supposed to apply this logic for if there's an '&' involved.
3859    if (!find.HasFormOfMemberPointer) {
3860      OverloadExpr *ovl = find.Expression;
3861      if (isa<UnresolvedLookupExpr>(ovl)) {
3862        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3863        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs.data(),
3864                                       ArgExprs.size(), RParenLoc, ExecConfig);
3865      } else {
3866        return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
3867                                         ArgExprs.size(), RParenLoc);
3868      }
3869    }
3870  }
3871
3872  // If we're directly calling a function, get the appropriate declaration.
3873  if (Fn->getType() == Context.UnknownAnyTy) {
3874    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3875    if (result.isInvalid()) return ExprError();
3876    Fn = result.take();
3877  }
3878
3879  Expr *NakedFn = Fn->IgnoreParens();
3880
3881  NamedDecl *NDecl = 0;
3882  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3883    if (UnOp->getOpcode() == UO_AddrOf)
3884      NakedFn = UnOp->getSubExpr()->IgnoreParens();
3885
3886  if (isa<DeclRefExpr>(NakedFn))
3887    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3888  else if (isa<MemberExpr>(NakedFn))
3889    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3890
3891  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs.data(),
3892                               ArgExprs.size(), RParenLoc, ExecConfig,
3893                               IsExecConfig);
3894}
3895
3896ExprResult
3897Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3898                              MultiExprArg ExecConfig, SourceLocation GGGLoc) {
3899  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3900  if (!ConfigDecl)
3901    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3902                          << "cudaConfigureCall");
3903  QualType ConfigQTy = ConfigDecl->getType();
3904
3905  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3906      ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
3907  MarkFunctionReferenced(LLLLoc, ConfigDecl);
3908
3909  return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
3910                       /*IsExecConfig=*/true);
3911}
3912
3913/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3914///
3915/// __builtin_astype( value, dst type )
3916///
3917ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
3918                                 SourceLocation BuiltinLoc,
3919                                 SourceLocation RParenLoc) {
3920  ExprValueKind VK = VK_RValue;
3921  ExprObjectKind OK = OK_Ordinary;
3922  QualType DstTy = GetTypeFromParser(ParsedDestTy);
3923  QualType SrcTy = E->getType();
3924  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3925    return ExprError(Diag(BuiltinLoc,
3926                          diag::err_invalid_astype_of_different_size)
3927                     << DstTy
3928                     << SrcTy
3929                     << E->getSourceRange());
3930  return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
3931               RParenLoc));
3932}
3933
3934/// BuildResolvedCallExpr - Build a call to a resolved expression,
3935/// i.e. an expression not of \p OverloadTy.  The expression should
3936/// unary-convert to an expression of function-pointer or
3937/// block-pointer type.
3938///
3939/// \param NDecl the declaration being called, if available
3940ExprResult
3941Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3942                            SourceLocation LParenLoc,
3943                            Expr **Args, unsigned NumArgs,
3944                            SourceLocation RParenLoc,
3945                            Expr *Config, bool IsExecConfig) {
3946  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3947  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
3948
3949  // Promote the function operand.
3950  // We special-case function promotion here because we only allow promoting
3951  // builtin functions to function pointers in the callee of a call.
3952  ExprResult Result;
3953  if (BuiltinID &&
3954      Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
3955    Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
3956                               CK_BuiltinFnToFnPtr).take();
3957  } else {
3958    Result = UsualUnaryConversions(Fn);
3959  }
3960  if (Result.isInvalid())
3961    return ExprError();
3962  Fn = Result.take();
3963
3964  // Make the call expr early, before semantic checks.  This guarantees cleanup
3965  // of arguments and function on error.
3966  CallExpr *TheCall;
3967  if (Config)
3968    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
3969                                               cast<CallExpr>(Config),
3970                                               llvm::makeArrayRef(Args,NumArgs),
3971                                               Context.BoolTy,
3972                                               VK_RValue,
3973                                               RParenLoc);
3974  else
3975    TheCall = new (Context) CallExpr(Context, Fn,
3976                                     llvm::makeArrayRef(Args, NumArgs),
3977                                     Context.BoolTy,
3978                                     VK_RValue,
3979                                     RParenLoc);
3980
3981  // Bail out early if calling a builtin with custom typechecking.
3982  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
3983    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3984
3985 retry:
3986  const FunctionType *FuncT;
3987  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
3988    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3989    // have type pointer to function".
3990    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3991    if (FuncT == 0)
3992      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3993                         << Fn->getType() << Fn->getSourceRange());
3994  } else if (const BlockPointerType *BPT =
3995               Fn->getType()->getAs<BlockPointerType>()) {
3996    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
3997  } else {
3998    // Handle calls to expressions of unknown-any type.
3999    if (Fn->getType() == Context.UnknownAnyTy) {
4000      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
4001      if (rewrite.isInvalid()) return ExprError();
4002      Fn = rewrite.take();
4003      TheCall->setCallee(Fn);
4004      goto retry;
4005    }
4006
4007    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4008      << Fn->getType() << Fn->getSourceRange());
4009  }
4010
4011  if (getLangOpts().CUDA) {
4012    if (Config) {
4013      // CUDA: Kernel calls must be to global functions
4014      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
4015        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
4016            << FDecl->getName() << Fn->getSourceRange());
4017
4018      // CUDA: Kernel function must have 'void' return type
4019      if (!FuncT->getResultType()->isVoidType())
4020        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4021            << Fn->getType() << Fn->getSourceRange());
4022    } else {
4023      // CUDA: Calls to global functions must be configured
4024      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4025        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4026            << FDecl->getName() << Fn->getSourceRange());
4027    }
4028  }
4029
4030  // Check for a valid return type
4031  if (CheckCallReturnType(FuncT->getResultType(),
4032                          Fn->getLocStart(), TheCall,
4033                          FDecl))
4034    return ExprError();
4035
4036  // We know the result type of the call, set it.
4037  TheCall->setType(FuncT->getCallResultType(Context));
4038  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
4039
4040  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4041  if (Proto) {
4042    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
4043                                RParenLoc, IsExecConfig))
4044      return ExprError();
4045  } else {
4046    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4047
4048    if (FDecl) {
4049      // Check if we have too few/too many template arguments, based
4050      // on our knowledge of the function definition.
4051      const FunctionDecl *Def = 0;
4052      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
4053        Proto = Def->getType()->getAs<FunctionProtoType>();
4054        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
4055          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4056            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
4057      }
4058
4059      // If the function we're calling isn't a function prototype, but we have
4060      // a function prototype from a prior declaratiom, use that prototype.
4061      if (!FDecl->hasPrototype())
4062        Proto = FDecl->getType()->getAs<FunctionProtoType>();
4063    }
4064
4065    // Promote the arguments (C99 6.5.2.2p6).
4066    for (unsigned i = 0; i != NumArgs; i++) {
4067      Expr *Arg = Args[i];
4068
4069      if (Proto && i < Proto->getNumArgs()) {
4070        InitializedEntity Entity
4071          = InitializedEntity::InitializeParameter(Context,
4072                                                   Proto->getArgType(i),
4073                                                   Proto->isArgConsumed(i));
4074        ExprResult ArgE = PerformCopyInitialization(Entity,
4075                                                    SourceLocation(),
4076                                                    Owned(Arg));
4077        if (ArgE.isInvalid())
4078          return true;
4079
4080        Arg = ArgE.takeAs<Expr>();
4081
4082      } else {
4083        ExprResult ArgE = DefaultArgumentPromotion(Arg);
4084
4085        if (ArgE.isInvalid())
4086          return true;
4087
4088        Arg = ArgE.takeAs<Expr>();
4089      }
4090
4091      if (RequireCompleteType(Arg->getLocStart(),
4092                              Arg->getType(),
4093                              diag::err_call_incomplete_argument, Arg))
4094        return ExprError();
4095
4096      TheCall->setArg(i, Arg);
4097    }
4098  }
4099
4100  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4101    if (!Method->isStatic())
4102      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4103        << Fn->getSourceRange());
4104
4105  // Check for sentinels
4106  if (NDecl)
4107    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
4108
4109  // Do special checking on direct calls to functions.
4110  if (FDecl) {
4111    if (CheckFunctionCall(FDecl, TheCall, Proto))
4112      return ExprError();
4113
4114    if (BuiltinID)
4115      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4116  } else if (NDecl) {
4117    if (CheckBlockCall(NDecl, TheCall, Proto))
4118      return ExprError();
4119  }
4120
4121  return MaybeBindToTemporary(TheCall);
4122}
4123
4124ExprResult
4125Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4126                           SourceLocation RParenLoc, Expr *InitExpr) {
4127  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
4128  // FIXME: put back this assert when initializers are worked out.
4129  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4130
4131  TypeSourceInfo *TInfo;
4132  QualType literalType = GetTypeFromParser(Ty, &TInfo);
4133  if (!TInfo)
4134    TInfo = Context.getTrivialTypeSourceInfo(literalType);
4135
4136  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4137}
4138
4139ExprResult
4140Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4141                               SourceLocation RParenLoc, Expr *LiteralExpr) {
4142  QualType literalType = TInfo->getType();
4143
4144  if (literalType->isArrayType()) {
4145    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4146          diag::err_illegal_decl_array_incomplete_type,
4147          SourceRange(LParenLoc,
4148                      LiteralExpr->getSourceRange().getEnd())))
4149      return ExprError();
4150    if (literalType->isVariableArrayType())
4151      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4152        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4153  } else if (!literalType->isDependentType() &&
4154             RequireCompleteType(LParenLoc, literalType,
4155               diag::err_typecheck_decl_incomplete_type,
4156               SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4157    return ExprError();
4158
4159  InitializedEntity Entity
4160    = InitializedEntity::InitializeTemporary(literalType);
4161  InitializationKind Kind
4162    = InitializationKind::CreateCStyleCast(LParenLoc,
4163                                           SourceRange(LParenLoc, RParenLoc),
4164                                           /*InitList=*/true);
4165  InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
4166  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
4167                                      &literalType);
4168  if (Result.isInvalid())
4169    return ExprError();
4170  LiteralExpr = Result.get();
4171
4172  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4173  if (isFileScope) { // 6.5.2.5p3
4174    if (CheckForConstantInitializer(LiteralExpr, literalType))
4175      return ExprError();
4176  }
4177
4178  // In C, compound literals are l-values for some reason.
4179  ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4180
4181  return MaybeBindToTemporary(
4182           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4183                                             VK, LiteralExpr, isFileScope));
4184}
4185
4186ExprResult
4187Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4188                    SourceLocation RBraceLoc) {
4189  // Immediately handle non-overload placeholders.  Overloads can be
4190  // resolved contextually, but everything else here can't.
4191  for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
4192    if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
4193      ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
4194
4195      // Ignore failures; dropping the entire initializer list because
4196      // of one failure would be terrible for indexing/etc.
4197      if (result.isInvalid()) continue;
4198
4199      InitArgList[I] = result.take();
4200    }
4201  }
4202
4203  // Semantic analysis for initializers is done by ActOnDeclarator() and
4204  // CheckInitializer() - it requires knowledge of the object being intialized.
4205
4206  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
4207                                               RBraceLoc);
4208  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4209  return Owned(E);
4210}
4211
4212/// Do an explicit extend of the given block pointer if we're in ARC.
4213static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4214  assert(E.get()->getType()->isBlockPointerType());
4215  assert(E.get()->isRValue());
4216
4217  // Only do this in an r-value context.
4218  if (!S.getLangOpts().ObjCAutoRefCount) return;
4219
4220  E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4221                               CK_ARCExtendBlockObject, E.get(),
4222                               /*base path*/ 0, VK_RValue);
4223  S.ExprNeedsCleanups = true;
4224}
4225
4226/// Prepare a conversion of the given expression to an ObjC object
4227/// pointer type.
4228CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4229  QualType type = E.get()->getType();
4230  if (type->isObjCObjectPointerType()) {
4231    return CK_BitCast;
4232  } else if (type->isBlockPointerType()) {
4233    maybeExtendBlockObject(*this, E);
4234    return CK_BlockPointerToObjCPointerCast;
4235  } else {
4236    assert(type->isPointerType());
4237    return CK_CPointerToObjCPointerCast;
4238  }
4239}
4240
4241/// Prepares for a scalar cast, performing all the necessary stages
4242/// except the final cast and returning the kind required.
4243CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4244  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4245  // Also, callers should have filtered out the invalid cases with
4246  // pointers.  Everything else should be possible.
4247
4248  QualType SrcTy = Src.get()->getType();
4249  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4250    return CK_NoOp;
4251
4252  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4253  case Type::STK_MemberPointer:
4254    llvm_unreachable("member pointer type in C");
4255
4256  case Type::STK_CPointer:
4257  case Type::STK_BlockPointer:
4258  case Type::STK_ObjCObjectPointer:
4259    switch (DestTy->getScalarTypeKind()) {
4260    case Type::STK_CPointer:
4261      return CK_BitCast;
4262    case Type::STK_BlockPointer:
4263      return (SrcKind == Type::STK_BlockPointer
4264                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4265    case Type::STK_ObjCObjectPointer:
4266      if (SrcKind == Type::STK_ObjCObjectPointer)
4267        return CK_BitCast;
4268      if (SrcKind == Type::STK_CPointer)
4269        return CK_CPointerToObjCPointerCast;
4270      maybeExtendBlockObject(*this, Src);
4271      return CK_BlockPointerToObjCPointerCast;
4272    case Type::STK_Bool:
4273      return CK_PointerToBoolean;
4274    case Type::STK_Integral:
4275      return CK_PointerToIntegral;
4276    case Type::STK_Floating:
4277    case Type::STK_FloatingComplex:
4278    case Type::STK_IntegralComplex:
4279    case Type::STK_MemberPointer:
4280      llvm_unreachable("illegal cast from pointer");
4281    }
4282    llvm_unreachable("Should have returned before this");
4283
4284  case Type::STK_Bool: // casting from bool is like casting from an integer
4285  case Type::STK_Integral:
4286    switch (DestTy->getScalarTypeKind()) {
4287    case Type::STK_CPointer:
4288    case Type::STK_ObjCObjectPointer:
4289    case Type::STK_BlockPointer:
4290      if (Src.get()->isNullPointerConstant(Context,
4291                                           Expr::NPC_ValueDependentIsNull))
4292        return CK_NullToPointer;
4293      return CK_IntegralToPointer;
4294    case Type::STK_Bool:
4295      return CK_IntegralToBoolean;
4296    case Type::STK_Integral:
4297      return CK_IntegralCast;
4298    case Type::STK_Floating:
4299      return CK_IntegralToFloating;
4300    case Type::STK_IntegralComplex:
4301      Src = ImpCastExprToType(Src.take(),
4302                              DestTy->castAs<ComplexType>()->getElementType(),
4303                              CK_IntegralCast);
4304      return CK_IntegralRealToComplex;
4305    case Type::STK_FloatingComplex:
4306      Src = ImpCastExprToType(Src.take(),
4307                              DestTy->castAs<ComplexType>()->getElementType(),
4308                              CK_IntegralToFloating);
4309      return CK_FloatingRealToComplex;
4310    case Type::STK_MemberPointer:
4311      llvm_unreachable("member pointer type in C");
4312    }
4313    llvm_unreachable("Should have returned before this");
4314
4315  case Type::STK_Floating:
4316    switch (DestTy->getScalarTypeKind()) {
4317    case Type::STK_Floating:
4318      return CK_FloatingCast;
4319    case Type::STK_Bool:
4320      return CK_FloatingToBoolean;
4321    case Type::STK_Integral:
4322      return CK_FloatingToIntegral;
4323    case Type::STK_FloatingComplex:
4324      Src = ImpCastExprToType(Src.take(),
4325                              DestTy->castAs<ComplexType>()->getElementType(),
4326                              CK_FloatingCast);
4327      return CK_FloatingRealToComplex;
4328    case Type::STK_IntegralComplex:
4329      Src = ImpCastExprToType(Src.take(),
4330                              DestTy->castAs<ComplexType>()->getElementType(),
4331                              CK_FloatingToIntegral);
4332      return CK_IntegralRealToComplex;
4333    case Type::STK_CPointer:
4334    case Type::STK_ObjCObjectPointer:
4335    case Type::STK_BlockPointer:
4336      llvm_unreachable("valid float->pointer cast?");
4337    case Type::STK_MemberPointer:
4338      llvm_unreachable("member pointer type in C");
4339    }
4340    llvm_unreachable("Should have returned before this");
4341
4342  case Type::STK_FloatingComplex:
4343    switch (DestTy->getScalarTypeKind()) {
4344    case Type::STK_FloatingComplex:
4345      return CK_FloatingComplexCast;
4346    case Type::STK_IntegralComplex:
4347      return CK_FloatingComplexToIntegralComplex;
4348    case Type::STK_Floating: {
4349      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4350      if (Context.hasSameType(ET, DestTy))
4351        return CK_FloatingComplexToReal;
4352      Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4353      return CK_FloatingCast;
4354    }
4355    case Type::STK_Bool:
4356      return CK_FloatingComplexToBoolean;
4357    case Type::STK_Integral:
4358      Src = ImpCastExprToType(Src.take(),
4359                              SrcTy->castAs<ComplexType>()->getElementType(),
4360                              CK_FloatingComplexToReal);
4361      return CK_FloatingToIntegral;
4362    case Type::STK_CPointer:
4363    case Type::STK_ObjCObjectPointer:
4364    case Type::STK_BlockPointer:
4365      llvm_unreachable("valid complex float->pointer cast?");
4366    case Type::STK_MemberPointer:
4367      llvm_unreachable("member pointer type in C");
4368    }
4369    llvm_unreachable("Should have returned before this");
4370
4371  case Type::STK_IntegralComplex:
4372    switch (DestTy->getScalarTypeKind()) {
4373    case Type::STK_FloatingComplex:
4374      return CK_IntegralComplexToFloatingComplex;
4375    case Type::STK_IntegralComplex:
4376      return CK_IntegralComplexCast;
4377    case Type::STK_Integral: {
4378      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4379      if (Context.hasSameType(ET, DestTy))
4380        return CK_IntegralComplexToReal;
4381      Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4382      return CK_IntegralCast;
4383    }
4384    case Type::STK_Bool:
4385      return CK_IntegralComplexToBoolean;
4386    case Type::STK_Floating:
4387      Src = ImpCastExprToType(Src.take(),
4388                              SrcTy->castAs<ComplexType>()->getElementType(),
4389                              CK_IntegralComplexToReal);
4390      return CK_IntegralToFloating;
4391    case Type::STK_CPointer:
4392    case Type::STK_ObjCObjectPointer:
4393    case Type::STK_BlockPointer:
4394      llvm_unreachable("valid complex int->pointer cast?");
4395    case Type::STK_MemberPointer:
4396      llvm_unreachable("member pointer type in C");
4397    }
4398    llvm_unreachable("Should have returned before this");
4399  }
4400
4401  llvm_unreachable("Unhandled scalar cast");
4402}
4403
4404bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4405                           CastKind &Kind) {
4406  assert(VectorTy->isVectorType() && "Not a vector type!");
4407
4408  if (Ty->isVectorType() || Ty->isIntegerType()) {
4409    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4410      return Diag(R.getBegin(),
4411                  Ty->isVectorType() ?
4412                  diag::err_invalid_conversion_between_vectors :
4413                  diag::err_invalid_conversion_between_vector_and_integer)
4414        << VectorTy << Ty << R;
4415  } else
4416    return Diag(R.getBegin(),
4417                diag::err_invalid_conversion_between_vector_and_scalar)
4418      << VectorTy << Ty << R;
4419
4420  Kind = CK_BitCast;
4421  return false;
4422}
4423
4424ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4425                                    Expr *CastExpr, CastKind &Kind) {
4426  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4427
4428  QualType SrcTy = CastExpr->getType();
4429
4430  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4431  // an ExtVectorType.
4432  // In OpenCL, casts between vectors of different types are not allowed.
4433  // (See OpenCL 6.2).
4434  if (SrcTy->isVectorType()) {
4435    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4436        || (getLangOpts().OpenCL &&
4437            (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4438      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4439        << DestTy << SrcTy << R;
4440      return ExprError();
4441    }
4442    Kind = CK_BitCast;
4443    return Owned(CastExpr);
4444  }
4445
4446  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4447  // conversion will take place first from scalar to elt type, and then
4448  // splat from elt type to vector.
4449  if (SrcTy->isPointerType())
4450    return Diag(R.getBegin(),
4451                diag::err_invalid_conversion_between_vector_and_scalar)
4452      << DestTy << SrcTy << R;
4453
4454  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4455  ExprResult CastExprRes = Owned(CastExpr);
4456  CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4457  if (CastExprRes.isInvalid())
4458    return ExprError();
4459  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4460
4461  Kind = CK_VectorSplat;
4462  return Owned(CastExpr);
4463}
4464
4465ExprResult
4466Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4467                    Declarator &D, ParsedType &Ty,
4468                    SourceLocation RParenLoc, Expr *CastExpr) {
4469  assert(!D.isInvalidType() && (CastExpr != 0) &&
4470         "ActOnCastExpr(): missing type or expr");
4471
4472  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4473  if (D.isInvalidType())
4474    return ExprError();
4475
4476  if (getLangOpts().CPlusPlus) {
4477    // Check that there are no default arguments (C++ only).
4478    CheckExtraCXXDefaultArguments(D);
4479  }
4480
4481  checkUnusedDeclAttributes(D);
4482
4483  QualType castType = castTInfo->getType();
4484  Ty = CreateParsedType(castType, castTInfo);
4485
4486  bool isVectorLiteral = false;
4487
4488  // Check for an altivec or OpenCL literal,
4489  // i.e. all the elements are integer constants.
4490  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4491  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4492  if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4493       && castType->isVectorType() && (PE || PLE)) {
4494    if (PLE && PLE->getNumExprs() == 0) {
4495      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4496      return ExprError();
4497    }
4498    if (PE || PLE->getNumExprs() == 1) {
4499      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4500      if (!E->getType()->isVectorType())
4501        isVectorLiteral = true;
4502    }
4503    else
4504      isVectorLiteral = true;
4505  }
4506
4507  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4508  // then handle it as such.
4509  if (isVectorLiteral)
4510    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4511
4512  // If the Expr being casted is a ParenListExpr, handle it specially.
4513  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4514  // sequence of BinOp comma operators.
4515  if (isa<ParenListExpr>(CastExpr)) {
4516    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4517    if (Result.isInvalid()) return ExprError();
4518    CastExpr = Result.take();
4519  }
4520
4521  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4522}
4523
4524ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4525                                    SourceLocation RParenLoc, Expr *E,
4526                                    TypeSourceInfo *TInfo) {
4527  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4528         "Expected paren or paren list expression");
4529
4530  Expr **exprs;
4531  unsigned numExprs;
4532  Expr *subExpr;
4533  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4534    exprs = PE->getExprs();
4535    numExprs = PE->getNumExprs();
4536  } else {
4537    subExpr = cast<ParenExpr>(E)->getSubExpr();
4538    exprs = &subExpr;
4539    numExprs = 1;
4540  }
4541
4542  QualType Ty = TInfo->getType();
4543  assert(Ty->isVectorType() && "Expected vector type");
4544
4545  SmallVector<Expr *, 8> initExprs;
4546  const VectorType *VTy = Ty->getAs<VectorType>();
4547  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4548
4549  // '(...)' form of vector initialization in AltiVec: the number of
4550  // initializers must be one or must match the size of the vector.
4551  // If a single value is specified in the initializer then it will be
4552  // replicated to all the components of the vector
4553  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4554    // The number of initializers must be one or must match the size of the
4555    // vector. If a single value is specified in the initializer then it will
4556    // be replicated to all the components of the vector
4557    if (numExprs == 1) {
4558      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4559      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4560      if (Literal.isInvalid())
4561        return ExprError();
4562      Literal = ImpCastExprToType(Literal.take(), ElemTy,
4563                                  PrepareScalarCast(Literal, ElemTy));
4564      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4565    }
4566    else if (numExprs < numElems) {
4567      Diag(E->getExprLoc(),
4568           diag::err_incorrect_number_of_vector_initializers);
4569      return ExprError();
4570    }
4571    else
4572      initExprs.append(exprs, exprs + numExprs);
4573  }
4574  else {
4575    // For OpenCL, when the number of initializers is a single value,
4576    // it will be replicated to all components of the vector.
4577    if (getLangOpts().OpenCL &&
4578        VTy->getVectorKind() == VectorType::GenericVector &&
4579        numExprs == 1) {
4580        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4581        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4582        if (Literal.isInvalid())
4583          return ExprError();
4584        Literal = ImpCastExprToType(Literal.take(), ElemTy,
4585                                    PrepareScalarCast(Literal, ElemTy));
4586        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4587    }
4588
4589    initExprs.append(exprs, exprs + numExprs);
4590  }
4591  // FIXME: This means that pretty-printing the final AST will produce curly
4592  // braces instead of the original commas.
4593  InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4594                                                   initExprs, RParenLoc);
4595  initE->setType(Ty);
4596  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4597}
4598
4599/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4600/// the ParenListExpr into a sequence of comma binary operators.
4601ExprResult
4602Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4603  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4604  if (!E)
4605    return Owned(OrigExpr);
4606
4607  ExprResult Result(E->getExpr(0));
4608
4609  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4610    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4611                        E->getExpr(i));
4612
4613  if (Result.isInvalid()) return ExprError();
4614
4615  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4616}
4617
4618ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4619                                    SourceLocation R,
4620                                    MultiExprArg Val) {
4621  assert(Val.data() != 0 && "ActOnParenOrParenListExpr() missing expr list");
4622  Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
4623  return Owned(expr);
4624}
4625
4626/// \brief Emit a specialized diagnostic when one expression is a null pointer
4627/// constant and the other is not a pointer.  Returns true if a diagnostic is
4628/// emitted.
4629bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4630                                      SourceLocation QuestionLoc) {
4631  Expr *NullExpr = LHSExpr;
4632  Expr *NonPointerExpr = RHSExpr;
4633  Expr::NullPointerConstantKind NullKind =
4634      NullExpr->isNullPointerConstant(Context,
4635                                      Expr::NPC_ValueDependentIsNotNull);
4636
4637  if (NullKind == Expr::NPCK_NotNull) {
4638    NullExpr = RHSExpr;
4639    NonPointerExpr = LHSExpr;
4640    NullKind =
4641        NullExpr->isNullPointerConstant(Context,
4642                                        Expr::NPC_ValueDependentIsNotNull);
4643  }
4644
4645  if (NullKind == Expr::NPCK_NotNull)
4646    return false;
4647
4648  if (NullKind == Expr::NPCK_ZeroExpression)
4649    return false;
4650
4651  if (NullKind == Expr::NPCK_ZeroLiteral) {
4652    // In this case, check to make sure that we got here from a "NULL"
4653    // string in the source code.
4654    NullExpr = NullExpr->IgnoreParenImpCasts();
4655    SourceLocation loc = NullExpr->getExprLoc();
4656    if (!findMacroSpelling(loc, "NULL"))
4657      return false;
4658  }
4659
4660  int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4661  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4662      << NonPointerExpr->getType() << DiagType
4663      << NonPointerExpr->getSourceRange();
4664  return true;
4665}
4666
4667/// \brief Return false if the condition expression is valid, true otherwise.
4668static bool checkCondition(Sema &S, Expr *Cond) {
4669  QualType CondTy = Cond->getType();
4670
4671  // C99 6.5.15p2
4672  if (CondTy->isScalarType()) return false;
4673
4674  // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4675  if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4676    return false;
4677
4678  // Emit the proper error message.
4679  S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4680                              diag::err_typecheck_cond_expect_scalar :
4681                              diag::err_typecheck_cond_expect_scalar_or_vector)
4682    << CondTy;
4683  return true;
4684}
4685
4686/// \brief Return false if the two expressions can be converted to a vector,
4687/// true otherwise
4688static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4689                                                    ExprResult &RHS,
4690                                                    QualType CondTy) {
4691  // Both operands should be of scalar type.
4692  if (!LHS.get()->getType()->isScalarType()) {
4693    S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4694      << CondTy;
4695    return true;
4696  }
4697  if (!RHS.get()->getType()->isScalarType()) {
4698    S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4699      << CondTy;
4700    return true;
4701  }
4702
4703  // Implicity convert these scalars to the type of the condition.
4704  LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4705  RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4706  return false;
4707}
4708
4709/// \brief Handle when one or both operands are void type.
4710static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4711                                         ExprResult &RHS) {
4712    Expr *LHSExpr = LHS.get();
4713    Expr *RHSExpr = RHS.get();
4714
4715    if (!LHSExpr->getType()->isVoidType())
4716      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4717        << RHSExpr->getSourceRange();
4718    if (!RHSExpr->getType()->isVoidType())
4719      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4720        << LHSExpr->getSourceRange();
4721    LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4722    RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4723    return S.Context.VoidTy;
4724}
4725
4726/// \brief Return false if the NullExpr can be promoted to PointerTy,
4727/// true otherwise.
4728static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4729                                        QualType PointerTy) {
4730  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4731      !NullExpr.get()->isNullPointerConstant(S.Context,
4732                                            Expr::NPC_ValueDependentIsNull))
4733    return true;
4734
4735  NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4736  return false;
4737}
4738
4739/// \brief Checks compatibility between two pointers and return the resulting
4740/// type.
4741static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4742                                                     ExprResult &RHS,
4743                                                     SourceLocation Loc) {
4744  QualType LHSTy = LHS.get()->getType();
4745  QualType RHSTy = RHS.get()->getType();
4746
4747  if (S.Context.hasSameType(LHSTy, RHSTy)) {
4748    // Two identical pointers types are always compatible.
4749    return LHSTy;
4750  }
4751
4752  QualType lhptee, rhptee;
4753
4754  // Get the pointee types.
4755  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4756    lhptee = LHSBTy->getPointeeType();
4757    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4758  } else {
4759    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4760    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4761  }
4762
4763  // C99 6.5.15p6: If both operands are pointers to compatible types or to
4764  // differently qualified versions of compatible types, the result type is
4765  // a pointer to an appropriately qualified version of the composite
4766  // type.
4767
4768  // Only CVR-qualifiers exist in the standard, and the differently-qualified
4769  // clause doesn't make sense for our extensions. E.g. address space 2 should
4770  // be incompatible with address space 3: they may live on different devices or
4771  // anything.
4772  Qualifiers lhQual = lhptee.getQualifiers();
4773  Qualifiers rhQual = rhptee.getQualifiers();
4774
4775  unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
4776  lhQual.removeCVRQualifiers();
4777  rhQual.removeCVRQualifiers();
4778
4779  lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
4780  rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
4781
4782  QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
4783
4784  if (CompositeTy.isNull()) {
4785    S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4786      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4787      << RHS.get()->getSourceRange();
4788    // In this situation, we assume void* type. No especially good
4789    // reason, but this is what gcc does, and we do have to pick
4790    // to get a consistent AST.
4791    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4792    LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4793    RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4794    return incompatTy;
4795  }
4796
4797  // The pointer types are compatible.
4798  QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
4799  ResultTy = S.Context.getPointerType(ResultTy);
4800
4801  LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
4802  RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
4803  return ResultTy;
4804}
4805
4806/// \brief Return the resulting type when the operands are both block pointers.
4807static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4808                                                          ExprResult &LHS,
4809                                                          ExprResult &RHS,
4810                                                          SourceLocation Loc) {
4811  QualType LHSTy = LHS.get()->getType();
4812  QualType RHSTy = RHS.get()->getType();
4813
4814  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4815    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4816      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4817      LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4818      RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4819      return destType;
4820    }
4821    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4822      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4823      << RHS.get()->getSourceRange();
4824    return QualType();
4825  }
4826
4827  // We have 2 block pointer types.
4828  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4829}
4830
4831/// \brief Return the resulting type when the operands are both pointers.
4832static QualType
4833checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4834                                            ExprResult &RHS,
4835                                            SourceLocation Loc) {
4836  // get the pointer types
4837  QualType LHSTy = LHS.get()->getType();
4838  QualType RHSTy = RHS.get()->getType();
4839
4840  // get the "pointed to" types
4841  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4842  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4843
4844  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4845  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4846    // Figure out necessary qualifiers (C99 6.5.15p6)
4847    QualType destPointee
4848      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4849    QualType destType = S.Context.getPointerType(destPointee);
4850    // Add qualifiers if necessary.
4851    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4852    // Promote to void*.
4853    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4854    return destType;
4855  }
4856  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4857    QualType destPointee
4858      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4859    QualType destType = S.Context.getPointerType(destPointee);
4860    // Add qualifiers if necessary.
4861    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4862    // Promote to void*.
4863    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4864    return destType;
4865  }
4866
4867  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4868}
4869
4870/// \brief Return false if the first expression is not an integer and the second
4871/// expression is not a pointer, true otherwise.
4872static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
4873                                        Expr* PointerExpr, SourceLocation Loc,
4874                                        bool IsIntFirstExpr) {
4875  if (!PointerExpr->getType()->isPointerType() ||
4876      !Int.get()->getType()->isIntegerType())
4877    return false;
4878
4879  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
4880  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
4881
4882  S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4883    << Expr1->getType() << Expr2->getType()
4884    << Expr1->getSourceRange() << Expr2->getSourceRange();
4885  Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
4886                            CK_IntegralToPointer);
4887  return true;
4888}
4889
4890/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
4891/// In that case, LHS = cond.
4892/// C99 6.5.15
4893QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4894                                        ExprResult &RHS, ExprValueKind &VK,
4895                                        ExprObjectKind &OK,
4896                                        SourceLocation QuestionLoc) {
4897
4898  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
4899  if (!LHSResult.isUsable()) return QualType();
4900  LHS = LHSResult;
4901
4902  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
4903  if (!RHSResult.isUsable()) return QualType();
4904  RHS = RHSResult;
4905
4906  // C++ is sufficiently different to merit its own checker.
4907  if (getLangOpts().CPlusPlus)
4908    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4909
4910  VK = VK_RValue;
4911  OK = OK_Ordinary;
4912
4913  Cond = UsualUnaryConversions(Cond.take());
4914  if (Cond.isInvalid())
4915    return QualType();
4916  LHS = UsualUnaryConversions(LHS.take());
4917  if (LHS.isInvalid())
4918    return QualType();
4919  RHS = UsualUnaryConversions(RHS.take());
4920  if (RHS.isInvalid())
4921    return QualType();
4922
4923  QualType CondTy = Cond.get()->getType();
4924  QualType LHSTy = LHS.get()->getType();
4925  QualType RHSTy = RHS.get()->getType();
4926
4927  // first, check the condition.
4928  if (checkCondition(*this, Cond.get()))
4929    return QualType();
4930
4931  // Now check the two expressions.
4932  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4933    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4934
4935  // OpenCL: If the condition is a vector, and both operands are scalar,
4936  // attempt to implicity convert them to the vector type to act like the
4937  // built in select.
4938  if (getLangOpts().OpenCL && CondTy->isVectorType())
4939    if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
4940      return QualType();
4941
4942  // If both operands have arithmetic type, do the usual arithmetic conversions
4943  // to find a common type: C99 6.5.15p3,5.
4944  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4945    UsualArithmeticConversions(LHS, RHS);
4946    if (LHS.isInvalid() || RHS.isInvalid())
4947      return QualType();
4948    return LHS.get()->getType();
4949  }
4950
4951  // If both operands are the same structure or union type, the result is that
4952  // type.
4953  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4954    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4955      if (LHSRT->getDecl() == RHSRT->getDecl())
4956        // "If both the operands have structure or union type, the result has
4957        // that type."  This implies that CV qualifiers are dropped.
4958        return LHSTy.getUnqualifiedType();
4959    // FIXME: Type of conditional expression must be complete in C mode.
4960  }
4961
4962  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4963  // The following || allows only one side to be void (a GCC-ism).
4964  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4965    return checkConditionalVoidType(*this, LHS, RHS);
4966  }
4967
4968  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4969  // the type of the other operand."
4970  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
4971  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
4972
4973  // All objective-c pointer type analysis is done here.
4974  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4975                                                        QuestionLoc);
4976  if (LHS.isInvalid() || RHS.isInvalid())
4977    return QualType();
4978  if (!compositeType.isNull())
4979    return compositeType;
4980
4981
4982  // Handle block pointer types.
4983  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
4984    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
4985                                                     QuestionLoc);
4986
4987  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4988  if (LHSTy->isPointerType() && RHSTy->isPointerType())
4989    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
4990                                                       QuestionLoc);
4991
4992  // GCC compatibility: soften pointer/integer mismatch.  Note that
4993  // null pointers have been filtered out by this point.
4994  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
4995      /*isIntFirstExpr=*/true))
4996    return RHSTy;
4997  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
4998      /*isIntFirstExpr=*/false))
4999    return LHSTy;
5000
5001  // Emit a better diagnostic if one of the expressions is a null pointer
5002  // constant and the other is not a pointer type. In this case, the user most
5003  // likely forgot to take the address of the other expression.
5004  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5005    return QualType();
5006
5007  // Otherwise, the operands are not compatible.
5008  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5009    << LHSTy << RHSTy << LHS.get()->getSourceRange()
5010    << RHS.get()->getSourceRange();
5011  return QualType();
5012}
5013
5014/// FindCompositeObjCPointerType - Helper method to find composite type of
5015/// two objective-c pointer types of the two input expressions.
5016QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5017                                            SourceLocation QuestionLoc) {
5018  QualType LHSTy = LHS.get()->getType();
5019  QualType RHSTy = RHS.get()->getType();
5020
5021  // Handle things like Class and struct objc_class*.  Here we case the result
5022  // to the pseudo-builtin, because that will be implicitly cast back to the
5023  // redefinition type if an attempt is made to access its fields.
5024  if (LHSTy->isObjCClassType() &&
5025      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5026    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5027    return LHSTy;
5028  }
5029  if (RHSTy->isObjCClassType() &&
5030      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5031    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5032    return RHSTy;
5033  }
5034  // And the same for struct objc_object* / id
5035  if (LHSTy->isObjCIdType() &&
5036      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5037    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5038    return LHSTy;
5039  }
5040  if (RHSTy->isObjCIdType() &&
5041      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5042    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5043    return RHSTy;
5044  }
5045  // And the same for struct objc_selector* / SEL
5046  if (Context.isObjCSelType(LHSTy) &&
5047      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5048    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
5049    return LHSTy;
5050  }
5051  if (Context.isObjCSelType(RHSTy) &&
5052      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5053    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
5054    return RHSTy;
5055  }
5056  // Check constraints for Objective-C object pointers types.
5057  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5058
5059    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5060      // Two identical object pointer types are always compatible.
5061      return LHSTy;
5062    }
5063    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5064    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5065    QualType compositeType = LHSTy;
5066
5067    // If both operands are interfaces and either operand can be
5068    // assigned to the other, use that type as the composite
5069    // type. This allows
5070    //   xxx ? (A*) a : (B*) b
5071    // where B is a subclass of A.
5072    //
5073    // Additionally, as for assignment, if either type is 'id'
5074    // allow silent coercion. Finally, if the types are
5075    // incompatible then make sure to use 'id' as the composite
5076    // type so the result is acceptable for sending messages to.
5077
5078    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5079    // It could return the composite type.
5080    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5081      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5082    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5083      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5084    } else if ((LHSTy->isObjCQualifiedIdType() ||
5085                RHSTy->isObjCQualifiedIdType()) &&
5086               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5087      // Need to handle "id<xx>" explicitly.
5088      // GCC allows qualified id and any Objective-C type to devolve to
5089      // id. Currently localizing to here until clear this should be
5090      // part of ObjCQualifiedIdTypesAreCompatible.
5091      compositeType = Context.getObjCIdType();
5092    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5093      compositeType = Context.getObjCIdType();
5094    } else if (!(compositeType =
5095                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5096      ;
5097    else {
5098      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5099      << LHSTy << RHSTy
5100      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5101      QualType incompatTy = Context.getObjCIdType();
5102      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5103      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5104      return incompatTy;
5105    }
5106    // The object pointer types are compatible.
5107    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
5108    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
5109    return compositeType;
5110  }
5111  // Check Objective-C object pointer types and 'void *'
5112  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5113    if (getLangOpts().ObjCAutoRefCount) {
5114      // ARC forbids the implicit conversion of object pointers to 'void *',
5115      // so these types are not compatible.
5116      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5117          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5118      LHS = RHS = true;
5119      return QualType();
5120    }
5121    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5122    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5123    QualType destPointee
5124    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5125    QualType destType = Context.getPointerType(destPointee);
5126    // Add qualifiers if necessary.
5127    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5128    // Promote to void*.
5129    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5130    return destType;
5131  }
5132  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5133    if (getLangOpts().ObjCAutoRefCount) {
5134      // ARC forbids the implicit conversion of object pointers to 'void *',
5135      // so these types are not compatible.
5136      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5137          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5138      LHS = RHS = true;
5139      return QualType();
5140    }
5141    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5142    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5143    QualType destPointee
5144    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5145    QualType destType = Context.getPointerType(destPointee);
5146    // Add qualifiers if necessary.
5147    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5148    // Promote to void*.
5149    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5150    return destType;
5151  }
5152  return QualType();
5153}
5154
5155/// SuggestParentheses - Emit a note with a fixit hint that wraps
5156/// ParenRange in parentheses.
5157static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5158                               const PartialDiagnostic &Note,
5159                               SourceRange ParenRange) {
5160  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5161  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
5162      EndLoc.isValid()) {
5163    Self.Diag(Loc, Note)
5164      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
5165      << FixItHint::CreateInsertion(EndLoc, ")");
5166  } else {
5167    // We can't display the parentheses, so just show the bare note.
5168    Self.Diag(Loc, Note) << ParenRange;
5169  }
5170}
5171
5172static bool IsArithmeticOp(BinaryOperatorKind Opc) {
5173  return Opc >= BO_Mul && Opc <= BO_Shr;
5174}
5175
5176/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5177/// expression, either using a built-in or overloaded operator,
5178/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5179/// expression.
5180static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5181                                   Expr **RHSExprs) {
5182  // Don't strip parenthesis: we should not warn if E is in parenthesis.
5183  E = E->IgnoreImpCasts();
5184  E = E->IgnoreConversionOperator();
5185  E = E->IgnoreImpCasts();
5186
5187  // Built-in binary operator.
5188  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5189    if (IsArithmeticOp(OP->getOpcode())) {
5190      *Opcode = OP->getOpcode();
5191      *RHSExprs = OP->getRHS();
5192      return true;
5193    }
5194  }
5195
5196  // Overloaded operator.
5197  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5198    if (Call->getNumArgs() != 2)
5199      return false;
5200
5201    // Make sure this is really a binary operator that is safe to pass into
5202    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5203    OverloadedOperatorKind OO = Call->getOperator();
5204    if (OO < OO_Plus || OO > OO_Arrow)
5205      return false;
5206
5207    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5208    if (IsArithmeticOp(OpKind)) {
5209      *Opcode = OpKind;
5210      *RHSExprs = Call->getArg(1);
5211      return true;
5212    }
5213  }
5214
5215  return false;
5216}
5217
5218static bool IsLogicOp(BinaryOperatorKind Opc) {
5219  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5220}
5221
5222/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5223/// or is a logical expression such as (x==y) which has int type, but is
5224/// commonly interpreted as boolean.
5225static bool ExprLooksBoolean(Expr *E) {
5226  E = E->IgnoreParenImpCasts();
5227
5228  if (E->getType()->isBooleanType())
5229    return true;
5230  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5231    return IsLogicOp(OP->getOpcode());
5232  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5233    return OP->getOpcode() == UO_LNot;
5234
5235  return false;
5236}
5237
5238/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5239/// and binary operator are mixed in a way that suggests the programmer assumed
5240/// the conditional operator has higher precedence, for example:
5241/// "int x = a + someBinaryCondition ? 1 : 2".
5242static void DiagnoseConditionalPrecedence(Sema &Self,
5243                                          SourceLocation OpLoc,
5244                                          Expr *Condition,
5245                                          Expr *LHSExpr,
5246                                          Expr *RHSExpr) {
5247  BinaryOperatorKind CondOpcode;
5248  Expr *CondRHS;
5249
5250  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5251    return;
5252  if (!ExprLooksBoolean(CondRHS))
5253    return;
5254
5255  // The condition is an arithmetic binary expression, with a right-
5256  // hand side that looks boolean, so warn.
5257
5258  Self.Diag(OpLoc, diag::warn_precedence_conditional)
5259      << Condition->getSourceRange()
5260      << BinaryOperator::getOpcodeStr(CondOpcode);
5261
5262  SuggestParentheses(Self, OpLoc,
5263    Self.PDiag(diag::note_precedence_conditional_silence)
5264      << BinaryOperator::getOpcodeStr(CondOpcode),
5265    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5266
5267  SuggestParentheses(Self, OpLoc,
5268    Self.PDiag(diag::note_precedence_conditional_first),
5269    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5270}
5271
5272/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5273/// in the case of a the GNU conditional expr extension.
5274ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5275                                    SourceLocation ColonLoc,
5276                                    Expr *CondExpr, Expr *LHSExpr,
5277                                    Expr *RHSExpr) {
5278  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5279  // was the condition.
5280  OpaqueValueExpr *opaqueValue = 0;
5281  Expr *commonExpr = 0;
5282  if (LHSExpr == 0) {
5283    commonExpr = CondExpr;
5284
5285    // We usually want to apply unary conversions *before* saving, except
5286    // in the special case of a C++ l-value conditional.
5287    if (!(getLangOpts().CPlusPlus
5288          && !commonExpr->isTypeDependent()
5289          && commonExpr->getValueKind() == RHSExpr->getValueKind()
5290          && commonExpr->isGLValue()
5291          && commonExpr->isOrdinaryOrBitFieldObject()
5292          && RHSExpr->isOrdinaryOrBitFieldObject()
5293          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5294      ExprResult commonRes = UsualUnaryConversions(commonExpr);
5295      if (commonRes.isInvalid())
5296        return ExprError();
5297      commonExpr = commonRes.take();
5298    }
5299
5300    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5301                                                commonExpr->getType(),
5302                                                commonExpr->getValueKind(),
5303                                                commonExpr->getObjectKind(),
5304                                                commonExpr);
5305    LHSExpr = CondExpr = opaqueValue;
5306  }
5307
5308  ExprValueKind VK = VK_RValue;
5309  ExprObjectKind OK = OK_Ordinary;
5310  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5311  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5312                                             VK, OK, QuestionLoc);
5313  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5314      RHS.isInvalid())
5315    return ExprError();
5316
5317  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5318                                RHS.get());
5319
5320  if (!commonExpr)
5321    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5322                                                   LHS.take(), ColonLoc,
5323                                                   RHS.take(), result, VK, OK));
5324
5325  return Owned(new (Context)
5326    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5327                              RHS.take(), QuestionLoc, ColonLoc, result, VK,
5328                              OK));
5329}
5330
5331// checkPointerTypesForAssignment - This is a very tricky routine (despite
5332// being closely modeled after the C99 spec:-). The odd characteristic of this
5333// routine is it effectively iqnores the qualifiers on the top level pointee.
5334// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5335// FIXME: add a couple examples in this comment.
5336static Sema::AssignConvertType
5337checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5338  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5339  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5340
5341  // get the "pointed to" type (ignoring qualifiers at the top level)
5342  const Type *lhptee, *rhptee;
5343  Qualifiers lhq, rhq;
5344  llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5345  llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5346
5347  Sema::AssignConvertType ConvTy = Sema::Compatible;
5348
5349  // C99 6.5.16.1p1: This following citation is common to constraints
5350  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5351  // qualifiers of the type *pointed to* by the right;
5352  Qualifiers lq;
5353
5354  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5355  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5356      lhq.compatiblyIncludesObjCLifetime(rhq)) {
5357    // Ignore lifetime for further calculation.
5358    lhq.removeObjCLifetime();
5359    rhq.removeObjCLifetime();
5360  }
5361
5362  if (!lhq.compatiblyIncludes(rhq)) {
5363    // Treat address-space mismatches as fatal.  TODO: address subspaces
5364    if (lhq.getAddressSpace() != rhq.getAddressSpace())
5365      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5366
5367    // It's okay to add or remove GC or lifetime qualifiers when converting to
5368    // and from void*.
5369    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5370                        .compatiblyIncludes(
5371                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
5372             && (lhptee->isVoidType() || rhptee->isVoidType()))
5373      ; // keep old
5374
5375    // Treat lifetime mismatches as fatal.
5376    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5377      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5378
5379    // For GCC compatibility, other qualifier mismatches are treated
5380    // as still compatible in C.
5381    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5382  }
5383
5384  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5385  // incomplete type and the other is a pointer to a qualified or unqualified
5386  // version of void...
5387  if (lhptee->isVoidType()) {
5388    if (rhptee->isIncompleteOrObjectType())
5389      return ConvTy;
5390
5391    // As an extension, we allow cast to/from void* to function pointer.
5392    assert(rhptee->isFunctionType());
5393    return Sema::FunctionVoidPointer;
5394  }
5395
5396  if (rhptee->isVoidType()) {
5397    if (lhptee->isIncompleteOrObjectType())
5398      return ConvTy;
5399
5400    // As an extension, we allow cast to/from void* to function pointer.
5401    assert(lhptee->isFunctionType());
5402    return Sema::FunctionVoidPointer;
5403  }
5404
5405  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5406  // unqualified versions of compatible types, ...
5407  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5408  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5409    // Check if the pointee types are compatible ignoring the sign.
5410    // We explicitly check for char so that we catch "char" vs
5411    // "unsigned char" on systems where "char" is unsigned.
5412    if (lhptee->isCharType())
5413      ltrans = S.Context.UnsignedCharTy;
5414    else if (lhptee->hasSignedIntegerRepresentation())
5415      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5416
5417    if (rhptee->isCharType())
5418      rtrans = S.Context.UnsignedCharTy;
5419    else if (rhptee->hasSignedIntegerRepresentation())
5420      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5421
5422    if (ltrans == rtrans) {
5423      // Types are compatible ignoring the sign. Qualifier incompatibility
5424      // takes priority over sign incompatibility because the sign
5425      // warning can be disabled.
5426      if (ConvTy != Sema::Compatible)
5427        return ConvTy;
5428
5429      return Sema::IncompatiblePointerSign;
5430    }
5431
5432    // If we are a multi-level pointer, it's possible that our issue is simply
5433    // one of qualification - e.g. char ** -> const char ** is not allowed. If
5434    // the eventual target type is the same and the pointers have the same
5435    // level of indirection, this must be the issue.
5436    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5437      do {
5438        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5439        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5440      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5441
5442      if (lhptee == rhptee)
5443        return Sema::IncompatibleNestedPointerQualifiers;
5444    }
5445
5446    // General pointer incompatibility takes priority over qualifiers.
5447    return Sema::IncompatiblePointer;
5448  }
5449  if (!S.getLangOpts().CPlusPlus &&
5450      S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5451    return Sema::IncompatiblePointer;
5452  return ConvTy;
5453}
5454
5455/// checkBlockPointerTypesForAssignment - This routine determines whether two
5456/// block pointer types are compatible or whether a block and normal pointer
5457/// are compatible. It is more restrict than comparing two function pointer
5458// types.
5459static Sema::AssignConvertType
5460checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5461                                    QualType RHSType) {
5462  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5463  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5464
5465  QualType lhptee, rhptee;
5466
5467  // get the "pointed to" type (ignoring qualifiers at the top level)
5468  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5469  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5470
5471  // In C++, the types have to match exactly.
5472  if (S.getLangOpts().CPlusPlus)
5473    return Sema::IncompatibleBlockPointer;
5474
5475  Sema::AssignConvertType ConvTy = Sema::Compatible;
5476
5477  // For blocks we enforce that qualifiers are identical.
5478  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5479    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5480
5481  if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5482    return Sema::IncompatibleBlockPointer;
5483
5484  return ConvTy;
5485}
5486
5487/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5488/// for assignment compatibility.
5489static Sema::AssignConvertType
5490checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5491                                   QualType RHSType) {
5492  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5493  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5494
5495  if (LHSType->isObjCBuiltinType()) {
5496    // Class is not compatible with ObjC object pointers.
5497    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5498        !RHSType->isObjCQualifiedClassType())
5499      return Sema::IncompatiblePointer;
5500    return Sema::Compatible;
5501  }
5502  if (RHSType->isObjCBuiltinType()) {
5503    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5504        !LHSType->isObjCQualifiedClassType())
5505      return Sema::IncompatiblePointer;
5506    return Sema::Compatible;
5507  }
5508  QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5509  QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5510
5511  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5512      // make an exception for id<P>
5513      !LHSType->isObjCQualifiedIdType())
5514    return Sema::CompatiblePointerDiscardsQualifiers;
5515
5516  if (S.Context.typesAreCompatible(LHSType, RHSType))
5517    return Sema::Compatible;
5518  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5519    return Sema::IncompatibleObjCQualifiedId;
5520  return Sema::IncompatiblePointer;
5521}
5522
5523Sema::AssignConvertType
5524Sema::CheckAssignmentConstraints(SourceLocation Loc,
5525                                 QualType LHSType, QualType RHSType) {
5526  // Fake up an opaque expression.  We don't actually care about what
5527  // cast operations are required, so if CheckAssignmentConstraints
5528  // adds casts to this they'll be wasted, but fortunately that doesn't
5529  // usually happen on valid code.
5530  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5531  ExprResult RHSPtr = &RHSExpr;
5532  CastKind K = CK_Invalid;
5533
5534  return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5535}
5536
5537/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5538/// has code to accommodate several GCC extensions when type checking
5539/// pointers. Here are some objectionable examples that GCC considers warnings:
5540///
5541///  int a, *pint;
5542///  short *pshort;
5543///  struct foo *pfoo;
5544///
5545///  pint = pshort; // warning: assignment from incompatible pointer type
5546///  a = pint; // warning: assignment makes integer from pointer without a cast
5547///  pint = a; // warning: assignment makes pointer from integer without a cast
5548///  pint = pfoo; // warning: assignment from incompatible pointer type
5549///
5550/// As a result, the code for dealing with pointers is more complex than the
5551/// C99 spec dictates.
5552///
5553/// Sets 'Kind' for any result kind except Incompatible.
5554Sema::AssignConvertType
5555Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5556                                 CastKind &Kind) {
5557  QualType RHSType = RHS.get()->getType();
5558  QualType OrigLHSType = LHSType;
5559
5560  // Get canonical types.  We're not formatting these types, just comparing
5561  // them.
5562  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5563  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5564
5565
5566  // Common case: no conversion required.
5567  if (LHSType == RHSType) {
5568    Kind = CK_NoOp;
5569    return Compatible;
5570  }
5571
5572  // If we have an atomic type, try a non-atomic assignment, then just add an
5573  // atomic qualification step.
5574  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5575    Sema::AssignConvertType result =
5576      CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
5577    if (result != Compatible)
5578      return result;
5579    if (Kind != CK_NoOp)
5580      RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
5581    Kind = CK_NonAtomicToAtomic;
5582    return Compatible;
5583  }
5584
5585  // If the left-hand side is a reference type, then we are in a
5586  // (rare!) case where we've allowed the use of references in C,
5587  // e.g., as a parameter type in a built-in function. In this case,
5588  // just make sure that the type referenced is compatible with the
5589  // right-hand side type. The caller is responsible for adjusting
5590  // LHSType so that the resulting expression does not have reference
5591  // type.
5592  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5593    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5594      Kind = CK_LValueBitCast;
5595      return Compatible;
5596    }
5597    return Incompatible;
5598  }
5599
5600  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5601  // to the same ExtVector type.
5602  if (LHSType->isExtVectorType()) {
5603    if (RHSType->isExtVectorType())
5604      return Incompatible;
5605    if (RHSType->isArithmeticType()) {
5606      // CK_VectorSplat does T -> vector T, so first cast to the
5607      // element type.
5608      QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5609      if (elType != RHSType) {
5610        Kind = PrepareScalarCast(RHS, elType);
5611        RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5612      }
5613      Kind = CK_VectorSplat;
5614      return Compatible;
5615    }
5616  }
5617
5618  // Conversions to or from vector type.
5619  if (LHSType->isVectorType() || RHSType->isVectorType()) {
5620    if (LHSType->isVectorType() && RHSType->isVectorType()) {
5621      // Allow assignments of an AltiVec vector type to an equivalent GCC
5622      // vector type and vice versa
5623      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5624        Kind = CK_BitCast;
5625        return Compatible;
5626      }
5627
5628      // If we are allowing lax vector conversions, and LHS and RHS are both
5629      // vectors, the total size only needs to be the same. This is a bitcast;
5630      // no bits are changed but the result type is different.
5631      if (getLangOpts().LaxVectorConversions &&
5632          (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5633        Kind = CK_BitCast;
5634        return IncompatibleVectors;
5635      }
5636    }
5637    return Incompatible;
5638  }
5639
5640  // Arithmetic conversions.
5641  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5642      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5643    Kind = PrepareScalarCast(RHS, LHSType);
5644    return Compatible;
5645  }
5646
5647  // Conversions to normal pointers.
5648  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5649    // U* -> T*
5650    if (isa<PointerType>(RHSType)) {
5651      Kind = CK_BitCast;
5652      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5653    }
5654
5655    // int -> T*
5656    if (RHSType->isIntegerType()) {
5657      Kind = CK_IntegralToPointer; // FIXME: null?
5658      return IntToPointer;
5659    }
5660
5661    // C pointers are not compatible with ObjC object pointers,
5662    // with two exceptions:
5663    if (isa<ObjCObjectPointerType>(RHSType)) {
5664      //  - conversions to void*
5665      if (LHSPointer->getPointeeType()->isVoidType()) {
5666        Kind = CK_BitCast;
5667        return Compatible;
5668      }
5669
5670      //  - conversions from 'Class' to the redefinition type
5671      if (RHSType->isObjCClassType() &&
5672          Context.hasSameType(LHSType,
5673                              Context.getObjCClassRedefinitionType())) {
5674        Kind = CK_BitCast;
5675        return Compatible;
5676      }
5677
5678      Kind = CK_BitCast;
5679      return IncompatiblePointer;
5680    }
5681
5682    // U^ -> void*
5683    if (RHSType->getAs<BlockPointerType>()) {
5684      if (LHSPointer->getPointeeType()->isVoidType()) {
5685        Kind = CK_BitCast;
5686        return Compatible;
5687      }
5688    }
5689
5690    return Incompatible;
5691  }
5692
5693  // Conversions to block pointers.
5694  if (isa<BlockPointerType>(LHSType)) {
5695    // U^ -> T^
5696    if (RHSType->isBlockPointerType()) {
5697      Kind = CK_BitCast;
5698      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5699    }
5700
5701    // int or null -> T^
5702    if (RHSType->isIntegerType()) {
5703      Kind = CK_IntegralToPointer; // FIXME: null
5704      return IntToBlockPointer;
5705    }
5706
5707    // id -> T^
5708    if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5709      Kind = CK_AnyPointerToBlockPointerCast;
5710      return Compatible;
5711    }
5712
5713    // void* -> T^
5714    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5715      if (RHSPT->getPointeeType()->isVoidType()) {
5716        Kind = CK_AnyPointerToBlockPointerCast;
5717        return Compatible;
5718      }
5719
5720    return Incompatible;
5721  }
5722
5723  // Conversions to Objective-C pointers.
5724  if (isa<ObjCObjectPointerType>(LHSType)) {
5725    // A* -> B*
5726    if (RHSType->isObjCObjectPointerType()) {
5727      Kind = CK_BitCast;
5728      Sema::AssignConvertType result =
5729        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5730      if (getLangOpts().ObjCAutoRefCount &&
5731          result == Compatible &&
5732          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5733        result = IncompatibleObjCWeakRef;
5734      return result;
5735    }
5736
5737    // int or null -> A*
5738    if (RHSType->isIntegerType()) {
5739      Kind = CK_IntegralToPointer; // FIXME: null
5740      return IntToPointer;
5741    }
5742
5743    // In general, C pointers are not compatible with ObjC object pointers,
5744    // with two exceptions:
5745    if (isa<PointerType>(RHSType)) {
5746      Kind = CK_CPointerToObjCPointerCast;
5747
5748      //  - conversions from 'void*'
5749      if (RHSType->isVoidPointerType()) {
5750        return Compatible;
5751      }
5752
5753      //  - conversions to 'Class' from its redefinition type
5754      if (LHSType->isObjCClassType() &&
5755          Context.hasSameType(RHSType,
5756                              Context.getObjCClassRedefinitionType())) {
5757        return Compatible;
5758      }
5759
5760      return IncompatiblePointer;
5761    }
5762
5763    // T^ -> A*
5764    if (RHSType->isBlockPointerType()) {
5765      maybeExtendBlockObject(*this, RHS);
5766      Kind = CK_BlockPointerToObjCPointerCast;
5767      return Compatible;
5768    }
5769
5770    return Incompatible;
5771  }
5772
5773  // Conversions from pointers that are not covered by the above.
5774  if (isa<PointerType>(RHSType)) {
5775    // T* -> _Bool
5776    if (LHSType == Context.BoolTy) {
5777      Kind = CK_PointerToBoolean;
5778      return Compatible;
5779    }
5780
5781    // T* -> int
5782    if (LHSType->isIntegerType()) {
5783      Kind = CK_PointerToIntegral;
5784      return PointerToInt;
5785    }
5786
5787    return Incompatible;
5788  }
5789
5790  // Conversions from Objective-C pointers that are not covered by the above.
5791  if (isa<ObjCObjectPointerType>(RHSType)) {
5792    // T* -> _Bool
5793    if (LHSType == Context.BoolTy) {
5794      Kind = CK_PointerToBoolean;
5795      return Compatible;
5796    }
5797
5798    // T* -> int
5799    if (LHSType->isIntegerType()) {
5800      Kind = CK_PointerToIntegral;
5801      return PointerToInt;
5802    }
5803
5804    return Incompatible;
5805  }
5806
5807  // struct A -> struct B
5808  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5809    if (Context.typesAreCompatible(LHSType, RHSType)) {
5810      Kind = CK_NoOp;
5811      return Compatible;
5812    }
5813  }
5814
5815  return Incompatible;
5816}
5817
5818/// \brief Constructs a transparent union from an expression that is
5819/// used to initialize the transparent union.
5820static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5821                                      ExprResult &EResult, QualType UnionType,
5822                                      FieldDecl *Field) {
5823  // Build an initializer list that designates the appropriate member
5824  // of the transparent union.
5825  Expr *E = EResult.take();
5826  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5827                                                   E, SourceLocation());
5828  Initializer->setType(UnionType);
5829  Initializer->setInitializedFieldInUnion(Field);
5830
5831  // Build a compound literal constructing a value of the transparent
5832  // union type from this initializer list.
5833  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5834  EResult = S.Owned(
5835    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5836                                VK_RValue, Initializer, false));
5837}
5838
5839Sema::AssignConvertType
5840Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5841                                               ExprResult &RHS) {
5842  QualType RHSType = RHS.get()->getType();
5843
5844  // If the ArgType is a Union type, we want to handle a potential
5845  // transparent_union GCC extension.
5846  const RecordType *UT = ArgType->getAsUnionType();
5847  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5848    return Incompatible;
5849
5850  // The field to initialize within the transparent union.
5851  RecordDecl *UD = UT->getDecl();
5852  FieldDecl *InitField = 0;
5853  // It's compatible if the expression matches any of the fields.
5854  for (RecordDecl::field_iterator it = UD->field_begin(),
5855         itend = UD->field_end();
5856       it != itend; ++it) {
5857    if (it->getType()->isPointerType()) {
5858      // If the transparent union contains a pointer type, we allow:
5859      // 1) void pointer
5860      // 2) null pointer constant
5861      if (RHSType->isPointerType())
5862        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
5863          RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
5864          InitField = *it;
5865          break;
5866        }
5867
5868      if (RHS.get()->isNullPointerConstant(Context,
5869                                           Expr::NPC_ValueDependentIsNull)) {
5870        RHS = ImpCastExprToType(RHS.take(), it->getType(),
5871                                CK_NullToPointer);
5872        InitField = *it;
5873        break;
5874      }
5875    }
5876
5877    CastKind Kind = CK_Invalid;
5878    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
5879          == Compatible) {
5880      RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
5881      InitField = *it;
5882      break;
5883    }
5884  }
5885
5886  if (!InitField)
5887    return Incompatible;
5888
5889  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
5890  return Compatible;
5891}
5892
5893Sema::AssignConvertType
5894Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5895                                       bool Diagnose) {
5896  if (getLangOpts().CPlusPlus) {
5897    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
5898      // C++ 5.17p3: If the left operand is not of class type, the
5899      // expression is implicitly converted (C++ 4) to the
5900      // cv-unqualified type of the left operand.
5901      ExprResult Res;
5902      if (Diagnose) {
5903        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5904                                        AA_Assigning);
5905      } else {
5906        ImplicitConversionSequence ICS =
5907            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5908                                  /*SuppressUserConversions=*/false,
5909                                  /*AllowExplicit=*/false,
5910                                  /*InOverloadResolution=*/false,
5911                                  /*CStyle=*/false,
5912                                  /*AllowObjCWritebackConversion=*/false);
5913        if (ICS.isFailure())
5914          return Incompatible;
5915        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5916                                        ICS, AA_Assigning);
5917      }
5918      if (Res.isInvalid())
5919        return Incompatible;
5920      Sema::AssignConvertType result = Compatible;
5921      if (getLangOpts().ObjCAutoRefCount &&
5922          !CheckObjCARCUnavailableWeakConversion(LHSType,
5923                                                 RHS.get()->getType()))
5924        result = IncompatibleObjCWeakRef;
5925      RHS = Res;
5926      return result;
5927    }
5928
5929    // FIXME: Currently, we fall through and treat C++ classes like C
5930    // structures.
5931    // FIXME: We also fall through for atomics; not sure what should
5932    // happen there, though.
5933  }
5934
5935  // C99 6.5.16.1p1: the left operand is a pointer and the right is
5936  // a null pointer constant.
5937  if ((LHSType->isPointerType() ||
5938       LHSType->isObjCObjectPointerType() ||
5939       LHSType->isBlockPointerType())
5940      && RHS.get()->isNullPointerConstant(Context,
5941                                          Expr::NPC_ValueDependentIsNull)) {
5942    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
5943    return Compatible;
5944  }
5945
5946  // This check seems unnatural, however it is necessary to ensure the proper
5947  // conversion of functions/arrays. If the conversion were done for all
5948  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5949  // expressions that suppress this implicit conversion (&, sizeof).
5950  //
5951  // Suppress this for references: C++ 8.5.3p5.
5952  if (!LHSType->isReferenceType()) {
5953    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5954    if (RHS.isInvalid())
5955      return Incompatible;
5956  }
5957
5958  CastKind Kind = CK_Invalid;
5959  Sema::AssignConvertType result =
5960    CheckAssignmentConstraints(LHSType, RHS, Kind);
5961
5962  // C99 6.5.16.1p2: The value of the right operand is converted to the
5963  // type of the assignment expression.
5964  // CheckAssignmentConstraints allows the left-hand side to be a reference,
5965  // so that we can use references in built-in functions even in C.
5966  // The getNonReferenceType() call makes sure that the resulting expression
5967  // does not have reference type.
5968  if (result != Incompatible && RHS.get()->getType() != LHSType)
5969    RHS = ImpCastExprToType(RHS.take(),
5970                            LHSType.getNonLValueExprType(Context), Kind);
5971  return result;
5972}
5973
5974QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
5975                               ExprResult &RHS) {
5976  Diag(Loc, diag::err_typecheck_invalid_operands)
5977    << LHS.get()->getType() << RHS.get()->getType()
5978    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5979  return QualType();
5980}
5981
5982QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
5983                                   SourceLocation Loc, bool IsCompAssign) {
5984  if (!IsCompAssign) {
5985    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
5986    if (LHS.isInvalid())
5987      return QualType();
5988  }
5989  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5990  if (RHS.isInvalid())
5991    return QualType();
5992
5993  // For conversion purposes, we ignore any qualifiers.
5994  // For example, "const float" and "float" are equivalent.
5995  QualType LHSType =
5996    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
5997  QualType RHSType =
5998    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
5999
6000  // If the vector types are identical, return.
6001  if (LHSType == RHSType)
6002    return LHSType;
6003
6004  // Handle the case of equivalent AltiVec and GCC vector types
6005  if (LHSType->isVectorType() && RHSType->isVectorType() &&
6006      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6007    if (LHSType->isExtVectorType()) {
6008      RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6009      return LHSType;
6010    }
6011
6012    if (!IsCompAssign)
6013      LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6014    return RHSType;
6015  }
6016
6017  if (getLangOpts().LaxVectorConversions &&
6018      Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
6019    // If we are allowing lax vector conversions, and LHS and RHS are both
6020    // vectors, the total size only needs to be the same. This is a
6021    // bitcast; no bits are changed but the result type is different.
6022    // FIXME: Should we really be allowing this?
6023    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6024    return LHSType;
6025  }
6026
6027  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
6028  // swap back (so that we don't reverse the inputs to a subtract, for instance.
6029  bool swapped = false;
6030  if (RHSType->isExtVectorType() && !IsCompAssign) {
6031    swapped = true;
6032    std::swap(RHS, LHS);
6033    std::swap(RHSType, LHSType);
6034  }
6035
6036  // Handle the case of an ext vector and scalar.
6037  if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
6038    QualType EltTy = LV->getElementType();
6039    if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
6040      int order = Context.getIntegerTypeOrder(EltTy, RHSType);
6041      if (order > 0)
6042        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
6043      if (order >= 0) {
6044        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6045        if (swapped) std::swap(RHS, LHS);
6046        return LHSType;
6047      }
6048    }
6049    if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
6050        RHSType->isRealFloatingType()) {
6051      int order = Context.getFloatingTypeOrder(EltTy, RHSType);
6052      if (order > 0)
6053        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
6054      if (order >= 0) {
6055        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6056        if (swapped) std::swap(RHS, LHS);
6057        return LHSType;
6058      }
6059    }
6060  }
6061
6062  // Vectors of different size or scalar and non-ext-vector are errors.
6063  if (swapped) std::swap(RHS, LHS);
6064  Diag(Loc, diag::err_typecheck_vector_not_convertable)
6065    << LHS.get()->getType() << RHS.get()->getType()
6066    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6067  return QualType();
6068}
6069
6070// checkArithmeticNull - Detect when a NULL constant is used improperly in an
6071// expression.  These are mainly cases where the null pointer is used as an
6072// integer instead of a pointer.
6073static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
6074                                SourceLocation Loc, bool IsCompare) {
6075  // The canonical way to check for a GNU null is with isNullPointerConstant,
6076  // but we use a bit of a hack here for speed; this is a relatively
6077  // hot path, and isNullPointerConstant is slow.
6078  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
6079  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
6080
6081  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
6082
6083  // Avoid analyzing cases where the result will either be invalid (and
6084  // diagnosed as such) or entirely valid and not something to warn about.
6085  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
6086      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
6087    return;
6088
6089  // Comparison operations would not make sense with a null pointer no matter
6090  // what the other expression is.
6091  if (!IsCompare) {
6092    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
6093        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
6094        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
6095    return;
6096  }
6097
6098  // The rest of the operations only make sense with a null pointer
6099  // if the other expression is a pointer.
6100  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
6101      NonNullType->canDecayToPointerType())
6102    return;
6103
6104  S.Diag(Loc, diag::warn_null_in_comparison_operation)
6105      << LHSNull /* LHS is NULL */ << NonNullType
6106      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6107}
6108
6109QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
6110                                           SourceLocation Loc,
6111                                           bool IsCompAssign, bool IsDiv) {
6112  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6113
6114  if (LHS.get()->getType()->isVectorType() ||
6115      RHS.get()->getType()->isVectorType())
6116    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6117
6118  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6119  if (LHS.isInvalid() || RHS.isInvalid())
6120    return QualType();
6121
6122
6123  if (compType.isNull() || !compType->isArithmeticType())
6124    return InvalidOperands(Loc, LHS, RHS);
6125
6126  // Check for division by zero.
6127  if (IsDiv &&
6128      RHS.get()->isNullPointerConstant(Context,
6129                                       Expr::NPC_ValueDependentIsNotNull))
6130    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
6131                                          << RHS.get()->getSourceRange());
6132
6133  return compType;
6134}
6135
6136QualType Sema::CheckRemainderOperands(
6137  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6138  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6139
6140  if (LHS.get()->getType()->isVectorType() ||
6141      RHS.get()->getType()->isVectorType()) {
6142    if (LHS.get()->getType()->hasIntegerRepresentation() &&
6143        RHS.get()->getType()->hasIntegerRepresentation())
6144      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6145    return InvalidOperands(Loc, LHS, RHS);
6146  }
6147
6148  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6149  if (LHS.isInvalid() || RHS.isInvalid())
6150    return QualType();
6151
6152  if (compType.isNull() || !compType->isIntegerType())
6153    return InvalidOperands(Loc, LHS, RHS);
6154
6155  // Check for remainder by zero.
6156  if (RHS.get()->isNullPointerConstant(Context,
6157                                       Expr::NPC_ValueDependentIsNotNull))
6158    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
6159                                 << RHS.get()->getSourceRange());
6160
6161  return compType;
6162}
6163
6164/// \brief Diagnose invalid arithmetic on two void pointers.
6165static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6166                                                Expr *LHSExpr, Expr *RHSExpr) {
6167  S.Diag(Loc, S.getLangOpts().CPlusPlus
6168                ? diag::err_typecheck_pointer_arith_void_type
6169                : diag::ext_gnu_void_ptr)
6170    << 1 /* two pointers */ << LHSExpr->getSourceRange()
6171                            << RHSExpr->getSourceRange();
6172}
6173
6174/// \brief Diagnose invalid arithmetic on a void pointer.
6175static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6176                                            Expr *Pointer) {
6177  S.Diag(Loc, S.getLangOpts().CPlusPlus
6178                ? diag::err_typecheck_pointer_arith_void_type
6179                : diag::ext_gnu_void_ptr)
6180    << 0 /* one pointer */ << Pointer->getSourceRange();
6181}
6182
6183/// \brief Diagnose invalid arithmetic on two function pointers.
6184static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6185                                                    Expr *LHS, Expr *RHS) {
6186  assert(LHS->getType()->isAnyPointerType());
6187  assert(RHS->getType()->isAnyPointerType());
6188  S.Diag(Loc, S.getLangOpts().CPlusPlus
6189                ? diag::err_typecheck_pointer_arith_function_type
6190                : diag::ext_gnu_ptr_func_arith)
6191    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6192    // We only show the second type if it differs from the first.
6193    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6194                                                   RHS->getType())
6195    << RHS->getType()->getPointeeType()
6196    << LHS->getSourceRange() << RHS->getSourceRange();
6197}
6198
6199/// \brief Diagnose invalid arithmetic on a function pointer.
6200static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6201                                                Expr *Pointer) {
6202  assert(Pointer->getType()->isAnyPointerType());
6203  S.Diag(Loc, S.getLangOpts().CPlusPlus
6204                ? diag::err_typecheck_pointer_arith_function_type
6205                : diag::ext_gnu_ptr_func_arith)
6206    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6207    << 0 /* one pointer, so only one type */
6208    << Pointer->getSourceRange();
6209}
6210
6211/// \brief Emit error if Operand is incomplete pointer type
6212///
6213/// \returns True if pointer has incomplete type
6214static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6215                                                 Expr *Operand) {
6216  assert(Operand->getType()->isAnyPointerType() &&
6217         !Operand->getType()->isDependentType());
6218  QualType PointeeTy = Operand->getType()->getPointeeType();
6219  return S.RequireCompleteType(Loc, PointeeTy,
6220                               diag::err_typecheck_arithmetic_incomplete_type,
6221                               PointeeTy, Operand->getSourceRange());
6222}
6223
6224/// \brief Check the validity of an arithmetic pointer operand.
6225///
6226/// If the operand has pointer type, this code will check for pointer types
6227/// which are invalid in arithmetic operations. These will be diagnosed
6228/// appropriately, including whether or not the use is supported as an
6229/// extension.
6230///
6231/// \returns True when the operand is valid to use (even if as an extension).
6232static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6233                                            Expr *Operand) {
6234  if (!Operand->getType()->isAnyPointerType()) return true;
6235
6236  QualType PointeeTy = Operand->getType()->getPointeeType();
6237  if (PointeeTy->isVoidType()) {
6238    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6239    return !S.getLangOpts().CPlusPlus;
6240  }
6241  if (PointeeTy->isFunctionType()) {
6242    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6243    return !S.getLangOpts().CPlusPlus;
6244  }
6245
6246  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6247
6248  return true;
6249}
6250
6251/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6252/// operands.
6253///
6254/// This routine will diagnose any invalid arithmetic on pointer operands much
6255/// like \see checkArithmeticOpPointerOperand. However, it has special logic
6256/// for emitting a single diagnostic even for operations where both LHS and RHS
6257/// are (potentially problematic) pointers.
6258///
6259/// \returns True when the operand is valid to use (even if as an extension).
6260static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6261                                                Expr *LHSExpr, Expr *RHSExpr) {
6262  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6263  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6264  if (!isLHSPointer && !isRHSPointer) return true;
6265
6266  QualType LHSPointeeTy, RHSPointeeTy;
6267  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6268  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6269
6270  // Check for arithmetic on pointers to incomplete types.
6271  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6272  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6273  if (isLHSVoidPtr || isRHSVoidPtr) {
6274    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6275    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6276    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6277
6278    return !S.getLangOpts().CPlusPlus;
6279  }
6280
6281  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6282  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6283  if (isLHSFuncPtr || isRHSFuncPtr) {
6284    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6285    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6286                                                                RHSExpr);
6287    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6288
6289    return !S.getLangOpts().CPlusPlus;
6290  }
6291
6292  if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
6293    return false;
6294  if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
6295    return false;
6296
6297  return true;
6298}
6299
6300/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6301/// literal.
6302static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6303                                  Expr *LHSExpr, Expr *RHSExpr) {
6304  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6305  Expr* IndexExpr = RHSExpr;
6306  if (!StrExpr) {
6307    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6308    IndexExpr = LHSExpr;
6309  }
6310
6311  bool IsStringPlusInt = StrExpr &&
6312      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6313  if (!IsStringPlusInt)
6314    return;
6315
6316  llvm::APSInt index;
6317  if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6318    unsigned StrLenWithNull = StrExpr->getLength() + 1;
6319    if (index.isNonNegative() &&
6320        index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6321                              index.isUnsigned()))
6322      return;
6323  }
6324
6325  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6326  Self.Diag(OpLoc, diag::warn_string_plus_int)
6327      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6328
6329  // Only print a fixit for "str" + int, not for int + "str".
6330  if (IndexExpr == RHSExpr) {
6331    SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6332    Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6333        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6334        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6335        << FixItHint::CreateInsertion(EndLoc, "]");
6336  } else
6337    Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6338}
6339
6340/// \brief Emit error when two pointers are incompatible.
6341static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6342                                           Expr *LHSExpr, Expr *RHSExpr) {
6343  assert(LHSExpr->getType()->isAnyPointerType());
6344  assert(RHSExpr->getType()->isAnyPointerType());
6345  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6346    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6347    << RHSExpr->getSourceRange();
6348}
6349
6350QualType Sema::CheckAdditionOperands( // C99 6.5.6
6351    ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6352    QualType* CompLHSTy) {
6353  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6354
6355  if (LHS.get()->getType()->isVectorType() ||
6356      RHS.get()->getType()->isVectorType()) {
6357    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6358    if (CompLHSTy) *CompLHSTy = compType;
6359    return compType;
6360  }
6361
6362  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6363  if (LHS.isInvalid() || RHS.isInvalid())
6364    return QualType();
6365
6366  // Diagnose "string literal" '+' int.
6367  if (Opc == BO_Add)
6368    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6369
6370  // handle the common case first (both operands are arithmetic).
6371  if (!compType.isNull() && compType->isArithmeticType()) {
6372    if (CompLHSTy) *CompLHSTy = compType;
6373    return compType;
6374  }
6375
6376  // Type-checking.  Ultimately the pointer's going to be in PExp;
6377  // note that we bias towards the LHS being the pointer.
6378  Expr *PExp = LHS.get(), *IExp = RHS.get();
6379
6380  bool isObjCPointer;
6381  if (PExp->getType()->isPointerType()) {
6382    isObjCPointer = false;
6383  } else if (PExp->getType()->isObjCObjectPointerType()) {
6384    isObjCPointer = true;
6385  } else {
6386    std::swap(PExp, IExp);
6387    if (PExp->getType()->isPointerType()) {
6388      isObjCPointer = false;
6389    } else if (PExp->getType()->isObjCObjectPointerType()) {
6390      isObjCPointer = true;
6391    } else {
6392      return InvalidOperands(Loc, LHS, RHS);
6393    }
6394  }
6395  assert(PExp->getType()->isAnyPointerType());
6396
6397  if (!IExp->getType()->isIntegerType())
6398    return InvalidOperands(Loc, LHS, RHS);
6399
6400  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6401    return QualType();
6402
6403  if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
6404    return QualType();
6405
6406  // Check array bounds for pointer arithemtic
6407  CheckArrayAccess(PExp, IExp);
6408
6409  if (CompLHSTy) {
6410    QualType LHSTy = Context.isPromotableBitField(LHS.get());
6411    if (LHSTy.isNull()) {
6412      LHSTy = LHS.get()->getType();
6413      if (LHSTy->isPromotableIntegerType())
6414        LHSTy = Context.getPromotedIntegerType(LHSTy);
6415    }
6416    *CompLHSTy = LHSTy;
6417  }
6418
6419  return PExp->getType();
6420}
6421
6422// C99 6.5.6
6423QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6424                                        SourceLocation Loc,
6425                                        QualType* CompLHSTy) {
6426  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6427
6428  if (LHS.get()->getType()->isVectorType() ||
6429      RHS.get()->getType()->isVectorType()) {
6430    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6431    if (CompLHSTy) *CompLHSTy = compType;
6432    return compType;
6433  }
6434
6435  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6436  if (LHS.isInvalid() || RHS.isInvalid())
6437    return QualType();
6438
6439  // Enforce type constraints: C99 6.5.6p3.
6440
6441  // Handle the common case first (both operands are arithmetic).
6442  if (!compType.isNull() && compType->isArithmeticType()) {
6443    if (CompLHSTy) *CompLHSTy = compType;
6444    return compType;
6445  }
6446
6447  // Either ptr - int   or   ptr - ptr.
6448  if (LHS.get()->getType()->isAnyPointerType()) {
6449    QualType lpointee = LHS.get()->getType()->getPointeeType();
6450
6451    // Diagnose bad cases where we step over interface counts.
6452    if (LHS.get()->getType()->isObjCObjectPointerType() &&
6453        checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
6454      return QualType();
6455
6456    // The result type of a pointer-int computation is the pointer type.
6457    if (RHS.get()->getType()->isIntegerType()) {
6458      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6459        return QualType();
6460
6461      // Check array bounds for pointer arithemtic
6462      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6463                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6464
6465      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6466      return LHS.get()->getType();
6467    }
6468
6469    // Handle pointer-pointer subtractions.
6470    if (const PointerType *RHSPTy
6471          = RHS.get()->getType()->getAs<PointerType>()) {
6472      QualType rpointee = RHSPTy->getPointeeType();
6473
6474      if (getLangOpts().CPlusPlus) {
6475        // Pointee types must be the same: C++ [expr.add]
6476        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6477          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6478        }
6479      } else {
6480        // Pointee types must be compatible C99 6.5.6p3
6481        if (!Context.typesAreCompatible(
6482                Context.getCanonicalType(lpointee).getUnqualifiedType(),
6483                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6484          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6485          return QualType();
6486        }
6487      }
6488
6489      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6490                                               LHS.get(), RHS.get()))
6491        return QualType();
6492
6493      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6494      return Context.getPointerDiffType();
6495    }
6496  }
6497
6498  return InvalidOperands(Loc, LHS, RHS);
6499}
6500
6501static bool isScopedEnumerationType(QualType T) {
6502  if (const EnumType *ET = dyn_cast<EnumType>(T))
6503    return ET->getDecl()->isScoped();
6504  return false;
6505}
6506
6507static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6508                                   SourceLocation Loc, unsigned Opc,
6509                                   QualType LHSType) {
6510  llvm::APSInt Right;
6511  // Check right/shifter operand
6512  if (RHS.get()->isValueDependent() ||
6513      !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6514    return;
6515
6516  if (Right.isNegative()) {
6517    S.DiagRuntimeBehavior(Loc, RHS.get(),
6518                          S.PDiag(diag::warn_shift_negative)
6519                            << RHS.get()->getSourceRange());
6520    return;
6521  }
6522  llvm::APInt LeftBits(Right.getBitWidth(),
6523                       S.Context.getTypeSize(LHS.get()->getType()));
6524  if (Right.uge(LeftBits)) {
6525    S.DiagRuntimeBehavior(Loc, RHS.get(),
6526                          S.PDiag(diag::warn_shift_gt_typewidth)
6527                            << RHS.get()->getSourceRange());
6528    return;
6529  }
6530  if (Opc != BO_Shl)
6531    return;
6532
6533  // When left shifting an ICE which is signed, we can check for overflow which
6534  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6535  // integers have defined behavior modulo one more than the maximum value
6536  // representable in the result type, so never warn for those.
6537  llvm::APSInt Left;
6538  if (LHS.get()->isValueDependent() ||
6539      !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6540      LHSType->hasUnsignedIntegerRepresentation())
6541    return;
6542  llvm::APInt ResultBits =
6543      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6544  if (LeftBits.uge(ResultBits))
6545    return;
6546  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6547  Result = Result.shl(Right);
6548
6549  // Print the bit representation of the signed integer as an unsigned
6550  // hexadecimal number.
6551  SmallString<40> HexResult;
6552  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6553
6554  // If we are only missing a sign bit, this is less likely to result in actual
6555  // bugs -- if the result is cast back to an unsigned type, it will have the
6556  // expected value. Thus we place this behind a different warning that can be
6557  // turned off separately if needed.
6558  if (LeftBits == ResultBits - 1) {
6559    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6560        << HexResult.str() << LHSType
6561        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6562    return;
6563  }
6564
6565  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6566    << HexResult.str() << Result.getMinSignedBits() << LHSType
6567    << Left.getBitWidth() << LHS.get()->getSourceRange()
6568    << RHS.get()->getSourceRange();
6569}
6570
6571// C99 6.5.7
6572QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6573                                  SourceLocation Loc, unsigned Opc,
6574                                  bool IsCompAssign) {
6575  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6576
6577  // C99 6.5.7p2: Each of the operands shall have integer type.
6578  if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6579      !RHS.get()->getType()->hasIntegerRepresentation())
6580    return InvalidOperands(Loc, LHS, RHS);
6581
6582  // C++0x: Don't allow scoped enums. FIXME: Use something better than
6583  // hasIntegerRepresentation() above instead of this.
6584  if (isScopedEnumerationType(LHS.get()->getType()) ||
6585      isScopedEnumerationType(RHS.get()->getType())) {
6586    return InvalidOperands(Loc, LHS, RHS);
6587  }
6588
6589  // Vector shifts promote their scalar inputs to vector type.
6590  if (LHS.get()->getType()->isVectorType() ||
6591      RHS.get()->getType()->isVectorType())
6592    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6593
6594  // Shifts don't perform usual arithmetic conversions, they just do integer
6595  // promotions on each operand. C99 6.5.7p3
6596
6597  // For the LHS, do usual unary conversions, but then reset them away
6598  // if this is a compound assignment.
6599  ExprResult OldLHS = LHS;
6600  LHS = UsualUnaryConversions(LHS.take());
6601  if (LHS.isInvalid())
6602    return QualType();
6603  QualType LHSType = LHS.get()->getType();
6604  if (IsCompAssign) LHS = OldLHS;
6605
6606  // The RHS is simpler.
6607  RHS = UsualUnaryConversions(RHS.take());
6608  if (RHS.isInvalid())
6609    return QualType();
6610
6611  // Sanity-check shift operands
6612  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6613
6614  // "The type of the result is that of the promoted left operand."
6615  return LHSType;
6616}
6617
6618static bool IsWithinTemplateSpecialization(Decl *D) {
6619  if (DeclContext *DC = D->getDeclContext()) {
6620    if (isa<ClassTemplateSpecializationDecl>(DC))
6621      return true;
6622    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6623      return FD->isFunctionTemplateSpecialization();
6624  }
6625  return false;
6626}
6627
6628/// If two different enums are compared, raise a warning.
6629static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
6630                                ExprResult &RHS) {
6631  QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
6632  QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
6633
6634  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6635  if (!LHSEnumType)
6636    return;
6637  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6638  if (!RHSEnumType)
6639    return;
6640
6641  // Ignore anonymous enums.
6642  if (!LHSEnumType->getDecl()->getIdentifier())
6643    return;
6644  if (!RHSEnumType->getDecl()->getIdentifier())
6645    return;
6646
6647  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6648    return;
6649
6650  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6651      << LHSStrippedType << RHSStrippedType
6652      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6653}
6654
6655/// \brief Diagnose bad pointer comparisons.
6656static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6657                                              ExprResult &LHS, ExprResult &RHS,
6658                                              bool IsError) {
6659  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6660                      : diag::ext_typecheck_comparison_of_distinct_pointers)
6661    << LHS.get()->getType() << RHS.get()->getType()
6662    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6663}
6664
6665/// \brief Returns false if the pointers are converted to a composite type,
6666/// true otherwise.
6667static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6668                                           ExprResult &LHS, ExprResult &RHS) {
6669  // C++ [expr.rel]p2:
6670  //   [...] Pointer conversions (4.10) and qualification
6671  //   conversions (4.4) are performed on pointer operands (or on
6672  //   a pointer operand and a null pointer constant) to bring
6673  //   them to their composite pointer type. [...]
6674  //
6675  // C++ [expr.eq]p1 uses the same notion for (in)equality
6676  // comparisons of pointers.
6677
6678  // C++ [expr.eq]p2:
6679  //   In addition, pointers to members can be compared, or a pointer to
6680  //   member and a null pointer constant. Pointer to member conversions
6681  //   (4.11) and qualification conversions (4.4) are performed to bring
6682  //   them to a common type. If one operand is a null pointer constant,
6683  //   the common type is the type of the other operand. Otherwise, the
6684  //   common type is a pointer to member type similar (4.4) to the type
6685  //   of one of the operands, with a cv-qualification signature (4.4)
6686  //   that is the union of the cv-qualification signatures of the operand
6687  //   types.
6688
6689  QualType LHSType = LHS.get()->getType();
6690  QualType RHSType = RHS.get()->getType();
6691  assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6692         (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6693
6694  bool NonStandardCompositeType = false;
6695  bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6696  QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6697  if (T.isNull()) {
6698    diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6699    return true;
6700  }
6701
6702  if (NonStandardCompositeType)
6703    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6704      << LHSType << RHSType << T << LHS.get()->getSourceRange()
6705      << RHS.get()->getSourceRange();
6706
6707  LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6708  RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6709  return false;
6710}
6711
6712static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6713                                                    ExprResult &LHS,
6714                                                    ExprResult &RHS,
6715                                                    bool IsError) {
6716  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6717                      : diag::ext_typecheck_comparison_of_fptr_to_void)
6718    << LHS.get()->getType() << RHS.get()->getType()
6719    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6720}
6721
6722static bool isObjCObjectLiteral(ExprResult &E) {
6723  switch (E.get()->getStmtClass()) {
6724  case Stmt::ObjCArrayLiteralClass:
6725  case Stmt::ObjCDictionaryLiteralClass:
6726  case Stmt::ObjCStringLiteralClass:
6727  case Stmt::ObjCBoxedExprClass:
6728    return true;
6729  default:
6730    // Note that ObjCBoolLiteral is NOT an object literal!
6731    return false;
6732  }
6733}
6734
6735static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
6736  // Get the LHS object's interface type.
6737  QualType Type = LHS->getType();
6738  QualType InterfaceType;
6739  if (const ObjCObjectPointerType *PTy = Type->getAs<ObjCObjectPointerType>()) {
6740    InterfaceType = PTy->getPointeeType();
6741    if (const ObjCObjectType *iQFaceTy =
6742        InterfaceType->getAsObjCQualifiedInterfaceType())
6743      InterfaceType = iQFaceTy->getBaseType();
6744  } else {
6745    // If this is not actually an Objective-C object, bail out.
6746    return false;
6747  }
6748
6749  // If the RHS isn't an Objective-C object, bail out.
6750  if (!RHS->getType()->isObjCObjectPointerType())
6751    return false;
6752
6753  // Try to find the -isEqual: method.
6754  Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
6755  ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
6756                                                      InterfaceType,
6757                                                      /*instance=*/true);
6758  if (!Method) {
6759    if (Type->isObjCIdType()) {
6760      // For 'id', just check the global pool.
6761      Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
6762                                                  /*receiverId=*/true,
6763                                                  /*warn=*/false);
6764    } else {
6765      // Check protocols.
6766      Method = S.LookupMethodInQualifiedType(IsEqualSel,
6767                                             cast<ObjCObjectPointerType>(Type),
6768                                             /*instance=*/true);
6769    }
6770  }
6771
6772  if (!Method)
6773    return false;
6774
6775  QualType T = Method->param_begin()[0]->getType();
6776  if (!T->isObjCObjectPointerType())
6777    return false;
6778
6779  QualType R = Method->getResultType();
6780  if (!R->isScalarType())
6781    return false;
6782
6783  return true;
6784}
6785
6786static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
6787                                          ExprResult &LHS, ExprResult &RHS,
6788                                          BinaryOperator::Opcode Opc){
6789  Expr *Literal;
6790  Expr *Other;
6791  if (isObjCObjectLiteral(LHS)) {
6792    Literal = LHS.get();
6793    Other = RHS.get();
6794  } else {
6795    Literal = RHS.get();
6796    Other = LHS.get();
6797  }
6798
6799  // Don't warn on comparisons against nil.
6800  Other = Other->IgnoreParenCasts();
6801  if (Other->isNullPointerConstant(S.getASTContext(),
6802                                   Expr::NPC_ValueDependentIsNotNull))
6803    return;
6804
6805  // This should be kept in sync with warn_objc_literal_comparison.
6806  // LK_String should always be last, since it has its own warning flag.
6807  enum {
6808    LK_Array,
6809    LK_Dictionary,
6810    LK_Numeric,
6811    LK_Boxed,
6812    LK_String
6813  } LiteralKind;
6814
6815  switch (Literal->getStmtClass()) {
6816  case Stmt::ObjCStringLiteralClass:
6817    // "string literal"
6818    LiteralKind = LK_String;
6819    break;
6820  case Stmt::ObjCArrayLiteralClass:
6821    // "array literal"
6822    LiteralKind = LK_Array;
6823    break;
6824  case Stmt::ObjCDictionaryLiteralClass:
6825    // "dictionary literal"
6826    LiteralKind = LK_Dictionary;
6827    break;
6828  case Stmt::ObjCBoxedExprClass: {
6829    Expr *Inner = cast<ObjCBoxedExpr>(Literal)->getSubExpr();
6830    switch (Inner->getStmtClass()) {
6831    case Stmt::IntegerLiteralClass:
6832    case Stmt::FloatingLiteralClass:
6833    case Stmt::CharacterLiteralClass:
6834    case Stmt::ObjCBoolLiteralExprClass:
6835    case Stmt::CXXBoolLiteralExprClass:
6836      // "numeric literal"
6837      LiteralKind = LK_Numeric;
6838      break;
6839    case Stmt::ImplicitCastExprClass: {
6840      CastKind CK = cast<CastExpr>(Inner)->getCastKind();
6841      // Boolean literals can be represented by implicit casts.
6842      if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) {
6843        LiteralKind = LK_Numeric;
6844        break;
6845      }
6846      // FALLTHROUGH
6847    }
6848    default:
6849      // "boxed expression"
6850      LiteralKind = LK_Boxed;
6851      break;
6852    }
6853    break;
6854  }
6855  default:
6856    llvm_unreachable("Unknown Objective-C object literal kind");
6857  }
6858
6859  if (LiteralKind == LK_String)
6860    S.Diag(Loc, diag::warn_objc_string_literal_comparison)
6861      << Literal->getSourceRange();
6862  else
6863    S.Diag(Loc, diag::warn_objc_literal_comparison)
6864      << LiteralKind << Literal->getSourceRange();
6865
6866  if (BinaryOperator::isEqualityOp(Opc) &&
6867      hasIsEqualMethod(S, LHS.get(), RHS.get())) {
6868    SourceLocation Start = LHS.get()->getLocStart();
6869    SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
6870    SourceRange OpRange(Loc, S.PP.getLocForEndOfToken(Loc));
6871
6872    S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
6873      << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
6874      << FixItHint::CreateReplacement(OpRange, "isEqual:")
6875      << FixItHint::CreateInsertion(End, "]");
6876  }
6877}
6878
6879// C99 6.5.8, C++ [expr.rel]
6880QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
6881                                    SourceLocation Loc, unsigned OpaqueOpc,
6882                                    bool IsRelational) {
6883  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
6884
6885  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6886
6887  // Handle vector comparisons separately.
6888  if (LHS.get()->getType()->isVectorType() ||
6889      RHS.get()->getType()->isVectorType())
6890    return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
6891
6892  QualType LHSType = LHS.get()->getType();
6893  QualType RHSType = RHS.get()->getType();
6894
6895  Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
6896  Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
6897
6898  checkEnumComparison(*this, Loc, LHS, RHS);
6899
6900  if (!LHSType->hasFloatingRepresentation() &&
6901      !(LHSType->isBlockPointerType() && IsRelational) &&
6902      !LHS.get()->getLocStart().isMacroID() &&
6903      !RHS.get()->getLocStart().isMacroID()) {
6904    // For non-floating point types, check for self-comparisons of the form
6905    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6906    // often indicate logic errors in the program.
6907    //
6908    // NOTE: Don't warn about comparison expressions resulting from macro
6909    // expansion. Also don't warn about comparisons which are only self
6910    // comparisons within a template specialization. The warnings should catch
6911    // obvious cases in the definition of the template anyways. The idea is to
6912    // warn when the typed comparison operator will always evaluate to the same
6913    // result.
6914    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6915      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6916        if (DRL->getDecl() == DRR->getDecl() &&
6917            !IsWithinTemplateSpecialization(DRL->getDecl())) {
6918          DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6919                              << 0 // self-
6920                              << (Opc == BO_EQ
6921                                  || Opc == BO_LE
6922                                  || Opc == BO_GE));
6923        } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
6924                   !DRL->getDecl()->getType()->isReferenceType() &&
6925                   !DRR->getDecl()->getType()->isReferenceType()) {
6926            // what is it always going to eval to?
6927            char always_evals_to;
6928            switch(Opc) {
6929            case BO_EQ: // e.g. array1 == array2
6930              always_evals_to = 0; // false
6931              break;
6932            case BO_NE: // e.g. array1 != array2
6933              always_evals_to = 1; // true
6934              break;
6935            default:
6936              // best we can say is 'a constant'
6937              always_evals_to = 2; // e.g. array1 <= array2
6938              break;
6939            }
6940            DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6941                                << 1 // array
6942                                << always_evals_to);
6943        }
6944      }
6945    }
6946
6947    if (isa<CastExpr>(LHSStripped))
6948      LHSStripped = LHSStripped->IgnoreParenCasts();
6949    if (isa<CastExpr>(RHSStripped))
6950      RHSStripped = RHSStripped->IgnoreParenCasts();
6951
6952    // Warn about comparisons against a string constant (unless the other
6953    // operand is null), the user probably wants strcmp.
6954    Expr *literalString = 0;
6955    Expr *literalStringStripped = 0;
6956    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6957        !RHSStripped->isNullPointerConstant(Context,
6958                                            Expr::NPC_ValueDependentIsNull)) {
6959      literalString = LHS.get();
6960      literalStringStripped = LHSStripped;
6961    } else if ((isa<StringLiteral>(RHSStripped) ||
6962                isa<ObjCEncodeExpr>(RHSStripped)) &&
6963               !LHSStripped->isNullPointerConstant(Context,
6964                                            Expr::NPC_ValueDependentIsNull)) {
6965      literalString = RHS.get();
6966      literalStringStripped = RHSStripped;
6967    }
6968
6969    if (literalString) {
6970      std::string resultComparison;
6971      switch (Opc) {
6972      case BO_LT: resultComparison = ") < 0"; break;
6973      case BO_GT: resultComparison = ") > 0"; break;
6974      case BO_LE: resultComparison = ") <= 0"; break;
6975      case BO_GE: resultComparison = ") >= 0"; break;
6976      case BO_EQ: resultComparison = ") == 0"; break;
6977      case BO_NE: resultComparison = ") != 0"; break;
6978      default: llvm_unreachable("Invalid comparison operator");
6979      }
6980
6981      DiagRuntimeBehavior(Loc, 0,
6982        PDiag(diag::warn_stringcompare)
6983          << isa<ObjCEncodeExpr>(literalStringStripped)
6984          << literalString->getSourceRange());
6985    }
6986  }
6987
6988  // C99 6.5.8p3 / C99 6.5.9p4
6989  if (LHS.get()->getType()->isArithmeticType() &&
6990      RHS.get()->getType()->isArithmeticType()) {
6991    UsualArithmeticConversions(LHS, RHS);
6992    if (LHS.isInvalid() || RHS.isInvalid())
6993      return QualType();
6994  }
6995  else {
6996    LHS = UsualUnaryConversions(LHS.take());
6997    if (LHS.isInvalid())
6998      return QualType();
6999
7000    RHS = UsualUnaryConversions(RHS.take());
7001    if (RHS.isInvalid())
7002      return QualType();
7003  }
7004
7005  LHSType = LHS.get()->getType();
7006  RHSType = RHS.get()->getType();
7007
7008  // The result of comparisons is 'bool' in C++, 'int' in C.
7009  QualType ResultTy = Context.getLogicalOperationType();
7010
7011  if (IsRelational) {
7012    if (LHSType->isRealType() && RHSType->isRealType())
7013      return ResultTy;
7014  } else {
7015    // Check for comparisons of floating point operands using != and ==.
7016    if (LHSType->hasFloatingRepresentation())
7017      CheckFloatComparison(Loc, LHS.get(), RHS.get());
7018
7019    if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
7020      return ResultTy;
7021  }
7022
7023  bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
7024                                              Expr::NPC_ValueDependentIsNull);
7025  bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
7026                                              Expr::NPC_ValueDependentIsNull);
7027
7028  // All of the following pointer-related warnings are GCC extensions, except
7029  // when handling null pointer constants.
7030  if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
7031    QualType LCanPointeeTy =
7032      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7033    QualType RCanPointeeTy =
7034      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7035
7036    if (getLangOpts().CPlusPlus) {
7037      if (LCanPointeeTy == RCanPointeeTy)
7038        return ResultTy;
7039      if (!IsRelational &&
7040          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7041        // Valid unless comparison between non-null pointer and function pointer
7042        // This is a gcc extension compatibility comparison.
7043        // In a SFINAE context, we treat this as a hard error to maintain
7044        // conformance with the C++ standard.
7045        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7046            && !LHSIsNull && !RHSIsNull) {
7047          diagnoseFunctionPointerToVoidComparison(
7048              *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
7049
7050          if (isSFINAEContext())
7051            return QualType();
7052
7053          RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7054          return ResultTy;
7055        }
7056      }
7057
7058      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7059        return QualType();
7060      else
7061        return ResultTy;
7062    }
7063    // C99 6.5.9p2 and C99 6.5.8p2
7064    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7065                                   RCanPointeeTy.getUnqualifiedType())) {
7066      // Valid unless a relational comparison of function pointers
7067      if (IsRelational && LCanPointeeTy->isFunctionType()) {
7068        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7069          << LHSType << RHSType << LHS.get()->getSourceRange()
7070          << RHS.get()->getSourceRange();
7071      }
7072    } else if (!IsRelational &&
7073               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7074      // Valid unless comparison between non-null pointer and function pointer
7075      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7076          && !LHSIsNull && !RHSIsNull)
7077        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
7078                                                /*isError*/false);
7079    } else {
7080      // Invalid
7081      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
7082    }
7083    if (LCanPointeeTy != RCanPointeeTy) {
7084      if (LHSIsNull && !RHSIsNull)
7085        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7086      else
7087        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7088    }
7089    return ResultTy;
7090  }
7091
7092  if (getLangOpts().CPlusPlus) {
7093    // Comparison of nullptr_t with itself.
7094    if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
7095      return ResultTy;
7096
7097    // Comparison of pointers with null pointer constants and equality
7098    // comparisons of member pointers to null pointer constants.
7099    if (RHSIsNull &&
7100        ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
7101         (!IsRelational &&
7102          (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
7103      RHS = ImpCastExprToType(RHS.take(), LHSType,
7104                        LHSType->isMemberPointerType()
7105                          ? CK_NullToMemberPointer
7106                          : CK_NullToPointer);
7107      return ResultTy;
7108    }
7109    if (LHSIsNull &&
7110        ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
7111         (!IsRelational &&
7112          (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
7113      LHS = ImpCastExprToType(LHS.take(), RHSType,
7114                        RHSType->isMemberPointerType()
7115                          ? CK_NullToMemberPointer
7116                          : CK_NullToPointer);
7117      return ResultTy;
7118    }
7119
7120    // Comparison of member pointers.
7121    if (!IsRelational &&
7122        LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
7123      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7124        return QualType();
7125      else
7126        return ResultTy;
7127    }
7128
7129    // Handle scoped enumeration types specifically, since they don't promote
7130    // to integers.
7131    if (LHS.get()->getType()->isEnumeralType() &&
7132        Context.hasSameUnqualifiedType(LHS.get()->getType(),
7133                                       RHS.get()->getType()))
7134      return ResultTy;
7135  }
7136
7137  // Handle block pointer types.
7138  if (!IsRelational && LHSType->isBlockPointerType() &&
7139      RHSType->isBlockPointerType()) {
7140    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
7141    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
7142
7143    if (!LHSIsNull && !RHSIsNull &&
7144        !Context.typesAreCompatible(lpointee, rpointee)) {
7145      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7146        << LHSType << RHSType << LHS.get()->getSourceRange()
7147        << RHS.get()->getSourceRange();
7148    }
7149    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7150    return ResultTy;
7151  }
7152
7153  // Allow block pointers to be compared with null pointer constants.
7154  if (!IsRelational
7155      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
7156          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
7157    if (!LHSIsNull && !RHSIsNull) {
7158      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
7159             ->getPointeeType()->isVoidType())
7160            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
7161                ->getPointeeType()->isVoidType())))
7162        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7163          << LHSType << RHSType << LHS.get()->getSourceRange()
7164          << RHS.get()->getSourceRange();
7165    }
7166    if (LHSIsNull && !RHSIsNull)
7167      LHS = ImpCastExprToType(LHS.take(), RHSType,
7168                              RHSType->isPointerType() ? CK_BitCast
7169                                : CK_AnyPointerToBlockPointerCast);
7170    else
7171      RHS = ImpCastExprToType(RHS.take(), LHSType,
7172                              LHSType->isPointerType() ? CK_BitCast
7173                                : CK_AnyPointerToBlockPointerCast);
7174    return ResultTy;
7175  }
7176
7177  if (LHSType->isObjCObjectPointerType() ||
7178      RHSType->isObjCObjectPointerType()) {
7179    const PointerType *LPT = LHSType->getAs<PointerType>();
7180    const PointerType *RPT = RHSType->getAs<PointerType>();
7181    if (LPT || RPT) {
7182      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7183      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7184
7185      if (!LPtrToVoid && !RPtrToVoid &&
7186          !Context.typesAreCompatible(LHSType, RHSType)) {
7187        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7188                                          /*isError*/false);
7189      }
7190      if (LHSIsNull && !RHSIsNull)
7191        LHS = ImpCastExprToType(LHS.take(), RHSType,
7192                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7193      else
7194        RHS = ImpCastExprToType(RHS.take(), LHSType,
7195                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7196      return ResultTy;
7197    }
7198    if (LHSType->isObjCObjectPointerType() &&
7199        RHSType->isObjCObjectPointerType()) {
7200      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
7201        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7202                                          /*isError*/false);
7203      if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
7204        diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
7205
7206      if (LHSIsNull && !RHSIsNull)
7207        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7208      else
7209        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7210      return ResultTy;
7211    }
7212  }
7213  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
7214      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
7215    unsigned DiagID = 0;
7216    bool isError = false;
7217    if ((LHSIsNull && LHSType->isIntegerType()) ||
7218        (RHSIsNull && RHSType->isIntegerType())) {
7219      if (IsRelational && !getLangOpts().CPlusPlus)
7220        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7221    } else if (IsRelational && !getLangOpts().CPlusPlus)
7222      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7223    else if (getLangOpts().CPlusPlus) {
7224      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7225      isError = true;
7226    } else
7227      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7228
7229    if (DiagID) {
7230      Diag(Loc, DiagID)
7231        << LHSType << RHSType << LHS.get()->getSourceRange()
7232        << RHS.get()->getSourceRange();
7233      if (isError)
7234        return QualType();
7235    }
7236
7237    if (LHSType->isIntegerType())
7238      LHS = ImpCastExprToType(LHS.take(), RHSType,
7239                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7240    else
7241      RHS = ImpCastExprToType(RHS.take(), LHSType,
7242                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7243    return ResultTy;
7244  }
7245
7246  // Handle block pointers.
7247  if (!IsRelational && RHSIsNull
7248      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
7249    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
7250    return ResultTy;
7251  }
7252  if (!IsRelational && LHSIsNull
7253      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
7254    LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
7255    return ResultTy;
7256  }
7257
7258  return InvalidOperands(Loc, LHS, RHS);
7259}
7260
7261
7262// Return a signed type that is of identical size and number of elements.
7263// For floating point vectors, return an integer type of identical size
7264// and number of elements.
7265QualType Sema::GetSignedVectorType(QualType V) {
7266  const VectorType *VTy = V->getAs<VectorType>();
7267  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
7268  if (TypeSize == Context.getTypeSize(Context.CharTy))
7269    return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
7270  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
7271    return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
7272  else if (TypeSize == Context.getTypeSize(Context.IntTy))
7273    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
7274  else if (TypeSize == Context.getTypeSize(Context.LongTy))
7275    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
7276  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
7277         "Unhandled vector element size in vector compare");
7278  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
7279}
7280
7281/// CheckVectorCompareOperands - vector comparisons are a clang extension that
7282/// operates on extended vector types.  Instead of producing an IntTy result,
7283/// like a scalar comparison, a vector comparison produces a vector of integer
7284/// types.
7285QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
7286                                          SourceLocation Loc,
7287                                          bool IsRelational) {
7288  // Check to make sure we're operating on vectors of the same type and width,
7289  // Allowing one side to be a scalar of element type.
7290  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
7291  if (vType.isNull())
7292    return vType;
7293
7294  QualType LHSType = LHS.get()->getType();
7295
7296  // If AltiVec, the comparison results in a numeric type, i.e.
7297  // bool for C++, int for C
7298  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
7299    return Context.getLogicalOperationType();
7300
7301  // For non-floating point types, check for self-comparisons of the form
7302  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7303  // often indicate logic errors in the program.
7304  if (!LHSType->hasFloatingRepresentation()) {
7305    if (DeclRefExpr* DRL
7306          = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
7307      if (DeclRefExpr* DRR
7308            = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
7309        if (DRL->getDecl() == DRR->getDecl())
7310          DiagRuntimeBehavior(Loc, 0,
7311                              PDiag(diag::warn_comparison_always)
7312                                << 0 // self-
7313                                << 2 // "a constant"
7314                              );
7315  }
7316
7317  // Check for comparisons of floating point operands using != and ==.
7318  if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7319    assert (RHS.get()->getType()->hasFloatingRepresentation());
7320    CheckFloatComparison(Loc, LHS.get(), RHS.get());
7321  }
7322
7323  // Return a signed type for the vector.
7324  return GetSignedVectorType(LHSType);
7325}
7326
7327QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7328                                          SourceLocation Loc) {
7329  // Ensure that either both operands are of the same vector type, or
7330  // one operand is of a vector type and the other is of its element type.
7331  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7332  if (vType.isNull() || vType->isFloatingType())
7333    return InvalidOperands(Loc, LHS, RHS);
7334
7335  return GetSignedVectorType(LHS.get()->getType());
7336}
7337
7338inline QualType Sema::CheckBitwiseOperands(
7339  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7340  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7341
7342  if (LHS.get()->getType()->isVectorType() ||
7343      RHS.get()->getType()->isVectorType()) {
7344    if (LHS.get()->getType()->hasIntegerRepresentation() &&
7345        RHS.get()->getType()->hasIntegerRepresentation())
7346      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7347
7348    return InvalidOperands(Loc, LHS, RHS);
7349  }
7350
7351  ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7352  QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7353                                                 IsCompAssign);
7354  if (LHSResult.isInvalid() || RHSResult.isInvalid())
7355    return QualType();
7356  LHS = LHSResult.take();
7357  RHS = RHSResult.take();
7358
7359  if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
7360    return compType;
7361  return InvalidOperands(Loc, LHS, RHS);
7362}
7363
7364inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7365  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7366
7367  // Check vector operands differently.
7368  if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7369    return CheckVectorLogicalOperands(LHS, RHS, Loc);
7370
7371  // Diagnose cases where the user write a logical and/or but probably meant a
7372  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
7373  // is a constant.
7374  if (LHS.get()->getType()->isIntegerType() &&
7375      !LHS.get()->getType()->isBooleanType() &&
7376      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7377      // Don't warn in macros or template instantiations.
7378      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7379    // If the RHS can be constant folded, and if it constant folds to something
7380    // that isn't 0 or 1 (which indicate a potential logical operation that
7381    // happened to fold to true/false) then warn.
7382    // Parens on the RHS are ignored.
7383    llvm::APSInt Result;
7384    if (RHS.get()->EvaluateAsInt(Result, Context))
7385      if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7386          (Result != 0 && Result != 1)) {
7387        Diag(Loc, diag::warn_logical_instead_of_bitwise)
7388          << RHS.get()->getSourceRange()
7389          << (Opc == BO_LAnd ? "&&" : "||");
7390        // Suggest replacing the logical operator with the bitwise version
7391        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7392            << (Opc == BO_LAnd ? "&" : "|")
7393            << FixItHint::CreateReplacement(SourceRange(
7394                Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7395                                                getLangOpts())),
7396                                            Opc == BO_LAnd ? "&" : "|");
7397        if (Opc == BO_LAnd)
7398          // Suggest replacing "Foo() && kNonZero" with "Foo()"
7399          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7400              << FixItHint::CreateRemoval(
7401                  SourceRange(
7402                      Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7403                                                 0, getSourceManager(),
7404                                                 getLangOpts()),
7405                      RHS.get()->getLocEnd()));
7406      }
7407  }
7408
7409  if (!Context.getLangOpts().CPlusPlus) {
7410    LHS = UsualUnaryConversions(LHS.take());
7411    if (LHS.isInvalid())
7412      return QualType();
7413
7414    RHS = UsualUnaryConversions(RHS.take());
7415    if (RHS.isInvalid())
7416      return QualType();
7417
7418    if (!LHS.get()->getType()->isScalarType() ||
7419        !RHS.get()->getType()->isScalarType())
7420      return InvalidOperands(Loc, LHS, RHS);
7421
7422    return Context.IntTy;
7423  }
7424
7425  // The following is safe because we only use this method for
7426  // non-overloadable operands.
7427
7428  // C++ [expr.log.and]p1
7429  // C++ [expr.log.or]p1
7430  // The operands are both contextually converted to type bool.
7431  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7432  if (LHSRes.isInvalid())
7433    return InvalidOperands(Loc, LHS, RHS);
7434  LHS = LHSRes;
7435
7436  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7437  if (RHSRes.isInvalid())
7438    return InvalidOperands(Loc, LHS, RHS);
7439  RHS = RHSRes;
7440
7441  // C++ [expr.log.and]p2
7442  // C++ [expr.log.or]p2
7443  // The result is a bool.
7444  return Context.BoolTy;
7445}
7446
7447/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7448/// is a read-only property; return true if so. A readonly property expression
7449/// depends on various declarations and thus must be treated specially.
7450///
7451static bool IsReadonlyProperty(Expr *E, Sema &S) {
7452  const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7453  if (!PropExpr) return false;
7454  if (PropExpr->isImplicitProperty()) return false;
7455
7456  ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7457  QualType BaseType = PropExpr->isSuperReceiver() ?
7458                            PropExpr->getSuperReceiverType() :
7459                            PropExpr->getBase()->getType();
7460
7461  if (const ObjCObjectPointerType *OPT =
7462      BaseType->getAsObjCInterfacePointerType())
7463    if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7464      if (S.isPropertyReadonly(PDecl, IFace))
7465        return true;
7466  return false;
7467}
7468
7469static bool IsReadonlyMessage(Expr *E, Sema &S) {
7470  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7471  if (!ME) return false;
7472  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7473  ObjCMessageExpr *Base =
7474    dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7475  if (!Base) return false;
7476  return Base->getMethodDecl() != 0;
7477}
7478
7479/// Is the given expression (which must be 'const') a reference to a
7480/// variable which was originally non-const, but which has become
7481/// 'const' due to being captured within a block?
7482enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
7483static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7484  assert(E->isLValue() && E->getType().isConstQualified());
7485  E = E->IgnoreParens();
7486
7487  // Must be a reference to a declaration from an enclosing scope.
7488  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7489  if (!DRE) return NCCK_None;
7490  if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7491
7492  // The declaration must be a variable which is not declared 'const'.
7493  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7494  if (!var) return NCCK_None;
7495  if (var->getType().isConstQualified()) return NCCK_None;
7496  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7497
7498  // Decide whether the first capture was for a block or a lambda.
7499  DeclContext *DC = S.CurContext;
7500  while (DC->getParent() != var->getDeclContext())
7501    DC = DC->getParent();
7502  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7503}
7504
7505/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
7506/// emit an error and return true.  If so, return false.
7507static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7508  assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
7509  SourceLocation OrigLoc = Loc;
7510  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7511                                                              &Loc);
7512  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7513    IsLV = Expr::MLV_ReadonlyProperty;
7514  else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7515    IsLV = Expr::MLV_InvalidMessageExpression;
7516  if (IsLV == Expr::MLV_Valid)
7517    return false;
7518
7519  unsigned Diag = 0;
7520  bool NeedType = false;
7521  switch (IsLV) { // C99 6.5.16p2
7522  case Expr::MLV_ConstQualified:
7523    Diag = diag::err_typecheck_assign_const;
7524
7525    // Use a specialized diagnostic when we're assigning to an object
7526    // from an enclosing function or block.
7527    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7528      if (NCCK == NCCK_Block)
7529        Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7530      else
7531        Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7532      break;
7533    }
7534
7535    // In ARC, use some specialized diagnostics for occasions where we
7536    // infer 'const'.  These are always pseudo-strong variables.
7537    if (S.getLangOpts().ObjCAutoRefCount) {
7538      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7539      if (declRef && isa<VarDecl>(declRef->getDecl())) {
7540        VarDecl *var = cast<VarDecl>(declRef->getDecl());
7541
7542        // Use the normal diagnostic if it's pseudo-__strong but the
7543        // user actually wrote 'const'.
7544        if (var->isARCPseudoStrong() &&
7545            (!var->getTypeSourceInfo() ||
7546             !var->getTypeSourceInfo()->getType().isConstQualified())) {
7547          // There are two pseudo-strong cases:
7548          //  - self
7549          ObjCMethodDecl *method = S.getCurMethodDecl();
7550          if (method && var == method->getSelfDecl())
7551            Diag = method->isClassMethod()
7552              ? diag::err_typecheck_arc_assign_self_class_method
7553              : diag::err_typecheck_arc_assign_self;
7554
7555          //  - fast enumeration variables
7556          else
7557            Diag = diag::err_typecheck_arr_assign_enumeration;
7558
7559          SourceRange Assign;
7560          if (Loc != OrigLoc)
7561            Assign = SourceRange(OrigLoc, OrigLoc);
7562          S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7563          // We need to preserve the AST regardless, so migration tool
7564          // can do its job.
7565          return false;
7566        }
7567      }
7568    }
7569
7570    break;
7571  case Expr::MLV_ArrayType:
7572  case Expr::MLV_ArrayTemporary:
7573    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7574    NeedType = true;
7575    break;
7576  case Expr::MLV_NotObjectType:
7577    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7578    NeedType = true;
7579    break;
7580  case Expr::MLV_LValueCast:
7581    Diag = diag::err_typecheck_lvalue_casts_not_supported;
7582    break;
7583  case Expr::MLV_Valid:
7584    llvm_unreachable("did not take early return for MLV_Valid");
7585  case Expr::MLV_InvalidExpression:
7586  case Expr::MLV_MemberFunction:
7587  case Expr::MLV_ClassTemporary:
7588    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7589    break;
7590  case Expr::MLV_IncompleteType:
7591  case Expr::MLV_IncompleteVoidType:
7592    return S.RequireCompleteType(Loc, E->getType(),
7593             diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
7594  case Expr::MLV_DuplicateVectorComponents:
7595    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7596    break;
7597  case Expr::MLV_ReadonlyProperty:
7598  case Expr::MLV_NoSetterProperty:
7599    llvm_unreachable("readonly properties should be processed differently");
7600  case Expr::MLV_InvalidMessageExpression:
7601    Diag = diag::error_readonly_message_assignment;
7602    break;
7603  case Expr::MLV_SubObjCPropertySetting:
7604    Diag = diag::error_no_subobject_property_setting;
7605    break;
7606  }
7607
7608  SourceRange Assign;
7609  if (Loc != OrigLoc)
7610    Assign = SourceRange(OrigLoc, OrigLoc);
7611  if (NeedType)
7612    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7613  else
7614    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7615  return true;
7616}
7617
7618static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
7619                                         SourceLocation Loc,
7620                                         Sema &Sema) {
7621  // C / C++ fields
7622  MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
7623  MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
7624  if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
7625    if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
7626      Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
7627  }
7628
7629  // Objective-C instance variables
7630  ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
7631  ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
7632  if (OL && OR && OL->getDecl() == OR->getDecl()) {
7633    DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
7634    DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
7635    if (RL && RR && RL->getDecl() == RR->getDecl())
7636      Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
7637  }
7638}
7639
7640// C99 6.5.16.1
7641QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7642                                       SourceLocation Loc,
7643                                       QualType CompoundType) {
7644  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7645
7646  // Verify that LHS is a modifiable lvalue, and emit error if not.
7647  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7648    return QualType();
7649
7650  QualType LHSType = LHSExpr->getType();
7651  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7652                                             CompoundType;
7653  AssignConvertType ConvTy;
7654  if (CompoundType.isNull()) {
7655    Expr *RHSCheck = RHS.get();
7656
7657    CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
7658
7659    QualType LHSTy(LHSType);
7660    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7661    if (RHS.isInvalid())
7662      return QualType();
7663    // Special case of NSObject attributes on c-style pointer types.
7664    if (ConvTy == IncompatiblePointer &&
7665        ((Context.isObjCNSObjectType(LHSType) &&
7666          RHSType->isObjCObjectPointerType()) ||
7667         (Context.isObjCNSObjectType(RHSType) &&
7668          LHSType->isObjCObjectPointerType())))
7669      ConvTy = Compatible;
7670
7671    if (ConvTy == Compatible &&
7672        LHSType->isObjCObjectType())
7673        Diag(Loc, diag::err_objc_object_assignment)
7674          << LHSType;
7675
7676    // If the RHS is a unary plus or minus, check to see if they = and + are
7677    // right next to each other.  If so, the user may have typo'd "x =+ 4"
7678    // instead of "x += 4".
7679    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7680      RHSCheck = ICE->getSubExpr();
7681    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7682      if ((UO->getOpcode() == UO_Plus ||
7683           UO->getOpcode() == UO_Minus) &&
7684          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7685          // Only if the two operators are exactly adjacent.
7686          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7687          // And there is a space or other character before the subexpr of the
7688          // unary +/-.  We don't want to warn on "x=-1".
7689          Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7690          UO->getSubExpr()->getLocStart().isFileID()) {
7691        Diag(Loc, diag::warn_not_compound_assign)
7692          << (UO->getOpcode() == UO_Plus ? "+" : "-")
7693          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7694      }
7695    }
7696
7697    if (ConvTy == Compatible) {
7698      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
7699        checkRetainCycles(LHSExpr, RHS.get());
7700      else if (getLangOpts().ObjCAutoRefCount)
7701        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7702    }
7703  } else {
7704    // Compound assignment "x += y"
7705    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7706  }
7707
7708  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7709                               RHS.get(), AA_Assigning))
7710    return QualType();
7711
7712  CheckForNullPointerDereference(*this, LHSExpr);
7713
7714  // C99 6.5.16p3: The type of an assignment expression is the type of the
7715  // left operand unless the left operand has qualified type, in which case
7716  // it is the unqualified version of the type of the left operand.
7717  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7718  // is converted to the type of the assignment expression (above).
7719  // C++ 5.17p1: the type of the assignment expression is that of its left
7720  // operand.
7721  return (getLangOpts().CPlusPlus
7722          ? LHSType : LHSType.getUnqualifiedType());
7723}
7724
7725// C99 6.5.17
7726static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7727                                   SourceLocation Loc) {
7728  LHS = S.CheckPlaceholderExpr(LHS.take());
7729  RHS = S.CheckPlaceholderExpr(RHS.take());
7730  if (LHS.isInvalid() || RHS.isInvalid())
7731    return QualType();
7732
7733  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7734  // operands, but not unary promotions.
7735  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7736
7737  // So we treat the LHS as a ignored value, and in C++ we allow the
7738  // containing site to determine what should be done with the RHS.
7739  LHS = S.IgnoredValueConversions(LHS.take());
7740  if (LHS.isInvalid())
7741    return QualType();
7742
7743  S.DiagnoseUnusedExprResult(LHS.get());
7744
7745  if (!S.getLangOpts().CPlusPlus) {
7746    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7747    if (RHS.isInvalid())
7748      return QualType();
7749    if (!RHS.get()->getType()->isVoidType())
7750      S.RequireCompleteType(Loc, RHS.get()->getType(),
7751                            diag::err_incomplete_type);
7752  }
7753
7754  return RHS.get()->getType();
7755}
7756
7757/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7758/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
7759static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7760                                               ExprValueKind &VK,
7761                                               SourceLocation OpLoc,
7762                                               bool IsInc, bool IsPrefix) {
7763  if (Op->isTypeDependent())
7764    return S.Context.DependentTy;
7765
7766  QualType ResType = Op->getType();
7767  // Atomic types can be used for increment / decrement where the non-atomic
7768  // versions can, so ignore the _Atomic() specifier for the purpose of
7769  // checking.
7770  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7771    ResType = ResAtomicType->getValueType();
7772
7773  assert(!ResType.isNull() && "no type for increment/decrement expression");
7774
7775  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
7776    // Decrement of bool is not allowed.
7777    if (!IsInc) {
7778      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7779      return QualType();
7780    }
7781    // Increment of bool sets it to true, but is deprecated.
7782    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7783  } else if (ResType->isRealType()) {
7784    // OK!
7785  } else if (ResType->isPointerType()) {
7786    // C99 6.5.2.4p2, 6.5.6p2
7787    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7788      return QualType();
7789  } else if (ResType->isObjCObjectPointerType()) {
7790    // On modern runtimes, ObjC pointer arithmetic is forbidden.
7791    // Otherwise, we just need a complete type.
7792    if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
7793        checkArithmeticOnObjCPointer(S, OpLoc, Op))
7794      return QualType();
7795  } else if (ResType->isAnyComplexType()) {
7796    // C99 does not support ++/-- on complex types, we allow as an extension.
7797    S.Diag(OpLoc, diag::ext_integer_increment_complex)
7798      << ResType << Op->getSourceRange();
7799  } else if (ResType->isPlaceholderType()) {
7800    ExprResult PR = S.CheckPlaceholderExpr(Op);
7801    if (PR.isInvalid()) return QualType();
7802    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7803                                          IsInc, IsPrefix);
7804  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
7805    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7806  } else {
7807    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7808      << ResType << int(IsInc) << Op->getSourceRange();
7809    return QualType();
7810  }
7811  // At this point, we know we have a real, complex or pointer type.
7812  // Now make sure the operand is a modifiable lvalue.
7813  if (CheckForModifiableLvalue(Op, OpLoc, S))
7814    return QualType();
7815  // In C++, a prefix increment is the same type as the operand. Otherwise
7816  // (in C or with postfix), the increment is the unqualified type of the
7817  // operand.
7818  if (IsPrefix && S.getLangOpts().CPlusPlus) {
7819    VK = VK_LValue;
7820    return ResType;
7821  } else {
7822    VK = VK_RValue;
7823    return ResType.getUnqualifiedType();
7824  }
7825}
7826
7827
7828/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7829/// This routine allows us to typecheck complex/recursive expressions
7830/// where the declaration is needed for type checking. We only need to
7831/// handle cases when the expression references a function designator
7832/// or is an lvalue. Here are some examples:
7833///  - &(x) => x
7834///  - &*****f => f for f a function designator.
7835///  - &s.xx => s
7836///  - &s.zz[1].yy -> s, if zz is an array
7837///  - *(x + 1) -> x, if x is an array
7838///  - &"123"[2] -> 0
7839///  - & __real__ x -> x
7840static ValueDecl *getPrimaryDecl(Expr *E) {
7841  switch (E->getStmtClass()) {
7842  case Stmt::DeclRefExprClass:
7843    return cast<DeclRefExpr>(E)->getDecl();
7844  case Stmt::MemberExprClass:
7845    // If this is an arrow operator, the address is an offset from
7846    // the base's value, so the object the base refers to is
7847    // irrelevant.
7848    if (cast<MemberExpr>(E)->isArrow())
7849      return 0;
7850    // Otherwise, the expression refers to a part of the base
7851    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7852  case Stmt::ArraySubscriptExprClass: {
7853    // FIXME: This code shouldn't be necessary!  We should catch the implicit
7854    // promotion of register arrays earlier.
7855    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7856    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7857      if (ICE->getSubExpr()->getType()->isArrayType())
7858        return getPrimaryDecl(ICE->getSubExpr());
7859    }
7860    return 0;
7861  }
7862  case Stmt::UnaryOperatorClass: {
7863    UnaryOperator *UO = cast<UnaryOperator>(E);
7864
7865    switch(UO->getOpcode()) {
7866    case UO_Real:
7867    case UO_Imag:
7868    case UO_Extension:
7869      return getPrimaryDecl(UO->getSubExpr());
7870    default:
7871      return 0;
7872    }
7873  }
7874  case Stmt::ParenExprClass:
7875    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7876  case Stmt::ImplicitCastExprClass:
7877    // If the result of an implicit cast is an l-value, we care about
7878    // the sub-expression; otherwise, the result here doesn't matter.
7879    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7880  default:
7881    return 0;
7882  }
7883}
7884
7885namespace {
7886  enum {
7887    AO_Bit_Field = 0,
7888    AO_Vector_Element = 1,
7889    AO_Property_Expansion = 2,
7890    AO_Register_Variable = 3,
7891    AO_No_Error = 4
7892  };
7893}
7894/// \brief Diagnose invalid operand for address of operations.
7895///
7896/// \param Type The type of operand which cannot have its address taken.
7897static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
7898                                         Expr *E, unsigned Type) {
7899  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
7900}
7901
7902/// CheckAddressOfOperand - The operand of & must be either a function
7903/// designator or an lvalue designating an object. If it is an lvalue, the
7904/// object cannot be declared with storage class register or be a bit field.
7905/// Note: The usual conversions are *not* applied to the operand of the &
7906/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7907/// In C++, the operand might be an overloaded function name, in which case
7908/// we allow the '&' but retain the overloaded-function type.
7909static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
7910                                      SourceLocation OpLoc) {
7911  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
7912    if (PTy->getKind() == BuiltinType::Overload) {
7913      if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
7914        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7915          << OrigOp.get()->getSourceRange();
7916        return QualType();
7917      }
7918
7919      return S.Context.OverloadTy;
7920    }
7921
7922    if (PTy->getKind() == BuiltinType::UnknownAny)
7923      return S.Context.UnknownAnyTy;
7924
7925    if (PTy->getKind() == BuiltinType::BoundMember) {
7926      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7927        << OrigOp.get()->getSourceRange();
7928      return QualType();
7929    }
7930
7931    OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
7932    if (OrigOp.isInvalid()) return QualType();
7933  }
7934
7935  if (OrigOp.get()->isTypeDependent())
7936    return S.Context.DependentTy;
7937
7938  assert(!OrigOp.get()->getType()->isPlaceholderType());
7939
7940  // Make sure to ignore parentheses in subsequent checks
7941  Expr *op = OrigOp.get()->IgnoreParens();
7942
7943  if (S.getLangOpts().C99) {
7944    // Implement C99-only parts of addressof rules.
7945    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7946      if (uOp->getOpcode() == UO_Deref)
7947        // Per C99 6.5.3.2, the address of a deref always returns a valid result
7948        // (assuming the deref expression is valid).
7949        return uOp->getSubExpr()->getType();
7950    }
7951    // Technically, there should be a check for array subscript
7952    // expressions here, but the result of one is always an lvalue anyway.
7953  }
7954  ValueDecl *dcl = getPrimaryDecl(op);
7955  Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7956  unsigned AddressOfError = AO_No_Error;
7957
7958  if (lval == Expr::LV_ClassTemporary) {
7959    bool sfinae = S.isSFINAEContext();
7960    S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7961                         : diag::ext_typecheck_addrof_class_temporary)
7962      << op->getType() << op->getSourceRange();
7963    if (sfinae)
7964      return QualType();
7965  } else if (isa<ObjCSelectorExpr>(op)) {
7966    return S.Context.getPointerType(op->getType());
7967  } else if (lval == Expr::LV_MemberFunction) {
7968    // If it's an instance method, make a member pointer.
7969    // The expression must have exactly the form &A::foo.
7970
7971    // If the underlying expression isn't a decl ref, give up.
7972    if (!isa<DeclRefExpr>(op)) {
7973      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7974        << OrigOp.get()->getSourceRange();
7975      return QualType();
7976    }
7977    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7978    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7979
7980    // The id-expression was parenthesized.
7981    if (OrigOp.get() != DRE) {
7982      S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7983        << OrigOp.get()->getSourceRange();
7984
7985    // The method was named without a qualifier.
7986    } else if (!DRE->getQualifier()) {
7987      S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7988        << op->getSourceRange();
7989    }
7990
7991    return S.Context.getMemberPointerType(op->getType(),
7992              S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7993  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7994    // C99 6.5.3.2p1
7995    // The operand must be either an l-value or a function designator
7996    if (!op->getType()->isFunctionType()) {
7997      // Use a special diagnostic for loads from property references.
7998      if (isa<PseudoObjectExpr>(op)) {
7999        AddressOfError = AO_Property_Expansion;
8000      } else {
8001        // FIXME: emit more specific diag...
8002        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
8003          << op->getSourceRange();
8004        return QualType();
8005      }
8006    }
8007  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
8008    // The operand cannot be a bit-field
8009    AddressOfError = AO_Bit_Field;
8010  } else if (op->getObjectKind() == OK_VectorComponent) {
8011    // The operand cannot be an element of a vector
8012    AddressOfError = AO_Vector_Element;
8013  } else if (dcl) { // C99 6.5.3.2p1
8014    // We have an lvalue with a decl. Make sure the decl is not declared
8015    // with the register storage-class specifier.
8016    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
8017      // in C++ it is not error to take address of a register
8018      // variable (c++03 7.1.1P3)
8019      if (vd->getStorageClass() == SC_Register &&
8020          !S.getLangOpts().CPlusPlus) {
8021        AddressOfError = AO_Register_Variable;
8022      }
8023    } else if (isa<FunctionTemplateDecl>(dcl)) {
8024      return S.Context.OverloadTy;
8025    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
8026      // Okay: we can take the address of a field.
8027      // Could be a pointer to member, though, if there is an explicit
8028      // scope qualifier for the class.
8029      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
8030        DeclContext *Ctx = dcl->getDeclContext();
8031        if (Ctx && Ctx->isRecord()) {
8032          if (dcl->getType()->isReferenceType()) {
8033            S.Diag(OpLoc,
8034                   diag::err_cannot_form_pointer_to_member_of_reference_type)
8035              << dcl->getDeclName() << dcl->getType();
8036            return QualType();
8037          }
8038
8039          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8040            Ctx = Ctx->getParent();
8041          return S.Context.getMemberPointerType(op->getType(),
8042                S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8043        }
8044      }
8045    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
8046      llvm_unreachable("Unknown/unexpected decl type");
8047  }
8048
8049  if (AddressOfError != AO_No_Error) {
8050    diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
8051    return QualType();
8052  }
8053
8054  if (lval == Expr::LV_IncompleteVoidType) {
8055    // Taking the address of a void variable is technically illegal, but we
8056    // allow it in cases which are otherwise valid.
8057    // Example: "extern void x; void* y = &x;".
8058    S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8059  }
8060
8061  // If the operand has type "type", the result has type "pointer to type".
8062  if (op->getType()->isObjCObjectType())
8063    return S.Context.getObjCObjectPointerType(op->getType());
8064  return S.Context.getPointerType(op->getType());
8065}
8066
8067/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
8068static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8069                                        SourceLocation OpLoc) {
8070  if (Op->isTypeDependent())
8071    return S.Context.DependentTy;
8072
8073  ExprResult ConvResult = S.UsualUnaryConversions(Op);
8074  if (ConvResult.isInvalid())
8075    return QualType();
8076  Op = ConvResult.take();
8077  QualType OpTy = Op->getType();
8078  QualType Result;
8079
8080  if (isa<CXXReinterpretCastExpr>(Op)) {
8081    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8082    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8083                                     Op->getSourceRange());
8084  }
8085
8086  // Note that per both C89 and C99, indirection is always legal, even if OpTy
8087  // is an incomplete type or void.  It would be possible to warn about
8088  // dereferencing a void pointer, but it's completely well-defined, and such a
8089  // warning is unlikely to catch any mistakes.
8090  if (const PointerType *PT = OpTy->getAs<PointerType>())
8091    Result = PT->getPointeeType();
8092  else if (const ObjCObjectPointerType *OPT =
8093             OpTy->getAs<ObjCObjectPointerType>())
8094    Result = OPT->getPointeeType();
8095  else {
8096    ExprResult PR = S.CheckPlaceholderExpr(Op);
8097    if (PR.isInvalid()) return QualType();
8098    if (PR.take() != Op)
8099      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8100  }
8101
8102  if (Result.isNull()) {
8103    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8104      << OpTy << Op->getSourceRange();
8105    return QualType();
8106  }
8107
8108  // Dereferences are usually l-values...
8109  VK = VK_LValue;
8110
8111  // ...except that certain expressions are never l-values in C.
8112  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
8113    VK = VK_RValue;
8114
8115  return Result;
8116}
8117
8118static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8119  tok::TokenKind Kind) {
8120  BinaryOperatorKind Opc;
8121  switch (Kind) {
8122  default: llvm_unreachable("Unknown binop!");
8123  case tok::periodstar:           Opc = BO_PtrMemD; break;
8124  case tok::arrowstar:            Opc = BO_PtrMemI; break;
8125  case tok::star:                 Opc = BO_Mul; break;
8126  case tok::slash:                Opc = BO_Div; break;
8127  case tok::percent:              Opc = BO_Rem; break;
8128  case tok::plus:                 Opc = BO_Add; break;
8129  case tok::minus:                Opc = BO_Sub; break;
8130  case tok::lessless:             Opc = BO_Shl; break;
8131  case tok::greatergreater:       Opc = BO_Shr; break;
8132  case tok::lessequal:            Opc = BO_LE; break;
8133  case tok::less:                 Opc = BO_LT; break;
8134  case tok::greaterequal:         Opc = BO_GE; break;
8135  case tok::greater:              Opc = BO_GT; break;
8136  case tok::exclaimequal:         Opc = BO_NE; break;
8137  case tok::equalequal:           Opc = BO_EQ; break;
8138  case tok::amp:                  Opc = BO_And; break;
8139  case tok::caret:                Opc = BO_Xor; break;
8140  case tok::pipe:                 Opc = BO_Or; break;
8141  case tok::ampamp:               Opc = BO_LAnd; break;
8142  case tok::pipepipe:             Opc = BO_LOr; break;
8143  case tok::equal:                Opc = BO_Assign; break;
8144  case tok::starequal:            Opc = BO_MulAssign; break;
8145  case tok::slashequal:           Opc = BO_DivAssign; break;
8146  case tok::percentequal:         Opc = BO_RemAssign; break;
8147  case tok::plusequal:            Opc = BO_AddAssign; break;
8148  case tok::minusequal:           Opc = BO_SubAssign; break;
8149  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
8150  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
8151  case tok::ampequal:             Opc = BO_AndAssign; break;
8152  case tok::caretequal:           Opc = BO_XorAssign; break;
8153  case tok::pipeequal:            Opc = BO_OrAssign; break;
8154  case tok::comma:                Opc = BO_Comma; break;
8155  }
8156  return Opc;
8157}
8158
8159static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8160  tok::TokenKind Kind) {
8161  UnaryOperatorKind Opc;
8162  switch (Kind) {
8163  default: llvm_unreachable("Unknown unary op!");
8164  case tok::plusplus:     Opc = UO_PreInc; break;
8165  case tok::minusminus:   Opc = UO_PreDec; break;
8166  case tok::amp:          Opc = UO_AddrOf; break;
8167  case tok::star:         Opc = UO_Deref; break;
8168  case tok::plus:         Opc = UO_Plus; break;
8169  case tok::minus:        Opc = UO_Minus; break;
8170  case tok::tilde:        Opc = UO_Not; break;
8171  case tok::exclaim:      Opc = UO_LNot; break;
8172  case tok::kw___real:    Opc = UO_Real; break;
8173  case tok::kw___imag:    Opc = UO_Imag; break;
8174  case tok::kw___extension__: Opc = UO_Extension; break;
8175  }
8176  return Opc;
8177}
8178
8179/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8180/// This warning is only emitted for builtin assignment operations. It is also
8181/// suppressed in the event of macro expansions.
8182static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
8183                                   SourceLocation OpLoc) {
8184  if (!S.ActiveTemplateInstantiations.empty())
8185    return;
8186  if (OpLoc.isInvalid() || OpLoc.isMacroID())
8187    return;
8188  LHSExpr = LHSExpr->IgnoreParenImpCasts();
8189  RHSExpr = RHSExpr->IgnoreParenImpCasts();
8190  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8191  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8192  if (!LHSDeclRef || !RHSDeclRef ||
8193      LHSDeclRef->getLocation().isMacroID() ||
8194      RHSDeclRef->getLocation().isMacroID())
8195    return;
8196  const ValueDecl *LHSDecl =
8197    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
8198  const ValueDecl *RHSDecl =
8199    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
8200  if (LHSDecl != RHSDecl)
8201    return;
8202  if (LHSDecl->getType().isVolatileQualified())
8203    return;
8204  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
8205    if (RefTy->getPointeeType().isVolatileQualified())
8206      return;
8207
8208  S.Diag(OpLoc, diag::warn_self_assignment)
8209      << LHSDeclRef->getType()
8210      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
8211}
8212
8213/// CreateBuiltinBinOp - Creates a new built-in binary operation with
8214/// operator @p Opc at location @c TokLoc. This routine only supports
8215/// built-in operations; ActOnBinOp handles overloaded operators.
8216ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
8217                                    BinaryOperatorKind Opc,
8218                                    Expr *LHSExpr, Expr *RHSExpr) {
8219  if (getLangOpts().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
8220    // The syntax only allows initializer lists on the RHS of assignment,
8221    // so we don't need to worry about accepting invalid code for
8222    // non-assignment operators.
8223    // C++11 5.17p9:
8224    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
8225    //   of x = {} is x = T().
8226    InitializationKind Kind =
8227        InitializationKind::CreateDirectList(RHSExpr->getLocStart());
8228    InitializedEntity Entity =
8229        InitializedEntity::InitializeTemporary(LHSExpr->getType());
8230    InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
8231    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
8232    if (Init.isInvalid())
8233      return Init;
8234    RHSExpr = Init.take();
8235  }
8236
8237  ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
8238  QualType ResultTy;     // Result type of the binary operator.
8239  // The following two variables are used for compound assignment operators
8240  QualType CompLHSTy;    // Type of LHS after promotions for computation
8241  QualType CompResultTy; // Type of computation result
8242  ExprValueKind VK = VK_RValue;
8243  ExprObjectKind OK = OK_Ordinary;
8244
8245  switch (Opc) {
8246  case BO_Assign:
8247    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
8248    if (getLangOpts().CPlusPlus &&
8249        LHS.get()->getObjectKind() != OK_ObjCProperty) {
8250      VK = LHS.get()->getValueKind();
8251      OK = LHS.get()->getObjectKind();
8252    }
8253    if (!ResultTy.isNull())
8254      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
8255    break;
8256  case BO_PtrMemD:
8257  case BO_PtrMemI:
8258    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
8259                                            Opc == BO_PtrMemI);
8260    break;
8261  case BO_Mul:
8262  case BO_Div:
8263    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
8264                                           Opc == BO_Div);
8265    break;
8266  case BO_Rem:
8267    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
8268    break;
8269  case BO_Add:
8270    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
8271    break;
8272  case BO_Sub:
8273    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
8274    break;
8275  case BO_Shl:
8276  case BO_Shr:
8277    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
8278    break;
8279  case BO_LE:
8280  case BO_LT:
8281  case BO_GE:
8282  case BO_GT:
8283    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
8284    break;
8285  case BO_EQ:
8286  case BO_NE:
8287    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
8288    break;
8289  case BO_And:
8290  case BO_Xor:
8291  case BO_Or:
8292    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
8293    break;
8294  case BO_LAnd:
8295  case BO_LOr:
8296    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
8297    break;
8298  case BO_MulAssign:
8299  case BO_DivAssign:
8300    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
8301                                               Opc == BO_DivAssign);
8302    CompLHSTy = CompResultTy;
8303    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8304      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8305    break;
8306  case BO_RemAssign:
8307    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
8308    CompLHSTy = CompResultTy;
8309    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8310      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8311    break;
8312  case BO_AddAssign:
8313    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
8314    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8315      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8316    break;
8317  case BO_SubAssign:
8318    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
8319    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8320      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8321    break;
8322  case BO_ShlAssign:
8323  case BO_ShrAssign:
8324    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
8325    CompLHSTy = CompResultTy;
8326    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8327      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8328    break;
8329  case BO_AndAssign:
8330  case BO_XorAssign:
8331  case BO_OrAssign:
8332    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
8333    CompLHSTy = CompResultTy;
8334    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8335      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8336    break;
8337  case BO_Comma:
8338    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
8339    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
8340      VK = RHS.get()->getValueKind();
8341      OK = RHS.get()->getObjectKind();
8342    }
8343    break;
8344  }
8345  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
8346    return ExprError();
8347
8348  // Check for array bounds violations for both sides of the BinaryOperator
8349  CheckArrayAccess(LHS.get());
8350  CheckArrayAccess(RHS.get());
8351
8352  if (CompResultTy.isNull())
8353    return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8354                                              ResultTy, VK, OK, OpLoc));
8355  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8356      OK_ObjCProperty) {
8357    VK = VK_LValue;
8358    OK = LHS.get()->getObjectKind();
8359  }
8360  return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8361                                                    ResultTy, VK, OK, CompLHSTy,
8362                                                    CompResultTy, OpLoc));
8363}
8364
8365/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8366/// operators are mixed in a way that suggests that the programmer forgot that
8367/// comparison operators have higher precedence. The most typical example of
8368/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
8369static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8370                                      SourceLocation OpLoc, Expr *LHSExpr,
8371                                      Expr *RHSExpr) {
8372  typedef BinaryOperator BinOp;
8373  BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
8374                RHSopc = static_cast<BinOp::Opcode>(-1);
8375  if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
8376    LHSopc = BO->getOpcode();
8377  if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
8378    RHSopc = BO->getOpcode();
8379
8380  // Subs are not binary operators.
8381  if (LHSopc == -1 && RHSopc == -1)
8382    return;
8383
8384  // Bitwise operations are sometimes used as eager logical ops.
8385  // Don't diagnose this.
8386  if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
8387      (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
8388    return;
8389
8390  bool isLeftComp = BinOp::isComparisonOp(LHSopc);
8391  bool isRightComp = BinOp::isComparisonOp(RHSopc);
8392  if (!isLeftComp && !isRightComp) return;
8393
8394  SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8395                                                   OpLoc)
8396                                     : SourceRange(OpLoc, RHSExpr->getLocEnd());
8397  std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
8398                                 : BinOp::getOpcodeStr(RHSopc);
8399  SourceRange ParensRange = isLeftComp ?
8400      SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
8401                  RHSExpr->getLocEnd())
8402    : SourceRange(LHSExpr->getLocStart(),
8403                  cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
8404
8405  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8406    << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
8407  SuggestParentheses(Self, OpLoc,
8408    Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
8409    (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
8410  SuggestParentheses(Self, OpLoc,
8411    Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
8412    ParensRange);
8413}
8414
8415/// \brief It accepts a '&' expr that is inside a '|' one.
8416/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8417/// in parentheses.
8418static void
8419EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8420                                       BinaryOperator *Bop) {
8421  assert(Bop->getOpcode() == BO_And);
8422  Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8423      << Bop->getSourceRange() << OpLoc;
8424  SuggestParentheses(Self, Bop->getOperatorLoc(),
8425    Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
8426    Bop->getSourceRange());
8427}
8428
8429/// \brief It accepts a '&&' expr that is inside a '||' one.
8430/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8431/// in parentheses.
8432static void
8433EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8434                                       BinaryOperator *Bop) {
8435  assert(Bop->getOpcode() == BO_LAnd);
8436  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8437      << Bop->getSourceRange() << OpLoc;
8438  SuggestParentheses(Self, Bop->getOperatorLoc(),
8439    Self.PDiag(diag::note_logical_and_in_logical_or_silence),
8440    Bop->getSourceRange());
8441}
8442
8443/// \brief Returns true if the given expression can be evaluated as a constant
8444/// 'true'.
8445static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8446  bool Res;
8447  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8448}
8449
8450/// \brief Returns true if the given expression can be evaluated as a constant
8451/// 'false'.
8452static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8453  bool Res;
8454  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8455}
8456
8457/// \brief Look for '&&' in the left hand of a '||' expr.
8458static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8459                                             Expr *LHSExpr, Expr *RHSExpr) {
8460  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8461    if (Bop->getOpcode() == BO_LAnd) {
8462      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8463      if (EvaluatesAsFalse(S, RHSExpr))
8464        return;
8465      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8466      if (!EvaluatesAsTrue(S, Bop->getLHS()))
8467        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8468    } else if (Bop->getOpcode() == BO_LOr) {
8469      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8470        // If it's "a || b && 1 || c" we didn't warn earlier for
8471        // "a || b && 1", but warn now.
8472        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8473          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8474      }
8475    }
8476  }
8477}
8478
8479/// \brief Look for '&&' in the right hand of a '||' expr.
8480static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8481                                             Expr *LHSExpr, Expr *RHSExpr) {
8482  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8483    if (Bop->getOpcode() == BO_LAnd) {
8484      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8485      if (EvaluatesAsFalse(S, LHSExpr))
8486        return;
8487      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8488      if (!EvaluatesAsTrue(S, Bop->getRHS()))
8489        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8490    }
8491  }
8492}
8493
8494/// \brief Look for '&' in the left or right hand of a '|' expr.
8495static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8496                                             Expr *OrArg) {
8497  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8498    if (Bop->getOpcode() == BO_And)
8499      return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8500  }
8501}
8502
8503/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8504/// precedence.
8505static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8506                                    SourceLocation OpLoc, Expr *LHSExpr,
8507                                    Expr *RHSExpr){
8508  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8509  if (BinaryOperator::isBitwiseOp(Opc))
8510    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8511
8512  // Diagnose "arg1 & arg2 | arg3"
8513  if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8514    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8515    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8516  }
8517
8518  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8519  // We don't warn for 'assert(a || b && "bad")' since this is safe.
8520  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8521    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8522    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8523  }
8524}
8525
8526// Binary Operators.  'Tok' is the token for the operator.
8527ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8528                            tok::TokenKind Kind,
8529                            Expr *LHSExpr, Expr *RHSExpr) {
8530  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8531  assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8532  assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8533
8534  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8535  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8536
8537  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8538}
8539
8540/// Build an overloaded binary operator expression in the given scope.
8541static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8542                                       BinaryOperatorKind Opc,
8543                                       Expr *LHS, Expr *RHS) {
8544  // Find all of the overloaded operators visible from this
8545  // point. We perform both an operator-name lookup from the local
8546  // scope and an argument-dependent lookup based on the types of
8547  // the arguments.
8548  UnresolvedSet<16> Functions;
8549  OverloadedOperatorKind OverOp
8550    = BinaryOperator::getOverloadedOperator(Opc);
8551  if (Sc && OverOp != OO_None)
8552    S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8553                                   RHS->getType(), Functions);
8554
8555  // Build the (potentially-overloaded, potentially-dependent)
8556  // binary operation.
8557  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8558}
8559
8560ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8561                            BinaryOperatorKind Opc,
8562                            Expr *LHSExpr, Expr *RHSExpr) {
8563  // We want to end up calling one of checkPseudoObjectAssignment
8564  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8565  // both expressions are overloadable or either is type-dependent),
8566  // or CreateBuiltinBinOp (in any other case).  We also want to get
8567  // any placeholder types out of the way.
8568
8569  // Handle pseudo-objects in the LHS.
8570  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8571    // Assignments with a pseudo-object l-value need special analysis.
8572    if (pty->getKind() == BuiltinType::PseudoObject &&
8573        BinaryOperator::isAssignmentOp(Opc))
8574      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8575
8576    // Don't resolve overloads if the other type is overloadable.
8577    if (pty->getKind() == BuiltinType::Overload) {
8578      // We can't actually test that if we still have a placeholder,
8579      // though.  Fortunately, none of the exceptions we see in that
8580      // code below are valid when the LHS is an overload set.  Note
8581      // that an overload set can be dependently-typed, but it never
8582      // instantiates to having an overloadable type.
8583      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8584      if (resolvedRHS.isInvalid()) return ExprError();
8585      RHSExpr = resolvedRHS.take();
8586
8587      if (RHSExpr->isTypeDependent() ||
8588          RHSExpr->getType()->isOverloadableType())
8589        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8590    }
8591
8592    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8593    if (LHS.isInvalid()) return ExprError();
8594    LHSExpr = LHS.take();
8595  }
8596
8597  // Handle pseudo-objects in the RHS.
8598  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8599    // An overload in the RHS can potentially be resolved by the type
8600    // being assigned to.
8601    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8602      if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8603        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8604
8605      if (LHSExpr->getType()->isOverloadableType())
8606        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8607
8608      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8609    }
8610
8611    // Don't resolve overloads if the other type is overloadable.
8612    if (pty->getKind() == BuiltinType::Overload &&
8613        LHSExpr->getType()->isOverloadableType())
8614      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8615
8616    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8617    if (!resolvedRHS.isUsable()) return ExprError();
8618    RHSExpr = resolvedRHS.take();
8619  }
8620
8621  if (getLangOpts().CPlusPlus) {
8622    // If either expression is type-dependent, always build an
8623    // overloaded op.
8624    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8625      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8626
8627    // Otherwise, build an overloaded op if either expression has an
8628    // overloadable type.
8629    if (LHSExpr->getType()->isOverloadableType() ||
8630        RHSExpr->getType()->isOverloadableType())
8631      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8632  }
8633
8634  // Build a built-in binary operation.
8635  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8636}
8637
8638ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8639                                      UnaryOperatorKind Opc,
8640                                      Expr *InputExpr) {
8641  ExprResult Input = Owned(InputExpr);
8642  ExprValueKind VK = VK_RValue;
8643  ExprObjectKind OK = OK_Ordinary;
8644  QualType resultType;
8645  switch (Opc) {
8646  case UO_PreInc:
8647  case UO_PreDec:
8648  case UO_PostInc:
8649  case UO_PostDec:
8650    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8651                                                Opc == UO_PreInc ||
8652                                                Opc == UO_PostInc,
8653                                                Opc == UO_PreInc ||
8654                                                Opc == UO_PreDec);
8655    break;
8656  case UO_AddrOf:
8657    resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8658    break;
8659  case UO_Deref: {
8660    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8661    if (Input.isInvalid()) return ExprError();
8662    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8663    break;
8664  }
8665  case UO_Plus:
8666  case UO_Minus:
8667    Input = UsualUnaryConversions(Input.take());
8668    if (Input.isInvalid()) return ExprError();
8669    resultType = Input.get()->getType();
8670    if (resultType->isDependentType())
8671      break;
8672    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8673        resultType->isVectorType())
8674      break;
8675    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
8676             resultType->isEnumeralType())
8677      break;
8678    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
8679             Opc == UO_Plus &&
8680             resultType->isPointerType())
8681      break;
8682
8683    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8684      << resultType << Input.get()->getSourceRange());
8685
8686  case UO_Not: // bitwise complement
8687    Input = UsualUnaryConversions(Input.take());
8688    if (Input.isInvalid()) return ExprError();
8689    resultType = Input.get()->getType();
8690    if (resultType->isDependentType())
8691      break;
8692    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8693    if (resultType->isComplexType() || resultType->isComplexIntegerType())
8694      // C99 does not support '~' for complex conjugation.
8695      Diag(OpLoc, diag::ext_integer_complement_complex)
8696        << resultType << Input.get()->getSourceRange();
8697    else if (resultType->hasIntegerRepresentation())
8698      break;
8699    else {
8700      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8701        << resultType << Input.get()->getSourceRange());
8702    }
8703    break;
8704
8705  case UO_LNot: // logical negation
8706    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8707    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8708    if (Input.isInvalid()) return ExprError();
8709    resultType = Input.get()->getType();
8710
8711    // Though we still have to promote half FP to float...
8712    if (resultType->isHalfType()) {
8713      Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8714      resultType = Context.FloatTy;
8715    }
8716
8717    if (resultType->isDependentType())
8718      break;
8719    if (resultType->isScalarType()) {
8720      // C99 6.5.3.3p1: ok, fallthrough;
8721      if (Context.getLangOpts().CPlusPlus) {
8722        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8723        // operand contextually converted to bool.
8724        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8725                                  ScalarTypeToBooleanCastKind(resultType));
8726      }
8727    } else if (resultType->isExtVectorType()) {
8728      // Vector logical not returns the signed variant of the operand type.
8729      resultType = GetSignedVectorType(resultType);
8730      break;
8731    } else {
8732      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8733        << resultType << Input.get()->getSourceRange());
8734    }
8735
8736    // LNot always has type int. C99 6.5.3.3p5.
8737    // In C++, it's bool. C++ 5.3.1p8
8738    resultType = Context.getLogicalOperationType();
8739    break;
8740  case UO_Real:
8741  case UO_Imag:
8742    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8743    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
8744    // complex l-values to ordinary l-values and all other values to r-values.
8745    if (Input.isInvalid()) return ExprError();
8746    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
8747      if (Input.get()->getValueKind() != VK_RValue &&
8748          Input.get()->getObjectKind() == OK_Ordinary)
8749        VK = Input.get()->getValueKind();
8750    } else if (!getLangOpts().CPlusPlus) {
8751      // In C, a volatile scalar is read by __imag. In C++, it is not.
8752      Input = DefaultLvalueConversion(Input.take());
8753    }
8754    break;
8755  case UO_Extension:
8756    resultType = Input.get()->getType();
8757    VK = Input.get()->getValueKind();
8758    OK = Input.get()->getObjectKind();
8759    break;
8760  }
8761  if (resultType.isNull() || Input.isInvalid())
8762    return ExprError();
8763
8764  // Check for array bounds violations in the operand of the UnaryOperator,
8765  // except for the '*' and '&' operators that have to be handled specially
8766  // by CheckArrayAccess (as there are special cases like &array[arraysize]
8767  // that are explicitly defined as valid by the standard).
8768  if (Opc != UO_AddrOf && Opc != UO_Deref)
8769    CheckArrayAccess(Input.get());
8770
8771  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
8772                                           VK, OK, OpLoc));
8773}
8774
8775/// \brief Determine whether the given expression is a qualified member
8776/// access expression, of a form that could be turned into a pointer to member
8777/// with the address-of operator.
8778static bool isQualifiedMemberAccess(Expr *E) {
8779  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8780    if (!DRE->getQualifier())
8781      return false;
8782
8783    ValueDecl *VD = DRE->getDecl();
8784    if (!VD->isCXXClassMember())
8785      return false;
8786
8787    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
8788      return true;
8789    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
8790      return Method->isInstance();
8791
8792    return false;
8793  }
8794
8795  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8796    if (!ULE->getQualifier())
8797      return false;
8798
8799    for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
8800                                           DEnd = ULE->decls_end();
8801         D != DEnd; ++D) {
8802      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
8803        if (Method->isInstance())
8804          return true;
8805      } else {
8806        // Overload set does not contain methods.
8807        break;
8808      }
8809    }
8810
8811    return false;
8812  }
8813
8814  return false;
8815}
8816
8817ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
8818                              UnaryOperatorKind Opc, Expr *Input) {
8819  // First things first: handle placeholders so that the
8820  // overloaded-operator check considers the right type.
8821  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
8822    // Increment and decrement of pseudo-object references.
8823    if (pty->getKind() == BuiltinType::PseudoObject &&
8824        UnaryOperator::isIncrementDecrementOp(Opc))
8825      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
8826
8827    // extension is always a builtin operator.
8828    if (Opc == UO_Extension)
8829      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8830
8831    // & gets special logic for several kinds of placeholder.
8832    // The builtin code knows what to do.
8833    if (Opc == UO_AddrOf &&
8834        (pty->getKind() == BuiltinType::Overload ||
8835         pty->getKind() == BuiltinType::UnknownAny ||
8836         pty->getKind() == BuiltinType::BoundMember))
8837      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8838
8839    // Anything else needs to be handled now.
8840    ExprResult Result = CheckPlaceholderExpr(Input);
8841    if (Result.isInvalid()) return ExprError();
8842    Input = Result.take();
8843  }
8844
8845  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
8846      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
8847      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
8848    // Find all of the overloaded operators visible from this
8849    // point. We perform both an operator-name lookup from the local
8850    // scope and an argument-dependent lookup based on the types of
8851    // the arguments.
8852    UnresolvedSet<16> Functions;
8853    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
8854    if (S && OverOp != OO_None)
8855      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
8856                                   Functions);
8857
8858    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
8859  }
8860
8861  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8862}
8863
8864// Unary Operators.  'Tok' is the token for the operator.
8865ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8866                              tok::TokenKind Op, Expr *Input) {
8867  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8868}
8869
8870/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
8871ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
8872                                LabelDecl *TheDecl) {
8873  TheDecl->setUsed();
8874  // Create the AST node.  The address of a label always has type 'void*'.
8875  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
8876                                       Context.getPointerType(Context.VoidTy)));
8877}
8878
8879/// Given the last statement in a statement-expression, check whether
8880/// the result is a producing expression (like a call to an
8881/// ns_returns_retained function) and, if so, rebuild it to hoist the
8882/// release out of the full-expression.  Otherwise, return null.
8883/// Cannot fail.
8884static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
8885  // Should always be wrapped with one of these.
8886  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
8887  if (!cleanups) return 0;
8888
8889  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
8890  if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
8891    return 0;
8892
8893  // Splice out the cast.  This shouldn't modify any interesting
8894  // features of the statement.
8895  Expr *producer = cast->getSubExpr();
8896  assert(producer->getType() == cast->getType());
8897  assert(producer->getValueKind() == cast->getValueKind());
8898  cleanups->setSubExpr(producer);
8899  return cleanups;
8900}
8901
8902void Sema::ActOnStartStmtExpr() {
8903  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
8904}
8905
8906void Sema::ActOnStmtExprError() {
8907  // Note that function is also called by TreeTransform when leaving a
8908  // StmtExpr scope without rebuilding anything.
8909
8910  DiscardCleanupsInEvaluationContext();
8911  PopExpressionEvaluationContext();
8912}
8913
8914ExprResult
8915Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
8916                    SourceLocation RPLoc) { // "({..})"
8917  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
8918  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
8919
8920  if (hasAnyUnrecoverableErrorsInThisFunction())
8921    DiscardCleanupsInEvaluationContext();
8922  assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
8923  PopExpressionEvaluationContext();
8924
8925  bool isFileScope
8926    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8927  if (isFileScope)
8928    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
8929
8930  // FIXME: there are a variety of strange constraints to enforce here, for
8931  // example, it is not possible to goto into a stmt expression apparently.
8932  // More semantic analysis is needed.
8933
8934  // If there are sub stmts in the compound stmt, take the type of the last one
8935  // as the type of the stmtexpr.
8936  QualType Ty = Context.VoidTy;
8937  bool StmtExprMayBindToTemp = false;
8938  if (!Compound->body_empty()) {
8939    Stmt *LastStmt = Compound->body_back();
8940    LabelStmt *LastLabelStmt = 0;
8941    // If LastStmt is a label, skip down through into the body.
8942    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8943      LastLabelStmt = Label;
8944      LastStmt = Label->getSubStmt();
8945    }
8946
8947    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
8948      // Do function/array conversion on the last expression, but not
8949      // lvalue-to-rvalue.  However, initialize an unqualified type.
8950      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
8951      if (LastExpr.isInvalid())
8952        return ExprError();
8953      Ty = LastExpr.get()->getType().getUnqualifiedType();
8954
8955      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
8956        // In ARC, if the final expression ends in a consume, splice
8957        // the consume out and bind it later.  In the alternate case
8958        // (when dealing with a retainable type), the result
8959        // initialization will create a produce.  In both cases the
8960        // result will be +1, and we'll need to balance that out with
8961        // a bind.
8962        if (Expr *rebuiltLastStmt
8963              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
8964          LastExpr = rebuiltLastStmt;
8965        } else {
8966          LastExpr = PerformCopyInitialization(
8967                            InitializedEntity::InitializeResult(LPLoc,
8968                                                                Ty,
8969                                                                false),
8970                                                   SourceLocation(),
8971                                               LastExpr);
8972        }
8973
8974        if (LastExpr.isInvalid())
8975          return ExprError();
8976        if (LastExpr.get() != 0) {
8977          if (!LastLabelStmt)
8978            Compound->setLastStmt(LastExpr.take());
8979          else
8980            LastLabelStmt->setSubStmt(LastExpr.take());
8981          StmtExprMayBindToTemp = true;
8982        }
8983      }
8984    }
8985  }
8986
8987  // FIXME: Check that expression type is complete/non-abstract; statement
8988  // expressions are not lvalues.
8989  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8990  if (StmtExprMayBindToTemp)
8991    return MaybeBindToTemporary(ResStmtExpr);
8992  return Owned(ResStmtExpr);
8993}
8994
8995ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8996                                      TypeSourceInfo *TInfo,
8997                                      OffsetOfComponent *CompPtr,
8998                                      unsigned NumComponents,
8999                                      SourceLocation RParenLoc) {
9000  QualType ArgTy = TInfo->getType();
9001  bool Dependent = ArgTy->isDependentType();
9002  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
9003
9004  // We must have at least one component that refers to the type, and the first
9005  // one is known to be a field designator.  Verify that the ArgTy represents
9006  // a struct/union/class.
9007  if (!Dependent && !ArgTy->isRecordType())
9008    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
9009                       << ArgTy << TypeRange);
9010
9011  // Type must be complete per C99 7.17p3 because a declaring a variable
9012  // with an incomplete type would be ill-formed.
9013  if (!Dependent
9014      && RequireCompleteType(BuiltinLoc, ArgTy,
9015                             diag::err_offsetof_incomplete_type, TypeRange))
9016    return ExprError();
9017
9018  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
9019  // GCC extension, diagnose them.
9020  // FIXME: This diagnostic isn't actually visible because the location is in
9021  // a system header!
9022  if (NumComponents != 1)
9023    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
9024      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
9025
9026  bool DidWarnAboutNonPOD = false;
9027  QualType CurrentType = ArgTy;
9028  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
9029  SmallVector<OffsetOfNode, 4> Comps;
9030  SmallVector<Expr*, 4> Exprs;
9031  for (unsigned i = 0; i != NumComponents; ++i) {
9032    const OffsetOfComponent &OC = CompPtr[i];
9033    if (OC.isBrackets) {
9034      // Offset of an array sub-field.  TODO: Should we allow vector elements?
9035      if (!CurrentType->isDependentType()) {
9036        const ArrayType *AT = Context.getAsArrayType(CurrentType);
9037        if(!AT)
9038          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9039                           << CurrentType);
9040        CurrentType = AT->getElementType();
9041      } else
9042        CurrentType = Context.DependentTy;
9043
9044      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
9045      if (IdxRval.isInvalid())
9046        return ExprError();
9047      Expr *Idx = IdxRval.take();
9048
9049      // The expression must be an integral expression.
9050      // FIXME: An integral constant expression?
9051      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9052          !Idx->getType()->isIntegerType())
9053        return ExprError(Diag(Idx->getLocStart(),
9054                              diag::err_typecheck_subscript_not_integer)
9055                         << Idx->getSourceRange());
9056
9057      // Record this array index.
9058      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
9059      Exprs.push_back(Idx);
9060      continue;
9061    }
9062
9063    // Offset of a field.
9064    if (CurrentType->isDependentType()) {
9065      // We have the offset of a field, but we can't look into the dependent
9066      // type. Just record the identifier of the field.
9067      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
9068      CurrentType = Context.DependentTy;
9069      continue;
9070    }
9071
9072    // We need to have a complete type to look into.
9073    if (RequireCompleteType(OC.LocStart, CurrentType,
9074                            diag::err_offsetof_incomplete_type))
9075      return ExprError();
9076
9077    // Look for the designated field.
9078    const RecordType *RC = CurrentType->getAs<RecordType>();
9079    if (!RC)
9080      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
9081                       << CurrentType);
9082    RecordDecl *RD = RC->getDecl();
9083
9084    // C++ [lib.support.types]p5:
9085    //   The macro offsetof accepts a restricted set of type arguments in this
9086    //   International Standard. type shall be a POD structure or a POD union
9087    //   (clause 9).
9088    // C++11 [support.types]p4:
9089    //   If type is not a standard-layout class (Clause 9), the results are
9090    //   undefined.
9091    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
9092      bool IsSafe = LangOpts.CPlusPlus0x? CRD->isStandardLayout() : CRD->isPOD();
9093      unsigned DiagID =
9094        LangOpts.CPlusPlus0x? diag::warn_offsetof_non_standardlayout_type
9095                            : diag::warn_offsetof_non_pod_type;
9096
9097      if (!IsSafe && !DidWarnAboutNonPOD &&
9098          DiagRuntimeBehavior(BuiltinLoc, 0,
9099                              PDiag(DiagID)
9100                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
9101                              << CurrentType))
9102        DidWarnAboutNonPOD = true;
9103    }
9104
9105    // Look for the field.
9106    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
9107    LookupQualifiedName(R, RD);
9108    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
9109    IndirectFieldDecl *IndirectMemberDecl = 0;
9110    if (!MemberDecl) {
9111      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
9112        MemberDecl = IndirectMemberDecl->getAnonField();
9113    }
9114
9115    if (!MemberDecl)
9116      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
9117                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
9118                                                              OC.LocEnd));
9119
9120    // C99 7.17p3:
9121    //   (If the specified member is a bit-field, the behavior is undefined.)
9122    //
9123    // We diagnose this as an error.
9124    if (MemberDecl->isBitField()) {
9125      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
9126        << MemberDecl->getDeclName()
9127        << SourceRange(BuiltinLoc, RParenLoc);
9128      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
9129      return ExprError();
9130    }
9131
9132    RecordDecl *Parent = MemberDecl->getParent();
9133    if (IndirectMemberDecl)
9134      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
9135
9136    // If the member was found in a base class, introduce OffsetOfNodes for
9137    // the base class indirections.
9138    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
9139                       /*DetectVirtual=*/false);
9140    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
9141      CXXBasePath &Path = Paths.front();
9142      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
9143           B != BEnd; ++B)
9144        Comps.push_back(OffsetOfNode(B->Base));
9145    }
9146
9147    if (IndirectMemberDecl) {
9148      for (IndirectFieldDecl::chain_iterator FI =
9149           IndirectMemberDecl->chain_begin(),
9150           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
9151        assert(isa<FieldDecl>(*FI));
9152        Comps.push_back(OffsetOfNode(OC.LocStart,
9153                                     cast<FieldDecl>(*FI), OC.LocEnd));
9154      }
9155    } else
9156      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
9157
9158    CurrentType = MemberDecl->getType().getNonReferenceType();
9159  }
9160
9161  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
9162                                    TInfo, Comps, Exprs, RParenLoc));
9163}
9164
9165ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
9166                                      SourceLocation BuiltinLoc,
9167                                      SourceLocation TypeLoc,
9168                                      ParsedType ParsedArgTy,
9169                                      OffsetOfComponent *CompPtr,
9170                                      unsigned NumComponents,
9171                                      SourceLocation RParenLoc) {
9172
9173  TypeSourceInfo *ArgTInfo;
9174  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
9175  if (ArgTy.isNull())
9176    return ExprError();
9177
9178  if (!ArgTInfo)
9179    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
9180
9181  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
9182                              RParenLoc);
9183}
9184
9185
9186ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
9187                                 Expr *CondExpr,
9188                                 Expr *LHSExpr, Expr *RHSExpr,
9189                                 SourceLocation RPLoc) {
9190  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
9191
9192  ExprValueKind VK = VK_RValue;
9193  ExprObjectKind OK = OK_Ordinary;
9194  QualType resType;
9195  bool ValueDependent = false;
9196  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
9197    resType = Context.DependentTy;
9198    ValueDependent = true;
9199  } else {
9200    // The conditional expression is required to be a constant expression.
9201    llvm::APSInt condEval(32);
9202    ExprResult CondICE
9203      = VerifyIntegerConstantExpression(CondExpr, &condEval,
9204          diag::err_typecheck_choose_expr_requires_constant, false);
9205    if (CondICE.isInvalid())
9206      return ExprError();
9207    CondExpr = CondICE.take();
9208
9209    // If the condition is > zero, then the AST type is the same as the LSHExpr.
9210    Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
9211
9212    resType = ActiveExpr->getType();
9213    ValueDependent = ActiveExpr->isValueDependent();
9214    VK = ActiveExpr->getValueKind();
9215    OK = ActiveExpr->getObjectKind();
9216  }
9217
9218  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
9219                                        resType, VK, OK, RPLoc,
9220                                        resType->isDependentType(),
9221                                        ValueDependent));
9222}
9223
9224//===----------------------------------------------------------------------===//
9225// Clang Extensions.
9226//===----------------------------------------------------------------------===//
9227
9228/// ActOnBlockStart - This callback is invoked when a block literal is started.
9229void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
9230  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
9231  PushBlockScope(CurScope, Block);
9232  CurContext->addDecl(Block);
9233  if (CurScope)
9234    PushDeclContext(CurScope, Block);
9235  else
9236    CurContext = Block;
9237
9238  getCurBlock()->HasImplicitReturnType = true;
9239
9240  // Enter a new evaluation context to insulate the block from any
9241  // cleanups from the enclosing full-expression.
9242  PushExpressionEvaluationContext(PotentiallyEvaluated);
9243}
9244
9245void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
9246                               Scope *CurScope) {
9247  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
9248  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
9249  BlockScopeInfo *CurBlock = getCurBlock();
9250
9251  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
9252  QualType T = Sig->getType();
9253
9254  // FIXME: We should allow unexpanded parameter packs here, but that would,
9255  // in turn, make the block expression contain unexpanded parameter packs.
9256  if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
9257    // Drop the parameters.
9258    FunctionProtoType::ExtProtoInfo EPI;
9259    EPI.HasTrailingReturn = false;
9260    EPI.TypeQuals |= DeclSpec::TQ_const;
9261    T = Context.getFunctionType(Context.DependentTy, /*Args=*/0, /*NumArgs=*/0,
9262                                EPI);
9263    Sig = Context.getTrivialTypeSourceInfo(T);
9264  }
9265
9266  // GetTypeForDeclarator always produces a function type for a block
9267  // literal signature.  Furthermore, it is always a FunctionProtoType
9268  // unless the function was written with a typedef.
9269  assert(T->isFunctionType() &&
9270         "GetTypeForDeclarator made a non-function block signature");
9271
9272  // Look for an explicit signature in that function type.
9273  FunctionProtoTypeLoc ExplicitSignature;
9274
9275  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
9276  if (isa<FunctionProtoTypeLoc>(tmp)) {
9277    ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
9278
9279    // Check whether that explicit signature was synthesized by
9280    // GetTypeForDeclarator.  If so, don't save that as part of the
9281    // written signature.
9282    if (ExplicitSignature.getLocalRangeBegin() ==
9283        ExplicitSignature.getLocalRangeEnd()) {
9284      // This would be much cheaper if we stored TypeLocs instead of
9285      // TypeSourceInfos.
9286      TypeLoc Result = ExplicitSignature.getResultLoc();
9287      unsigned Size = Result.getFullDataSize();
9288      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
9289      Sig->getTypeLoc().initializeFullCopy(Result, Size);
9290
9291      ExplicitSignature = FunctionProtoTypeLoc();
9292    }
9293  }
9294
9295  CurBlock->TheDecl->setSignatureAsWritten(Sig);
9296  CurBlock->FunctionType = T;
9297
9298  const FunctionType *Fn = T->getAs<FunctionType>();
9299  QualType RetTy = Fn->getResultType();
9300  bool isVariadic =
9301    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
9302
9303  CurBlock->TheDecl->setIsVariadic(isVariadic);
9304
9305  // Don't allow returning a objc interface by value.
9306  if (RetTy->isObjCObjectType()) {
9307    Diag(ParamInfo.getLocStart(),
9308         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
9309    return;
9310  }
9311
9312  // Context.DependentTy is used as a placeholder for a missing block
9313  // return type.  TODO:  what should we do with declarators like:
9314  //   ^ * { ... }
9315  // If the answer is "apply template argument deduction"....
9316  if (RetTy != Context.DependentTy) {
9317    CurBlock->ReturnType = RetTy;
9318    CurBlock->TheDecl->setBlockMissingReturnType(false);
9319    CurBlock->HasImplicitReturnType = false;
9320  }
9321
9322  // Push block parameters from the declarator if we had them.
9323  SmallVector<ParmVarDecl*, 8> Params;
9324  if (ExplicitSignature) {
9325    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
9326      ParmVarDecl *Param = ExplicitSignature.getArg(I);
9327      if (Param->getIdentifier() == 0 &&
9328          !Param->isImplicit() &&
9329          !Param->isInvalidDecl() &&
9330          !getLangOpts().CPlusPlus)
9331        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
9332      Params.push_back(Param);
9333    }
9334
9335  // Fake up parameter variables if we have a typedef, like
9336  //   ^ fntype { ... }
9337  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
9338    for (FunctionProtoType::arg_type_iterator
9339           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
9340      ParmVarDecl *Param =
9341        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
9342                                   ParamInfo.getLocStart(),
9343                                   *I);
9344      Params.push_back(Param);
9345    }
9346  }
9347
9348  // Set the parameters on the block decl.
9349  if (!Params.empty()) {
9350    CurBlock->TheDecl->setParams(Params);
9351    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
9352                             CurBlock->TheDecl->param_end(),
9353                             /*CheckParameterNames=*/false);
9354  }
9355
9356  // Finally we can process decl attributes.
9357  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
9358
9359  // Put the parameter variables in scope.  We can bail out immediately
9360  // if we don't have any.
9361  if (Params.empty())
9362    return;
9363
9364  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9365         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9366    (*AI)->setOwningFunction(CurBlock->TheDecl);
9367
9368    // If this has an identifier, add it to the scope stack.
9369    if ((*AI)->getIdentifier()) {
9370      CheckShadow(CurBlock->TheScope, *AI);
9371
9372      PushOnScopeChains(*AI, CurBlock->TheScope);
9373    }
9374  }
9375}
9376
9377/// ActOnBlockError - If there is an error parsing a block, this callback
9378/// is invoked to pop the information about the block from the action impl.
9379void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9380  // Leave the expression-evaluation context.
9381  DiscardCleanupsInEvaluationContext();
9382  PopExpressionEvaluationContext();
9383
9384  // Pop off CurBlock, handle nested blocks.
9385  PopDeclContext();
9386  PopFunctionScopeInfo();
9387}
9388
9389/// ActOnBlockStmtExpr - This is called when the body of a block statement
9390/// literal was successfully completed.  ^(int x){...}
9391ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9392                                    Stmt *Body, Scope *CurScope) {
9393  // If blocks are disabled, emit an error.
9394  if (!LangOpts.Blocks)
9395    Diag(CaretLoc, diag::err_blocks_disable);
9396
9397  // Leave the expression-evaluation context.
9398  if (hasAnyUnrecoverableErrorsInThisFunction())
9399    DiscardCleanupsInEvaluationContext();
9400  assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9401  PopExpressionEvaluationContext();
9402
9403  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9404
9405  if (BSI->HasImplicitReturnType)
9406    deduceClosureReturnType(*BSI);
9407
9408  PopDeclContext();
9409
9410  QualType RetTy = Context.VoidTy;
9411  if (!BSI->ReturnType.isNull())
9412    RetTy = BSI->ReturnType;
9413
9414  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9415  QualType BlockTy;
9416
9417  // Set the captured variables on the block.
9418  // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9419  SmallVector<BlockDecl::Capture, 4> Captures;
9420  for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9421    CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9422    if (Cap.isThisCapture())
9423      continue;
9424    BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9425                              Cap.isNested(), Cap.getCopyExpr());
9426    Captures.push_back(NewCap);
9427  }
9428  BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9429                            BSI->CXXThisCaptureIndex != 0);
9430
9431  // If the user wrote a function type in some form, try to use that.
9432  if (!BSI->FunctionType.isNull()) {
9433    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9434
9435    FunctionType::ExtInfo Ext = FTy->getExtInfo();
9436    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9437
9438    // Turn protoless block types into nullary block types.
9439    if (isa<FunctionNoProtoType>(FTy)) {
9440      FunctionProtoType::ExtProtoInfo EPI;
9441      EPI.ExtInfo = Ext;
9442      BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9443
9444    // Otherwise, if we don't need to change anything about the function type,
9445    // preserve its sugar structure.
9446    } else if (FTy->getResultType() == RetTy &&
9447               (!NoReturn || FTy->getNoReturnAttr())) {
9448      BlockTy = BSI->FunctionType;
9449
9450    // Otherwise, make the minimal modifications to the function type.
9451    } else {
9452      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9453      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9454      EPI.TypeQuals = 0; // FIXME: silently?
9455      EPI.ExtInfo = Ext;
9456      BlockTy = Context.getFunctionType(RetTy,
9457                                        FPT->arg_type_begin(),
9458                                        FPT->getNumArgs(),
9459                                        EPI);
9460    }
9461
9462  // If we don't have a function type, just build one from nothing.
9463  } else {
9464    FunctionProtoType::ExtProtoInfo EPI;
9465    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9466    BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9467  }
9468
9469  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9470                           BSI->TheDecl->param_end());
9471  BlockTy = Context.getBlockPointerType(BlockTy);
9472
9473  // If needed, diagnose invalid gotos and switches in the block.
9474  if (getCurFunction()->NeedsScopeChecking() &&
9475      !hasAnyUnrecoverableErrorsInThisFunction() &&
9476      !PP.isCodeCompletionEnabled())
9477    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9478
9479  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9480
9481  // Try to apply the named return value optimization. We have to check again
9482  // if we can do this, though, because blocks keep return statements around
9483  // to deduce an implicit return type.
9484  if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
9485      !BSI->TheDecl->isDependentContext())
9486    computeNRVO(Body, getCurBlock());
9487
9488  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9489  const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9490  PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9491
9492  // If the block isn't obviously global, i.e. it captures anything at
9493  // all, then we need to do a few things in the surrounding context:
9494  if (Result->getBlockDecl()->hasCaptures()) {
9495    // First, this expression has a new cleanup object.
9496    ExprCleanupObjects.push_back(Result->getBlockDecl());
9497    ExprNeedsCleanups = true;
9498
9499    // It also gets a branch-protected scope if any of the captured
9500    // variables needs destruction.
9501    for (BlockDecl::capture_const_iterator
9502           ci = Result->getBlockDecl()->capture_begin(),
9503           ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
9504      const VarDecl *var = ci->getVariable();
9505      if (var->getType().isDestructedType() != QualType::DK_none) {
9506        getCurFunction()->setHasBranchProtectedScope();
9507        break;
9508      }
9509    }
9510  }
9511
9512  return Owned(Result);
9513}
9514
9515ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9516                                        Expr *E, ParsedType Ty,
9517                                        SourceLocation RPLoc) {
9518  TypeSourceInfo *TInfo;
9519  GetTypeFromParser(Ty, &TInfo);
9520  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9521}
9522
9523ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9524                                Expr *E, TypeSourceInfo *TInfo,
9525                                SourceLocation RPLoc) {
9526  Expr *OrigExpr = E;
9527
9528  // Get the va_list type
9529  QualType VaListType = Context.getBuiltinVaListType();
9530  if (VaListType->isArrayType()) {
9531    // Deal with implicit array decay; for example, on x86-64,
9532    // va_list is an array, but it's supposed to decay to
9533    // a pointer for va_arg.
9534    VaListType = Context.getArrayDecayedType(VaListType);
9535    // Make sure the input expression also decays appropriately.
9536    ExprResult Result = UsualUnaryConversions(E);
9537    if (Result.isInvalid())
9538      return ExprError();
9539    E = Result.take();
9540  } else {
9541    // Otherwise, the va_list argument must be an l-value because
9542    // it is modified by va_arg.
9543    if (!E->isTypeDependent() &&
9544        CheckForModifiableLvalue(E, BuiltinLoc, *this))
9545      return ExprError();
9546  }
9547
9548  if (!E->isTypeDependent() &&
9549      !Context.hasSameType(VaListType, E->getType())) {
9550    return ExprError(Diag(E->getLocStart(),
9551                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
9552      << OrigExpr->getType() << E->getSourceRange());
9553  }
9554
9555  if (!TInfo->getType()->isDependentType()) {
9556    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9557                            diag::err_second_parameter_to_va_arg_incomplete,
9558                            TInfo->getTypeLoc()))
9559      return ExprError();
9560
9561    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9562                               TInfo->getType(),
9563                               diag::err_second_parameter_to_va_arg_abstract,
9564                               TInfo->getTypeLoc()))
9565      return ExprError();
9566
9567    if (!TInfo->getType().isPODType(Context)) {
9568      Diag(TInfo->getTypeLoc().getBeginLoc(),
9569           TInfo->getType()->isObjCLifetimeType()
9570             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9571             : diag::warn_second_parameter_to_va_arg_not_pod)
9572        << TInfo->getType()
9573        << TInfo->getTypeLoc().getSourceRange();
9574    }
9575
9576    // Check for va_arg where arguments of the given type will be promoted
9577    // (i.e. this va_arg is guaranteed to have undefined behavior).
9578    QualType PromoteType;
9579    if (TInfo->getType()->isPromotableIntegerType()) {
9580      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9581      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9582        PromoteType = QualType();
9583    }
9584    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9585      PromoteType = Context.DoubleTy;
9586    if (!PromoteType.isNull())
9587      Diag(TInfo->getTypeLoc().getBeginLoc(),
9588          diag::warn_second_parameter_to_va_arg_never_compatible)
9589        << TInfo->getType()
9590        << PromoteType
9591        << TInfo->getTypeLoc().getSourceRange();
9592  }
9593
9594  QualType T = TInfo->getType().getNonLValueExprType(Context);
9595  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9596}
9597
9598ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9599  // The type of __null will be int or long, depending on the size of
9600  // pointers on the target.
9601  QualType Ty;
9602  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9603  if (pw == Context.getTargetInfo().getIntWidth())
9604    Ty = Context.IntTy;
9605  else if (pw == Context.getTargetInfo().getLongWidth())
9606    Ty = Context.LongTy;
9607  else if (pw == Context.getTargetInfo().getLongLongWidth())
9608    Ty = Context.LongLongTy;
9609  else {
9610    llvm_unreachable("I don't know size of pointer!");
9611  }
9612
9613  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9614}
9615
9616static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9617                                           Expr *SrcExpr, FixItHint &Hint) {
9618  if (!SemaRef.getLangOpts().ObjC1)
9619    return;
9620
9621  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9622  if (!PT)
9623    return;
9624
9625  // Check if the destination is of type 'id'.
9626  if (!PT->isObjCIdType()) {
9627    // Check if the destination is the 'NSString' interface.
9628    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9629    if (!ID || !ID->getIdentifier()->isStr("NSString"))
9630      return;
9631  }
9632
9633  // Ignore any parens, implicit casts (should only be
9634  // array-to-pointer decays), and not-so-opaque values.  The last is
9635  // important for making this trigger for property assignments.
9636  SrcExpr = SrcExpr->IgnoreParenImpCasts();
9637  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9638    if (OV->getSourceExpr())
9639      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9640
9641  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9642  if (!SL || !SL->isAscii())
9643    return;
9644
9645  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9646}
9647
9648bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9649                                    SourceLocation Loc,
9650                                    QualType DstType, QualType SrcType,
9651                                    Expr *SrcExpr, AssignmentAction Action,
9652                                    bool *Complained) {
9653  if (Complained)
9654    *Complained = false;
9655
9656  // Decode the result (notice that AST's are still created for extensions).
9657  bool CheckInferredResultType = false;
9658  bool isInvalid = false;
9659  unsigned DiagKind = 0;
9660  FixItHint Hint;
9661  ConversionFixItGenerator ConvHints;
9662  bool MayHaveConvFixit = false;
9663  bool MayHaveFunctionDiff = false;
9664
9665  switch (ConvTy) {
9666  case Compatible:
9667      DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
9668      return false;
9669
9670  case PointerToInt:
9671    DiagKind = diag::ext_typecheck_convert_pointer_int;
9672    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9673    MayHaveConvFixit = true;
9674    break;
9675  case IntToPointer:
9676    DiagKind = diag::ext_typecheck_convert_int_pointer;
9677    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9678    MayHaveConvFixit = true;
9679    break;
9680  case IncompatiblePointer:
9681    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9682    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9683    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9684      SrcType->isObjCObjectPointerType();
9685    if (Hint.isNull() && !CheckInferredResultType) {
9686      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9687    }
9688    MayHaveConvFixit = true;
9689    break;
9690  case IncompatiblePointerSign:
9691    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9692    break;
9693  case FunctionVoidPointer:
9694    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9695    break;
9696  case IncompatiblePointerDiscardsQualifiers: {
9697    // Perform array-to-pointer decay if necessary.
9698    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9699
9700    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9701    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9702    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9703      DiagKind = diag::err_typecheck_incompatible_address_space;
9704      break;
9705
9706
9707    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9708      DiagKind = diag::err_typecheck_incompatible_ownership;
9709      break;
9710    }
9711
9712    llvm_unreachable("unknown error case for discarding qualifiers!");
9713    // fallthrough
9714  }
9715  case CompatiblePointerDiscardsQualifiers:
9716    // If the qualifiers lost were because we were applying the
9717    // (deprecated) C++ conversion from a string literal to a char*
9718    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
9719    // Ideally, this check would be performed in
9720    // checkPointerTypesForAssignment. However, that would require a
9721    // bit of refactoring (so that the second argument is an
9722    // expression, rather than a type), which should be done as part
9723    // of a larger effort to fix checkPointerTypesForAssignment for
9724    // C++ semantics.
9725    if (getLangOpts().CPlusPlus &&
9726        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9727      return false;
9728    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9729    break;
9730  case IncompatibleNestedPointerQualifiers:
9731    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9732    break;
9733  case IntToBlockPointer:
9734    DiagKind = diag::err_int_to_block_pointer;
9735    break;
9736  case IncompatibleBlockPointer:
9737    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9738    break;
9739  case IncompatibleObjCQualifiedId:
9740    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9741    // it can give a more specific diagnostic.
9742    DiagKind = diag::warn_incompatible_qualified_id;
9743    break;
9744  case IncompatibleVectors:
9745    DiagKind = diag::warn_incompatible_vectors;
9746    break;
9747  case IncompatibleObjCWeakRef:
9748    DiagKind = diag::err_arc_weak_unavailable_assign;
9749    break;
9750  case Incompatible:
9751    DiagKind = diag::err_typecheck_convert_incompatible;
9752    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9753    MayHaveConvFixit = true;
9754    isInvalid = true;
9755    MayHaveFunctionDiff = true;
9756    break;
9757  }
9758
9759  QualType FirstType, SecondType;
9760  switch (Action) {
9761  case AA_Assigning:
9762  case AA_Initializing:
9763    // The destination type comes first.
9764    FirstType = DstType;
9765    SecondType = SrcType;
9766    break;
9767
9768  case AA_Returning:
9769  case AA_Passing:
9770  case AA_Converting:
9771  case AA_Sending:
9772  case AA_Casting:
9773    // The source type comes first.
9774    FirstType = SrcType;
9775    SecondType = DstType;
9776    break;
9777  }
9778
9779  PartialDiagnostic FDiag = PDiag(DiagKind);
9780  FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
9781
9782  // If we can fix the conversion, suggest the FixIts.
9783  assert(ConvHints.isNull() || Hint.isNull());
9784  if (!ConvHints.isNull()) {
9785    for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
9786         HE = ConvHints.Hints.end(); HI != HE; ++HI)
9787      FDiag << *HI;
9788  } else {
9789    FDiag << Hint;
9790  }
9791  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
9792
9793  if (MayHaveFunctionDiff)
9794    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
9795
9796  Diag(Loc, FDiag);
9797
9798  if (SecondType == Context.OverloadTy)
9799    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
9800                              FirstType);
9801
9802  if (CheckInferredResultType)
9803    EmitRelatedResultTypeNote(SrcExpr);
9804
9805  if (Complained)
9806    *Complained = true;
9807  return isInvalid;
9808}
9809
9810ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9811                                                 llvm::APSInt *Result) {
9812  class SimpleICEDiagnoser : public VerifyICEDiagnoser {
9813  public:
9814    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9815      S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
9816    }
9817  } Diagnoser;
9818
9819  return VerifyIntegerConstantExpression(E, Result, Diagnoser);
9820}
9821
9822ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9823                                                 llvm::APSInt *Result,
9824                                                 unsigned DiagID,
9825                                                 bool AllowFold) {
9826  class IDDiagnoser : public VerifyICEDiagnoser {
9827    unsigned DiagID;
9828
9829  public:
9830    IDDiagnoser(unsigned DiagID)
9831      : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
9832
9833    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9834      S.Diag(Loc, DiagID) << SR;
9835    }
9836  } Diagnoser(DiagID);
9837
9838  return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
9839}
9840
9841void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
9842                                            SourceRange SR) {
9843  S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
9844}
9845
9846ExprResult
9847Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
9848                                      VerifyICEDiagnoser &Diagnoser,
9849                                      bool AllowFold) {
9850  SourceLocation DiagLoc = E->getLocStart();
9851
9852  if (getLangOpts().CPlusPlus0x) {
9853    // C++11 [expr.const]p5:
9854    //   If an expression of literal class type is used in a context where an
9855    //   integral constant expression is required, then that class type shall
9856    //   have a single non-explicit conversion function to an integral or
9857    //   unscoped enumeration type
9858    ExprResult Converted;
9859    if (!Diagnoser.Suppress) {
9860      class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
9861      public:
9862        CXX11ConvertDiagnoser() : ICEConvertDiagnoser(false, true) { }
9863
9864        virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9865                                                 QualType T) {
9866          return S.Diag(Loc, diag::err_ice_not_integral) << T;
9867        }
9868
9869        virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
9870                                                     SourceLocation Loc,
9871                                                     QualType T) {
9872          return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
9873        }
9874
9875        virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
9876                                                       SourceLocation Loc,
9877                                                       QualType T,
9878                                                       QualType ConvTy) {
9879          return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
9880        }
9881
9882        virtual DiagnosticBuilder noteExplicitConv(Sema &S,
9883                                                   CXXConversionDecl *Conv,
9884                                                   QualType ConvTy) {
9885          return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
9886                   << ConvTy->isEnumeralType() << ConvTy;
9887        }
9888
9889        virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
9890                                                    QualType T) {
9891          return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
9892        }
9893
9894        virtual DiagnosticBuilder noteAmbiguous(Sema &S,
9895                                                CXXConversionDecl *Conv,
9896                                                QualType ConvTy) {
9897          return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
9898                   << ConvTy->isEnumeralType() << ConvTy;
9899        }
9900
9901        virtual DiagnosticBuilder diagnoseConversion(Sema &S,
9902                                                     SourceLocation Loc,
9903                                                     QualType T,
9904                                                     QualType ConvTy) {
9905          return DiagnosticBuilder::getEmpty();
9906        }
9907      } ConvertDiagnoser;
9908
9909      Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
9910                                                     ConvertDiagnoser,
9911                                             /*AllowScopedEnumerations*/ false);
9912    } else {
9913      // The caller wants to silently enquire whether this is an ICE. Don't
9914      // produce any diagnostics if it isn't.
9915      class SilentICEConvertDiagnoser : public ICEConvertDiagnoser {
9916      public:
9917        SilentICEConvertDiagnoser() : ICEConvertDiagnoser(true, true) { }
9918
9919        virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9920                                                 QualType T) {
9921          return DiagnosticBuilder::getEmpty();
9922        }
9923
9924        virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
9925                                                     SourceLocation Loc,
9926                                                     QualType T) {
9927          return DiagnosticBuilder::getEmpty();
9928        }
9929
9930        virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
9931                                                       SourceLocation Loc,
9932                                                       QualType T,
9933                                                       QualType ConvTy) {
9934          return DiagnosticBuilder::getEmpty();
9935        }
9936
9937        virtual DiagnosticBuilder noteExplicitConv(Sema &S,
9938                                                   CXXConversionDecl *Conv,
9939                                                   QualType ConvTy) {
9940          return DiagnosticBuilder::getEmpty();
9941        }
9942
9943        virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
9944                                                    QualType T) {
9945          return DiagnosticBuilder::getEmpty();
9946        }
9947
9948        virtual DiagnosticBuilder noteAmbiguous(Sema &S,
9949                                                CXXConversionDecl *Conv,
9950                                                QualType ConvTy) {
9951          return DiagnosticBuilder::getEmpty();
9952        }
9953
9954        virtual DiagnosticBuilder diagnoseConversion(Sema &S,
9955                                                     SourceLocation Loc,
9956                                                     QualType T,
9957                                                     QualType ConvTy) {
9958          return DiagnosticBuilder::getEmpty();
9959        }
9960      } ConvertDiagnoser;
9961
9962      Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
9963                                                     ConvertDiagnoser, false);
9964    }
9965    if (Converted.isInvalid())
9966      return Converted;
9967    E = Converted.take();
9968    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
9969      return ExprError();
9970  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
9971    // An ICE must be of integral or unscoped enumeration type.
9972    if (!Diagnoser.Suppress)
9973      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
9974    return ExprError();
9975  }
9976
9977  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
9978  // in the non-ICE case.
9979  if (!getLangOpts().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
9980    if (Result)
9981      *Result = E->EvaluateKnownConstInt(Context);
9982    return Owned(E);
9983  }
9984
9985  Expr::EvalResult EvalResult;
9986  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
9987  EvalResult.Diag = &Notes;
9988
9989  // Try to evaluate the expression, and produce diagnostics explaining why it's
9990  // not a constant expression as a side-effect.
9991  bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
9992                EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
9993
9994  // In C++11, we can rely on diagnostics being produced for any expression
9995  // which is not a constant expression. If no diagnostics were produced, then
9996  // this is a constant expression.
9997  if (Folded && getLangOpts().CPlusPlus0x && Notes.empty()) {
9998    if (Result)
9999      *Result = EvalResult.Val.getInt();
10000    return Owned(E);
10001  }
10002
10003  // If our only note is the usual "invalid subexpression" note, just point
10004  // the caret at its location rather than producing an essentially
10005  // redundant note.
10006  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10007        diag::note_invalid_subexpr_in_const_expr) {
10008    DiagLoc = Notes[0].first;
10009    Notes.clear();
10010  }
10011
10012  if (!Folded || !AllowFold) {
10013    if (!Diagnoser.Suppress) {
10014      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10015      for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10016        Diag(Notes[I].first, Notes[I].second);
10017    }
10018
10019    return ExprError();
10020  }
10021
10022  Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
10023  for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10024    Diag(Notes[I].first, Notes[I].second);
10025
10026  if (Result)
10027    *Result = EvalResult.Val.getInt();
10028  return Owned(E);
10029}
10030
10031namespace {
10032  // Handle the case where we conclude a expression which we speculatively
10033  // considered to be unevaluated is actually evaluated.
10034  class TransformToPE : public TreeTransform<TransformToPE> {
10035    typedef TreeTransform<TransformToPE> BaseTransform;
10036
10037  public:
10038    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
10039
10040    // Make sure we redo semantic analysis
10041    bool AlwaysRebuild() { return true; }
10042
10043    // Make sure we handle LabelStmts correctly.
10044    // FIXME: This does the right thing, but maybe we need a more general
10045    // fix to TreeTransform?
10046    StmtResult TransformLabelStmt(LabelStmt *S) {
10047      S->getDecl()->setStmt(0);
10048      return BaseTransform::TransformLabelStmt(S);
10049    }
10050
10051    // We need to special-case DeclRefExprs referring to FieldDecls which
10052    // are not part of a member pointer formation; normal TreeTransforming
10053    // doesn't catch this case because of the way we represent them in the AST.
10054    // FIXME: This is a bit ugly; is it really the best way to handle this
10055    // case?
10056    //
10057    // Error on DeclRefExprs referring to FieldDecls.
10058    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
10059      if (isa<FieldDecl>(E->getDecl()) &&
10060          !SemaRef.isUnevaluatedContext())
10061        return SemaRef.Diag(E->getLocation(),
10062                            diag::err_invalid_non_static_member_use)
10063            << E->getDecl() << E->getSourceRange();
10064
10065      return BaseTransform::TransformDeclRefExpr(E);
10066    }
10067
10068    // Exception: filter out member pointer formation
10069    ExprResult TransformUnaryOperator(UnaryOperator *E) {
10070      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
10071        return E;
10072
10073      return BaseTransform::TransformUnaryOperator(E);
10074    }
10075
10076    ExprResult TransformLambdaExpr(LambdaExpr *E) {
10077      // Lambdas never need to be transformed.
10078      return E;
10079    }
10080  };
10081}
10082
10083ExprResult Sema::TranformToPotentiallyEvaluated(Expr *E) {
10084  assert(ExprEvalContexts.back().Context == Unevaluated &&
10085         "Should only transform unevaluated expressions");
10086  ExprEvalContexts.back().Context =
10087      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
10088  if (ExprEvalContexts.back().Context == Unevaluated)
10089    return E;
10090  return TransformToPE(*this).TransformExpr(E);
10091}
10092
10093void
10094Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10095                                      Decl *LambdaContextDecl,
10096                                      bool IsDecltype) {
10097  ExprEvalContexts.push_back(
10098             ExpressionEvaluationContextRecord(NewContext,
10099                                               ExprCleanupObjects.size(),
10100                                               ExprNeedsCleanups,
10101                                               LambdaContextDecl,
10102                                               IsDecltype));
10103  ExprNeedsCleanups = false;
10104  if (!MaybeODRUseExprs.empty())
10105    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
10106}
10107
10108void Sema::PopExpressionEvaluationContext() {
10109  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
10110
10111  if (!Rec.Lambdas.empty()) {
10112    if (Rec.Context == Unevaluated) {
10113      // C++11 [expr.prim.lambda]p2:
10114      //   A lambda-expression shall not appear in an unevaluated operand
10115      //   (Clause 5).
10116      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
10117        Diag(Rec.Lambdas[I]->getLocStart(),
10118             diag::err_lambda_unevaluated_operand);
10119    } else {
10120      // Mark the capture expressions odr-used. This was deferred
10121      // during lambda expression creation.
10122      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
10123        LambdaExpr *Lambda = Rec.Lambdas[I];
10124        for (LambdaExpr::capture_init_iterator
10125                  C = Lambda->capture_init_begin(),
10126               CEnd = Lambda->capture_init_end();
10127             C != CEnd; ++C) {
10128          MarkDeclarationsReferencedInExpr(*C);
10129        }
10130      }
10131    }
10132  }
10133
10134  // When are coming out of an unevaluated context, clear out any
10135  // temporaries that we may have created as part of the evaluation of
10136  // the expression in that context: they aren't relevant because they
10137  // will never be constructed.
10138  if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
10139    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
10140                             ExprCleanupObjects.end());
10141    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
10142    CleanupVarDeclMarking();
10143    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
10144  // Otherwise, merge the contexts together.
10145  } else {
10146    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
10147    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
10148                            Rec.SavedMaybeODRUseExprs.end());
10149  }
10150
10151  // Pop the current expression evaluation context off the stack.
10152  ExprEvalContexts.pop_back();
10153}
10154
10155void Sema::DiscardCleanupsInEvaluationContext() {
10156  ExprCleanupObjects.erase(
10157         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
10158         ExprCleanupObjects.end());
10159  ExprNeedsCleanups = false;
10160  MaybeODRUseExprs.clear();
10161}
10162
10163ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
10164  if (!E->getType()->isVariablyModifiedType())
10165    return E;
10166  return TranformToPotentiallyEvaluated(E);
10167}
10168
10169static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
10170  // Do not mark anything as "used" within a dependent context; wait for
10171  // an instantiation.
10172  if (SemaRef.CurContext->isDependentContext())
10173    return false;
10174
10175  switch (SemaRef.ExprEvalContexts.back().Context) {
10176    case Sema::Unevaluated:
10177      // We are in an expression that is not potentially evaluated; do nothing.
10178      // (Depending on how you read the standard, we actually do need to do
10179      // something here for null pointer constants, but the standard's
10180      // definition of a null pointer constant is completely crazy.)
10181      return false;
10182
10183    case Sema::ConstantEvaluated:
10184    case Sema::PotentiallyEvaluated:
10185      // We are in a potentially evaluated expression (or a constant-expression
10186      // in C++03); we need to do implicit template instantiation, implicitly
10187      // define class members, and mark most declarations as used.
10188      return true;
10189
10190    case Sema::PotentiallyEvaluatedIfUsed:
10191      // Referenced declarations will only be used if the construct in the
10192      // containing expression is used.
10193      return false;
10194  }
10195  llvm_unreachable("Invalid context");
10196}
10197
10198/// \brief Mark a function referenced, and check whether it is odr-used
10199/// (C++ [basic.def.odr]p2, C99 6.9p3)
10200void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
10201  assert(Func && "No function?");
10202
10203  Func->setReferenced();
10204
10205  // Don't mark this function as used multiple times, unless it's a constexpr
10206  // function which we need to instantiate.
10207  if (Func->isUsed(false) &&
10208      !(Func->isConstexpr() && !Func->getBody() &&
10209        Func->isImplicitlyInstantiable()))
10210    return;
10211
10212  if (!IsPotentiallyEvaluatedContext(*this))
10213    return;
10214
10215  // Note that this declaration has been used.
10216  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
10217    if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
10218      if (Constructor->isDefaultConstructor()) {
10219        if (Constructor->isTrivial())
10220          return;
10221        if (!Constructor->isUsed(false))
10222          DefineImplicitDefaultConstructor(Loc, Constructor);
10223      } else if (Constructor->isCopyConstructor()) {
10224        if (!Constructor->isUsed(false))
10225          DefineImplicitCopyConstructor(Loc, Constructor);
10226      } else if (Constructor->isMoveConstructor()) {
10227        if (!Constructor->isUsed(false))
10228          DefineImplicitMoveConstructor(Loc, Constructor);
10229      }
10230    }
10231
10232    MarkVTableUsed(Loc, Constructor->getParent());
10233  } else if (CXXDestructorDecl *Destructor =
10234                 dyn_cast<CXXDestructorDecl>(Func)) {
10235    if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
10236        !Destructor->isUsed(false))
10237      DefineImplicitDestructor(Loc, Destructor);
10238    if (Destructor->isVirtual())
10239      MarkVTableUsed(Loc, Destructor->getParent());
10240  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
10241    if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
10242        MethodDecl->isOverloadedOperator() &&
10243        MethodDecl->getOverloadedOperator() == OO_Equal) {
10244      if (!MethodDecl->isUsed(false)) {
10245        if (MethodDecl->isCopyAssignmentOperator())
10246          DefineImplicitCopyAssignment(Loc, MethodDecl);
10247        else
10248          DefineImplicitMoveAssignment(Loc, MethodDecl);
10249      }
10250    } else if (isa<CXXConversionDecl>(MethodDecl) &&
10251               MethodDecl->getParent()->isLambda()) {
10252      CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
10253      if (Conversion->isLambdaToBlockPointerConversion())
10254        DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
10255      else
10256        DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
10257    } else if (MethodDecl->isVirtual())
10258      MarkVTableUsed(Loc, MethodDecl->getParent());
10259  }
10260
10261  // Recursive functions should be marked when used from another function.
10262  // FIXME: Is this really right?
10263  if (CurContext == Func) return;
10264
10265  // Resolve the exception specification for any function which is
10266  // used: CodeGen will need it.
10267  const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
10268  if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
10269    ResolveExceptionSpec(Loc, FPT);
10270
10271  // Implicit instantiation of function templates and member functions of
10272  // class templates.
10273  if (Func->isImplicitlyInstantiable()) {
10274    bool AlreadyInstantiated = false;
10275    SourceLocation PointOfInstantiation = Loc;
10276    if (FunctionTemplateSpecializationInfo *SpecInfo
10277                              = Func->getTemplateSpecializationInfo()) {
10278      if (SpecInfo->getPointOfInstantiation().isInvalid())
10279        SpecInfo->setPointOfInstantiation(Loc);
10280      else if (SpecInfo->getTemplateSpecializationKind()
10281                 == TSK_ImplicitInstantiation) {
10282        AlreadyInstantiated = true;
10283        PointOfInstantiation = SpecInfo->getPointOfInstantiation();
10284      }
10285    } else if (MemberSpecializationInfo *MSInfo
10286                                = Func->getMemberSpecializationInfo()) {
10287      if (MSInfo->getPointOfInstantiation().isInvalid())
10288        MSInfo->setPointOfInstantiation(Loc);
10289      else if (MSInfo->getTemplateSpecializationKind()
10290                 == TSK_ImplicitInstantiation) {
10291        AlreadyInstantiated = true;
10292        PointOfInstantiation = MSInfo->getPointOfInstantiation();
10293      }
10294    }
10295
10296    if (!AlreadyInstantiated || Func->isConstexpr()) {
10297      if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
10298          cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
10299        PendingLocalImplicitInstantiations.push_back(
10300            std::make_pair(Func, PointOfInstantiation));
10301      else if (Func->isConstexpr())
10302        // Do not defer instantiations of constexpr functions, to avoid the
10303        // expression evaluator needing to call back into Sema if it sees a
10304        // call to such a function.
10305        InstantiateFunctionDefinition(PointOfInstantiation, Func);
10306      else {
10307        PendingInstantiations.push_back(std::make_pair(Func,
10308                                                       PointOfInstantiation));
10309        // Notify the consumer that a function was implicitly instantiated.
10310        Consumer.HandleCXXImplicitFunctionInstantiation(Func);
10311      }
10312    }
10313  } else {
10314    // Walk redefinitions, as some of them may be instantiable.
10315    for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
10316         e(Func->redecls_end()); i != e; ++i) {
10317      if (!i->isUsed(false) && i->isImplicitlyInstantiable())
10318        MarkFunctionReferenced(Loc, *i);
10319    }
10320  }
10321
10322  // Keep track of used but undefined functions.
10323  if (!Func->isPure() && !Func->hasBody() &&
10324      Func->getLinkage() != ExternalLinkage) {
10325    SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
10326    if (old.isInvalid()) old = Loc;
10327  }
10328
10329  Func->setUsed(true);
10330}
10331
10332static void
10333diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
10334                                   VarDecl *var, DeclContext *DC) {
10335  DeclContext *VarDC = var->getDeclContext();
10336
10337  //  If the parameter still belongs to the translation unit, then
10338  //  we're actually just using one parameter in the declaration of
10339  //  the next.
10340  if (isa<ParmVarDecl>(var) &&
10341      isa<TranslationUnitDecl>(VarDC))
10342    return;
10343
10344  // For C code, don't diagnose about capture if we're not actually in code
10345  // right now; it's impossible to write a non-constant expression outside of
10346  // function context, so we'll get other (more useful) diagnostics later.
10347  //
10348  // For C++, things get a bit more nasty... it would be nice to suppress this
10349  // diagnostic for certain cases like using a local variable in an array bound
10350  // for a member of a local class, but the correct predicate is not obvious.
10351  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
10352    return;
10353
10354  if (isa<CXXMethodDecl>(VarDC) &&
10355      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
10356    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
10357      << var->getIdentifier();
10358  } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
10359    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
10360      << var->getIdentifier() << fn->getDeclName();
10361  } else if (isa<BlockDecl>(VarDC)) {
10362    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
10363      << var->getIdentifier();
10364  } else {
10365    // FIXME: Is there any other context where a local variable can be
10366    // declared?
10367    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
10368      << var->getIdentifier();
10369  }
10370
10371  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
10372    << var->getIdentifier();
10373
10374  // FIXME: Add additional diagnostic info about class etc. which prevents
10375  // capture.
10376}
10377
10378/// \brief Capture the given variable in the given lambda expression.
10379static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
10380                                  VarDecl *Var, QualType FieldType,
10381                                  QualType DeclRefType,
10382                                  SourceLocation Loc,
10383                                  bool RefersToEnclosingLocal) {
10384  CXXRecordDecl *Lambda = LSI->Lambda;
10385
10386  // Build the non-static data member.
10387  FieldDecl *Field
10388    = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
10389                        S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
10390                        0, false, ICIS_NoInit);
10391  Field->setImplicit(true);
10392  Field->setAccess(AS_private);
10393  Lambda->addDecl(Field);
10394
10395  // C++11 [expr.prim.lambda]p21:
10396  //   When the lambda-expression is evaluated, the entities that
10397  //   are captured by copy are used to direct-initialize each
10398  //   corresponding non-static data member of the resulting closure
10399  //   object. (For array members, the array elements are
10400  //   direct-initialized in increasing subscript order.) These
10401  //   initializations are performed in the (unspecified) order in
10402  //   which the non-static data members are declared.
10403
10404  // Introduce a new evaluation context for the initialization, so
10405  // that temporaries introduced as part of the capture are retained
10406  // to be re-"exported" from the lambda expression itself.
10407  S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
10408
10409  // C++ [expr.prim.labda]p12:
10410  //   An entity captured by a lambda-expression is odr-used (3.2) in
10411  //   the scope containing the lambda-expression.
10412  Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
10413                                          DeclRefType, VK_LValue, Loc);
10414  Var->setReferenced(true);
10415  Var->setUsed(true);
10416
10417  // When the field has array type, create index variables for each
10418  // dimension of the array. We use these index variables to subscript
10419  // the source array, and other clients (e.g., CodeGen) will perform
10420  // the necessary iteration with these index variables.
10421  SmallVector<VarDecl *, 4> IndexVariables;
10422  QualType BaseType = FieldType;
10423  QualType SizeType = S.Context.getSizeType();
10424  LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
10425  while (const ConstantArrayType *Array
10426                        = S.Context.getAsConstantArrayType(BaseType)) {
10427    // Create the iteration variable for this array index.
10428    IdentifierInfo *IterationVarName = 0;
10429    {
10430      SmallString<8> Str;
10431      llvm::raw_svector_ostream OS(Str);
10432      OS << "__i" << IndexVariables.size();
10433      IterationVarName = &S.Context.Idents.get(OS.str());
10434    }
10435    VarDecl *IterationVar
10436      = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
10437                        IterationVarName, SizeType,
10438                        S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
10439                        SC_None, SC_None);
10440    IndexVariables.push_back(IterationVar);
10441    LSI->ArrayIndexVars.push_back(IterationVar);
10442
10443    // Create a reference to the iteration variable.
10444    ExprResult IterationVarRef
10445      = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
10446    assert(!IterationVarRef.isInvalid() &&
10447           "Reference to invented variable cannot fail!");
10448    IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
10449    assert(!IterationVarRef.isInvalid() &&
10450           "Conversion of invented variable cannot fail!");
10451
10452    // Subscript the array with this iteration variable.
10453    ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
10454                             Ref, Loc, IterationVarRef.take(), Loc);
10455    if (Subscript.isInvalid()) {
10456      S.CleanupVarDeclMarking();
10457      S.DiscardCleanupsInEvaluationContext();
10458      S.PopExpressionEvaluationContext();
10459      return ExprError();
10460    }
10461
10462    Ref = Subscript.take();
10463    BaseType = Array->getElementType();
10464  }
10465
10466  // Construct the entity that we will be initializing. For an array, this
10467  // will be first element in the array, which may require several levels
10468  // of array-subscript entities.
10469  SmallVector<InitializedEntity, 4> Entities;
10470  Entities.reserve(1 + IndexVariables.size());
10471  Entities.push_back(
10472    InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
10473  for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
10474    Entities.push_back(InitializedEntity::InitializeElement(S.Context,
10475                                                            0,
10476                                                            Entities.back()));
10477
10478  InitializationKind InitKind
10479    = InitializationKind::CreateDirect(Loc, Loc, Loc);
10480  InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
10481  ExprResult Result(true);
10482  if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
10483    Result = Init.Perform(S, Entities.back(), InitKind, Ref);
10484
10485  // If this initialization requires any cleanups (e.g., due to a
10486  // default argument to a copy constructor), note that for the
10487  // lambda.
10488  if (S.ExprNeedsCleanups)
10489    LSI->ExprNeedsCleanups = true;
10490
10491  // Exit the expression evaluation context used for the capture.
10492  S.CleanupVarDeclMarking();
10493  S.DiscardCleanupsInEvaluationContext();
10494  S.PopExpressionEvaluationContext();
10495  return Result;
10496}
10497
10498bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10499                              TryCaptureKind Kind, SourceLocation EllipsisLoc,
10500                              bool BuildAndDiagnose,
10501                              QualType &CaptureType,
10502                              QualType &DeclRefType) {
10503  bool Nested = false;
10504
10505  DeclContext *DC = CurContext;
10506  if (Var->getDeclContext() == DC) return true;
10507  if (!Var->hasLocalStorage()) return true;
10508
10509  bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
10510
10511  // Walk up the stack to determine whether we can capture the variable,
10512  // performing the "simple" checks that don't depend on type. We stop when
10513  // we've either hit the declared scope of the variable or find an existing
10514  // capture of that variable.
10515  CaptureType = Var->getType();
10516  DeclRefType = CaptureType.getNonReferenceType();
10517  bool Explicit = (Kind != TryCapture_Implicit);
10518  unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10519  do {
10520    // Only block literals and lambda expressions can capture; other
10521    // scopes don't work.
10522    DeclContext *ParentDC;
10523    if (isa<BlockDecl>(DC))
10524      ParentDC = DC->getParent();
10525    else if (isa<CXXMethodDecl>(DC) &&
10526             cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10527             cast<CXXRecordDecl>(DC->getParent())->isLambda())
10528      ParentDC = DC->getParent()->getParent();
10529    else {
10530      if (BuildAndDiagnose)
10531        diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10532      return true;
10533    }
10534
10535    CapturingScopeInfo *CSI =
10536      cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10537
10538    // Check whether we've already captured it.
10539    if (CSI->CaptureMap.count(Var)) {
10540      // If we found a capture, any subcaptures are nested.
10541      Nested = true;
10542
10543      // Retrieve the capture type for this variable.
10544      CaptureType = CSI->getCapture(Var).getCaptureType();
10545
10546      // Compute the type of an expression that refers to this variable.
10547      DeclRefType = CaptureType.getNonReferenceType();
10548
10549      const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10550      if (Cap.isCopyCapture() &&
10551          !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10552        DeclRefType.addConst();
10553      break;
10554    }
10555
10556    bool IsBlock = isa<BlockScopeInfo>(CSI);
10557    bool IsLambda = !IsBlock;
10558
10559    // Lambdas are not allowed to capture unnamed variables
10560    // (e.g. anonymous unions).
10561    // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10562    // assuming that's the intent.
10563    if (IsLambda && !Var->getDeclName()) {
10564      if (BuildAndDiagnose) {
10565        Diag(Loc, diag::err_lambda_capture_anonymous_var);
10566        Diag(Var->getLocation(), diag::note_declared_at);
10567      }
10568      return true;
10569    }
10570
10571    // Prohibit variably-modified types; they're difficult to deal with.
10572    if (Var->getType()->isVariablyModifiedType()) {
10573      if (BuildAndDiagnose) {
10574        if (IsBlock)
10575          Diag(Loc, diag::err_ref_vm_type);
10576        else
10577          Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10578        Diag(Var->getLocation(), diag::note_previous_decl)
10579          << Var->getDeclName();
10580      }
10581      return true;
10582    }
10583
10584    // Lambdas are not allowed to capture __block variables; they don't
10585    // support the expected semantics.
10586    if (IsLambda && HasBlocksAttr) {
10587      if (BuildAndDiagnose) {
10588        Diag(Loc, diag::err_lambda_capture_block)
10589          << Var->getDeclName();
10590        Diag(Var->getLocation(), diag::note_previous_decl)
10591          << Var->getDeclName();
10592      }
10593      return true;
10594    }
10595
10596    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
10597      // No capture-default
10598      if (BuildAndDiagnose) {
10599        Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
10600        Diag(Var->getLocation(), diag::note_previous_decl)
10601          << Var->getDeclName();
10602        Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
10603             diag::note_lambda_decl);
10604      }
10605      return true;
10606    }
10607
10608    FunctionScopesIndex--;
10609    DC = ParentDC;
10610    Explicit = false;
10611  } while (!Var->getDeclContext()->Equals(DC));
10612
10613  // Walk back down the scope stack, computing the type of the capture at
10614  // each step, checking type-specific requirements, and adding captures if
10615  // requested.
10616  for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
10617       ++I) {
10618    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
10619
10620    // Compute the type of the capture and of a reference to the capture within
10621    // this scope.
10622    if (isa<BlockScopeInfo>(CSI)) {
10623      Expr *CopyExpr = 0;
10624      bool ByRef = false;
10625
10626      // Blocks are not allowed to capture arrays.
10627      if (CaptureType->isArrayType()) {
10628        if (BuildAndDiagnose) {
10629          Diag(Loc, diag::err_ref_array_type);
10630          Diag(Var->getLocation(), diag::note_previous_decl)
10631          << Var->getDeclName();
10632        }
10633        return true;
10634      }
10635
10636      // Forbid the block-capture of autoreleasing variables.
10637      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10638        if (BuildAndDiagnose) {
10639          Diag(Loc, diag::err_arc_autoreleasing_capture)
10640            << /*block*/ 0;
10641          Diag(Var->getLocation(), diag::note_previous_decl)
10642            << Var->getDeclName();
10643        }
10644        return true;
10645      }
10646
10647      if (HasBlocksAttr || CaptureType->isReferenceType()) {
10648        // Block capture by reference does not change the capture or
10649        // declaration reference types.
10650        ByRef = true;
10651      } else {
10652        // Block capture by copy introduces 'const'.
10653        CaptureType = CaptureType.getNonReferenceType().withConst();
10654        DeclRefType = CaptureType;
10655
10656        if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
10657          if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
10658            // The capture logic needs the destructor, so make sure we mark it.
10659            // Usually this is unnecessary because most local variables have
10660            // their destructors marked at declaration time, but parameters are
10661            // an exception because it's technically only the call site that
10662            // actually requires the destructor.
10663            if (isa<ParmVarDecl>(Var))
10664              FinalizeVarWithDestructor(Var, Record);
10665
10666            // According to the blocks spec, the capture of a variable from
10667            // the stack requires a const copy constructor.  This is not true
10668            // of the copy/move done to move a __block variable to the heap.
10669            Expr *DeclRef = new (Context) DeclRefExpr(Var, false,
10670                                                      DeclRefType.withConst(),
10671                                                      VK_LValue, Loc);
10672            ExprResult Result
10673              = PerformCopyInitialization(
10674                  InitializedEntity::InitializeBlock(Var->getLocation(),
10675                                                     CaptureType, false),
10676                  Loc, Owned(DeclRef));
10677
10678            // Build a full-expression copy expression if initialization
10679            // succeeded and used a non-trivial constructor.  Recover from
10680            // errors by pretending that the copy isn't necessary.
10681            if (!Result.isInvalid() &&
10682                !cast<CXXConstructExpr>(Result.get())->getConstructor()
10683                   ->isTrivial()) {
10684              Result = MaybeCreateExprWithCleanups(Result);
10685              CopyExpr = Result.take();
10686            }
10687          }
10688        }
10689      }
10690
10691      // Actually capture the variable.
10692      if (BuildAndDiagnose)
10693        CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
10694                        SourceLocation(), CaptureType, CopyExpr);
10695      Nested = true;
10696      continue;
10697    }
10698
10699    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
10700
10701    // Determine whether we are capturing by reference or by value.
10702    bool ByRef = false;
10703    if (I == N - 1 && Kind != TryCapture_Implicit) {
10704      ByRef = (Kind == TryCapture_ExplicitByRef);
10705    } else {
10706      ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
10707    }
10708
10709    // Compute the type of the field that will capture this variable.
10710    if (ByRef) {
10711      // C++11 [expr.prim.lambda]p15:
10712      //   An entity is captured by reference if it is implicitly or
10713      //   explicitly captured but not captured by copy. It is
10714      //   unspecified whether additional unnamed non-static data
10715      //   members are declared in the closure type for entities
10716      //   captured by reference.
10717      //
10718      // FIXME: It is not clear whether we want to build an lvalue reference
10719      // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
10720      // to do the former, while EDG does the latter. Core issue 1249 will
10721      // clarify, but for now we follow GCC because it's a more permissive and
10722      // easily defensible position.
10723      CaptureType = Context.getLValueReferenceType(DeclRefType);
10724    } else {
10725      // C++11 [expr.prim.lambda]p14:
10726      //   For each entity captured by copy, an unnamed non-static
10727      //   data member is declared in the closure type. The
10728      //   declaration order of these members is unspecified. The type
10729      //   of such a data member is the type of the corresponding
10730      //   captured entity if the entity is not a reference to an
10731      //   object, or the referenced type otherwise. [Note: If the
10732      //   captured entity is a reference to a function, the
10733      //   corresponding data member is also a reference to a
10734      //   function. - end note ]
10735      if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
10736        if (!RefType->getPointeeType()->isFunctionType())
10737          CaptureType = RefType->getPointeeType();
10738      }
10739
10740      // Forbid the lambda copy-capture of autoreleasing variables.
10741      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10742        if (BuildAndDiagnose) {
10743          Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
10744          Diag(Var->getLocation(), diag::note_previous_decl)
10745            << Var->getDeclName();
10746        }
10747        return true;
10748      }
10749    }
10750
10751    // Capture this variable in the lambda.
10752    Expr *CopyExpr = 0;
10753    if (BuildAndDiagnose) {
10754      ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
10755                                          DeclRefType, Loc,
10756                                          I == N-1);
10757      if (!Result.isInvalid())
10758        CopyExpr = Result.take();
10759    }
10760
10761    // Compute the type of a reference to this captured variable.
10762    if (ByRef)
10763      DeclRefType = CaptureType.getNonReferenceType();
10764    else {
10765      // C++ [expr.prim.lambda]p5:
10766      //   The closure type for a lambda-expression has a public inline
10767      //   function call operator [...]. This function call operator is
10768      //   declared const (9.3.1) if and only if the lambda-expressionâs
10769      //   parameter-declaration-clause is not followed by mutable.
10770      DeclRefType = CaptureType.getNonReferenceType();
10771      if (!LSI->Mutable && !CaptureType->isReferenceType())
10772        DeclRefType.addConst();
10773    }
10774
10775    // Add the capture.
10776    if (BuildAndDiagnose)
10777      CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
10778                      EllipsisLoc, CaptureType, CopyExpr);
10779    Nested = true;
10780  }
10781
10782  return false;
10783}
10784
10785bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10786                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
10787  QualType CaptureType;
10788  QualType DeclRefType;
10789  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
10790                            /*BuildAndDiagnose=*/true, CaptureType,
10791                            DeclRefType);
10792}
10793
10794QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
10795  QualType CaptureType;
10796  QualType DeclRefType;
10797
10798  // Determine whether we can capture this variable.
10799  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
10800                         /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
10801    return QualType();
10802
10803  return DeclRefType;
10804}
10805
10806static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
10807                               SourceLocation Loc) {
10808  // Keep track of used but undefined variables.
10809  // FIXME: We shouldn't suppress this warning for static data members.
10810  if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
10811      Var->getLinkage() != ExternalLinkage &&
10812      !(Var->isStaticDataMember() && Var->hasInit())) {
10813    SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
10814    if (old.isInvalid()) old = Loc;
10815  }
10816
10817  SemaRef.tryCaptureVariable(Var, Loc);
10818
10819  Var->setUsed(true);
10820}
10821
10822void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
10823  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10824  // an object that satisfies the requirements for appearing in a
10825  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10826  // is immediately applied."  This function handles the lvalue-to-rvalue
10827  // conversion part.
10828  MaybeODRUseExprs.erase(E->IgnoreParens());
10829}
10830
10831ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
10832  if (!Res.isUsable())
10833    return Res;
10834
10835  // If a constant-expression is a reference to a variable where we delay
10836  // deciding whether it is an odr-use, just assume we will apply the
10837  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
10838  // (a non-type template argument), we have special handling anyway.
10839  UpdateMarkingForLValueToRValue(Res.get());
10840  return Res;
10841}
10842
10843void Sema::CleanupVarDeclMarking() {
10844  for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
10845                                        e = MaybeODRUseExprs.end();
10846       i != e; ++i) {
10847    VarDecl *Var;
10848    SourceLocation Loc;
10849    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
10850      Var = cast<VarDecl>(DRE->getDecl());
10851      Loc = DRE->getLocation();
10852    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
10853      Var = cast<VarDecl>(ME->getMemberDecl());
10854      Loc = ME->getMemberLoc();
10855    } else {
10856      llvm_unreachable("Unexpcted expression");
10857    }
10858
10859    MarkVarDeclODRUsed(*this, Var, Loc);
10860  }
10861
10862  MaybeODRUseExprs.clear();
10863}
10864
10865// Mark a VarDecl referenced, and perform the necessary handling to compute
10866// odr-uses.
10867static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
10868                                    VarDecl *Var, Expr *E) {
10869  Var->setReferenced();
10870
10871  if (!IsPotentiallyEvaluatedContext(SemaRef))
10872    return;
10873
10874  // Implicit instantiation of static data members of class templates.
10875  if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
10876    MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
10877    assert(MSInfo && "Missing member specialization information?");
10878    bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
10879    if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
10880        (!AlreadyInstantiated ||
10881         Var->isUsableInConstantExpressions(SemaRef.Context))) {
10882      if (!AlreadyInstantiated) {
10883        // This is a modification of an existing AST node. Notify listeners.
10884        if (ASTMutationListener *L = SemaRef.getASTMutationListener())
10885          L->StaticDataMemberInstantiated(Var);
10886        MSInfo->setPointOfInstantiation(Loc);
10887      }
10888      SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
10889      if (Var->isUsableInConstantExpressions(SemaRef.Context))
10890        // Do not defer instantiations of variables which could be used in a
10891        // constant expression.
10892        SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
10893      else
10894        SemaRef.PendingInstantiations.push_back(
10895            std::make_pair(Var, PointOfInstantiation));
10896    }
10897  }
10898
10899  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10900  // an object that satisfies the requirements for appearing in a
10901  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10902  // is immediately applied."  We check the first part here, and
10903  // Sema::UpdateMarkingForLValueToRValue deals with the second part.
10904  // Note that we use the C++11 definition everywhere because nothing in
10905  // C++03 depends on whether we get the C++03 version correct. This does not
10906  // apply to references, since they are not objects.
10907  const VarDecl *DefVD;
10908  if (E && !isa<ParmVarDecl>(Var) && !Var->getType()->isReferenceType() &&
10909      Var->isUsableInConstantExpressions(SemaRef.Context) &&
10910      Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE())
10911    SemaRef.MaybeODRUseExprs.insert(E);
10912  else
10913    MarkVarDeclODRUsed(SemaRef, Var, Loc);
10914}
10915
10916/// \brief Mark a variable referenced, and check whether it is odr-used
10917/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
10918/// used directly for normal expressions referring to VarDecl.
10919void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
10920  DoMarkVarDeclReferenced(*this, Loc, Var, 0);
10921}
10922
10923static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
10924                               Decl *D, Expr *E) {
10925  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
10926    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
10927    return;
10928  }
10929
10930  SemaRef.MarkAnyDeclReferenced(Loc, D);
10931
10932  // If this is a call to a method via a cast, also mark the method in the
10933  // derived class used in case codegen can devirtualize the call.
10934  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
10935  if (!ME)
10936    return;
10937  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
10938  if (!MD)
10939    return;
10940  const Expr *Base = ME->getBase();
10941  const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
10942  if (!MostDerivedClassDecl)
10943    return;
10944  CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
10945  if (!DM)
10946    return;
10947  SemaRef.MarkAnyDeclReferenced(Loc, DM);
10948}
10949
10950/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
10951void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
10952  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
10953}
10954
10955/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
10956void Sema::MarkMemberReferenced(MemberExpr *E) {
10957  MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
10958}
10959
10960/// \brief Perform marking for a reference to an arbitrary declaration.  It
10961/// marks the declaration referenced, and performs odr-use checking for functions
10962/// and variables. This method should not be used when building an normal
10963/// expression which refers to a variable.
10964void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
10965  if (VarDecl *VD = dyn_cast<VarDecl>(D))
10966    MarkVariableReferenced(Loc, VD);
10967  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
10968    MarkFunctionReferenced(Loc, FD);
10969  else
10970    D->setReferenced();
10971}
10972
10973namespace {
10974  // Mark all of the declarations referenced
10975  // FIXME: Not fully implemented yet! We need to have a better understanding
10976  // of when we're entering
10977  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
10978    Sema &S;
10979    SourceLocation Loc;
10980
10981  public:
10982    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
10983
10984    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
10985
10986    bool TraverseTemplateArgument(const TemplateArgument &Arg);
10987    bool TraverseRecordType(RecordType *T);
10988  };
10989}
10990
10991bool MarkReferencedDecls::TraverseTemplateArgument(
10992  const TemplateArgument &Arg) {
10993  if (Arg.getKind() == TemplateArgument::Declaration) {
10994    if (Decl *D = Arg.getAsDecl())
10995      S.MarkAnyDeclReferenced(Loc, D);
10996  }
10997
10998  return Inherited::TraverseTemplateArgument(Arg);
10999}
11000
11001bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
11002  if (ClassTemplateSpecializationDecl *Spec
11003                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
11004    const TemplateArgumentList &Args = Spec->getTemplateArgs();
11005    return TraverseTemplateArguments(Args.data(), Args.size());
11006  }
11007
11008  return true;
11009}
11010
11011void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
11012  MarkReferencedDecls Marker(*this, Loc);
11013  Marker.TraverseType(Context.getCanonicalType(T));
11014}
11015
11016namespace {
11017  /// \brief Helper class that marks all of the declarations referenced by
11018  /// potentially-evaluated subexpressions as "referenced".
11019  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
11020    Sema &S;
11021    bool SkipLocalVariables;
11022
11023  public:
11024    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
11025
11026    EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
11027      : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
11028
11029    void VisitDeclRefExpr(DeclRefExpr *E) {
11030      // If we were asked not to visit local variables, don't.
11031      if (SkipLocalVariables) {
11032        if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
11033          if (VD->hasLocalStorage())
11034            return;
11035      }
11036
11037      S.MarkDeclRefReferenced(E);
11038    }
11039
11040    void VisitMemberExpr(MemberExpr *E) {
11041      S.MarkMemberReferenced(E);
11042      Inherited::VisitMemberExpr(E);
11043    }
11044
11045    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
11046      S.MarkFunctionReferenced(E->getLocStart(),
11047            const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
11048      Visit(E->getSubExpr());
11049    }
11050
11051    void VisitCXXNewExpr(CXXNewExpr *E) {
11052      if (E->getOperatorNew())
11053        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
11054      if (E->getOperatorDelete())
11055        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11056      Inherited::VisitCXXNewExpr(E);
11057    }
11058
11059    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
11060      if (E->getOperatorDelete())
11061        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11062      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
11063      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
11064        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
11065        S.MarkFunctionReferenced(E->getLocStart(),
11066                                    S.LookupDestructor(Record));
11067      }
11068
11069      Inherited::VisitCXXDeleteExpr(E);
11070    }
11071
11072    void VisitCXXConstructExpr(CXXConstructExpr *E) {
11073      S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
11074      Inherited::VisitCXXConstructExpr(E);
11075    }
11076
11077    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
11078      Visit(E->getExpr());
11079    }
11080
11081    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11082      Inherited::VisitImplicitCastExpr(E);
11083
11084      if (E->getCastKind() == CK_LValueToRValue)
11085        S.UpdateMarkingForLValueToRValue(E->getSubExpr());
11086    }
11087  };
11088}
11089
11090/// \brief Mark any declarations that appear within this expression or any
11091/// potentially-evaluated subexpressions as "referenced".
11092///
11093/// \param SkipLocalVariables If true, don't mark local variables as
11094/// 'referenced'.
11095void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
11096                                            bool SkipLocalVariables) {
11097  EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
11098}
11099
11100/// \brief Emit a diagnostic that describes an effect on the run-time behavior
11101/// of the program being compiled.
11102///
11103/// This routine emits the given diagnostic when the code currently being
11104/// type-checked is "potentially evaluated", meaning that there is a
11105/// possibility that the code will actually be executable. Code in sizeof()
11106/// expressions, code used only during overload resolution, etc., are not
11107/// potentially evaluated. This routine will suppress such diagnostics or,
11108/// in the absolutely nutty case of potentially potentially evaluated
11109/// expressions (C++ typeid), queue the diagnostic to potentially emit it
11110/// later.
11111///
11112/// This routine should be used for all diagnostics that describe the run-time
11113/// behavior of a program, such as passing a non-POD value through an ellipsis.
11114/// Failure to do so will likely result in spurious diagnostics or failures
11115/// during overload resolution or within sizeof/alignof/typeof/typeid.
11116bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
11117                               const PartialDiagnostic &PD) {
11118  switch (ExprEvalContexts.back().Context) {
11119  case Unevaluated:
11120    // The argument will never be evaluated, so don't complain.
11121    break;
11122
11123  case ConstantEvaluated:
11124    // Relevant diagnostics should be produced by constant evaluation.
11125    break;
11126
11127  case PotentiallyEvaluated:
11128  case PotentiallyEvaluatedIfUsed:
11129    if (Statement && getCurFunctionOrMethodDecl()) {
11130      FunctionScopes.back()->PossiblyUnreachableDiags.
11131        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
11132    }
11133    else
11134      Diag(Loc, PD);
11135
11136    return true;
11137  }
11138
11139  return false;
11140}
11141
11142bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
11143                               CallExpr *CE, FunctionDecl *FD) {
11144  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
11145    return false;
11146
11147  // If we're inside a decltype's expression, don't check for a valid return
11148  // type or construct temporaries until we know whether this is the last call.
11149  if (ExprEvalContexts.back().IsDecltype) {
11150    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
11151    return false;
11152  }
11153
11154  class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
11155    FunctionDecl *FD;
11156    CallExpr *CE;
11157
11158  public:
11159    CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
11160      : FD(FD), CE(CE) { }
11161
11162    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
11163      if (!FD) {
11164        S.Diag(Loc, diag::err_call_incomplete_return)
11165          << T << CE->getSourceRange();
11166        return;
11167      }
11168
11169      S.Diag(Loc, diag::err_call_function_incomplete_return)
11170        << CE->getSourceRange() << FD->getDeclName() << T;
11171      S.Diag(FD->getLocation(),
11172             diag::note_function_with_incomplete_return_type_declared_here)
11173        << FD->getDeclName();
11174    }
11175  } Diagnoser(FD, CE);
11176
11177  if (RequireCompleteType(Loc, ReturnType, Diagnoser))
11178    return true;
11179
11180  return false;
11181}
11182
11183// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
11184// will prevent this condition from triggering, which is what we want.
11185void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
11186  SourceLocation Loc;
11187
11188  unsigned diagnostic = diag::warn_condition_is_assignment;
11189  bool IsOrAssign = false;
11190
11191  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
11192    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
11193      return;
11194
11195    IsOrAssign = Op->getOpcode() == BO_OrAssign;
11196
11197    // Greylist some idioms by putting them into a warning subcategory.
11198    if (ObjCMessageExpr *ME
11199          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
11200      Selector Sel = ME->getSelector();
11201
11202      // self = [<foo> init...]
11203      if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
11204        diagnostic = diag::warn_condition_is_idiomatic_assignment;
11205
11206      // <foo> = [<bar> nextObject]
11207      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
11208        diagnostic = diag::warn_condition_is_idiomatic_assignment;
11209    }
11210
11211    Loc = Op->getOperatorLoc();
11212  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
11213    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
11214      return;
11215
11216    IsOrAssign = Op->getOperator() == OO_PipeEqual;
11217    Loc = Op->getOperatorLoc();
11218  } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
11219    return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
11220  else {
11221    // Not an assignment.
11222    return;
11223  }
11224
11225  Diag(Loc, diagnostic) << E->getSourceRange();
11226
11227  SourceLocation Open = E->getLocStart();
11228  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
11229  Diag(Loc, diag::note_condition_assign_silence)
11230        << FixItHint::CreateInsertion(Open, "(")
11231        << FixItHint::CreateInsertion(Close, ")");
11232
11233  if (IsOrAssign)
11234    Diag(Loc, diag::note_condition_or_assign_to_comparison)
11235      << FixItHint::CreateReplacement(Loc, "!=");
11236  else
11237    Diag(Loc, diag::note_condition_assign_to_comparison)
11238      << FixItHint::CreateReplacement(Loc, "==");
11239}
11240
11241/// \brief Redundant parentheses over an equality comparison can indicate
11242/// that the user intended an assignment used as condition.
11243void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
11244  // Don't warn if the parens came from a macro.
11245  SourceLocation parenLoc = ParenE->getLocStart();
11246  if (parenLoc.isInvalid() || parenLoc.isMacroID())
11247    return;
11248  // Don't warn for dependent expressions.
11249  if (ParenE->isTypeDependent())
11250    return;
11251
11252  Expr *E = ParenE->IgnoreParens();
11253
11254  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
11255    if (opE->getOpcode() == BO_EQ &&
11256        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
11257                                                           == Expr::MLV_Valid) {
11258      SourceLocation Loc = opE->getOperatorLoc();
11259
11260      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
11261      SourceRange ParenERange = ParenE->getSourceRange();
11262      Diag(Loc, diag::note_equality_comparison_silence)
11263        << FixItHint::CreateRemoval(ParenERange.getBegin())
11264        << FixItHint::CreateRemoval(ParenERange.getEnd());
11265      Diag(Loc, diag::note_equality_comparison_to_assign)
11266        << FixItHint::CreateReplacement(Loc, "=");
11267    }
11268}
11269
11270ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
11271  DiagnoseAssignmentAsCondition(E);
11272  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
11273    DiagnoseEqualityWithExtraParens(parenE);
11274
11275  ExprResult result = CheckPlaceholderExpr(E);
11276  if (result.isInvalid()) return ExprError();
11277  E = result.take();
11278
11279  if (!E->isTypeDependent()) {
11280    if (getLangOpts().CPlusPlus)
11281      return CheckCXXBooleanCondition(E); // C++ 6.4p4
11282
11283    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
11284    if (ERes.isInvalid())
11285      return ExprError();
11286    E = ERes.take();
11287
11288    QualType T = E->getType();
11289    if (!T->isScalarType()) { // C99 6.8.4.1p1
11290      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
11291        << T << E->getSourceRange();
11292      return ExprError();
11293    }
11294  }
11295
11296  return Owned(E);
11297}
11298
11299ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
11300                                       Expr *SubExpr) {
11301  if (!SubExpr)
11302    return ExprError();
11303
11304  return CheckBooleanCondition(SubExpr, Loc);
11305}
11306
11307namespace {
11308  /// A visitor for rebuilding a call to an __unknown_any expression
11309  /// to have an appropriate type.
11310  struct RebuildUnknownAnyFunction
11311    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
11312
11313    Sema &S;
11314
11315    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
11316
11317    ExprResult VisitStmt(Stmt *S) {
11318      llvm_unreachable("unexpected statement!");
11319    }
11320
11321    ExprResult VisitExpr(Expr *E) {
11322      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
11323        << E->getSourceRange();
11324      return ExprError();
11325    }
11326
11327    /// Rebuild an expression which simply semantically wraps another
11328    /// expression which it shares the type and value kind of.
11329    template <class T> ExprResult rebuildSugarExpr(T *E) {
11330      ExprResult SubResult = Visit(E->getSubExpr());
11331      if (SubResult.isInvalid()) return ExprError();
11332
11333      Expr *SubExpr = SubResult.take();
11334      E->setSubExpr(SubExpr);
11335      E->setType(SubExpr->getType());
11336      E->setValueKind(SubExpr->getValueKind());
11337      assert(E->getObjectKind() == OK_Ordinary);
11338      return E;
11339    }
11340
11341    ExprResult VisitParenExpr(ParenExpr *E) {
11342      return rebuildSugarExpr(E);
11343    }
11344
11345    ExprResult VisitUnaryExtension(UnaryOperator *E) {
11346      return rebuildSugarExpr(E);
11347    }
11348
11349    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11350      ExprResult SubResult = Visit(E->getSubExpr());
11351      if (SubResult.isInvalid()) return ExprError();
11352
11353      Expr *SubExpr = SubResult.take();
11354      E->setSubExpr(SubExpr);
11355      E->setType(S.Context.getPointerType(SubExpr->getType()));
11356      assert(E->getValueKind() == VK_RValue);
11357      assert(E->getObjectKind() == OK_Ordinary);
11358      return E;
11359    }
11360
11361    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
11362      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
11363
11364      E->setType(VD->getType());
11365
11366      assert(E->getValueKind() == VK_RValue);
11367      if (S.getLangOpts().CPlusPlus &&
11368          !(isa<CXXMethodDecl>(VD) &&
11369            cast<CXXMethodDecl>(VD)->isInstance()))
11370        E->setValueKind(VK_LValue);
11371
11372      return E;
11373    }
11374
11375    ExprResult VisitMemberExpr(MemberExpr *E) {
11376      return resolveDecl(E, E->getMemberDecl());
11377    }
11378
11379    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11380      return resolveDecl(E, E->getDecl());
11381    }
11382  };
11383}
11384
11385/// Given a function expression of unknown-any type, try to rebuild it
11386/// to have a function type.
11387static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
11388  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
11389  if (Result.isInvalid()) return ExprError();
11390  return S.DefaultFunctionArrayConversion(Result.take());
11391}
11392
11393namespace {
11394  /// A visitor for rebuilding an expression of type __unknown_anytype
11395  /// into one which resolves the type directly on the referring
11396  /// expression.  Strict preservation of the original source
11397  /// structure is not a goal.
11398  struct RebuildUnknownAnyExpr
11399    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
11400
11401    Sema &S;
11402
11403    /// The current destination type.
11404    QualType DestType;
11405
11406    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
11407      : S(S), DestType(CastType) {}
11408
11409    ExprResult VisitStmt(Stmt *S) {
11410      llvm_unreachable("unexpected statement!");
11411    }
11412
11413    ExprResult VisitExpr(Expr *E) {
11414      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11415        << E->getSourceRange();
11416      return ExprError();
11417    }
11418
11419    ExprResult VisitCallExpr(CallExpr *E);
11420    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
11421
11422    /// Rebuild an expression which simply semantically wraps another
11423    /// expression which it shares the type and value kind of.
11424    template <class T> ExprResult rebuildSugarExpr(T *E) {
11425      ExprResult SubResult = Visit(E->getSubExpr());
11426      if (SubResult.isInvalid()) return ExprError();
11427      Expr *SubExpr = SubResult.take();
11428      E->setSubExpr(SubExpr);
11429      E->setType(SubExpr->getType());
11430      E->setValueKind(SubExpr->getValueKind());
11431      assert(E->getObjectKind() == OK_Ordinary);
11432      return E;
11433    }
11434
11435    ExprResult VisitParenExpr(ParenExpr *E) {
11436      return rebuildSugarExpr(E);
11437    }
11438
11439    ExprResult VisitUnaryExtension(UnaryOperator *E) {
11440      return rebuildSugarExpr(E);
11441    }
11442
11443    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11444      const PointerType *Ptr = DestType->getAs<PointerType>();
11445      if (!Ptr) {
11446        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
11447          << E->getSourceRange();
11448        return ExprError();
11449      }
11450      assert(E->getValueKind() == VK_RValue);
11451      assert(E->getObjectKind() == OK_Ordinary);
11452      E->setType(DestType);
11453
11454      // Build the sub-expression as if it were an object of the pointee type.
11455      DestType = Ptr->getPointeeType();
11456      ExprResult SubResult = Visit(E->getSubExpr());
11457      if (SubResult.isInvalid()) return ExprError();
11458      E->setSubExpr(SubResult.take());
11459      return E;
11460    }
11461
11462    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
11463
11464    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
11465
11466    ExprResult VisitMemberExpr(MemberExpr *E) {
11467      return resolveDecl(E, E->getMemberDecl());
11468    }
11469
11470    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11471      return resolveDecl(E, E->getDecl());
11472    }
11473  };
11474}
11475
11476/// Rebuilds a call expression which yielded __unknown_anytype.
11477ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
11478  Expr *CalleeExpr = E->getCallee();
11479
11480  enum FnKind {
11481    FK_MemberFunction,
11482    FK_FunctionPointer,
11483    FK_BlockPointer
11484  };
11485
11486  FnKind Kind;
11487  QualType CalleeType = CalleeExpr->getType();
11488  if (CalleeType == S.Context.BoundMemberTy) {
11489    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
11490    Kind = FK_MemberFunction;
11491    CalleeType = Expr::findBoundMemberType(CalleeExpr);
11492  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
11493    CalleeType = Ptr->getPointeeType();
11494    Kind = FK_FunctionPointer;
11495  } else {
11496    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
11497    Kind = FK_BlockPointer;
11498  }
11499  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
11500
11501  // Verify that this is a legal result type of a function.
11502  if (DestType->isArrayType() || DestType->isFunctionType()) {
11503    unsigned diagID = diag::err_func_returning_array_function;
11504    if (Kind == FK_BlockPointer)
11505      diagID = diag::err_block_returning_array_function;
11506
11507    S.Diag(E->getExprLoc(), diagID)
11508      << DestType->isFunctionType() << DestType;
11509    return ExprError();
11510  }
11511
11512  // Otherwise, go ahead and set DestType as the call's result.
11513  E->setType(DestType.getNonLValueExprType(S.Context));
11514  E->setValueKind(Expr::getValueKindForType(DestType));
11515  assert(E->getObjectKind() == OK_Ordinary);
11516
11517  // Rebuild the function type, replacing the result type with DestType.
11518  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
11519    DestType = S.Context.getFunctionType(DestType,
11520                                         Proto->arg_type_begin(),
11521                                         Proto->getNumArgs(),
11522                                         Proto->getExtProtoInfo());
11523  else
11524    DestType = S.Context.getFunctionNoProtoType(DestType,
11525                                                FnType->getExtInfo());
11526
11527  // Rebuild the appropriate pointer-to-function type.
11528  switch (Kind) {
11529  case FK_MemberFunction:
11530    // Nothing to do.
11531    break;
11532
11533  case FK_FunctionPointer:
11534    DestType = S.Context.getPointerType(DestType);
11535    break;
11536
11537  case FK_BlockPointer:
11538    DestType = S.Context.getBlockPointerType(DestType);
11539    break;
11540  }
11541
11542  // Finally, we can recurse.
11543  ExprResult CalleeResult = Visit(CalleeExpr);
11544  if (!CalleeResult.isUsable()) return ExprError();
11545  E->setCallee(CalleeResult.take());
11546
11547  // Bind a temporary if necessary.
11548  return S.MaybeBindToTemporary(E);
11549}
11550
11551ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
11552  // Verify that this is a legal result type of a call.
11553  if (DestType->isArrayType() || DestType->isFunctionType()) {
11554    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
11555      << DestType->isFunctionType() << DestType;
11556    return ExprError();
11557  }
11558
11559  // Rewrite the method result type if available.
11560  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
11561    assert(Method->getResultType() == S.Context.UnknownAnyTy);
11562    Method->setResultType(DestType);
11563  }
11564
11565  // Change the type of the message.
11566  E->setType(DestType.getNonReferenceType());
11567  E->setValueKind(Expr::getValueKindForType(DestType));
11568
11569  return S.MaybeBindToTemporary(E);
11570}
11571
11572ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
11573  // The only case we should ever see here is a function-to-pointer decay.
11574  if (E->getCastKind() == CK_FunctionToPointerDecay) {
11575    assert(E->getValueKind() == VK_RValue);
11576    assert(E->getObjectKind() == OK_Ordinary);
11577
11578    E->setType(DestType);
11579
11580    // Rebuild the sub-expression as the pointee (function) type.
11581    DestType = DestType->castAs<PointerType>()->getPointeeType();
11582
11583    ExprResult Result = Visit(E->getSubExpr());
11584    if (!Result.isUsable()) return ExprError();
11585
11586    E->setSubExpr(Result.take());
11587    return S.Owned(E);
11588  } else if (E->getCastKind() == CK_LValueToRValue) {
11589    assert(E->getValueKind() == VK_RValue);
11590    assert(E->getObjectKind() == OK_Ordinary);
11591
11592    assert(isa<BlockPointerType>(E->getType()));
11593
11594    E->setType(DestType);
11595
11596    // The sub-expression has to be a lvalue reference, so rebuild it as such.
11597    DestType = S.Context.getLValueReferenceType(DestType);
11598
11599    ExprResult Result = Visit(E->getSubExpr());
11600    if (!Result.isUsable()) return ExprError();
11601
11602    E->setSubExpr(Result.take());
11603    return S.Owned(E);
11604  } else {
11605    llvm_unreachable("Unhandled cast type!");
11606  }
11607}
11608
11609ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
11610  ExprValueKind ValueKind = VK_LValue;
11611  QualType Type = DestType;
11612
11613  // We know how to make this work for certain kinds of decls:
11614
11615  //  - functions
11616  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
11617    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
11618      DestType = Ptr->getPointeeType();
11619      ExprResult Result = resolveDecl(E, VD);
11620      if (Result.isInvalid()) return ExprError();
11621      return S.ImpCastExprToType(Result.take(), Type,
11622                                 CK_FunctionToPointerDecay, VK_RValue);
11623    }
11624
11625    if (!Type->isFunctionType()) {
11626      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
11627        << VD << E->getSourceRange();
11628      return ExprError();
11629    }
11630
11631    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
11632      if (MD->isInstance()) {
11633        ValueKind = VK_RValue;
11634        Type = S.Context.BoundMemberTy;
11635      }
11636
11637    // Function references aren't l-values in C.
11638    if (!S.getLangOpts().CPlusPlus)
11639      ValueKind = VK_RValue;
11640
11641  //  - variables
11642  } else if (isa<VarDecl>(VD)) {
11643    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
11644      Type = RefTy->getPointeeType();
11645    } else if (Type->isFunctionType()) {
11646      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
11647        << VD << E->getSourceRange();
11648      return ExprError();
11649    }
11650
11651  //  - nothing else
11652  } else {
11653    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
11654      << VD << E->getSourceRange();
11655    return ExprError();
11656  }
11657
11658  VD->setType(DestType);
11659  E->setType(Type);
11660  E->setValueKind(ValueKind);
11661  return S.Owned(E);
11662}
11663
11664/// Check a cast of an unknown-any type.  We intentionally only
11665/// trigger this for C-style casts.
11666ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11667                                     Expr *CastExpr, CastKind &CastKind,
11668                                     ExprValueKind &VK, CXXCastPath &Path) {
11669  // Rewrite the casted expression from scratch.
11670  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
11671  if (!result.isUsable()) return ExprError();
11672
11673  CastExpr = result.take();
11674  VK = CastExpr->getValueKind();
11675  CastKind = CK_NoOp;
11676
11677  return CastExpr;
11678}
11679
11680ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
11681  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
11682}
11683
11684static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
11685  Expr *orig = E;
11686  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
11687  while (true) {
11688    E = E->IgnoreParenImpCasts();
11689    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
11690      E = call->getCallee();
11691      diagID = diag::err_uncasted_call_of_unknown_any;
11692    } else {
11693      break;
11694    }
11695  }
11696
11697  SourceLocation loc;
11698  NamedDecl *d;
11699  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
11700    loc = ref->getLocation();
11701    d = ref->getDecl();
11702  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
11703    loc = mem->getMemberLoc();
11704    d = mem->getMemberDecl();
11705  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
11706    diagID = diag::err_uncasted_call_of_unknown_any;
11707    loc = msg->getSelectorStartLoc();
11708    d = msg->getMethodDecl();
11709    if (!d) {
11710      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
11711        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
11712        << orig->getSourceRange();
11713      return ExprError();
11714    }
11715  } else {
11716    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11717      << E->getSourceRange();
11718    return ExprError();
11719  }
11720
11721  S.Diag(loc, diagID) << d << orig->getSourceRange();
11722
11723  // Never recoverable.
11724  return ExprError();
11725}
11726
11727/// Check for operands with placeholder types and complain if found.
11728/// Returns true if there was an error and no recovery was possible.
11729ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
11730  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
11731  if (!placeholderType) return Owned(E);
11732
11733  switch (placeholderType->getKind()) {
11734
11735  // Overloaded expressions.
11736  case BuiltinType::Overload: {
11737    // Try to resolve a single function template specialization.
11738    // This is obligatory.
11739    ExprResult result = Owned(E);
11740    if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
11741      return result;
11742
11743    // If that failed, try to recover with a call.
11744    } else {
11745      tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
11746                           /*complain*/ true);
11747      return result;
11748    }
11749  }
11750
11751  // Bound member functions.
11752  case BuiltinType::BoundMember: {
11753    ExprResult result = Owned(E);
11754    tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
11755                         /*complain*/ true);
11756    return result;
11757  }
11758
11759  // ARC unbridged casts.
11760  case BuiltinType::ARCUnbridgedCast: {
11761    Expr *realCast = stripARCUnbridgedCast(E);
11762    diagnoseARCUnbridgedCast(realCast);
11763    return Owned(realCast);
11764  }
11765
11766  // Expressions of unknown type.
11767  case BuiltinType::UnknownAny:
11768    return diagnoseUnknownAnyExpr(*this, E);
11769
11770  // Pseudo-objects.
11771  case BuiltinType::PseudoObject:
11772    return checkPseudoObjectRValue(E);
11773
11774  case BuiltinType::BuiltinFn:
11775    Diag(E->getLocStart(), diag::err_builtin_fn_use);
11776    return ExprError();
11777
11778  // Everything else should be impossible.
11779#define BUILTIN_TYPE(Id, SingletonId) \
11780  case BuiltinType::Id:
11781#define PLACEHOLDER_TYPE(Id, SingletonId)
11782#include "clang/AST/BuiltinTypes.def"
11783    break;
11784  }
11785
11786  llvm_unreachable("invalid placeholder type!");
11787}
11788
11789bool Sema::CheckCaseExpression(Expr *E) {
11790  if (E->isTypeDependent())
11791    return true;
11792  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
11793    return E->getType()->isIntegralOrEnumerationType();
11794  return false;
11795}
11796
11797/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
11798ExprResult
11799Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
11800  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
11801         "Unknown Objective-C Boolean value!");
11802  QualType BoolT = Context.ObjCBuiltinBoolTy;
11803  if (!Context.getBOOLDecl()) {
11804    LookupResult Result(*this, &Context.Idents.get("BOOL"), SourceLocation(),
11805                        Sema::LookupOrdinaryName);
11806    if (LookupName(Result, getCurScope())) {
11807      NamedDecl *ND = Result.getFoundDecl();
11808      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
11809        Context.setBOOLDecl(TD);
11810    }
11811  }
11812  if (Context.getBOOLDecl())
11813    BoolT = Context.getBOOLType();
11814  return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
11815                                        BoolT, OpLoc));
11816}
11817