1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/DeclSpec.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ParsedTemplate.h"
20#include "clang/Sema/ScopeInfo.h"
21#include "clang/Sema/Scope.h"
22#include "clang/Sema/TemplateDeduction.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/CXXInheritance.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/ExprObjC.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/Preprocessor.h"
33#include "TypeLocBuilder.h"
34#include "llvm/ADT/APInt.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/Support/ErrorHandling.h"
37using namespace clang;
38using namespace sema;
39
40ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
41                                   IdentifierInfo &II,
42                                   SourceLocation NameLoc,
43                                   Scope *S, CXXScopeSpec &SS,
44                                   ParsedType ObjectTypePtr,
45                                   bool EnteringContext) {
46  // Determine where to perform name lookup.
47
48  // FIXME: This area of the standard is very messy, and the current
49  // wording is rather unclear about which scopes we search for the
50  // destructor name; see core issues 399 and 555. Issue 399 in
51  // particular shows where the current description of destructor name
52  // lookup is completely out of line with existing practice, e.g.,
53  // this appears to be ill-formed:
54  //
55  //   namespace N {
56  //     template <typename T> struct S {
57  //       ~S();
58  //     };
59  //   }
60  //
61  //   void f(N::S<int>* s) {
62  //     s->N::S<int>::~S();
63  //   }
64  //
65  // See also PR6358 and PR6359.
66  // For this reason, we're currently only doing the C++03 version of this
67  // code; the C++0x version has to wait until we get a proper spec.
68  QualType SearchType;
69  DeclContext *LookupCtx = 0;
70  bool isDependent = false;
71  bool LookInScope = false;
72
73  // If we have an object type, it's because we are in a
74  // pseudo-destructor-expression or a member access expression, and
75  // we know what type we're looking for.
76  if (ObjectTypePtr)
77    SearchType = GetTypeFromParser(ObjectTypePtr);
78
79  if (SS.isSet()) {
80    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
81
82    bool AlreadySearched = false;
83    bool LookAtPrefix = true;
84    // C++ [basic.lookup.qual]p6:
85    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
86    //   the type-names are looked up as types in the scope designated by the
87    //   nested-name-specifier. In a qualified-id of the form:
88    //
89    //     ::[opt] nested-name-specifier  ~ class-name
90    //
91    //   where the nested-name-specifier designates a namespace scope, and in
92    //   a qualified-id of the form:
93    //
94    //     ::opt nested-name-specifier class-name ::  ~ class-name
95    //
96    //   the class-names are looked up as types in the scope designated by
97    //   the nested-name-specifier.
98    //
99    // Here, we check the first case (completely) and determine whether the
100    // code below is permitted to look at the prefix of the
101    // nested-name-specifier.
102    DeclContext *DC = computeDeclContext(SS, EnteringContext);
103    if (DC && DC->isFileContext()) {
104      AlreadySearched = true;
105      LookupCtx = DC;
106      isDependent = false;
107    } else if (DC && isa<CXXRecordDecl>(DC))
108      LookAtPrefix = false;
109
110    // The second case from the C++03 rules quoted further above.
111    NestedNameSpecifier *Prefix = 0;
112    if (AlreadySearched) {
113      // Nothing left to do.
114    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
115      CXXScopeSpec PrefixSS;
116      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
117      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
118      isDependent = isDependentScopeSpecifier(PrefixSS);
119    } else if (ObjectTypePtr) {
120      LookupCtx = computeDeclContext(SearchType);
121      isDependent = SearchType->isDependentType();
122    } else {
123      LookupCtx = computeDeclContext(SS, EnteringContext);
124      isDependent = LookupCtx && LookupCtx->isDependentContext();
125    }
126
127    LookInScope = false;
128  } else if (ObjectTypePtr) {
129    // C++ [basic.lookup.classref]p3:
130    //   If the unqualified-id is ~type-name, the type-name is looked up
131    //   in the context of the entire postfix-expression. If the type T
132    //   of the object expression is of a class type C, the type-name is
133    //   also looked up in the scope of class C. At least one of the
134    //   lookups shall find a name that refers to (possibly
135    //   cv-qualified) T.
136    LookupCtx = computeDeclContext(SearchType);
137    isDependent = SearchType->isDependentType();
138    assert((isDependent || !SearchType->isIncompleteType()) &&
139           "Caller should have completed object type");
140
141    LookInScope = true;
142  } else {
143    // Perform lookup into the current scope (only).
144    LookInScope = true;
145  }
146
147  TypeDecl *NonMatchingTypeDecl = 0;
148  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
149  for (unsigned Step = 0; Step != 2; ++Step) {
150    // Look for the name first in the computed lookup context (if we
151    // have one) and, if that fails to find a match, in the scope (if
152    // we're allowed to look there).
153    Found.clear();
154    if (Step == 0 && LookupCtx)
155      LookupQualifiedName(Found, LookupCtx);
156    else if (Step == 1 && LookInScope && S)
157      LookupName(Found, S);
158    else
159      continue;
160
161    // FIXME: Should we be suppressing ambiguities here?
162    if (Found.isAmbiguous())
163      return ParsedType();
164
165    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
166      QualType T = Context.getTypeDeclType(Type);
167
168      if (SearchType.isNull() || SearchType->isDependentType() ||
169          Context.hasSameUnqualifiedType(T, SearchType)) {
170        // We found our type!
171
172        return ParsedType::make(T);
173      }
174
175      if (!SearchType.isNull())
176        NonMatchingTypeDecl = Type;
177    }
178
179    // If the name that we found is a class template name, and it is
180    // the same name as the template name in the last part of the
181    // nested-name-specifier (if present) or the object type, then
182    // this is the destructor for that class.
183    // FIXME: This is a workaround until we get real drafting for core
184    // issue 399, for which there isn't even an obvious direction.
185    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
186      QualType MemberOfType;
187      if (SS.isSet()) {
188        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
189          // Figure out the type of the context, if it has one.
190          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
191            MemberOfType = Context.getTypeDeclType(Record);
192        }
193      }
194      if (MemberOfType.isNull())
195        MemberOfType = SearchType;
196
197      if (MemberOfType.isNull())
198        continue;
199
200      // We're referring into a class template specialization. If the
201      // class template we found is the same as the template being
202      // specialized, we found what we are looking for.
203      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
204        if (ClassTemplateSpecializationDecl *Spec
205              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
206          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
207                Template->getCanonicalDecl())
208            return ParsedType::make(MemberOfType);
209        }
210
211        continue;
212      }
213
214      // We're referring to an unresolved class template
215      // specialization. Determine whether we class template we found
216      // is the same as the template being specialized or, if we don't
217      // know which template is being specialized, that it at least
218      // has the same name.
219      if (const TemplateSpecializationType *SpecType
220            = MemberOfType->getAs<TemplateSpecializationType>()) {
221        TemplateName SpecName = SpecType->getTemplateName();
222
223        // The class template we found is the same template being
224        // specialized.
225        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
226          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
227            return ParsedType::make(MemberOfType);
228
229          continue;
230        }
231
232        // The class template we found has the same name as the
233        // (dependent) template name being specialized.
234        if (DependentTemplateName *DepTemplate
235                                    = SpecName.getAsDependentTemplateName()) {
236          if (DepTemplate->isIdentifier() &&
237              DepTemplate->getIdentifier() == Template->getIdentifier())
238            return ParsedType::make(MemberOfType);
239
240          continue;
241        }
242      }
243    }
244  }
245
246  if (isDependent) {
247    // We didn't find our type, but that's okay: it's dependent
248    // anyway.
249
250    // FIXME: What if we have no nested-name-specifier?
251    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
252                                   SS.getWithLocInContext(Context),
253                                   II, NameLoc);
254    return ParsedType::make(T);
255  }
256
257  if (NonMatchingTypeDecl) {
258    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
259    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
260      << T << SearchType;
261    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
262      << T;
263  } else if (ObjectTypePtr)
264    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
265      << &II;
266  else
267    Diag(NameLoc, diag::err_destructor_class_name);
268
269  return ParsedType();
270}
271
272ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
273    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
274      return ParsedType();
275    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
276           && "only get destructor types from declspecs");
277    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
278    QualType SearchType = GetTypeFromParser(ObjectType);
279    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
280      return ParsedType::make(T);
281    }
282
283    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
284      << T << SearchType;
285    return ParsedType();
286}
287
288/// \brief Build a C++ typeid expression with a type operand.
289ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
290                                SourceLocation TypeidLoc,
291                                TypeSourceInfo *Operand,
292                                SourceLocation RParenLoc) {
293  // C++ [expr.typeid]p4:
294  //   The top-level cv-qualifiers of the lvalue expression or the type-id
295  //   that is the operand of typeid are always ignored.
296  //   If the type of the type-id is a class type or a reference to a class
297  //   type, the class shall be completely-defined.
298  Qualifiers Quals;
299  QualType T
300    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
301                                      Quals);
302  if (T->getAs<RecordType>() &&
303      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
304    return ExprError();
305
306  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
307                                           Operand,
308                                           SourceRange(TypeidLoc, RParenLoc)));
309}
310
311/// \brief Build a C++ typeid expression with an expression operand.
312ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
313                                SourceLocation TypeidLoc,
314                                Expr *E,
315                                SourceLocation RParenLoc) {
316  if (E && !E->isTypeDependent()) {
317    if (E->getType()->isPlaceholderType()) {
318      ExprResult result = CheckPlaceholderExpr(E);
319      if (result.isInvalid()) return ExprError();
320      E = result.take();
321    }
322
323    QualType T = E->getType();
324    if (const RecordType *RecordT = T->getAs<RecordType>()) {
325      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
326      // C++ [expr.typeid]p3:
327      //   [...] If the type of the expression is a class type, the class
328      //   shall be completely-defined.
329      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
330        return ExprError();
331
332      // C++ [expr.typeid]p3:
333      //   When typeid is applied to an expression other than an glvalue of a
334      //   polymorphic class type [...] [the] expression is an unevaluated
335      //   operand. [...]
336      if (RecordD->isPolymorphic() && E->isGLValue()) {
337        // The subexpression is potentially evaluated; switch the context
338        // and recheck the subexpression.
339        ExprResult Result = TranformToPotentiallyEvaluated(E);
340        if (Result.isInvalid()) return ExprError();
341        E = Result.take();
342
343        // We require a vtable to query the type at run time.
344        MarkVTableUsed(TypeidLoc, RecordD);
345      }
346    }
347
348    // C++ [expr.typeid]p4:
349    //   [...] If the type of the type-id is a reference to a possibly
350    //   cv-qualified type, the result of the typeid expression refers to a
351    //   std::type_info object representing the cv-unqualified referenced
352    //   type.
353    Qualifiers Quals;
354    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
355    if (!Context.hasSameType(T, UnqualT)) {
356      T = UnqualT;
357      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
358    }
359  }
360
361  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
362                                           E,
363                                           SourceRange(TypeidLoc, RParenLoc)));
364}
365
366/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
367ExprResult
368Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
369                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
370  // Find the std::type_info type.
371  if (!getStdNamespace())
372    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
373
374  if (!CXXTypeInfoDecl) {
375    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
376    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
377    LookupQualifiedName(R, getStdNamespace());
378    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
379    // Microsoft's typeinfo doesn't have type_info in std but in the global
380    // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
381    if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
382      LookupQualifiedName(R, Context.getTranslationUnitDecl());
383      CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
384    }
385    if (!CXXTypeInfoDecl)
386      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
387  }
388
389  if (!getLangOpts().RTTI) {
390    return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
391  }
392
393  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
394
395  if (isType) {
396    // The operand is a type; handle it as such.
397    TypeSourceInfo *TInfo = 0;
398    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
399                                   &TInfo);
400    if (T.isNull())
401      return ExprError();
402
403    if (!TInfo)
404      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
405
406    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
407  }
408
409  // The operand is an expression.
410  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
411}
412
413/// Retrieve the UuidAttr associated with QT.
414static UuidAttr *GetUuidAttrOfType(QualType QT) {
415  // Optionally remove one level of pointer, reference or array indirection.
416  const Type *Ty = QT.getTypePtr();
417  if (QT->isPointerType() || QT->isReferenceType())
418    Ty = QT->getPointeeType().getTypePtr();
419  else if (QT->isArrayType())
420    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
421
422  // Loop all record redeclaration looking for an uuid attribute.
423  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
424  for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
425       E = RD->redecls_end(); I != E; ++I) {
426    if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
427      return Uuid;
428  }
429
430  return 0;
431}
432
433/// \brief Build a Microsoft __uuidof expression with a type operand.
434ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
435                                SourceLocation TypeidLoc,
436                                TypeSourceInfo *Operand,
437                                SourceLocation RParenLoc) {
438  if (!Operand->getType()->isDependentType()) {
439    if (!GetUuidAttrOfType(Operand->getType()))
440      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
441  }
442
443  // FIXME: add __uuidof semantic analysis for type operand.
444  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
445                                           Operand,
446                                           SourceRange(TypeidLoc, RParenLoc)));
447}
448
449/// \brief Build a Microsoft __uuidof expression with an expression operand.
450ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
451                                SourceLocation TypeidLoc,
452                                Expr *E,
453                                SourceLocation RParenLoc) {
454  if (!E->getType()->isDependentType()) {
455    if (!GetUuidAttrOfType(E->getType()) &&
456        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
457      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
458  }
459  // FIXME: add __uuidof semantic analysis for type operand.
460  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
461                                           E,
462                                           SourceRange(TypeidLoc, RParenLoc)));
463}
464
465/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
466ExprResult
467Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
468                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
469  // If MSVCGuidDecl has not been cached, do the lookup.
470  if (!MSVCGuidDecl) {
471    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
472    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
473    LookupQualifiedName(R, Context.getTranslationUnitDecl());
474    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
475    if (!MSVCGuidDecl)
476      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
477  }
478
479  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
480
481  if (isType) {
482    // The operand is a type; handle it as such.
483    TypeSourceInfo *TInfo = 0;
484    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
485                                   &TInfo);
486    if (T.isNull())
487      return ExprError();
488
489    if (!TInfo)
490      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
491
492    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
493  }
494
495  // The operand is an expression.
496  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
497}
498
499/// ActOnCXXBoolLiteral - Parse {true,false} literals.
500ExprResult
501Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
502  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
503         "Unknown C++ Boolean value!");
504  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
505                                                Context.BoolTy, OpLoc));
506}
507
508/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
509ExprResult
510Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
511  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
512}
513
514/// ActOnCXXThrow - Parse throw expressions.
515ExprResult
516Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
517  bool IsThrownVarInScope = false;
518  if (Ex) {
519    // C++0x [class.copymove]p31:
520    //   When certain criteria are met, an implementation is allowed to omit the
521    //   copy/move construction of a class object [...]
522    //
523    //     - in a throw-expression, when the operand is the name of a
524    //       non-volatile automatic object (other than a function or catch-
525    //       clause parameter) whose scope does not extend beyond the end of the
526    //       innermost enclosing try-block (if there is one), the copy/move
527    //       operation from the operand to the exception object (15.1) can be
528    //       omitted by constructing the automatic object directly into the
529    //       exception object
530    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
531      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
532        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
533          for( ; S; S = S->getParent()) {
534            if (S->isDeclScope(Var)) {
535              IsThrownVarInScope = true;
536              break;
537            }
538
539            if (S->getFlags() &
540                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
541                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
542                 Scope::TryScope))
543              break;
544          }
545        }
546      }
547  }
548
549  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
550}
551
552ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
553                               bool IsThrownVarInScope) {
554  // Don't report an error if 'throw' is used in system headers.
555  if (!getLangOpts().CXXExceptions &&
556      !getSourceManager().isInSystemHeader(OpLoc))
557    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
558
559  if (Ex && !Ex->isTypeDependent()) {
560    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
561    if (ExRes.isInvalid())
562      return ExprError();
563    Ex = ExRes.take();
564  }
565
566  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
567                                          IsThrownVarInScope));
568}
569
570/// CheckCXXThrowOperand - Validate the operand of a throw.
571ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
572                                      bool IsThrownVarInScope) {
573  // C++ [except.throw]p3:
574  //   A throw-expression initializes a temporary object, called the exception
575  //   object, the type of which is determined by removing any top-level
576  //   cv-qualifiers from the static type of the operand of throw and adjusting
577  //   the type from "array of T" or "function returning T" to "pointer to T"
578  //   or "pointer to function returning T", [...]
579  if (E->getType().hasQualifiers())
580    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
581                          E->getValueKind()).take();
582
583  ExprResult Res = DefaultFunctionArrayConversion(E);
584  if (Res.isInvalid())
585    return ExprError();
586  E = Res.take();
587
588  //   If the type of the exception would be an incomplete type or a pointer
589  //   to an incomplete type other than (cv) void the program is ill-formed.
590  QualType Ty = E->getType();
591  bool isPointer = false;
592  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
593    Ty = Ptr->getPointeeType();
594    isPointer = true;
595  }
596  if (!isPointer || !Ty->isVoidType()) {
597    if (RequireCompleteType(ThrowLoc, Ty,
598                            isPointer? diag::err_throw_incomplete_ptr
599                                     : diag::err_throw_incomplete,
600                            E->getSourceRange()))
601      return ExprError();
602
603    if (RequireNonAbstractType(ThrowLoc, E->getType(),
604                               diag::err_throw_abstract_type, E))
605      return ExprError();
606  }
607
608  // Initialize the exception result.  This implicitly weeds out
609  // abstract types or types with inaccessible copy constructors.
610
611  // C++0x [class.copymove]p31:
612  //   When certain criteria are met, an implementation is allowed to omit the
613  //   copy/move construction of a class object [...]
614  //
615  //     - in a throw-expression, when the operand is the name of a
616  //       non-volatile automatic object (other than a function or catch-clause
617  //       parameter) whose scope does not extend beyond the end of the
618  //       innermost enclosing try-block (if there is one), the copy/move
619  //       operation from the operand to the exception object (15.1) can be
620  //       omitted by constructing the automatic object directly into the
621  //       exception object
622  const VarDecl *NRVOVariable = 0;
623  if (IsThrownVarInScope)
624    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
625
626  InitializedEntity Entity =
627      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
628                                             /*NRVO=*/NRVOVariable != 0);
629  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
630                                        QualType(), E,
631                                        IsThrownVarInScope);
632  if (Res.isInvalid())
633    return ExprError();
634  E = Res.take();
635
636  // If the exception has class type, we need additional handling.
637  const RecordType *RecordTy = Ty->getAs<RecordType>();
638  if (!RecordTy)
639    return Owned(E);
640  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
641
642  // If we are throwing a polymorphic class type or pointer thereof,
643  // exception handling will make use of the vtable.
644  MarkVTableUsed(ThrowLoc, RD);
645
646  // If a pointer is thrown, the referenced object will not be destroyed.
647  if (isPointer)
648    return Owned(E);
649
650  // If the class has a destructor, we must be able to call it.
651  if (RD->hasIrrelevantDestructor())
652    return Owned(E);
653
654  CXXDestructorDecl *Destructor = LookupDestructor(RD);
655  if (!Destructor)
656    return Owned(E);
657
658  MarkFunctionReferenced(E->getExprLoc(), Destructor);
659  CheckDestructorAccess(E->getExprLoc(), Destructor,
660                        PDiag(diag::err_access_dtor_exception) << Ty);
661  DiagnoseUseOfDecl(Destructor, E->getExprLoc());
662  return Owned(E);
663}
664
665QualType Sema::getCurrentThisType() {
666  DeclContext *DC = getFunctionLevelDeclContext();
667  QualType ThisTy = CXXThisTypeOverride;
668  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
669    if (method && method->isInstance())
670      ThisTy = method->getThisType(Context);
671  }
672
673  return ThisTy;
674}
675
676Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
677                                         Decl *ContextDecl,
678                                         unsigned CXXThisTypeQuals,
679                                         bool Enabled)
680  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
681{
682  if (!Enabled || !ContextDecl)
683    return;
684
685  CXXRecordDecl *Record = 0;
686  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
687    Record = Template->getTemplatedDecl();
688  else
689    Record = cast<CXXRecordDecl>(ContextDecl);
690
691  S.CXXThisTypeOverride
692    = S.Context.getPointerType(
693        S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
694
695  this->Enabled = true;
696}
697
698
699Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
700  if (Enabled) {
701    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
702  }
703}
704
705void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
706  // We don't need to capture this in an unevaluated context.
707  if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
708    return;
709
710  // Otherwise, check that we can capture 'this'.
711  unsigned NumClosures = 0;
712  for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
713    if (CapturingScopeInfo *CSI =
714            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
715      if (CSI->CXXThisCaptureIndex != 0) {
716        // 'this' is already being captured; there isn't anything more to do.
717        break;
718      }
719
720      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
721          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
722          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
723          Explicit) {
724        // This closure can capture 'this'; continue looking upwards.
725        NumClosures++;
726        Explicit = false;
727        continue;
728      }
729      // This context can't implicitly capture 'this'; fail out.
730      Diag(Loc, diag::err_this_capture) << Explicit;
731      return;
732    }
733    break;
734  }
735
736  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
737  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
738  // contexts.
739  for (unsigned idx = FunctionScopes.size() - 1;
740       NumClosures; --idx, --NumClosures) {
741    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
742    Expr *ThisExpr = 0;
743    QualType ThisTy = getCurrentThisType();
744    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
745      // For lambda expressions, build a field and an initializing expression.
746      CXXRecordDecl *Lambda = LSI->Lambda;
747      FieldDecl *Field
748        = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
749                            Context.getTrivialTypeSourceInfo(ThisTy, Loc),
750                            0, false, ICIS_NoInit);
751      Field->setImplicit(true);
752      Field->setAccess(AS_private);
753      Lambda->addDecl(Field);
754      ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
755    }
756    bool isNested = NumClosures > 1;
757    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
758  }
759}
760
761ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
762  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
763  /// is a non-lvalue expression whose value is the address of the object for
764  /// which the function is called.
765
766  QualType ThisTy = getCurrentThisType();
767  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
768
769  CheckCXXThisCapture(Loc);
770  return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
771}
772
773bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
774  // If we're outside the body of a member function, then we'll have a specified
775  // type for 'this'.
776  if (CXXThisTypeOverride.isNull())
777    return false;
778
779  // Determine whether we're looking into a class that's currently being
780  // defined.
781  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
782  return Class && Class->isBeingDefined();
783}
784
785ExprResult
786Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
787                                SourceLocation LParenLoc,
788                                MultiExprArg exprs,
789                                SourceLocation RParenLoc) {
790  if (!TypeRep)
791    return ExprError();
792
793  TypeSourceInfo *TInfo;
794  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
795  if (!TInfo)
796    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
797
798  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
799}
800
801/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
802/// Can be interpreted either as function-style casting ("int(x)")
803/// or class type construction ("ClassType(x,y,z)")
804/// or creation of a value-initialized type ("int()").
805ExprResult
806Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
807                                SourceLocation LParenLoc,
808                                MultiExprArg exprs,
809                                SourceLocation RParenLoc) {
810  QualType Ty = TInfo->getType();
811  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
812
813  if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(exprs)) {
814    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
815                                                    LParenLoc,
816                                                    exprs,
817                                                    RParenLoc));
818  }
819
820  unsigned NumExprs = exprs.size();
821  Expr **Exprs = exprs.data();
822
823  bool ListInitialization = LParenLoc.isInvalid();
824  assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
825         && "List initialization must have initializer list as expression.");
826  SourceRange FullRange = SourceRange(TyBeginLoc,
827      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
828
829  // C++ [expr.type.conv]p1:
830  // If the expression list is a single expression, the type conversion
831  // expression is equivalent (in definedness, and if defined in meaning) to the
832  // corresponding cast expression.
833  if (NumExprs == 1 && !ListInitialization) {
834    Expr *Arg = Exprs[0];
835    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
836  }
837
838  QualType ElemTy = Ty;
839  if (Ty->isArrayType()) {
840    if (!ListInitialization)
841      return ExprError(Diag(TyBeginLoc,
842                            diag::err_value_init_for_array_type) << FullRange);
843    ElemTy = Context.getBaseElementType(Ty);
844  }
845
846  if (!Ty->isVoidType() &&
847      RequireCompleteType(TyBeginLoc, ElemTy,
848                          diag::err_invalid_incomplete_type_use, FullRange))
849    return ExprError();
850
851  if (RequireNonAbstractType(TyBeginLoc, Ty,
852                             diag::err_allocation_of_abstract_type))
853    return ExprError();
854
855  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
856  InitializationKind Kind
857    = NumExprs ? ListInitialization
858                    ? InitializationKind::CreateDirectList(TyBeginLoc)
859                    : InitializationKind::CreateDirect(TyBeginLoc,
860                                                       LParenLoc, RParenLoc)
861               : InitializationKind::CreateValue(TyBeginLoc,
862                                                 LParenLoc, RParenLoc);
863  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
864  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, exprs);
865
866  if (!Result.isInvalid() && ListInitialization &&
867      isa<InitListExpr>(Result.get())) {
868    // If the list-initialization doesn't involve a constructor call, we'll get
869    // the initializer-list (with corrected type) back, but that's not what we
870    // want, since it will be treated as an initializer list in further
871    // processing. Explicitly insert a cast here.
872    InitListExpr *List = cast<InitListExpr>(Result.take());
873    Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
874                                    Expr::getValueKindForType(TInfo->getType()),
875                                                 TInfo, TyBeginLoc, CK_NoOp,
876                                                 List, /*Path=*/0, RParenLoc));
877  }
878
879  // FIXME: Improve AST representation?
880  return Result;
881}
882
883/// doesUsualArrayDeleteWantSize - Answers whether the usual
884/// operator delete[] for the given type has a size_t parameter.
885static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
886                                         QualType allocType) {
887  const RecordType *record =
888    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
889  if (!record) return false;
890
891  // Try to find an operator delete[] in class scope.
892
893  DeclarationName deleteName =
894    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
895  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
896  S.LookupQualifiedName(ops, record->getDecl());
897
898  // We're just doing this for information.
899  ops.suppressDiagnostics();
900
901  // Very likely: there's no operator delete[].
902  if (ops.empty()) return false;
903
904  // If it's ambiguous, it should be illegal to call operator delete[]
905  // on this thing, so it doesn't matter if we allocate extra space or not.
906  if (ops.isAmbiguous()) return false;
907
908  LookupResult::Filter filter = ops.makeFilter();
909  while (filter.hasNext()) {
910    NamedDecl *del = filter.next()->getUnderlyingDecl();
911
912    // C++0x [basic.stc.dynamic.deallocation]p2:
913    //   A template instance is never a usual deallocation function,
914    //   regardless of its signature.
915    if (isa<FunctionTemplateDecl>(del)) {
916      filter.erase();
917      continue;
918    }
919
920    // C++0x [basic.stc.dynamic.deallocation]p2:
921    //   If class T does not declare [an operator delete[] with one
922    //   parameter] but does declare a member deallocation function
923    //   named operator delete[] with exactly two parameters, the
924    //   second of which has type std::size_t, then this function
925    //   is a usual deallocation function.
926    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
927      filter.erase();
928      continue;
929    }
930  }
931  filter.done();
932
933  if (!ops.isSingleResult()) return false;
934
935  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
936  return (del->getNumParams() == 2);
937}
938
939/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
940///
941/// E.g.:
942/// @code new (memory) int[size][4] @endcode
943/// or
944/// @code ::new Foo(23, "hello") @endcode
945///
946/// \param StartLoc The first location of the expression.
947/// \param UseGlobal True if 'new' was prefixed with '::'.
948/// \param PlacementLParen Opening paren of the placement arguments.
949/// \param PlacementArgs Placement new arguments.
950/// \param PlacementRParen Closing paren of the placement arguments.
951/// \param TypeIdParens If the type is in parens, the source range.
952/// \param D The type to be allocated, as well as array dimensions.
953/// \param Initializer The initializing expression or initializer-list, or null
954///   if there is none.
955ExprResult
956Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
957                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
958                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
959                  Declarator &D, Expr *Initializer) {
960  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
961
962  Expr *ArraySize = 0;
963  // If the specified type is an array, unwrap it and save the expression.
964  if (D.getNumTypeObjects() > 0 &&
965      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
966     DeclaratorChunk &Chunk = D.getTypeObject(0);
967    if (TypeContainsAuto)
968      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
969        << D.getSourceRange());
970    if (Chunk.Arr.hasStatic)
971      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
972        << D.getSourceRange());
973    if (!Chunk.Arr.NumElts)
974      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
975        << D.getSourceRange());
976
977    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
978    D.DropFirstTypeObject();
979  }
980
981  // Every dimension shall be of constant size.
982  if (ArraySize) {
983    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
984      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
985        break;
986
987      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
988      if (Expr *NumElts = (Expr *)Array.NumElts) {
989        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
990          Array.NumElts
991            = VerifyIntegerConstantExpression(NumElts, 0,
992                                              diag::err_new_array_nonconst)
993                .take();
994          if (!Array.NumElts)
995            return ExprError();
996        }
997      }
998    }
999  }
1000
1001  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
1002  QualType AllocType = TInfo->getType();
1003  if (D.isInvalidType())
1004    return ExprError();
1005
1006  SourceRange DirectInitRange;
1007  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1008    DirectInitRange = List->getSourceRange();
1009
1010  return BuildCXXNew(StartLoc, UseGlobal,
1011                     PlacementLParen,
1012                     PlacementArgs,
1013                     PlacementRParen,
1014                     TypeIdParens,
1015                     AllocType,
1016                     TInfo,
1017                     ArraySize,
1018                     DirectInitRange,
1019                     Initializer,
1020                     TypeContainsAuto);
1021}
1022
1023static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1024                                       Expr *Init) {
1025  if (!Init)
1026    return true;
1027  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1028    return PLE->getNumExprs() == 0;
1029  if (isa<ImplicitValueInitExpr>(Init))
1030    return true;
1031  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1032    return !CCE->isListInitialization() &&
1033           CCE->getConstructor()->isDefaultConstructor();
1034  else if (Style == CXXNewExpr::ListInit) {
1035    assert(isa<InitListExpr>(Init) &&
1036           "Shouldn't create list CXXConstructExprs for arrays.");
1037    return true;
1038  }
1039  return false;
1040}
1041
1042ExprResult
1043Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
1044                  SourceLocation PlacementLParen,
1045                  MultiExprArg PlacementArgs,
1046                  SourceLocation PlacementRParen,
1047                  SourceRange TypeIdParens,
1048                  QualType AllocType,
1049                  TypeSourceInfo *AllocTypeInfo,
1050                  Expr *ArraySize,
1051                  SourceRange DirectInitRange,
1052                  Expr *Initializer,
1053                  bool TypeMayContainAuto) {
1054  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1055
1056  CXXNewExpr::InitializationStyle initStyle;
1057  if (DirectInitRange.isValid()) {
1058    assert(Initializer && "Have parens but no initializer.");
1059    initStyle = CXXNewExpr::CallInit;
1060  } else if (Initializer && isa<InitListExpr>(Initializer))
1061    initStyle = CXXNewExpr::ListInit;
1062  else {
1063    // In template instantiation, the initializer could be a CXXDefaultArgExpr
1064    // unwrapped from a CXXConstructExpr that was implicitly built. There is no
1065    // particularly sane way we can handle this (especially since it can even
1066    // occur for array new), so we throw the initializer away and have it be
1067    // rebuilt.
1068    if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
1069      Initializer = 0;
1070    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1071            isa<CXXConstructExpr>(Initializer)) &&
1072           "Initializer expression that cannot have been implicitly created.");
1073    initStyle = CXXNewExpr::NoInit;
1074  }
1075
1076  Expr **Inits = &Initializer;
1077  unsigned NumInits = Initializer ? 1 : 0;
1078  if (initStyle == CXXNewExpr::CallInit) {
1079    if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
1080      Inits = List->getExprs();
1081      NumInits = List->getNumExprs();
1082    } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
1083      if (!isa<CXXTemporaryObjectExpr>(CCE)) {
1084        // Can happen in template instantiation. Since this is just an implicit
1085        // construction, we just take it apart and rebuild it.
1086        Inits = CCE->getArgs();
1087        NumInits = CCE->getNumArgs();
1088      }
1089    }
1090  }
1091
1092  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1093  AutoType *AT = 0;
1094  if (TypeMayContainAuto &&
1095      (AT = AllocType->getContainedAutoType()) && !AT->isDeduced()) {
1096    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1097      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1098                       << AllocType << TypeRange);
1099    if (initStyle == CXXNewExpr::ListInit)
1100      return ExprError(Diag(Inits[0]->getLocStart(),
1101                            diag::err_auto_new_requires_parens)
1102                       << AllocType << TypeRange);
1103    if (NumInits > 1) {
1104      Expr *FirstBad = Inits[1];
1105      return ExprError(Diag(FirstBad->getLocStart(),
1106                            diag::err_auto_new_ctor_multiple_expressions)
1107                       << AllocType << TypeRange);
1108    }
1109    Expr *Deduce = Inits[0];
1110    TypeSourceInfo *DeducedType = 0;
1111    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1112      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1113                       << AllocType << Deduce->getType()
1114                       << TypeRange << Deduce->getSourceRange());
1115    if (!DeducedType)
1116      return ExprError();
1117
1118    AllocTypeInfo = DeducedType;
1119    AllocType = AllocTypeInfo->getType();
1120  }
1121
1122  // Per C++0x [expr.new]p5, the type being constructed may be a
1123  // typedef of an array type.
1124  if (!ArraySize) {
1125    if (const ConstantArrayType *Array
1126                              = Context.getAsConstantArrayType(AllocType)) {
1127      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1128                                         Context.getSizeType(),
1129                                         TypeRange.getEnd());
1130      AllocType = Array->getElementType();
1131    }
1132  }
1133
1134  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1135    return ExprError();
1136
1137  if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1138    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1139         diag::warn_dangling_std_initializer_list)
1140        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1141  }
1142
1143  // In ARC, infer 'retaining' for the allocated
1144  if (getLangOpts().ObjCAutoRefCount &&
1145      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1146      AllocType->isObjCLifetimeType()) {
1147    AllocType = Context.getLifetimeQualifiedType(AllocType,
1148                                    AllocType->getObjCARCImplicitLifetime());
1149  }
1150
1151  QualType ResultType = Context.getPointerType(AllocType);
1152
1153  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1154  //   integral or enumeration type with a non-negative value."
1155  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1156  //   enumeration type, or a class type for which a single non-explicit
1157  //   conversion function to integral or unscoped enumeration type exists.
1158  if (ArraySize && !ArraySize->isTypeDependent()) {
1159    class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1160      Expr *ArraySize;
1161
1162    public:
1163      SizeConvertDiagnoser(Expr *ArraySize)
1164        : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
1165
1166      virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1167                                               QualType T) {
1168        return S.Diag(Loc, diag::err_array_size_not_integral)
1169                 << S.getLangOpts().CPlusPlus0x << T;
1170      }
1171
1172      virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
1173                                                   QualType T) {
1174        return S.Diag(Loc, diag::err_array_size_incomplete_type)
1175                 << T << ArraySize->getSourceRange();
1176      }
1177
1178      virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
1179                                                     SourceLocation Loc,
1180                                                     QualType T,
1181                                                     QualType ConvTy) {
1182        return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1183      }
1184
1185      virtual DiagnosticBuilder noteExplicitConv(Sema &S,
1186                                                 CXXConversionDecl *Conv,
1187                                                 QualType ConvTy) {
1188        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1189                 << ConvTy->isEnumeralType() << ConvTy;
1190      }
1191
1192      virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1193                                                  QualType T) {
1194        return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1195      }
1196
1197      virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
1198                                              QualType ConvTy) {
1199        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1200                 << ConvTy->isEnumeralType() << ConvTy;
1201      }
1202
1203      virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1204                                                   QualType T,
1205                                                   QualType ConvTy) {
1206        return S.Diag(Loc,
1207                      S.getLangOpts().CPlusPlus0x
1208                        ? diag::warn_cxx98_compat_array_size_conversion
1209                        : diag::ext_array_size_conversion)
1210                 << T << ConvTy->isEnumeralType() << ConvTy;
1211      }
1212    } SizeDiagnoser(ArraySize);
1213
1214    ExprResult ConvertedSize
1215      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
1216                                           /*AllowScopedEnumerations*/ false);
1217    if (ConvertedSize.isInvalid())
1218      return ExprError();
1219
1220    ArraySize = ConvertedSize.take();
1221    QualType SizeType = ArraySize->getType();
1222    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1223      return ExprError();
1224
1225    // C++98 [expr.new]p7:
1226    //   The expression in a direct-new-declarator shall have integral type
1227    //   with a non-negative value.
1228    //
1229    // Let's see if this is a constant < 0. If so, we reject it out of
1230    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1231    // array type.
1232    //
1233    // Note: such a construct has well-defined semantics in C++11: it throws
1234    // std::bad_array_new_length.
1235    if (!ArraySize->isValueDependent()) {
1236      llvm::APSInt Value;
1237      // We've already performed any required implicit conversion to integer or
1238      // unscoped enumeration type.
1239      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1240        if (Value < llvm::APSInt(
1241                        llvm::APInt::getNullValue(Value.getBitWidth()),
1242                                 Value.isUnsigned())) {
1243          if (getLangOpts().CPlusPlus0x)
1244            Diag(ArraySize->getLocStart(),
1245                 diag::warn_typecheck_negative_array_new_size)
1246              << ArraySize->getSourceRange();
1247          else
1248            return ExprError(Diag(ArraySize->getLocStart(),
1249                                  diag::err_typecheck_negative_array_size)
1250                             << ArraySize->getSourceRange());
1251        } else if (!AllocType->isDependentType()) {
1252          unsigned ActiveSizeBits =
1253            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1254          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1255            if (getLangOpts().CPlusPlus0x)
1256              Diag(ArraySize->getLocStart(),
1257                   diag::warn_array_new_too_large)
1258                << Value.toString(10)
1259                << ArraySize->getSourceRange();
1260            else
1261              return ExprError(Diag(ArraySize->getLocStart(),
1262                                    diag::err_array_too_large)
1263                               << Value.toString(10)
1264                               << ArraySize->getSourceRange());
1265          }
1266        }
1267      } else if (TypeIdParens.isValid()) {
1268        // Can't have dynamic array size when the type-id is in parentheses.
1269        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1270          << ArraySize->getSourceRange()
1271          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1272          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1273
1274        TypeIdParens = SourceRange();
1275      }
1276    }
1277
1278    // ARC: warn about ABI issues.
1279    if (getLangOpts().ObjCAutoRefCount) {
1280      QualType BaseAllocType = Context.getBaseElementType(AllocType);
1281      if (BaseAllocType.hasStrongOrWeakObjCLifetime())
1282        Diag(StartLoc, diag::warn_err_new_delete_object_array)
1283          << 0 << BaseAllocType;
1284    }
1285
1286    // Note that we do *not* convert the argument in any way.  It can
1287    // be signed, larger than size_t, whatever.
1288  }
1289
1290  FunctionDecl *OperatorNew = 0;
1291  FunctionDecl *OperatorDelete = 0;
1292  Expr **PlaceArgs = PlacementArgs.data();
1293  unsigned NumPlaceArgs = PlacementArgs.size();
1294
1295  if (!AllocType->isDependentType() &&
1296      !Expr::hasAnyTypeDependentArguments(
1297        llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1298      FindAllocationFunctions(StartLoc,
1299                              SourceRange(PlacementLParen, PlacementRParen),
1300                              UseGlobal, AllocType, ArraySize, PlaceArgs,
1301                              NumPlaceArgs, OperatorNew, OperatorDelete))
1302    return ExprError();
1303
1304  // If this is an array allocation, compute whether the usual array
1305  // deallocation function for the type has a size_t parameter.
1306  bool UsualArrayDeleteWantsSize = false;
1307  if (ArraySize && !AllocType->isDependentType())
1308    UsualArrayDeleteWantsSize
1309      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1310
1311  SmallVector<Expr *, 8> AllPlaceArgs;
1312  if (OperatorNew) {
1313    // Add default arguments, if any.
1314    const FunctionProtoType *Proto =
1315      OperatorNew->getType()->getAs<FunctionProtoType>();
1316    VariadicCallType CallType =
1317      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1318
1319    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1320                               Proto, 1, PlaceArgs, NumPlaceArgs,
1321                               AllPlaceArgs, CallType))
1322      return ExprError();
1323
1324    NumPlaceArgs = AllPlaceArgs.size();
1325    if (NumPlaceArgs > 0)
1326      PlaceArgs = &AllPlaceArgs[0];
1327
1328    DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1329                          PlaceArgs, NumPlaceArgs);
1330
1331    // FIXME: Missing call to CheckFunctionCall or equivalent
1332  }
1333
1334  // Warn if the type is over-aligned and is being allocated by global operator
1335  // new.
1336  if (NumPlaceArgs == 0 && OperatorNew &&
1337      (OperatorNew->isImplicit() ||
1338       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1339    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1340      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1341      if (Align > SuitableAlign)
1342        Diag(StartLoc, diag::warn_overaligned_type)
1343            << AllocType
1344            << unsigned(Align / Context.getCharWidth())
1345            << unsigned(SuitableAlign / Context.getCharWidth());
1346    }
1347  }
1348
1349  QualType InitType = AllocType;
1350  // Array 'new' can't have any initializers except empty parentheses.
1351  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1352  // dialect distinction.
1353  if (ResultType->isArrayType() || ArraySize) {
1354    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1355      SourceRange InitRange(Inits[0]->getLocStart(),
1356                            Inits[NumInits - 1]->getLocEnd());
1357      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1358      return ExprError();
1359    }
1360    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1361      // We do the initialization typechecking against the array type
1362      // corresponding to the number of initializers + 1 (to also check
1363      // default-initialization).
1364      unsigned NumElements = ILE->getNumInits() + 1;
1365      InitType = Context.getConstantArrayType(AllocType,
1366          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1367                                              ArrayType::Normal, 0);
1368    }
1369  }
1370
1371  if (!AllocType->isDependentType() &&
1372      !Expr::hasAnyTypeDependentArguments(
1373        llvm::makeArrayRef(Inits, NumInits))) {
1374    // C++11 [expr.new]p15:
1375    //   A new-expression that creates an object of type T initializes that
1376    //   object as follows:
1377    InitializationKind Kind
1378    //     - If the new-initializer is omitted, the object is default-
1379    //       initialized (8.5); if no initialization is performed,
1380    //       the object has indeterminate value
1381      = initStyle == CXXNewExpr::NoInit
1382          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1383    //     - Otherwise, the new-initializer is interpreted according to the
1384    //       initialization rules of 8.5 for direct-initialization.
1385          : initStyle == CXXNewExpr::ListInit
1386              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1387              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1388                                                 DirectInitRange.getBegin(),
1389                                                 DirectInitRange.getEnd());
1390
1391    InitializedEntity Entity
1392      = InitializedEntity::InitializeNew(StartLoc, InitType);
1393    InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1394    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1395                                          MultiExprArg(Inits, NumInits));
1396    if (FullInit.isInvalid())
1397      return ExprError();
1398
1399    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1400    // we don't want the initialized object to be destructed.
1401    if (CXXBindTemporaryExpr *Binder =
1402            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1403      FullInit = Owned(Binder->getSubExpr());
1404
1405    Initializer = FullInit.take();
1406  }
1407
1408  // Mark the new and delete operators as referenced.
1409  if (OperatorNew)
1410    MarkFunctionReferenced(StartLoc, OperatorNew);
1411  if (OperatorDelete)
1412    MarkFunctionReferenced(StartLoc, OperatorDelete);
1413
1414  // C++0x [expr.new]p17:
1415  //   If the new expression creates an array of objects of class type,
1416  //   access and ambiguity control are done for the destructor.
1417  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1418  if (ArraySize && !BaseAllocType->isDependentType()) {
1419    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1420      if (CXXDestructorDecl *dtor = LookupDestructor(
1421              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1422        MarkFunctionReferenced(StartLoc, dtor);
1423        CheckDestructorAccess(StartLoc, dtor,
1424                              PDiag(diag::err_access_dtor)
1425                                << BaseAllocType);
1426        DiagnoseUseOfDecl(dtor, StartLoc);
1427      }
1428    }
1429  }
1430
1431  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1432                                        OperatorDelete,
1433                                        UsualArrayDeleteWantsSize,
1434                                   llvm::makeArrayRef(PlaceArgs, NumPlaceArgs),
1435                                        TypeIdParens,
1436                                        ArraySize, initStyle, Initializer,
1437                                        ResultType, AllocTypeInfo,
1438                                        StartLoc, DirectInitRange));
1439}
1440
1441/// \brief Checks that a type is suitable as the allocated type
1442/// in a new-expression.
1443bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1444                              SourceRange R) {
1445  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1446  //   abstract class type or array thereof.
1447  if (AllocType->isFunctionType())
1448    return Diag(Loc, diag::err_bad_new_type)
1449      << AllocType << 0 << R;
1450  else if (AllocType->isReferenceType())
1451    return Diag(Loc, diag::err_bad_new_type)
1452      << AllocType << 1 << R;
1453  else if (!AllocType->isDependentType() &&
1454           RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1455    return true;
1456  else if (RequireNonAbstractType(Loc, AllocType,
1457                                  diag::err_allocation_of_abstract_type))
1458    return true;
1459  else if (AllocType->isVariablyModifiedType())
1460    return Diag(Loc, diag::err_variably_modified_new_type)
1461             << AllocType;
1462  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1463    return Diag(Loc, diag::err_address_space_qualified_new)
1464      << AllocType.getUnqualifiedType() << AddressSpace;
1465  else if (getLangOpts().ObjCAutoRefCount) {
1466    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1467      QualType BaseAllocType = Context.getBaseElementType(AT);
1468      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1469          BaseAllocType->isObjCLifetimeType())
1470        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1471          << BaseAllocType;
1472    }
1473  }
1474
1475  return false;
1476}
1477
1478/// \brief Determine whether the given function is a non-placement
1479/// deallocation function.
1480static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1481  if (FD->isInvalidDecl())
1482    return false;
1483
1484  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1485    return Method->isUsualDeallocationFunction();
1486
1487  return ((FD->getOverloadedOperator() == OO_Delete ||
1488           FD->getOverloadedOperator() == OO_Array_Delete) &&
1489          FD->getNumParams() == 1);
1490}
1491
1492/// FindAllocationFunctions - Finds the overloads of operator new and delete
1493/// that are appropriate for the allocation.
1494bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1495                                   bool UseGlobal, QualType AllocType,
1496                                   bool IsArray, Expr **PlaceArgs,
1497                                   unsigned NumPlaceArgs,
1498                                   FunctionDecl *&OperatorNew,
1499                                   FunctionDecl *&OperatorDelete) {
1500  // --- Choosing an allocation function ---
1501  // C++ 5.3.4p8 - 14 & 18
1502  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1503  //   in the scope of the allocated class.
1504  // 2) If an array size is given, look for operator new[], else look for
1505  //   operator new.
1506  // 3) The first argument is always size_t. Append the arguments from the
1507  //   placement form.
1508
1509  SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1510  // We don't care about the actual value of this argument.
1511  // FIXME: Should the Sema create the expression and embed it in the syntax
1512  // tree? Or should the consumer just recalculate the value?
1513  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1514                      Context.getTargetInfo().getPointerWidth(0)),
1515                      Context.getSizeType(),
1516                      SourceLocation());
1517  AllocArgs[0] = &Size;
1518  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1519
1520  // C++ [expr.new]p8:
1521  //   If the allocated type is a non-array type, the allocation
1522  //   function's name is operator new and the deallocation function's
1523  //   name is operator delete. If the allocated type is an array
1524  //   type, the allocation function's name is operator new[] and the
1525  //   deallocation function's name is operator delete[].
1526  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1527                                        IsArray ? OO_Array_New : OO_New);
1528  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1529                                        IsArray ? OO_Array_Delete : OO_Delete);
1530
1531  QualType AllocElemType = Context.getBaseElementType(AllocType);
1532
1533  if (AllocElemType->isRecordType() && !UseGlobal) {
1534    CXXRecordDecl *Record
1535      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1536    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1537                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1538                          OperatorNew))
1539      return true;
1540  }
1541  if (!OperatorNew) {
1542    // Didn't find a member overload. Look for a global one.
1543    DeclareGlobalNewDelete();
1544    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1545    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1546                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1547                          OperatorNew))
1548      return true;
1549  }
1550
1551  // We don't need an operator delete if we're running under
1552  // -fno-exceptions.
1553  if (!getLangOpts().Exceptions) {
1554    OperatorDelete = 0;
1555    return false;
1556  }
1557
1558  // FindAllocationOverload can change the passed in arguments, so we need to
1559  // copy them back.
1560  if (NumPlaceArgs > 0)
1561    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1562
1563  // C++ [expr.new]p19:
1564  //
1565  //   If the new-expression begins with a unary :: operator, the
1566  //   deallocation function's name is looked up in the global
1567  //   scope. Otherwise, if the allocated type is a class type T or an
1568  //   array thereof, the deallocation function's name is looked up in
1569  //   the scope of T. If this lookup fails to find the name, or if
1570  //   the allocated type is not a class type or array thereof, the
1571  //   deallocation function's name is looked up in the global scope.
1572  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1573  if (AllocElemType->isRecordType() && !UseGlobal) {
1574    CXXRecordDecl *RD
1575      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1576    LookupQualifiedName(FoundDelete, RD);
1577  }
1578  if (FoundDelete.isAmbiguous())
1579    return true; // FIXME: clean up expressions?
1580
1581  if (FoundDelete.empty()) {
1582    DeclareGlobalNewDelete();
1583    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1584  }
1585
1586  FoundDelete.suppressDiagnostics();
1587
1588  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1589
1590  // Whether we're looking for a placement operator delete is dictated
1591  // by whether we selected a placement operator new, not by whether
1592  // we had explicit placement arguments.  This matters for things like
1593  //   struct A { void *operator new(size_t, int = 0); ... };
1594  //   A *a = new A()
1595  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1596
1597  if (isPlacementNew) {
1598    // C++ [expr.new]p20:
1599    //   A declaration of a placement deallocation function matches the
1600    //   declaration of a placement allocation function if it has the
1601    //   same number of parameters and, after parameter transformations
1602    //   (8.3.5), all parameter types except the first are
1603    //   identical. [...]
1604    //
1605    // To perform this comparison, we compute the function type that
1606    // the deallocation function should have, and use that type both
1607    // for template argument deduction and for comparison purposes.
1608    //
1609    // FIXME: this comparison should ignore CC and the like.
1610    QualType ExpectedFunctionType;
1611    {
1612      const FunctionProtoType *Proto
1613        = OperatorNew->getType()->getAs<FunctionProtoType>();
1614
1615      SmallVector<QualType, 4> ArgTypes;
1616      ArgTypes.push_back(Context.VoidPtrTy);
1617      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1618        ArgTypes.push_back(Proto->getArgType(I));
1619
1620      FunctionProtoType::ExtProtoInfo EPI;
1621      EPI.Variadic = Proto->isVariadic();
1622
1623      ExpectedFunctionType
1624        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1625                                  ArgTypes.size(), EPI);
1626    }
1627
1628    for (LookupResult::iterator D = FoundDelete.begin(),
1629                             DEnd = FoundDelete.end();
1630         D != DEnd; ++D) {
1631      FunctionDecl *Fn = 0;
1632      if (FunctionTemplateDecl *FnTmpl
1633            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1634        // Perform template argument deduction to try to match the
1635        // expected function type.
1636        TemplateDeductionInfo Info(Context, StartLoc);
1637        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1638          continue;
1639      } else
1640        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1641
1642      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1643        Matches.push_back(std::make_pair(D.getPair(), Fn));
1644    }
1645  } else {
1646    // C++ [expr.new]p20:
1647    //   [...] Any non-placement deallocation function matches a
1648    //   non-placement allocation function. [...]
1649    for (LookupResult::iterator D = FoundDelete.begin(),
1650                             DEnd = FoundDelete.end();
1651         D != DEnd; ++D) {
1652      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1653        if (isNonPlacementDeallocationFunction(Fn))
1654          Matches.push_back(std::make_pair(D.getPair(), Fn));
1655    }
1656  }
1657
1658  // C++ [expr.new]p20:
1659  //   [...] If the lookup finds a single matching deallocation
1660  //   function, that function will be called; otherwise, no
1661  //   deallocation function will be called.
1662  if (Matches.size() == 1) {
1663    OperatorDelete = Matches[0].second;
1664
1665    // C++0x [expr.new]p20:
1666    //   If the lookup finds the two-parameter form of a usual
1667    //   deallocation function (3.7.4.2) and that function, considered
1668    //   as a placement deallocation function, would have been
1669    //   selected as a match for the allocation function, the program
1670    //   is ill-formed.
1671    if (NumPlaceArgs && getLangOpts().CPlusPlus0x &&
1672        isNonPlacementDeallocationFunction(OperatorDelete)) {
1673      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1674        << SourceRange(PlaceArgs[0]->getLocStart(),
1675                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1676      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1677        << DeleteName;
1678    } else {
1679      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1680                            Matches[0].first);
1681    }
1682  }
1683
1684  return false;
1685}
1686
1687/// FindAllocationOverload - Find an fitting overload for the allocation
1688/// function in the specified scope.
1689bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1690                                  DeclarationName Name, Expr** Args,
1691                                  unsigned NumArgs, DeclContext *Ctx,
1692                                  bool AllowMissing, FunctionDecl *&Operator,
1693                                  bool Diagnose) {
1694  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1695  LookupQualifiedName(R, Ctx);
1696  if (R.empty()) {
1697    if (AllowMissing || !Diagnose)
1698      return false;
1699    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1700      << Name << Range;
1701  }
1702
1703  if (R.isAmbiguous())
1704    return true;
1705
1706  R.suppressDiagnostics();
1707
1708  OverloadCandidateSet Candidates(StartLoc);
1709  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1710       Alloc != AllocEnd; ++Alloc) {
1711    // Even member operator new/delete are implicitly treated as
1712    // static, so don't use AddMemberCandidate.
1713    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1714
1715    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1716      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1717                                   /*ExplicitTemplateArgs=*/0,
1718                                   llvm::makeArrayRef(Args, NumArgs),
1719                                   Candidates,
1720                                   /*SuppressUserConversions=*/false);
1721      continue;
1722    }
1723
1724    FunctionDecl *Fn = cast<FunctionDecl>(D);
1725    AddOverloadCandidate(Fn, Alloc.getPair(),
1726                         llvm::makeArrayRef(Args, NumArgs), Candidates,
1727                         /*SuppressUserConversions=*/false);
1728  }
1729
1730  // Do the resolution.
1731  OverloadCandidateSet::iterator Best;
1732  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1733  case OR_Success: {
1734    // Got one!
1735    FunctionDecl *FnDecl = Best->Function;
1736    MarkFunctionReferenced(StartLoc, FnDecl);
1737    // The first argument is size_t, and the first parameter must be size_t,
1738    // too. This is checked on declaration and can be assumed. (It can't be
1739    // asserted on, though, since invalid decls are left in there.)
1740    // Watch out for variadic allocator function.
1741    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1742    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1743      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1744                                                       FnDecl->getParamDecl(i));
1745
1746      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1747        return true;
1748
1749      ExprResult Result
1750        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1751      if (Result.isInvalid())
1752        return true;
1753
1754      Args[i] = Result.takeAs<Expr>();
1755    }
1756
1757    Operator = FnDecl;
1758
1759    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1760                              Best->FoundDecl, Diagnose) == AR_inaccessible)
1761      return true;
1762
1763    return false;
1764  }
1765
1766  case OR_No_Viable_Function:
1767    if (Diagnose) {
1768      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1769        << Name << Range;
1770      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1771                                llvm::makeArrayRef(Args, NumArgs));
1772    }
1773    return true;
1774
1775  case OR_Ambiguous:
1776    if (Diagnose) {
1777      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1778        << Name << Range;
1779      Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1780                                llvm::makeArrayRef(Args, NumArgs));
1781    }
1782    return true;
1783
1784  case OR_Deleted: {
1785    if (Diagnose) {
1786      Diag(StartLoc, diag::err_ovl_deleted_call)
1787        << Best->Function->isDeleted()
1788        << Name
1789        << getDeletedOrUnavailableSuffix(Best->Function)
1790        << Range;
1791      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1792                                llvm::makeArrayRef(Args, NumArgs));
1793    }
1794    return true;
1795  }
1796  }
1797  llvm_unreachable("Unreachable, bad result from BestViableFunction");
1798}
1799
1800
1801/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1802/// delete. These are:
1803/// @code
1804///   // C++03:
1805///   void* operator new(std::size_t) throw(std::bad_alloc);
1806///   void* operator new[](std::size_t) throw(std::bad_alloc);
1807///   void operator delete(void *) throw();
1808///   void operator delete[](void *) throw();
1809///   // C++0x:
1810///   void* operator new(std::size_t);
1811///   void* operator new[](std::size_t);
1812///   void operator delete(void *);
1813///   void operator delete[](void *);
1814/// @endcode
1815/// C++0x operator delete is implicitly noexcept.
1816/// Note that the placement and nothrow forms of new are *not* implicitly
1817/// declared. Their use requires including \<new\>.
1818void Sema::DeclareGlobalNewDelete() {
1819  if (GlobalNewDeleteDeclared)
1820    return;
1821
1822  // C++ [basic.std.dynamic]p2:
1823  //   [...] The following allocation and deallocation functions (18.4) are
1824  //   implicitly declared in global scope in each translation unit of a
1825  //   program
1826  //
1827  //     C++03:
1828  //     void* operator new(std::size_t) throw(std::bad_alloc);
1829  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1830  //     void  operator delete(void*) throw();
1831  //     void  operator delete[](void*) throw();
1832  //     C++0x:
1833  //     void* operator new(std::size_t);
1834  //     void* operator new[](std::size_t);
1835  //     void  operator delete(void*);
1836  //     void  operator delete[](void*);
1837  //
1838  //   These implicit declarations introduce only the function names operator
1839  //   new, operator new[], operator delete, operator delete[].
1840  //
1841  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1842  // "std" or "bad_alloc" as necessary to form the exception specification.
1843  // However, we do not make these implicit declarations visible to name
1844  // lookup.
1845  // Note that the C++0x versions of operator delete are deallocation functions,
1846  // and thus are implicitly noexcept.
1847  if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) {
1848    // The "std::bad_alloc" class has not yet been declared, so build it
1849    // implicitly.
1850    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1851                                        getOrCreateStdNamespace(),
1852                                        SourceLocation(), SourceLocation(),
1853                                      &PP.getIdentifierTable().get("bad_alloc"),
1854                                        0);
1855    getStdBadAlloc()->setImplicit(true);
1856  }
1857
1858  GlobalNewDeleteDeclared = true;
1859
1860  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1861  QualType SizeT = Context.getSizeType();
1862  bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1863
1864  DeclareGlobalAllocationFunction(
1865      Context.DeclarationNames.getCXXOperatorName(OO_New),
1866      VoidPtr, SizeT, AssumeSaneOperatorNew);
1867  DeclareGlobalAllocationFunction(
1868      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1869      VoidPtr, SizeT, AssumeSaneOperatorNew);
1870  DeclareGlobalAllocationFunction(
1871      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1872      Context.VoidTy, VoidPtr);
1873  DeclareGlobalAllocationFunction(
1874      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1875      Context.VoidTy, VoidPtr);
1876}
1877
1878/// DeclareGlobalAllocationFunction - Declares a single implicit global
1879/// allocation function if it doesn't already exist.
1880void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1881                                           QualType Return, QualType Argument,
1882                                           bool AddMallocAttr) {
1883  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1884
1885  // Check if this function is already declared.
1886  {
1887    DeclContext::lookup_iterator Alloc, AllocEnd;
1888    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1889         Alloc != AllocEnd; ++Alloc) {
1890      // Only look at non-template functions, as it is the predefined,
1891      // non-templated allocation function we are trying to declare here.
1892      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1893        QualType InitialParamType =
1894          Context.getCanonicalType(
1895            Func->getParamDecl(0)->getType().getUnqualifiedType());
1896        // FIXME: Do we need to check for default arguments here?
1897        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1898          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1899            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1900          return;
1901        }
1902      }
1903    }
1904  }
1905
1906  QualType BadAllocType;
1907  bool HasBadAllocExceptionSpec
1908    = (Name.getCXXOverloadedOperator() == OO_New ||
1909       Name.getCXXOverloadedOperator() == OO_Array_New);
1910  if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) {
1911    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1912    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1913  }
1914
1915  FunctionProtoType::ExtProtoInfo EPI;
1916  if (HasBadAllocExceptionSpec) {
1917    if (!getLangOpts().CPlusPlus0x) {
1918      EPI.ExceptionSpecType = EST_Dynamic;
1919      EPI.NumExceptions = 1;
1920      EPI.Exceptions = &BadAllocType;
1921    }
1922  } else {
1923    EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ?
1924                                EST_BasicNoexcept : EST_DynamicNone;
1925  }
1926
1927  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1928  FunctionDecl *Alloc =
1929    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1930                         SourceLocation(), Name,
1931                         FnType, /*TInfo=*/0, SC_None,
1932                         SC_None, false, true);
1933  Alloc->setImplicit();
1934
1935  if (AddMallocAttr)
1936    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1937
1938  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1939                                           SourceLocation(), 0,
1940                                           Argument, /*TInfo=*/0,
1941                                           SC_None, SC_None, 0);
1942  Alloc->setParams(Param);
1943
1944  // FIXME: Also add this declaration to the IdentifierResolver, but
1945  // make sure it is at the end of the chain to coincide with the
1946  // global scope.
1947  Context.getTranslationUnitDecl()->addDecl(Alloc);
1948}
1949
1950bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1951                                    DeclarationName Name,
1952                                    FunctionDecl* &Operator, bool Diagnose) {
1953  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1954  // Try to find operator delete/operator delete[] in class scope.
1955  LookupQualifiedName(Found, RD);
1956
1957  if (Found.isAmbiguous())
1958    return true;
1959
1960  Found.suppressDiagnostics();
1961
1962  SmallVector<DeclAccessPair,4> Matches;
1963  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1964       F != FEnd; ++F) {
1965    NamedDecl *ND = (*F)->getUnderlyingDecl();
1966
1967    // Ignore template operator delete members from the check for a usual
1968    // deallocation function.
1969    if (isa<FunctionTemplateDecl>(ND))
1970      continue;
1971
1972    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1973      Matches.push_back(F.getPair());
1974  }
1975
1976  // There's exactly one suitable operator;  pick it.
1977  if (Matches.size() == 1) {
1978    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1979
1980    if (Operator->isDeleted()) {
1981      if (Diagnose) {
1982        Diag(StartLoc, diag::err_deleted_function_use);
1983        NoteDeletedFunction(Operator);
1984      }
1985      return true;
1986    }
1987
1988    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1989                              Matches[0], Diagnose) == AR_inaccessible)
1990      return true;
1991
1992    return false;
1993
1994  // We found multiple suitable operators;  complain about the ambiguity.
1995  } else if (!Matches.empty()) {
1996    if (Diagnose) {
1997      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1998        << Name << RD;
1999
2000      for (SmallVectorImpl<DeclAccessPair>::iterator
2001             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2002        Diag((*F)->getUnderlyingDecl()->getLocation(),
2003             diag::note_member_declared_here) << Name;
2004    }
2005    return true;
2006  }
2007
2008  // We did find operator delete/operator delete[] declarations, but
2009  // none of them were suitable.
2010  if (!Found.empty()) {
2011    if (Diagnose) {
2012      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2013        << Name << RD;
2014
2015      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2016           F != FEnd; ++F)
2017        Diag((*F)->getUnderlyingDecl()->getLocation(),
2018             diag::note_member_declared_here) << Name;
2019    }
2020    return true;
2021  }
2022
2023  // Look for a global declaration.
2024  DeclareGlobalNewDelete();
2025  DeclContext *TUDecl = Context.getTranslationUnitDecl();
2026
2027  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
2028  Expr* DeallocArgs[1];
2029  DeallocArgs[0] = &Null;
2030  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2031                             DeallocArgs, 1, TUDecl, !Diagnose,
2032                             Operator, Diagnose))
2033    return true;
2034
2035  assert(Operator && "Did not find a deallocation function!");
2036  return false;
2037}
2038
2039/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2040/// @code ::delete ptr; @endcode
2041/// or
2042/// @code delete [] ptr; @endcode
2043ExprResult
2044Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2045                     bool ArrayForm, Expr *ExE) {
2046  // C++ [expr.delete]p1:
2047  //   The operand shall have a pointer type, or a class type having a single
2048  //   conversion function to a pointer type. The result has type void.
2049  //
2050  // DR599 amends "pointer type" to "pointer to object type" in both cases.
2051
2052  ExprResult Ex = Owned(ExE);
2053  FunctionDecl *OperatorDelete = 0;
2054  bool ArrayFormAsWritten = ArrayForm;
2055  bool UsualArrayDeleteWantsSize = false;
2056
2057  if (!Ex.get()->isTypeDependent()) {
2058    // Perform lvalue-to-rvalue cast, if needed.
2059    Ex = DefaultLvalueConversion(Ex.take());
2060
2061    QualType Type = Ex.get()->getType();
2062
2063    if (const RecordType *Record = Type->getAs<RecordType>()) {
2064      if (RequireCompleteType(StartLoc, Type,
2065                              diag::err_delete_incomplete_class_type))
2066        return ExprError();
2067
2068      SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2069
2070      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2071      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
2072      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2073             E = Conversions->end(); I != E; ++I) {
2074        NamedDecl *D = I.getDecl();
2075        if (isa<UsingShadowDecl>(D))
2076          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2077
2078        // Skip over templated conversion functions; they aren't considered.
2079        if (isa<FunctionTemplateDecl>(D))
2080          continue;
2081
2082        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2083
2084        QualType ConvType = Conv->getConversionType().getNonReferenceType();
2085        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2086          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2087            ObjectPtrConversions.push_back(Conv);
2088      }
2089      if (ObjectPtrConversions.size() == 1) {
2090        // We have a single conversion to a pointer-to-object type. Perform
2091        // that conversion.
2092        // TODO: don't redo the conversion calculation.
2093        ExprResult Res =
2094          PerformImplicitConversion(Ex.get(),
2095                            ObjectPtrConversions.front()->getConversionType(),
2096                                    AA_Converting);
2097        if (Res.isUsable()) {
2098          Ex = Res;
2099          Type = Ex.get()->getType();
2100        }
2101      }
2102      else if (ObjectPtrConversions.size() > 1) {
2103        Diag(StartLoc, diag::err_ambiguous_delete_operand)
2104              << Type << Ex.get()->getSourceRange();
2105        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2106          NoteOverloadCandidate(ObjectPtrConversions[i]);
2107        return ExprError();
2108      }
2109    }
2110
2111    if (!Type->isPointerType())
2112      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2113        << Type << Ex.get()->getSourceRange());
2114
2115    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2116    QualType PointeeElem = Context.getBaseElementType(Pointee);
2117
2118    if (unsigned AddressSpace = Pointee.getAddressSpace())
2119      return Diag(Ex.get()->getLocStart(),
2120                  diag::err_address_space_qualified_delete)
2121               << Pointee.getUnqualifiedType() << AddressSpace;
2122
2123    CXXRecordDecl *PointeeRD = 0;
2124    if (Pointee->isVoidType() && !isSFINAEContext()) {
2125      // The C++ standard bans deleting a pointer to a non-object type, which
2126      // effectively bans deletion of "void*". However, most compilers support
2127      // this, so we treat it as a warning unless we're in a SFINAE context.
2128      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2129        << Type << Ex.get()->getSourceRange();
2130    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2131      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2132        << Type << Ex.get()->getSourceRange());
2133    } else if (!Pointee->isDependentType()) {
2134      if (!RequireCompleteType(StartLoc, Pointee,
2135                               diag::warn_delete_incomplete, Ex.get())) {
2136        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2137          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2138      }
2139    }
2140
2141    // C++ [expr.delete]p2:
2142    //   [Note: a pointer to a const type can be the operand of a
2143    //   delete-expression; it is not necessary to cast away the constness
2144    //   (5.2.11) of the pointer expression before it is used as the operand
2145    //   of the delete-expression. ]
2146
2147    if (Pointee->isArrayType() && !ArrayForm) {
2148      Diag(StartLoc, diag::warn_delete_array_type)
2149          << Type << Ex.get()->getSourceRange()
2150          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2151      ArrayForm = true;
2152    }
2153
2154    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2155                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2156
2157    if (PointeeRD) {
2158      if (!UseGlobal &&
2159          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2160                                   OperatorDelete))
2161        return ExprError();
2162
2163      // If we're allocating an array of records, check whether the
2164      // usual operator delete[] has a size_t parameter.
2165      if (ArrayForm) {
2166        // If the user specifically asked to use the global allocator,
2167        // we'll need to do the lookup into the class.
2168        if (UseGlobal)
2169          UsualArrayDeleteWantsSize =
2170            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2171
2172        // Otherwise, the usual operator delete[] should be the
2173        // function we just found.
2174        else if (isa<CXXMethodDecl>(OperatorDelete))
2175          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2176      }
2177
2178      if (!PointeeRD->hasIrrelevantDestructor())
2179        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2180          MarkFunctionReferenced(StartLoc,
2181                                    const_cast<CXXDestructorDecl*>(Dtor));
2182          DiagnoseUseOfDecl(Dtor, StartLoc);
2183        }
2184
2185      // C++ [expr.delete]p3:
2186      //   In the first alternative (delete object), if the static type of the
2187      //   object to be deleted is different from its dynamic type, the static
2188      //   type shall be a base class of the dynamic type of the object to be
2189      //   deleted and the static type shall have a virtual destructor or the
2190      //   behavior is undefined.
2191      //
2192      // Note: a final class cannot be derived from, no issue there
2193      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2194        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2195        if (dtor && !dtor->isVirtual()) {
2196          if (PointeeRD->isAbstract()) {
2197            // If the class is abstract, we warn by default, because we're
2198            // sure the code has undefined behavior.
2199            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2200                << PointeeElem;
2201          } else if (!ArrayForm) {
2202            // Otherwise, if this is not an array delete, it's a bit suspect,
2203            // but not necessarily wrong.
2204            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2205          }
2206        }
2207      }
2208
2209    } else if (getLangOpts().ObjCAutoRefCount &&
2210               PointeeElem->isObjCLifetimeType() &&
2211               (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
2212                PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
2213               ArrayForm) {
2214      Diag(StartLoc, diag::warn_err_new_delete_object_array)
2215        << 1 << PointeeElem;
2216    }
2217
2218    if (!OperatorDelete) {
2219      // Look for a global declaration.
2220      DeclareGlobalNewDelete();
2221      DeclContext *TUDecl = Context.getTranslationUnitDecl();
2222      Expr *Arg = Ex.get();
2223      if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
2224        Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2225                                       CK_BitCast, Arg, 0, VK_RValue);
2226      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2227                                 &Arg, 1, TUDecl, /*AllowMissing=*/false,
2228                                 OperatorDelete))
2229        return ExprError();
2230    }
2231
2232    MarkFunctionReferenced(StartLoc, OperatorDelete);
2233
2234    // Check access and ambiguity of operator delete and destructor.
2235    if (PointeeRD) {
2236      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2237          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2238                      PDiag(diag::err_access_dtor) << PointeeElem);
2239      }
2240    }
2241
2242  }
2243
2244  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2245                                           ArrayFormAsWritten,
2246                                           UsualArrayDeleteWantsSize,
2247                                           OperatorDelete, Ex.take(), StartLoc));
2248}
2249
2250/// \brief Check the use of the given variable as a C++ condition in an if,
2251/// while, do-while, or switch statement.
2252ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2253                                        SourceLocation StmtLoc,
2254                                        bool ConvertToBoolean) {
2255  QualType T = ConditionVar->getType();
2256
2257  // C++ [stmt.select]p2:
2258  //   The declarator shall not specify a function or an array.
2259  if (T->isFunctionType())
2260    return ExprError(Diag(ConditionVar->getLocation(),
2261                          diag::err_invalid_use_of_function_type)
2262                       << ConditionVar->getSourceRange());
2263  else if (T->isArrayType())
2264    return ExprError(Diag(ConditionVar->getLocation(),
2265                          diag::err_invalid_use_of_array_type)
2266                     << ConditionVar->getSourceRange());
2267
2268  ExprResult Condition =
2269    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2270                              SourceLocation(),
2271                              ConditionVar,
2272                              /*enclosing*/ false,
2273                              ConditionVar->getLocation(),
2274                              ConditionVar->getType().getNonReferenceType(),
2275                              VK_LValue));
2276
2277  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2278
2279  if (ConvertToBoolean) {
2280    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2281    if (Condition.isInvalid())
2282      return ExprError();
2283  }
2284
2285  return Condition;
2286}
2287
2288/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2289ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2290  // C++ 6.4p4:
2291  // The value of a condition that is an initialized declaration in a statement
2292  // other than a switch statement is the value of the declared variable
2293  // implicitly converted to type bool. If that conversion is ill-formed, the
2294  // program is ill-formed.
2295  // The value of a condition that is an expression is the value of the
2296  // expression, implicitly converted to bool.
2297  //
2298  return PerformContextuallyConvertToBool(CondExpr);
2299}
2300
2301/// Helper function to determine whether this is the (deprecated) C++
2302/// conversion from a string literal to a pointer to non-const char or
2303/// non-const wchar_t (for narrow and wide string literals,
2304/// respectively).
2305bool
2306Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2307  // Look inside the implicit cast, if it exists.
2308  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2309    From = Cast->getSubExpr();
2310
2311  // A string literal (2.13.4) that is not a wide string literal can
2312  // be converted to an rvalue of type "pointer to char"; a wide
2313  // string literal can be converted to an rvalue of type "pointer
2314  // to wchar_t" (C++ 4.2p2).
2315  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2316    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2317      if (const BuiltinType *ToPointeeType
2318          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2319        // This conversion is considered only when there is an
2320        // explicit appropriate pointer target type (C++ 4.2p2).
2321        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2322          switch (StrLit->getKind()) {
2323            case StringLiteral::UTF8:
2324            case StringLiteral::UTF16:
2325            case StringLiteral::UTF32:
2326              // We don't allow UTF literals to be implicitly converted
2327              break;
2328            case StringLiteral::Ascii:
2329              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2330                      ToPointeeType->getKind() == BuiltinType::Char_S);
2331            case StringLiteral::Wide:
2332              return ToPointeeType->isWideCharType();
2333          }
2334        }
2335      }
2336
2337  return false;
2338}
2339
2340static ExprResult BuildCXXCastArgument(Sema &S,
2341                                       SourceLocation CastLoc,
2342                                       QualType Ty,
2343                                       CastKind Kind,
2344                                       CXXMethodDecl *Method,
2345                                       DeclAccessPair FoundDecl,
2346                                       bool HadMultipleCandidates,
2347                                       Expr *From) {
2348  switch (Kind) {
2349  default: llvm_unreachable("Unhandled cast kind!");
2350  case CK_ConstructorConversion: {
2351    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2352    SmallVector<Expr*, 8> ConstructorArgs;
2353
2354    if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2355      return ExprError();
2356
2357    S.CheckConstructorAccess(CastLoc, Constructor,
2358                             InitializedEntity::InitializeTemporary(Ty),
2359                             Constructor->getAccess());
2360
2361    ExprResult Result
2362      = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2363                                ConstructorArgs,
2364                                HadMultipleCandidates, /*ZeroInit*/ false,
2365                                CXXConstructExpr::CK_Complete, SourceRange());
2366    if (Result.isInvalid())
2367      return ExprError();
2368
2369    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2370  }
2371
2372  case CK_UserDefinedConversion: {
2373    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2374
2375    // Create an implicit call expr that calls it.
2376    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2377    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2378                                                 HadMultipleCandidates);
2379    if (Result.isInvalid())
2380      return ExprError();
2381    // Record usage of conversion in an implicit cast.
2382    Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2383                                              Result.get()->getType(),
2384                                              CK_UserDefinedConversion,
2385                                              Result.get(), 0,
2386                                              Result.get()->getValueKind()));
2387
2388    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2389
2390    return S.MaybeBindToTemporary(Result.get());
2391  }
2392  }
2393}
2394
2395/// PerformImplicitConversion - Perform an implicit conversion of the
2396/// expression From to the type ToType using the pre-computed implicit
2397/// conversion sequence ICS. Returns the converted
2398/// expression. Action is the kind of conversion we're performing,
2399/// used in the error message.
2400ExprResult
2401Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2402                                const ImplicitConversionSequence &ICS,
2403                                AssignmentAction Action,
2404                                CheckedConversionKind CCK) {
2405  switch (ICS.getKind()) {
2406  case ImplicitConversionSequence::StandardConversion: {
2407    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2408                                               Action, CCK);
2409    if (Res.isInvalid())
2410      return ExprError();
2411    From = Res.take();
2412    break;
2413  }
2414
2415  case ImplicitConversionSequence::UserDefinedConversion: {
2416
2417      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2418      CastKind CastKind;
2419      QualType BeforeToType;
2420      assert(FD && "FIXME: aggregate initialization from init list");
2421      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2422        CastKind = CK_UserDefinedConversion;
2423
2424        // If the user-defined conversion is specified by a conversion function,
2425        // the initial standard conversion sequence converts the source type to
2426        // the implicit object parameter of the conversion function.
2427        BeforeToType = Context.getTagDeclType(Conv->getParent());
2428      } else {
2429        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2430        CastKind = CK_ConstructorConversion;
2431        // Do no conversion if dealing with ... for the first conversion.
2432        if (!ICS.UserDefined.EllipsisConversion) {
2433          // If the user-defined conversion is specified by a constructor, the
2434          // initial standard conversion sequence converts the source type to the
2435          // type required by the argument of the constructor
2436          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2437        }
2438      }
2439      // Watch out for elipsis conversion.
2440      if (!ICS.UserDefined.EllipsisConversion) {
2441        ExprResult Res =
2442          PerformImplicitConversion(From, BeforeToType,
2443                                    ICS.UserDefined.Before, AA_Converting,
2444                                    CCK);
2445        if (Res.isInvalid())
2446          return ExprError();
2447        From = Res.take();
2448      }
2449
2450      ExprResult CastArg
2451        = BuildCXXCastArgument(*this,
2452                               From->getLocStart(),
2453                               ToType.getNonReferenceType(),
2454                               CastKind, cast<CXXMethodDecl>(FD),
2455                               ICS.UserDefined.FoundConversionFunction,
2456                               ICS.UserDefined.HadMultipleCandidates,
2457                               From);
2458
2459      if (CastArg.isInvalid())
2460        return ExprError();
2461
2462      From = CastArg.take();
2463
2464      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2465                                       AA_Converting, CCK);
2466  }
2467
2468  case ImplicitConversionSequence::AmbiguousConversion:
2469    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2470                          PDiag(diag::err_typecheck_ambiguous_condition)
2471                            << From->getSourceRange());
2472     return ExprError();
2473
2474  case ImplicitConversionSequence::EllipsisConversion:
2475    llvm_unreachable("Cannot perform an ellipsis conversion");
2476
2477  case ImplicitConversionSequence::BadConversion:
2478    return ExprError();
2479  }
2480
2481  // Everything went well.
2482  return Owned(From);
2483}
2484
2485/// PerformImplicitConversion - Perform an implicit conversion of the
2486/// expression From to the type ToType by following the standard
2487/// conversion sequence SCS. Returns the converted
2488/// expression. Flavor is the context in which we're performing this
2489/// conversion, for use in error messages.
2490ExprResult
2491Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2492                                const StandardConversionSequence& SCS,
2493                                AssignmentAction Action,
2494                                CheckedConversionKind CCK) {
2495  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2496
2497  // Overall FIXME: we are recomputing too many types here and doing far too
2498  // much extra work. What this means is that we need to keep track of more
2499  // information that is computed when we try the implicit conversion initially,
2500  // so that we don't need to recompute anything here.
2501  QualType FromType = From->getType();
2502
2503  if (SCS.CopyConstructor) {
2504    // FIXME: When can ToType be a reference type?
2505    assert(!ToType->isReferenceType());
2506    if (SCS.Second == ICK_Derived_To_Base) {
2507      SmallVector<Expr*, 8> ConstructorArgs;
2508      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2509                                  From, /*FIXME:ConstructLoc*/SourceLocation(),
2510                                  ConstructorArgs))
2511        return ExprError();
2512      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2513                                   ToType, SCS.CopyConstructor,
2514                                   ConstructorArgs,
2515                                   /*HadMultipleCandidates*/ false,
2516                                   /*ZeroInit*/ false,
2517                                   CXXConstructExpr::CK_Complete,
2518                                   SourceRange());
2519    }
2520    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2521                                 ToType, SCS.CopyConstructor,
2522                                 From, /*HadMultipleCandidates*/ false,
2523                                 /*ZeroInit*/ false,
2524                                 CXXConstructExpr::CK_Complete,
2525                                 SourceRange());
2526  }
2527
2528  // Resolve overloaded function references.
2529  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2530    DeclAccessPair Found;
2531    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2532                                                          true, Found);
2533    if (!Fn)
2534      return ExprError();
2535
2536    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2537      return ExprError();
2538
2539    From = FixOverloadedFunctionReference(From, Found, Fn);
2540    FromType = From->getType();
2541  }
2542
2543  // Perform the first implicit conversion.
2544  switch (SCS.First) {
2545  case ICK_Identity:
2546    // Nothing to do.
2547    break;
2548
2549  case ICK_Lvalue_To_Rvalue: {
2550    assert(From->getObjectKind() != OK_ObjCProperty);
2551    FromType = FromType.getUnqualifiedType();
2552    ExprResult FromRes = DefaultLvalueConversion(From);
2553    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2554    From = FromRes.take();
2555    break;
2556  }
2557
2558  case ICK_Array_To_Pointer:
2559    FromType = Context.getArrayDecayedType(FromType);
2560    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2561                             VK_RValue, /*BasePath=*/0, CCK).take();
2562    break;
2563
2564  case ICK_Function_To_Pointer:
2565    FromType = Context.getPointerType(FromType);
2566    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2567                             VK_RValue, /*BasePath=*/0, CCK).take();
2568    break;
2569
2570  default:
2571    llvm_unreachable("Improper first standard conversion");
2572  }
2573
2574  // Perform the second implicit conversion
2575  switch (SCS.Second) {
2576  case ICK_Identity:
2577    // If both sides are functions (or pointers/references to them), there could
2578    // be incompatible exception declarations.
2579    if (CheckExceptionSpecCompatibility(From, ToType))
2580      return ExprError();
2581    // Nothing else to do.
2582    break;
2583
2584  case ICK_NoReturn_Adjustment:
2585    // If both sides are functions (or pointers/references to them), there could
2586    // be incompatible exception declarations.
2587    if (CheckExceptionSpecCompatibility(From, ToType))
2588      return ExprError();
2589
2590    From = ImpCastExprToType(From, ToType, CK_NoOp,
2591                             VK_RValue, /*BasePath=*/0, CCK).take();
2592    break;
2593
2594  case ICK_Integral_Promotion:
2595  case ICK_Integral_Conversion:
2596    From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2597                             VK_RValue, /*BasePath=*/0, CCK).take();
2598    break;
2599
2600  case ICK_Floating_Promotion:
2601  case ICK_Floating_Conversion:
2602    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2603                             VK_RValue, /*BasePath=*/0, CCK).take();
2604    break;
2605
2606  case ICK_Complex_Promotion:
2607  case ICK_Complex_Conversion: {
2608    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2609    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2610    CastKind CK;
2611    if (FromEl->isRealFloatingType()) {
2612      if (ToEl->isRealFloatingType())
2613        CK = CK_FloatingComplexCast;
2614      else
2615        CK = CK_FloatingComplexToIntegralComplex;
2616    } else if (ToEl->isRealFloatingType()) {
2617      CK = CK_IntegralComplexToFloatingComplex;
2618    } else {
2619      CK = CK_IntegralComplexCast;
2620    }
2621    From = ImpCastExprToType(From, ToType, CK,
2622                             VK_RValue, /*BasePath=*/0, CCK).take();
2623    break;
2624  }
2625
2626  case ICK_Floating_Integral:
2627    if (ToType->isRealFloatingType())
2628      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2629                               VK_RValue, /*BasePath=*/0, CCK).take();
2630    else
2631      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2632                               VK_RValue, /*BasePath=*/0, CCK).take();
2633    break;
2634
2635  case ICK_Compatible_Conversion:
2636      From = ImpCastExprToType(From, ToType, CK_NoOp,
2637                               VK_RValue, /*BasePath=*/0, CCK).take();
2638    break;
2639
2640  case ICK_Writeback_Conversion:
2641  case ICK_Pointer_Conversion: {
2642    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2643      // Diagnose incompatible Objective-C conversions
2644      if (Action == AA_Initializing || Action == AA_Assigning)
2645        Diag(From->getLocStart(),
2646             diag::ext_typecheck_convert_incompatible_pointer)
2647          << ToType << From->getType() << Action
2648          << From->getSourceRange() << 0;
2649      else
2650        Diag(From->getLocStart(),
2651             diag::ext_typecheck_convert_incompatible_pointer)
2652          << From->getType() << ToType << Action
2653          << From->getSourceRange() << 0;
2654
2655      if (From->getType()->isObjCObjectPointerType() &&
2656          ToType->isObjCObjectPointerType())
2657        EmitRelatedResultTypeNote(From);
2658    }
2659    else if (getLangOpts().ObjCAutoRefCount &&
2660             !CheckObjCARCUnavailableWeakConversion(ToType,
2661                                                    From->getType())) {
2662      if (Action == AA_Initializing)
2663        Diag(From->getLocStart(),
2664             diag::err_arc_weak_unavailable_assign);
2665      else
2666        Diag(From->getLocStart(),
2667             diag::err_arc_convesion_of_weak_unavailable)
2668          << (Action == AA_Casting) << From->getType() << ToType
2669          << From->getSourceRange();
2670    }
2671
2672    CastKind Kind = CK_Invalid;
2673    CXXCastPath BasePath;
2674    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2675      return ExprError();
2676
2677    // Make sure we extend blocks if necessary.
2678    // FIXME: doing this here is really ugly.
2679    if (Kind == CK_BlockPointerToObjCPointerCast) {
2680      ExprResult E = From;
2681      (void) PrepareCastToObjCObjectPointer(E);
2682      From = E.take();
2683    }
2684
2685    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2686             .take();
2687    break;
2688  }
2689
2690  case ICK_Pointer_Member: {
2691    CastKind Kind = CK_Invalid;
2692    CXXCastPath BasePath;
2693    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2694      return ExprError();
2695    if (CheckExceptionSpecCompatibility(From, ToType))
2696      return ExprError();
2697    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2698             .take();
2699    break;
2700  }
2701
2702  case ICK_Boolean_Conversion:
2703    // Perform half-to-boolean conversion via float.
2704    if (From->getType()->isHalfType()) {
2705      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2706      FromType = Context.FloatTy;
2707    }
2708
2709    From = ImpCastExprToType(From, Context.BoolTy,
2710                             ScalarTypeToBooleanCastKind(FromType),
2711                             VK_RValue, /*BasePath=*/0, CCK).take();
2712    break;
2713
2714  case ICK_Derived_To_Base: {
2715    CXXCastPath BasePath;
2716    if (CheckDerivedToBaseConversion(From->getType(),
2717                                     ToType.getNonReferenceType(),
2718                                     From->getLocStart(),
2719                                     From->getSourceRange(),
2720                                     &BasePath,
2721                                     CStyle))
2722      return ExprError();
2723
2724    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2725                      CK_DerivedToBase, From->getValueKind(),
2726                      &BasePath, CCK).take();
2727    break;
2728  }
2729
2730  case ICK_Vector_Conversion:
2731    From = ImpCastExprToType(From, ToType, CK_BitCast,
2732                             VK_RValue, /*BasePath=*/0, CCK).take();
2733    break;
2734
2735  case ICK_Vector_Splat:
2736    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2737                             VK_RValue, /*BasePath=*/0, CCK).take();
2738    break;
2739
2740  case ICK_Complex_Real:
2741    // Case 1.  x -> _Complex y
2742    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2743      QualType ElType = ToComplex->getElementType();
2744      bool isFloatingComplex = ElType->isRealFloatingType();
2745
2746      // x -> y
2747      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2748        // do nothing
2749      } else if (From->getType()->isRealFloatingType()) {
2750        From = ImpCastExprToType(From, ElType,
2751                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2752      } else {
2753        assert(From->getType()->isIntegerType());
2754        From = ImpCastExprToType(From, ElType,
2755                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2756      }
2757      // y -> _Complex y
2758      From = ImpCastExprToType(From, ToType,
2759                   isFloatingComplex ? CK_FloatingRealToComplex
2760                                     : CK_IntegralRealToComplex).take();
2761
2762    // Case 2.  _Complex x -> y
2763    } else {
2764      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2765      assert(FromComplex);
2766
2767      QualType ElType = FromComplex->getElementType();
2768      bool isFloatingComplex = ElType->isRealFloatingType();
2769
2770      // _Complex x -> x
2771      From = ImpCastExprToType(From, ElType,
2772                   isFloatingComplex ? CK_FloatingComplexToReal
2773                                     : CK_IntegralComplexToReal,
2774                               VK_RValue, /*BasePath=*/0, CCK).take();
2775
2776      // x -> y
2777      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2778        // do nothing
2779      } else if (ToType->isRealFloatingType()) {
2780        From = ImpCastExprToType(From, ToType,
2781                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2782                                 VK_RValue, /*BasePath=*/0, CCK).take();
2783      } else {
2784        assert(ToType->isIntegerType());
2785        From = ImpCastExprToType(From, ToType,
2786                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2787                                 VK_RValue, /*BasePath=*/0, CCK).take();
2788      }
2789    }
2790    break;
2791
2792  case ICK_Block_Pointer_Conversion: {
2793    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2794                             VK_RValue, /*BasePath=*/0, CCK).take();
2795    break;
2796  }
2797
2798  case ICK_TransparentUnionConversion: {
2799    ExprResult FromRes = Owned(From);
2800    Sema::AssignConvertType ConvTy =
2801      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2802    if (FromRes.isInvalid())
2803      return ExprError();
2804    From = FromRes.take();
2805    assert ((ConvTy == Sema::Compatible) &&
2806            "Improper transparent union conversion");
2807    (void)ConvTy;
2808    break;
2809  }
2810
2811  case ICK_Lvalue_To_Rvalue:
2812  case ICK_Array_To_Pointer:
2813  case ICK_Function_To_Pointer:
2814  case ICK_Qualification:
2815  case ICK_Num_Conversion_Kinds:
2816    llvm_unreachable("Improper second standard conversion");
2817  }
2818
2819  switch (SCS.Third) {
2820  case ICK_Identity:
2821    // Nothing to do.
2822    break;
2823
2824  case ICK_Qualification: {
2825    // The qualification keeps the category of the inner expression, unless the
2826    // target type isn't a reference.
2827    ExprValueKind VK = ToType->isReferenceType() ?
2828                                  From->getValueKind() : VK_RValue;
2829    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2830                             CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2831
2832    if (SCS.DeprecatedStringLiteralToCharPtr &&
2833        !getLangOpts().WritableStrings)
2834      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2835        << ToType.getNonReferenceType();
2836
2837    break;
2838    }
2839
2840  default:
2841    llvm_unreachable("Improper third standard conversion");
2842  }
2843
2844  // If this conversion sequence involved a scalar -> atomic conversion, perform
2845  // that conversion now.
2846  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2847    if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2848      From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2849                               CCK).take();
2850
2851  return Owned(From);
2852}
2853
2854ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2855                                     SourceLocation KWLoc,
2856                                     ParsedType Ty,
2857                                     SourceLocation RParen) {
2858  TypeSourceInfo *TSInfo;
2859  QualType T = GetTypeFromParser(Ty, &TSInfo);
2860
2861  if (!TSInfo)
2862    TSInfo = Context.getTrivialTypeSourceInfo(T);
2863  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2864}
2865
2866/// \brief Check the completeness of a type in a unary type trait.
2867///
2868/// If the particular type trait requires a complete type, tries to complete
2869/// it. If completing the type fails, a diagnostic is emitted and false
2870/// returned. If completing the type succeeds or no completion was required,
2871/// returns true.
2872static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2873                                                UnaryTypeTrait UTT,
2874                                                SourceLocation Loc,
2875                                                QualType ArgTy) {
2876  // C++0x [meta.unary.prop]p3:
2877  //   For all of the class templates X declared in this Clause, instantiating
2878  //   that template with a template argument that is a class template
2879  //   specialization may result in the implicit instantiation of the template
2880  //   argument if and only if the semantics of X require that the argument
2881  //   must be a complete type.
2882  // We apply this rule to all the type trait expressions used to implement
2883  // these class templates. We also try to follow any GCC documented behavior
2884  // in these expressions to ensure portability of standard libraries.
2885  switch (UTT) {
2886    // is_complete_type somewhat obviously cannot require a complete type.
2887  case UTT_IsCompleteType:
2888    // Fall-through
2889
2890    // These traits are modeled on the type predicates in C++0x
2891    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2892    // requiring a complete type, as whether or not they return true cannot be
2893    // impacted by the completeness of the type.
2894  case UTT_IsVoid:
2895  case UTT_IsIntegral:
2896  case UTT_IsFloatingPoint:
2897  case UTT_IsArray:
2898  case UTT_IsPointer:
2899  case UTT_IsLvalueReference:
2900  case UTT_IsRvalueReference:
2901  case UTT_IsMemberFunctionPointer:
2902  case UTT_IsMemberObjectPointer:
2903  case UTT_IsEnum:
2904  case UTT_IsUnion:
2905  case UTT_IsClass:
2906  case UTT_IsFunction:
2907  case UTT_IsReference:
2908  case UTT_IsArithmetic:
2909  case UTT_IsFundamental:
2910  case UTT_IsObject:
2911  case UTT_IsScalar:
2912  case UTT_IsCompound:
2913  case UTT_IsMemberPointer:
2914    // Fall-through
2915
2916    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2917    // which requires some of its traits to have the complete type. However,
2918    // the completeness of the type cannot impact these traits' semantics, and
2919    // so they don't require it. This matches the comments on these traits in
2920    // Table 49.
2921  case UTT_IsConst:
2922  case UTT_IsVolatile:
2923  case UTT_IsSigned:
2924  case UTT_IsUnsigned:
2925    return true;
2926
2927    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2928    // applied to a complete type.
2929  case UTT_IsTrivial:
2930  case UTT_IsTriviallyCopyable:
2931  case UTT_IsStandardLayout:
2932  case UTT_IsPOD:
2933  case UTT_IsLiteral:
2934  case UTT_IsEmpty:
2935  case UTT_IsPolymorphic:
2936  case UTT_IsAbstract:
2937    // Fall-through
2938
2939  // These traits require a complete type.
2940  case UTT_IsFinal:
2941
2942    // These trait expressions are designed to help implement predicates in
2943    // [meta.unary.prop] despite not being named the same. They are specified
2944    // by both GCC and the Embarcadero C++ compiler, and require the complete
2945    // type due to the overarching C++0x type predicates being implemented
2946    // requiring the complete type.
2947  case UTT_HasNothrowAssign:
2948  case UTT_HasNothrowConstructor:
2949  case UTT_HasNothrowCopy:
2950  case UTT_HasTrivialAssign:
2951  case UTT_HasTrivialDefaultConstructor:
2952  case UTT_HasTrivialCopy:
2953  case UTT_HasTrivialDestructor:
2954  case UTT_HasVirtualDestructor:
2955    // Arrays of unknown bound are expressly allowed.
2956    QualType ElTy = ArgTy;
2957    if (ArgTy->isIncompleteArrayType())
2958      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2959
2960    // The void type is expressly allowed.
2961    if (ElTy->isVoidType())
2962      return true;
2963
2964    return !S.RequireCompleteType(
2965      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2966  }
2967  llvm_unreachable("Type trait not handled by switch");
2968}
2969
2970static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2971                                   SourceLocation KeyLoc, QualType T) {
2972  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2973
2974  ASTContext &C = Self.Context;
2975  switch(UTT) {
2976    // Type trait expressions corresponding to the primary type category
2977    // predicates in C++0x [meta.unary.cat].
2978  case UTT_IsVoid:
2979    return T->isVoidType();
2980  case UTT_IsIntegral:
2981    return T->isIntegralType(C);
2982  case UTT_IsFloatingPoint:
2983    return T->isFloatingType();
2984  case UTT_IsArray:
2985    return T->isArrayType();
2986  case UTT_IsPointer:
2987    return T->isPointerType();
2988  case UTT_IsLvalueReference:
2989    return T->isLValueReferenceType();
2990  case UTT_IsRvalueReference:
2991    return T->isRValueReferenceType();
2992  case UTT_IsMemberFunctionPointer:
2993    return T->isMemberFunctionPointerType();
2994  case UTT_IsMemberObjectPointer:
2995    return T->isMemberDataPointerType();
2996  case UTT_IsEnum:
2997    return T->isEnumeralType();
2998  case UTT_IsUnion:
2999    return T->isUnionType();
3000  case UTT_IsClass:
3001    return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3002  case UTT_IsFunction:
3003    return T->isFunctionType();
3004
3005    // Type trait expressions which correspond to the convenient composition
3006    // predicates in C++0x [meta.unary.comp].
3007  case UTT_IsReference:
3008    return T->isReferenceType();
3009  case UTT_IsArithmetic:
3010    return T->isArithmeticType() && !T->isEnumeralType();
3011  case UTT_IsFundamental:
3012    return T->isFundamentalType();
3013  case UTT_IsObject:
3014    return T->isObjectType();
3015  case UTT_IsScalar:
3016    // Note: semantic analysis depends on Objective-C lifetime types to be
3017    // considered scalar types. However, such types do not actually behave
3018    // like scalar types at run time (since they may require retain/release
3019    // operations), so we report them as non-scalar.
3020    if (T->isObjCLifetimeType()) {
3021      switch (T.getObjCLifetime()) {
3022      case Qualifiers::OCL_None:
3023      case Qualifiers::OCL_ExplicitNone:
3024        return true;
3025
3026      case Qualifiers::OCL_Strong:
3027      case Qualifiers::OCL_Weak:
3028      case Qualifiers::OCL_Autoreleasing:
3029        return false;
3030      }
3031    }
3032
3033    return T->isScalarType();
3034  case UTT_IsCompound:
3035    return T->isCompoundType();
3036  case UTT_IsMemberPointer:
3037    return T->isMemberPointerType();
3038
3039    // Type trait expressions which correspond to the type property predicates
3040    // in C++0x [meta.unary.prop].
3041  case UTT_IsConst:
3042    return T.isConstQualified();
3043  case UTT_IsVolatile:
3044    return T.isVolatileQualified();
3045  case UTT_IsTrivial:
3046    return T.isTrivialType(Self.Context);
3047  case UTT_IsTriviallyCopyable:
3048    return T.isTriviallyCopyableType(Self.Context);
3049  case UTT_IsStandardLayout:
3050    return T->isStandardLayoutType();
3051  case UTT_IsPOD:
3052    return T.isPODType(Self.Context);
3053  case UTT_IsLiteral:
3054    return T->isLiteralType();
3055  case UTT_IsEmpty:
3056    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3057      return !RD->isUnion() && RD->isEmpty();
3058    return false;
3059  case UTT_IsPolymorphic:
3060    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3061      return RD->isPolymorphic();
3062    return false;
3063  case UTT_IsAbstract:
3064    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3065      return RD->isAbstract();
3066    return false;
3067  case UTT_IsFinal:
3068    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3069      return RD->hasAttr<FinalAttr>();
3070    return false;
3071  case UTT_IsSigned:
3072    return T->isSignedIntegerType();
3073  case UTT_IsUnsigned:
3074    return T->isUnsignedIntegerType();
3075
3076    // Type trait expressions which query classes regarding their construction,
3077    // destruction, and copying. Rather than being based directly on the
3078    // related type predicates in the standard, they are specified by both
3079    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3080    // specifications.
3081    //
3082    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3083    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3084  case UTT_HasTrivialDefaultConstructor:
3085    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3086    //   If __is_pod (type) is true then the trait is true, else if type is
3087    //   a cv class or union type (or array thereof) with a trivial default
3088    //   constructor ([class.ctor]) then the trait is true, else it is false.
3089    if (T.isPODType(Self.Context))
3090      return true;
3091    if (const RecordType *RT =
3092          C.getBaseElementType(T)->getAs<RecordType>())
3093      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
3094    return false;
3095  case UTT_HasTrivialCopy:
3096    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3097    //   If __is_pod (type) is true or type is a reference type then
3098    //   the trait is true, else if type is a cv class or union type
3099    //   with a trivial copy constructor ([class.copy]) then the trait
3100    //   is true, else it is false.
3101    if (T.isPODType(Self.Context) || T->isReferenceType())
3102      return true;
3103    if (const RecordType *RT = T->getAs<RecordType>())
3104      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
3105    return false;
3106  case UTT_HasTrivialAssign:
3107    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3108    //   If type is const qualified or is a reference type then the
3109    //   trait is false. Otherwise if __is_pod (type) is true then the
3110    //   trait is true, else if type is a cv class or union type with
3111    //   a trivial copy assignment ([class.copy]) then the trait is
3112    //   true, else it is false.
3113    // Note: the const and reference restrictions are interesting,
3114    // given that const and reference members don't prevent a class
3115    // from having a trivial copy assignment operator (but do cause
3116    // errors if the copy assignment operator is actually used, q.v.
3117    // [class.copy]p12).
3118
3119    if (C.getBaseElementType(T).isConstQualified())
3120      return false;
3121    if (T.isPODType(Self.Context))
3122      return true;
3123    if (const RecordType *RT = T->getAs<RecordType>())
3124      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
3125    return false;
3126  case UTT_HasTrivialDestructor:
3127    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3128    //   If __is_pod (type) is true or type is a reference type
3129    //   then the trait is true, else if type is a cv class or union
3130    //   type (or array thereof) with a trivial destructor
3131    //   ([class.dtor]) then the trait is true, else it is
3132    //   false.
3133    if (T.isPODType(Self.Context) || T->isReferenceType())
3134      return true;
3135
3136    // Objective-C++ ARC: autorelease types don't require destruction.
3137    if (T->isObjCLifetimeType() &&
3138        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3139      return true;
3140
3141    if (const RecordType *RT =
3142          C.getBaseElementType(T)->getAs<RecordType>())
3143      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
3144    return false;
3145  // TODO: Propagate nothrowness for implicitly declared special members.
3146  case UTT_HasNothrowAssign:
3147    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3148    //   If type is const qualified or is a reference type then the
3149    //   trait is false. Otherwise if __has_trivial_assign (type)
3150    //   is true then the trait is true, else if type is a cv class
3151    //   or union type with copy assignment operators that are known
3152    //   not to throw an exception then the trait is true, else it is
3153    //   false.
3154    if (C.getBaseElementType(T).isConstQualified())
3155      return false;
3156    if (T->isReferenceType())
3157      return false;
3158    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3159      return true;
3160    if (const RecordType *RT = T->getAs<RecordType>()) {
3161      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
3162      if (RD->hasTrivialCopyAssignment())
3163        return true;
3164
3165      bool FoundAssign = false;
3166      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3167      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3168                       Sema::LookupOrdinaryName);
3169      if (Self.LookupQualifiedName(Res, RD)) {
3170        Res.suppressDiagnostics();
3171        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3172             Op != OpEnd; ++Op) {
3173          if (isa<FunctionTemplateDecl>(*Op))
3174            continue;
3175
3176          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3177          if (Operator->isCopyAssignmentOperator()) {
3178            FoundAssign = true;
3179            const FunctionProtoType *CPT
3180                = Operator->getType()->getAs<FunctionProtoType>();
3181            CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3182            if (!CPT)
3183              return false;
3184            if (!CPT->isNothrow(Self.Context))
3185              return false;
3186          }
3187        }
3188      }
3189
3190      return FoundAssign;
3191    }
3192    return false;
3193  case UTT_HasNothrowCopy:
3194    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3195    //   If __has_trivial_copy (type) is true then the trait is true, else
3196    //   if type is a cv class or union type with copy constructors that are
3197    //   known not to throw an exception then the trait is true, else it is
3198    //   false.
3199    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3200      return true;
3201    if (const RecordType *RT = T->getAs<RecordType>()) {
3202      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3203      if (RD->hasTrivialCopyConstructor())
3204        return true;
3205
3206      bool FoundConstructor = false;
3207      unsigned FoundTQs;
3208      DeclContext::lookup_const_iterator Con, ConEnd;
3209      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3210           Con != ConEnd; ++Con) {
3211        // A template constructor is never a copy constructor.
3212        // FIXME: However, it may actually be selected at the actual overload
3213        // resolution point.
3214        if (isa<FunctionTemplateDecl>(*Con))
3215          continue;
3216        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3217        if (Constructor->isCopyConstructor(FoundTQs)) {
3218          FoundConstructor = true;
3219          const FunctionProtoType *CPT
3220              = Constructor->getType()->getAs<FunctionProtoType>();
3221          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3222          if (!CPT)
3223            return false;
3224          // FIXME: check whether evaluating default arguments can throw.
3225          // For now, we'll be conservative and assume that they can throw.
3226          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3227            return false;
3228        }
3229      }
3230
3231      return FoundConstructor;
3232    }
3233    return false;
3234  case UTT_HasNothrowConstructor:
3235    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3236    //   If __has_trivial_constructor (type) is true then the trait is
3237    //   true, else if type is a cv class or union type (or array
3238    //   thereof) with a default constructor that is known not to
3239    //   throw an exception then the trait is true, else it is false.
3240    if (T.isPODType(C) || T->isObjCLifetimeType())
3241      return true;
3242    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
3243      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3244      if (RD->hasTrivialDefaultConstructor())
3245        return true;
3246
3247      DeclContext::lookup_const_iterator Con, ConEnd;
3248      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3249           Con != ConEnd; ++Con) {
3250        // FIXME: In C++0x, a constructor template can be a default constructor.
3251        if (isa<FunctionTemplateDecl>(*Con))
3252          continue;
3253        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3254        if (Constructor->isDefaultConstructor()) {
3255          const FunctionProtoType *CPT
3256              = Constructor->getType()->getAs<FunctionProtoType>();
3257          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3258          if (!CPT)
3259            return false;
3260          // TODO: check whether evaluating default arguments can throw.
3261          // For now, we'll be conservative and assume that they can throw.
3262          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3263        }
3264      }
3265    }
3266    return false;
3267  case UTT_HasVirtualDestructor:
3268    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3269    //   If type is a class type with a virtual destructor ([class.dtor])
3270    //   then the trait is true, else it is false.
3271    if (const RecordType *Record = T->getAs<RecordType>()) {
3272      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
3273      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3274        return Destructor->isVirtual();
3275    }
3276    return false;
3277
3278    // These type trait expressions are modeled on the specifications for the
3279    // Embarcadero C++0x type trait functions:
3280    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3281  case UTT_IsCompleteType:
3282    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3283    //   Returns True if and only if T is a complete type at the point of the
3284    //   function call.
3285    return !T->isIncompleteType();
3286  }
3287  llvm_unreachable("Type trait not covered by switch");
3288}
3289
3290ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3291                                     SourceLocation KWLoc,
3292                                     TypeSourceInfo *TSInfo,
3293                                     SourceLocation RParen) {
3294  QualType T = TSInfo->getType();
3295  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3296    return ExprError();
3297
3298  bool Value = false;
3299  if (!T->isDependentType())
3300    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3301
3302  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3303                                                RParen, Context.BoolTy));
3304}
3305
3306ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3307                                      SourceLocation KWLoc,
3308                                      ParsedType LhsTy,
3309                                      ParsedType RhsTy,
3310                                      SourceLocation RParen) {
3311  TypeSourceInfo *LhsTSInfo;
3312  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3313  if (!LhsTSInfo)
3314    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3315
3316  TypeSourceInfo *RhsTSInfo;
3317  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3318  if (!RhsTSInfo)
3319    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3320
3321  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3322}
3323
3324/// \brief Determine whether T has a non-trivial Objective-C lifetime in
3325/// ARC mode.
3326static bool hasNontrivialObjCLifetime(QualType T) {
3327  switch (T.getObjCLifetime()) {
3328  case Qualifiers::OCL_ExplicitNone:
3329    return false;
3330
3331  case Qualifiers::OCL_Strong:
3332  case Qualifiers::OCL_Weak:
3333  case Qualifiers::OCL_Autoreleasing:
3334    return true;
3335
3336  case Qualifiers::OCL_None:
3337    return T->isObjCLifetimeType();
3338  }
3339
3340  llvm_unreachable("Unknown ObjC lifetime qualifier");
3341}
3342
3343static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3344                              ArrayRef<TypeSourceInfo *> Args,
3345                              SourceLocation RParenLoc) {
3346  switch (Kind) {
3347  case clang::TT_IsTriviallyConstructible: {
3348    // C++11 [meta.unary.prop]:
3349    //   is_trivially_constructible is defined as:
3350    //
3351    //     is_constructible<T, Args...>::value is true and the variable
3352    //     definition for is_constructible, as defined below, is known to call no
3353    //     operation that is not trivial.
3354    //
3355    //   The predicate condition for a template specialization
3356    //   is_constructible<T, Args...> shall be satisfied if and only if the
3357    //   following variable definition would be well-formed for some invented
3358    //   variable t:
3359    //
3360    //     T t(create<Args>()...);
3361    if (Args.empty()) {
3362      S.Diag(KWLoc, diag::err_type_trait_arity)
3363        << 1 << 1 << 1 << (int)Args.size();
3364      return false;
3365    }
3366
3367    bool SawVoid = false;
3368    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3369      if (Args[I]->getType()->isVoidType()) {
3370        SawVoid = true;
3371        continue;
3372      }
3373
3374      if (!Args[I]->getType()->isIncompleteType() &&
3375        S.RequireCompleteType(KWLoc, Args[I]->getType(),
3376          diag::err_incomplete_type_used_in_type_trait_expr))
3377        return false;
3378    }
3379
3380    // If any argument was 'void', of course it won't type-check.
3381    if (SawVoid)
3382      return false;
3383
3384    llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3385    llvm::SmallVector<Expr *, 2> ArgExprs;
3386    ArgExprs.reserve(Args.size() - 1);
3387    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3388      QualType T = Args[I]->getType();
3389      if (T->isObjectType() || T->isFunctionType())
3390        T = S.Context.getRValueReferenceType(T);
3391      OpaqueArgExprs.push_back(
3392        OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3393                        T.getNonLValueExprType(S.Context),
3394                        Expr::getValueKindForType(T)));
3395      ArgExprs.push_back(&OpaqueArgExprs.back());
3396    }
3397
3398    // Perform the initialization in an unevaluated context within a SFINAE
3399    // trap at translation unit scope.
3400    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3401    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3402    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3403    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3404    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3405                                                                 RParenLoc));
3406    InitializationSequence Init(S, To, InitKind,
3407                                ArgExprs.begin(), ArgExprs.size());
3408    if (Init.Failed())
3409      return false;
3410
3411    ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3412    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3413      return false;
3414
3415    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3416    // lifetime, this is a non-trivial construction.
3417    if (S.getLangOpts().ObjCAutoRefCount &&
3418        hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3419      return false;
3420
3421    // The initialization succeeded; now make sure there are no non-trivial
3422    // calls.
3423    return !Result.get()->hasNonTrivialCall(S.Context);
3424  }
3425  }
3426
3427  return false;
3428}
3429
3430ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3431                                ArrayRef<TypeSourceInfo *> Args,
3432                                SourceLocation RParenLoc) {
3433  bool Dependent = false;
3434  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3435    if (Args[I]->getType()->isDependentType()) {
3436      Dependent = true;
3437      break;
3438    }
3439  }
3440
3441  bool Value = false;
3442  if (!Dependent)
3443    Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3444
3445  return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3446                               Args, RParenLoc, Value);
3447}
3448
3449ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3450                                ArrayRef<ParsedType> Args,
3451                                SourceLocation RParenLoc) {
3452  llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3453  ConvertedArgs.reserve(Args.size());
3454
3455  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3456    TypeSourceInfo *TInfo;
3457    QualType T = GetTypeFromParser(Args[I], &TInfo);
3458    if (!TInfo)
3459      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3460
3461    ConvertedArgs.push_back(TInfo);
3462  }
3463
3464  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3465}
3466
3467static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3468                                    QualType LhsT, QualType RhsT,
3469                                    SourceLocation KeyLoc) {
3470  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3471         "Cannot evaluate traits of dependent types");
3472
3473  switch(BTT) {
3474  case BTT_IsBaseOf: {
3475    // C++0x [meta.rel]p2
3476    // Base is a base class of Derived without regard to cv-qualifiers or
3477    // Base and Derived are not unions and name the same class type without
3478    // regard to cv-qualifiers.
3479
3480    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3481    if (!lhsRecord) return false;
3482
3483    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3484    if (!rhsRecord) return false;
3485
3486    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3487             == (lhsRecord == rhsRecord));
3488
3489    if (lhsRecord == rhsRecord)
3490      return !lhsRecord->getDecl()->isUnion();
3491
3492    // C++0x [meta.rel]p2:
3493    //   If Base and Derived are class types and are different types
3494    //   (ignoring possible cv-qualifiers) then Derived shall be a
3495    //   complete type.
3496    if (Self.RequireCompleteType(KeyLoc, RhsT,
3497                          diag::err_incomplete_type_used_in_type_trait_expr))
3498      return false;
3499
3500    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3501      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3502  }
3503  case BTT_IsSame:
3504    return Self.Context.hasSameType(LhsT, RhsT);
3505  case BTT_TypeCompatible:
3506    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3507                                           RhsT.getUnqualifiedType());
3508  case BTT_IsConvertible:
3509  case BTT_IsConvertibleTo: {
3510    // C++0x [meta.rel]p4:
3511    //   Given the following function prototype:
3512    //
3513    //     template <class T>
3514    //       typename add_rvalue_reference<T>::type create();
3515    //
3516    //   the predicate condition for a template specialization
3517    //   is_convertible<From, To> shall be satisfied if and only if
3518    //   the return expression in the following code would be
3519    //   well-formed, including any implicit conversions to the return
3520    //   type of the function:
3521    //
3522    //     To test() {
3523    //       return create<From>();
3524    //     }
3525    //
3526    //   Access checking is performed as if in a context unrelated to To and
3527    //   From. Only the validity of the immediate context of the expression
3528    //   of the return-statement (including conversions to the return type)
3529    //   is considered.
3530    //
3531    // We model the initialization as a copy-initialization of a temporary
3532    // of the appropriate type, which for this expression is identical to the
3533    // return statement (since NRVO doesn't apply).
3534
3535    // Functions aren't allowed to return function or array types.
3536    if (RhsT->isFunctionType() || RhsT->isArrayType())
3537      return false;
3538
3539    // A return statement in a void function must have void type.
3540    if (RhsT->isVoidType())
3541      return LhsT->isVoidType();
3542
3543    // A function definition requires a complete, non-abstract return type.
3544    if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3545        Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3546      return false;
3547
3548    // Compute the result of add_rvalue_reference.
3549    if (LhsT->isObjectType() || LhsT->isFunctionType())
3550      LhsT = Self.Context.getRValueReferenceType(LhsT);
3551
3552    // Build a fake source and destination for initialization.
3553    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3554    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3555                         Expr::getValueKindForType(LhsT));
3556    Expr *FromPtr = &From;
3557    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3558                                                           SourceLocation()));
3559
3560    // Perform the initialization in an unevaluated context within a SFINAE
3561    // trap at translation unit scope.
3562    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3563    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3564    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3565    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3566    if (Init.Failed())
3567      return false;
3568
3569    ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3570    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3571  }
3572
3573  case BTT_IsTriviallyAssignable: {
3574    // C++11 [meta.unary.prop]p3:
3575    //   is_trivially_assignable is defined as:
3576    //     is_assignable<T, U>::value is true and the assignment, as defined by
3577    //     is_assignable, is known to call no operation that is not trivial
3578    //
3579    //   is_assignable is defined as:
3580    //     The expression declval<T>() = declval<U>() is well-formed when
3581    //     treated as an unevaluated operand (Clause 5).
3582    //
3583    //   For both, T and U shall be complete types, (possibly cv-qualified)
3584    //   void, or arrays of unknown bound.
3585    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3586        Self.RequireCompleteType(KeyLoc, LhsT,
3587          diag::err_incomplete_type_used_in_type_trait_expr))
3588      return false;
3589    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3590        Self.RequireCompleteType(KeyLoc, RhsT,
3591          diag::err_incomplete_type_used_in_type_trait_expr))
3592      return false;
3593
3594    // cv void is never assignable.
3595    if (LhsT->isVoidType() || RhsT->isVoidType())
3596      return false;
3597
3598    // Build expressions that emulate the effect of declval<T>() and
3599    // declval<U>().
3600    if (LhsT->isObjectType() || LhsT->isFunctionType())
3601      LhsT = Self.Context.getRValueReferenceType(LhsT);
3602    if (RhsT->isObjectType() || RhsT->isFunctionType())
3603      RhsT = Self.Context.getRValueReferenceType(RhsT);
3604    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3605                        Expr::getValueKindForType(LhsT));
3606    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3607                        Expr::getValueKindForType(RhsT));
3608
3609    // Attempt the assignment in an unevaluated context within a SFINAE
3610    // trap at translation unit scope.
3611    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3612    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3613    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3614    ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3615    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3616      return false;
3617
3618    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3619    // lifetime, this is a non-trivial assignment.
3620    if (Self.getLangOpts().ObjCAutoRefCount &&
3621        hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3622      return false;
3623
3624    return !Result.get()->hasNonTrivialCall(Self.Context);
3625  }
3626  }
3627  llvm_unreachable("Unknown type trait or not implemented");
3628}
3629
3630ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3631                                      SourceLocation KWLoc,
3632                                      TypeSourceInfo *LhsTSInfo,
3633                                      TypeSourceInfo *RhsTSInfo,
3634                                      SourceLocation RParen) {
3635  QualType LhsT = LhsTSInfo->getType();
3636  QualType RhsT = RhsTSInfo->getType();
3637
3638  if (BTT == BTT_TypeCompatible) {
3639    if (getLangOpts().CPlusPlus) {
3640      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3641        << SourceRange(KWLoc, RParen);
3642      return ExprError();
3643    }
3644  }
3645
3646  bool Value = false;
3647  if (!LhsT->isDependentType() && !RhsT->isDependentType())
3648    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3649
3650  // Select trait result type.
3651  QualType ResultType;
3652  switch (BTT) {
3653  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3654  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3655  case BTT_IsSame:         ResultType = Context.BoolTy; break;
3656  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3657  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3658  case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3659  }
3660
3661  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3662                                                 RhsTSInfo, Value, RParen,
3663                                                 ResultType));
3664}
3665
3666ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3667                                     SourceLocation KWLoc,
3668                                     ParsedType Ty,
3669                                     Expr* DimExpr,
3670                                     SourceLocation RParen) {
3671  TypeSourceInfo *TSInfo;
3672  QualType T = GetTypeFromParser(Ty, &TSInfo);
3673  if (!TSInfo)
3674    TSInfo = Context.getTrivialTypeSourceInfo(T);
3675
3676  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3677}
3678
3679static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3680                                           QualType T, Expr *DimExpr,
3681                                           SourceLocation KeyLoc) {
3682  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3683
3684  switch(ATT) {
3685  case ATT_ArrayRank:
3686    if (T->isArrayType()) {
3687      unsigned Dim = 0;
3688      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3689        ++Dim;
3690        T = AT->getElementType();
3691      }
3692      return Dim;
3693    }
3694    return 0;
3695
3696  case ATT_ArrayExtent: {
3697    llvm::APSInt Value;
3698    uint64_t Dim;
3699    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3700          diag::err_dimension_expr_not_constant_integer,
3701          false).isInvalid())
3702      return 0;
3703    if (Value.isSigned() && Value.isNegative()) {
3704      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3705        << DimExpr->getSourceRange();
3706      return 0;
3707    }
3708    Dim = Value.getLimitedValue();
3709
3710    if (T->isArrayType()) {
3711      unsigned D = 0;
3712      bool Matched = false;
3713      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3714        if (Dim == D) {
3715          Matched = true;
3716          break;
3717        }
3718        ++D;
3719        T = AT->getElementType();
3720      }
3721
3722      if (Matched && T->isArrayType()) {
3723        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3724          return CAT->getSize().getLimitedValue();
3725      }
3726    }
3727    return 0;
3728  }
3729  }
3730  llvm_unreachable("Unknown type trait or not implemented");
3731}
3732
3733ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3734                                     SourceLocation KWLoc,
3735                                     TypeSourceInfo *TSInfo,
3736                                     Expr* DimExpr,
3737                                     SourceLocation RParen) {
3738  QualType T = TSInfo->getType();
3739
3740  // FIXME: This should likely be tracked as an APInt to remove any host
3741  // assumptions about the width of size_t on the target.
3742  uint64_t Value = 0;
3743  if (!T->isDependentType())
3744    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3745
3746  // While the specification for these traits from the Embarcadero C++
3747  // compiler's documentation says the return type is 'unsigned int', Clang
3748  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3749  // compiler, there is no difference. On several other platforms this is an
3750  // important distinction.
3751  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3752                                                DimExpr, RParen,
3753                                                Context.getSizeType()));
3754}
3755
3756ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3757                                      SourceLocation KWLoc,
3758                                      Expr *Queried,
3759                                      SourceLocation RParen) {
3760  // If error parsing the expression, ignore.
3761  if (!Queried)
3762    return ExprError();
3763
3764  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3765
3766  return Result;
3767}
3768
3769static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3770  switch (ET) {
3771  case ET_IsLValueExpr: return E->isLValue();
3772  case ET_IsRValueExpr: return E->isRValue();
3773  }
3774  llvm_unreachable("Expression trait not covered by switch");
3775}
3776
3777ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3778                                      SourceLocation KWLoc,
3779                                      Expr *Queried,
3780                                      SourceLocation RParen) {
3781  if (Queried->isTypeDependent()) {
3782    // Delay type-checking for type-dependent expressions.
3783  } else if (Queried->getType()->isPlaceholderType()) {
3784    ExprResult PE = CheckPlaceholderExpr(Queried);
3785    if (PE.isInvalid()) return ExprError();
3786    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3787  }
3788
3789  bool Value = EvaluateExpressionTrait(ET, Queried);
3790
3791  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3792                                                 RParen, Context.BoolTy));
3793}
3794
3795QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3796                                            ExprValueKind &VK,
3797                                            SourceLocation Loc,
3798                                            bool isIndirect) {
3799  assert(!LHS.get()->getType()->isPlaceholderType() &&
3800         !RHS.get()->getType()->isPlaceholderType() &&
3801         "placeholders should have been weeded out by now");
3802
3803  // The LHS undergoes lvalue conversions if this is ->*.
3804  if (isIndirect) {
3805    LHS = DefaultLvalueConversion(LHS.take());
3806    if (LHS.isInvalid()) return QualType();
3807  }
3808
3809  // The RHS always undergoes lvalue conversions.
3810  RHS = DefaultLvalueConversion(RHS.take());
3811  if (RHS.isInvalid()) return QualType();
3812
3813  const char *OpSpelling = isIndirect ? "->*" : ".*";
3814  // C++ 5.5p2
3815  //   The binary operator .* [p3: ->*] binds its second operand, which shall
3816  //   be of type "pointer to member of T" (where T is a completely-defined
3817  //   class type) [...]
3818  QualType RHSType = RHS.get()->getType();
3819  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3820  if (!MemPtr) {
3821    Diag(Loc, diag::err_bad_memptr_rhs)
3822      << OpSpelling << RHSType << RHS.get()->getSourceRange();
3823    return QualType();
3824  }
3825
3826  QualType Class(MemPtr->getClass(), 0);
3827
3828  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3829  // member pointer points must be completely-defined. However, there is no
3830  // reason for this semantic distinction, and the rule is not enforced by
3831  // other compilers. Therefore, we do not check this property, as it is
3832  // likely to be considered a defect.
3833
3834  // C++ 5.5p2
3835  //   [...] to its first operand, which shall be of class T or of a class of
3836  //   which T is an unambiguous and accessible base class. [p3: a pointer to
3837  //   such a class]
3838  QualType LHSType = LHS.get()->getType();
3839  if (isIndirect) {
3840    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3841      LHSType = Ptr->getPointeeType();
3842    else {
3843      Diag(Loc, diag::err_bad_memptr_lhs)
3844        << OpSpelling << 1 << LHSType
3845        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3846      return QualType();
3847    }
3848  }
3849
3850  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3851    // If we want to check the hierarchy, we need a complete type.
3852    if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
3853                            OpSpelling, (int)isIndirect)) {
3854      return QualType();
3855    }
3856    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3857                       /*DetectVirtual=*/false);
3858    // FIXME: Would it be useful to print full ambiguity paths, or is that
3859    // overkill?
3860    if (!IsDerivedFrom(LHSType, Class, Paths) ||
3861        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3862      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3863        << (int)isIndirect << LHS.get()->getType();
3864      return QualType();
3865    }
3866    // Cast LHS to type of use.
3867    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3868    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3869
3870    CXXCastPath BasePath;
3871    BuildBasePathArray(Paths, BasePath);
3872    LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3873                            &BasePath);
3874  }
3875
3876  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3877    // Diagnose use of pointer-to-member type which when used as
3878    // the functional cast in a pointer-to-member expression.
3879    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3880     return QualType();
3881  }
3882
3883  // C++ 5.5p2
3884  //   The result is an object or a function of the type specified by the
3885  //   second operand.
3886  // The cv qualifiers are the union of those in the pointer and the left side,
3887  // in accordance with 5.5p5 and 5.2.5.
3888  QualType Result = MemPtr->getPointeeType();
3889  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3890
3891  // C++0x [expr.mptr.oper]p6:
3892  //   In a .* expression whose object expression is an rvalue, the program is
3893  //   ill-formed if the second operand is a pointer to member function with
3894  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3895  //   expression is an lvalue, the program is ill-formed if the second operand
3896  //   is a pointer to member function with ref-qualifier &&.
3897  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3898    switch (Proto->getRefQualifier()) {
3899    case RQ_None:
3900      // Do nothing
3901      break;
3902
3903    case RQ_LValue:
3904      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3905        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3906          << RHSType << 1 << LHS.get()->getSourceRange();
3907      break;
3908
3909    case RQ_RValue:
3910      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3911        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3912          << RHSType << 0 << LHS.get()->getSourceRange();
3913      break;
3914    }
3915  }
3916
3917  // C++ [expr.mptr.oper]p6:
3918  //   The result of a .* expression whose second operand is a pointer
3919  //   to a data member is of the same value category as its
3920  //   first operand. The result of a .* expression whose second
3921  //   operand is a pointer to a member function is a prvalue. The
3922  //   result of an ->* expression is an lvalue if its second operand
3923  //   is a pointer to data member and a prvalue otherwise.
3924  if (Result->isFunctionType()) {
3925    VK = VK_RValue;
3926    return Context.BoundMemberTy;
3927  } else if (isIndirect) {
3928    VK = VK_LValue;
3929  } else {
3930    VK = LHS.get()->getValueKind();
3931  }
3932
3933  return Result;
3934}
3935
3936/// \brief Try to convert a type to another according to C++0x 5.16p3.
3937///
3938/// This is part of the parameter validation for the ? operator. If either
3939/// value operand is a class type, the two operands are attempted to be
3940/// converted to each other. This function does the conversion in one direction.
3941/// It returns true if the program is ill-formed and has already been diagnosed
3942/// as such.
3943static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3944                                SourceLocation QuestionLoc,
3945                                bool &HaveConversion,
3946                                QualType &ToType) {
3947  HaveConversion = false;
3948  ToType = To->getType();
3949
3950  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3951                                                           SourceLocation());
3952  // C++0x 5.16p3
3953  //   The process for determining whether an operand expression E1 of type T1
3954  //   can be converted to match an operand expression E2 of type T2 is defined
3955  //   as follows:
3956  //   -- If E2 is an lvalue:
3957  bool ToIsLvalue = To->isLValue();
3958  if (ToIsLvalue) {
3959    //   E1 can be converted to match E2 if E1 can be implicitly converted to
3960    //   type "lvalue reference to T2", subject to the constraint that in the
3961    //   conversion the reference must bind directly to E1.
3962    QualType T = Self.Context.getLValueReferenceType(ToType);
3963    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3964
3965    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3966    if (InitSeq.isDirectReferenceBinding()) {
3967      ToType = T;
3968      HaveConversion = true;
3969      return false;
3970    }
3971
3972    if (InitSeq.isAmbiguous())
3973      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3974  }
3975
3976  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3977  //      -- if E1 and E2 have class type, and the underlying class types are
3978  //         the same or one is a base class of the other:
3979  QualType FTy = From->getType();
3980  QualType TTy = To->getType();
3981  const RecordType *FRec = FTy->getAs<RecordType>();
3982  const RecordType *TRec = TTy->getAs<RecordType>();
3983  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3984                       Self.IsDerivedFrom(FTy, TTy);
3985  if (FRec && TRec &&
3986      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3987    //         E1 can be converted to match E2 if the class of T2 is the
3988    //         same type as, or a base class of, the class of T1, and
3989    //         [cv2 > cv1].
3990    if (FRec == TRec || FDerivedFromT) {
3991      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3992        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3993        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3994        if (InitSeq) {
3995          HaveConversion = true;
3996          return false;
3997        }
3998
3999        if (InitSeq.isAmbiguous())
4000          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
4001      }
4002    }
4003
4004    return false;
4005  }
4006
4007  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
4008  //        implicitly converted to the type that expression E2 would have
4009  //        if E2 were converted to an rvalue (or the type it has, if E2 is
4010  //        an rvalue).
4011  //
4012  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4013  // to the array-to-pointer or function-to-pointer conversions.
4014  if (!TTy->getAs<TagType>())
4015    TTy = TTy.getUnqualifiedType();
4016
4017  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4018  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
4019  HaveConversion = !InitSeq.Failed();
4020  ToType = TTy;
4021  if (InitSeq.isAmbiguous())
4022    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
4023
4024  return false;
4025}
4026
4027/// \brief Try to find a common type for two according to C++0x 5.16p5.
4028///
4029/// This is part of the parameter validation for the ? operator. If either
4030/// value operand is a class type, overload resolution is used to find a
4031/// conversion to a common type.
4032static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4033                                    SourceLocation QuestionLoc) {
4034  Expr *Args[2] = { LHS.get(), RHS.get() };
4035  OverloadCandidateSet CandidateSet(QuestionLoc);
4036  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
4037                                    CandidateSet);
4038
4039  OverloadCandidateSet::iterator Best;
4040  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4041    case OR_Success: {
4042      // We found a match. Perform the conversions on the arguments and move on.
4043      ExprResult LHSRes =
4044        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4045                                       Best->Conversions[0], Sema::AA_Converting);
4046      if (LHSRes.isInvalid())
4047        break;
4048      LHS = LHSRes;
4049
4050      ExprResult RHSRes =
4051        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4052                                       Best->Conversions[1], Sema::AA_Converting);
4053      if (RHSRes.isInvalid())
4054        break;
4055      RHS = RHSRes;
4056      if (Best->Function)
4057        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4058      return false;
4059    }
4060
4061    case OR_No_Viable_Function:
4062
4063      // Emit a better diagnostic if one of the expressions is a null pointer
4064      // constant and the other is a pointer type. In this case, the user most
4065      // likely forgot to take the address of the other expression.
4066      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4067        return true;
4068
4069      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4070        << LHS.get()->getType() << RHS.get()->getType()
4071        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4072      return true;
4073
4074    case OR_Ambiguous:
4075      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4076        << LHS.get()->getType() << RHS.get()->getType()
4077        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4078      // FIXME: Print the possible common types by printing the return types of
4079      // the viable candidates.
4080      break;
4081
4082    case OR_Deleted:
4083      llvm_unreachable("Conditional operator has only built-in overloads");
4084  }
4085  return true;
4086}
4087
4088/// \brief Perform an "extended" implicit conversion as returned by
4089/// TryClassUnification.
4090static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4091  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4092  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4093                                                           SourceLocation());
4094  Expr *Arg = E.take();
4095  InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
4096  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4097  if (Result.isInvalid())
4098    return true;
4099
4100  E = Result;
4101  return false;
4102}
4103
4104/// \brief Check the operands of ?: under C++ semantics.
4105///
4106/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4107/// extension. In this case, LHS == Cond. (But they're not aliases.)
4108QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4109                                           ExprResult &RHS, ExprValueKind &VK,
4110                                           ExprObjectKind &OK,
4111                                           SourceLocation QuestionLoc) {
4112  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4113  // interface pointers.
4114
4115  // C++11 [expr.cond]p1
4116  //   The first expression is contextually converted to bool.
4117  if (!Cond.get()->isTypeDependent()) {
4118    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4119    if (CondRes.isInvalid())
4120      return QualType();
4121    Cond = CondRes;
4122  }
4123
4124  // Assume r-value.
4125  VK = VK_RValue;
4126  OK = OK_Ordinary;
4127
4128  // Either of the arguments dependent?
4129  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4130    return Context.DependentTy;
4131
4132  // C++11 [expr.cond]p2
4133  //   If either the second or the third operand has type (cv) void, ...
4134  QualType LTy = LHS.get()->getType();
4135  QualType RTy = RHS.get()->getType();
4136  bool LVoid = LTy->isVoidType();
4137  bool RVoid = RTy->isVoidType();
4138  if (LVoid || RVoid) {
4139    //   ... then the [l2r] conversions are performed on the second and third
4140    //   operands ...
4141    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4142    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4143    if (LHS.isInvalid() || RHS.isInvalid())
4144      return QualType();
4145
4146    // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4147    // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4148    // do this part for us.
4149    ExprResult &NonVoid = LVoid ? RHS : LHS;
4150    if (NonVoid.get()->getType()->isRecordType() &&
4151        NonVoid.get()->isGLValue()) {
4152      if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
4153                             diag::err_allocation_of_abstract_type))
4154        return QualType();
4155      InitializedEntity Entity =
4156          InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4157      NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4158      if (NonVoid.isInvalid())
4159        return QualType();
4160    }
4161
4162    LTy = LHS.get()->getType();
4163    RTy = RHS.get()->getType();
4164
4165    //   ... and one of the following shall hold:
4166    //   -- The second or the third operand (but not both) is a throw-
4167    //      expression; the result is of the type of the other and is a prvalue.
4168    bool LThrow = isa<CXXThrowExpr>(LHS.get());
4169    bool RThrow = isa<CXXThrowExpr>(RHS.get());
4170    if (LThrow && !RThrow)
4171      return RTy;
4172    if (RThrow && !LThrow)
4173      return LTy;
4174
4175    //   -- Both the second and third operands have type void; the result is of
4176    //      type void and is a prvalue.
4177    if (LVoid && RVoid)
4178      return Context.VoidTy;
4179
4180    // Neither holds, error.
4181    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4182      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4183      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4184    return QualType();
4185  }
4186
4187  // Neither is void.
4188
4189  // C++11 [expr.cond]p3
4190  //   Otherwise, if the second and third operand have different types, and
4191  //   either has (cv) class type [...] an attempt is made to convert each of
4192  //   those operands to the type of the other.
4193  if (!Context.hasSameType(LTy, RTy) &&
4194      (LTy->isRecordType() || RTy->isRecordType())) {
4195    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4196    // These return true if a single direction is already ambiguous.
4197    QualType L2RType, R2LType;
4198    bool HaveL2R, HaveR2L;
4199    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4200      return QualType();
4201    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4202      return QualType();
4203
4204    //   If both can be converted, [...] the program is ill-formed.
4205    if (HaveL2R && HaveR2L) {
4206      Diag(QuestionLoc, diag::err_conditional_ambiguous)
4207        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4208      return QualType();
4209    }
4210
4211    //   If exactly one conversion is possible, that conversion is applied to
4212    //   the chosen operand and the converted operands are used in place of the
4213    //   original operands for the remainder of this section.
4214    if (HaveL2R) {
4215      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4216        return QualType();
4217      LTy = LHS.get()->getType();
4218    } else if (HaveR2L) {
4219      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4220        return QualType();
4221      RTy = RHS.get()->getType();
4222    }
4223  }
4224
4225  // C++11 [expr.cond]p3
4226  //   if both are glvalues of the same value category and the same type except
4227  //   for cv-qualification, an attempt is made to convert each of those
4228  //   operands to the type of the other.
4229  ExprValueKind LVK = LHS.get()->getValueKind();
4230  ExprValueKind RVK = RHS.get()->getValueKind();
4231  if (!Context.hasSameType(LTy, RTy) &&
4232      Context.hasSameUnqualifiedType(LTy, RTy) &&
4233      LVK == RVK && LVK != VK_RValue) {
4234    // Since the unqualified types are reference-related and we require the
4235    // result to be as if a reference bound directly, the only conversion
4236    // we can perform is to add cv-qualifiers.
4237    Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4238    Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4239    if (RCVR.isStrictSupersetOf(LCVR)) {
4240      LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4241      LTy = LHS.get()->getType();
4242    }
4243    else if (LCVR.isStrictSupersetOf(RCVR)) {
4244      RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4245      RTy = RHS.get()->getType();
4246    }
4247  }
4248
4249  // C++11 [expr.cond]p4
4250  //   If the second and third operands are glvalues of the same value
4251  //   category and have the same type, the result is of that type and
4252  //   value category and it is a bit-field if the second or the third
4253  //   operand is a bit-field, or if both are bit-fields.
4254  // We only extend this to bitfields, not to the crazy other kinds of
4255  // l-values.
4256  bool Same = Context.hasSameType(LTy, RTy);
4257  if (Same && LVK == RVK && LVK != VK_RValue &&
4258      LHS.get()->isOrdinaryOrBitFieldObject() &&
4259      RHS.get()->isOrdinaryOrBitFieldObject()) {
4260    VK = LHS.get()->getValueKind();
4261    if (LHS.get()->getObjectKind() == OK_BitField ||
4262        RHS.get()->getObjectKind() == OK_BitField)
4263      OK = OK_BitField;
4264    return LTy;
4265  }
4266
4267  // C++11 [expr.cond]p5
4268  //   Otherwise, the result is a prvalue. If the second and third operands
4269  //   do not have the same type, and either has (cv) class type, ...
4270  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4271    //   ... overload resolution is used to determine the conversions (if any)
4272    //   to be applied to the operands. If the overload resolution fails, the
4273    //   program is ill-formed.
4274    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4275      return QualType();
4276  }
4277
4278  // C++11 [expr.cond]p6
4279  //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4280  //   conversions are performed on the second and third operands.
4281  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4282  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4283  if (LHS.isInvalid() || RHS.isInvalid())
4284    return QualType();
4285  LTy = LHS.get()->getType();
4286  RTy = RHS.get()->getType();
4287
4288  //   After those conversions, one of the following shall hold:
4289  //   -- The second and third operands have the same type; the result
4290  //      is of that type. If the operands have class type, the result
4291  //      is a prvalue temporary of the result type, which is
4292  //      copy-initialized from either the second operand or the third
4293  //      operand depending on the value of the first operand.
4294  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4295    if (LTy->isRecordType()) {
4296      // The operands have class type. Make a temporary copy.
4297      if (RequireNonAbstractType(QuestionLoc, LTy,
4298                                 diag::err_allocation_of_abstract_type))
4299        return QualType();
4300      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4301
4302      ExprResult LHSCopy = PerformCopyInitialization(Entity,
4303                                                     SourceLocation(),
4304                                                     LHS);
4305      if (LHSCopy.isInvalid())
4306        return QualType();
4307
4308      ExprResult RHSCopy = PerformCopyInitialization(Entity,
4309                                                     SourceLocation(),
4310                                                     RHS);
4311      if (RHSCopy.isInvalid())
4312        return QualType();
4313
4314      LHS = LHSCopy;
4315      RHS = RHSCopy;
4316    }
4317
4318    return LTy;
4319  }
4320
4321  // Extension: conditional operator involving vector types.
4322  if (LTy->isVectorType() || RTy->isVectorType())
4323    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4324
4325  //   -- The second and third operands have arithmetic or enumeration type;
4326  //      the usual arithmetic conversions are performed to bring them to a
4327  //      common type, and the result is of that type.
4328  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4329    UsualArithmeticConversions(LHS, RHS);
4330    if (LHS.isInvalid() || RHS.isInvalid())
4331      return QualType();
4332    return LHS.get()->getType();
4333  }
4334
4335  //   -- The second and third operands have pointer type, or one has pointer
4336  //      type and the other is a null pointer constant, or both are null
4337  //      pointer constants, at least one of which is non-integral; pointer
4338  //      conversions and qualification conversions are performed to bring them
4339  //      to their composite pointer type. The result is of the composite
4340  //      pointer type.
4341  //   -- The second and third operands have pointer to member type, or one has
4342  //      pointer to member type and the other is a null pointer constant;
4343  //      pointer to member conversions and qualification conversions are
4344  //      performed to bring them to a common type, whose cv-qualification
4345  //      shall match the cv-qualification of either the second or the third
4346  //      operand. The result is of the common type.
4347  bool NonStandardCompositeType = false;
4348  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4349                              isSFINAEContext()? 0 : &NonStandardCompositeType);
4350  if (!Composite.isNull()) {
4351    if (NonStandardCompositeType)
4352      Diag(QuestionLoc,
4353           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4354        << LTy << RTy << Composite
4355        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4356
4357    return Composite;
4358  }
4359
4360  // Similarly, attempt to find composite type of two objective-c pointers.
4361  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4362  if (!Composite.isNull())
4363    return Composite;
4364
4365  // Check if we are using a null with a non-pointer type.
4366  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4367    return QualType();
4368
4369  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4370    << LHS.get()->getType() << RHS.get()->getType()
4371    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4372  return QualType();
4373}
4374
4375/// \brief Find a merged pointer type and convert the two expressions to it.
4376///
4377/// This finds the composite pointer type (or member pointer type) for @p E1
4378/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4379/// type and returns it.
4380/// It does not emit diagnostics.
4381///
4382/// \param Loc The location of the operator requiring these two expressions to
4383/// be converted to the composite pointer type.
4384///
4385/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4386/// a non-standard (but still sane) composite type to which both expressions
4387/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4388/// will be set true.
4389QualType Sema::FindCompositePointerType(SourceLocation Loc,
4390                                        Expr *&E1, Expr *&E2,
4391                                        bool *NonStandardCompositeType) {
4392  if (NonStandardCompositeType)
4393    *NonStandardCompositeType = false;
4394
4395  assert(getLangOpts().CPlusPlus && "This function assumes C++");
4396  QualType T1 = E1->getType(), T2 = E2->getType();
4397
4398  // C++11 5.9p2
4399  //   Pointer conversions and qualification conversions are performed on
4400  //   pointer operands to bring them to their composite pointer type. If
4401  //   one operand is a null pointer constant, the composite pointer type is
4402  //   std::nullptr_t if the other operand is also a null pointer constant or,
4403  //   if the other operand is a pointer, the type of the other operand.
4404  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4405      !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4406    if (T1->isNullPtrType() &&
4407        E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4408      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4409      return T1;
4410    }
4411    if (T2->isNullPtrType() &&
4412        E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4413      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4414      return T2;
4415    }
4416    return QualType();
4417  }
4418
4419  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4420    if (T2->isMemberPointerType())
4421      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4422    else
4423      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4424    return T2;
4425  }
4426  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4427    if (T1->isMemberPointerType())
4428      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4429    else
4430      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4431    return T1;
4432  }
4433
4434  // Now both have to be pointers or member pointers.
4435  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4436      (!T2->isPointerType() && !T2->isMemberPointerType()))
4437    return QualType();
4438
4439  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4440  //   the other has type "pointer to cv2 T" and the composite pointer type is
4441  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4442  //   Otherwise, the composite pointer type is a pointer type similar to the
4443  //   type of one of the operands, with a cv-qualification signature that is
4444  //   the union of the cv-qualification signatures of the operand types.
4445  // In practice, the first part here is redundant; it's subsumed by the second.
4446  // What we do here is, we build the two possible composite types, and try the
4447  // conversions in both directions. If only one works, or if the two composite
4448  // types are the same, we have succeeded.
4449  // FIXME: extended qualifiers?
4450  typedef SmallVector<unsigned, 4> QualifierVector;
4451  QualifierVector QualifierUnion;
4452  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4453      ContainingClassVector;
4454  ContainingClassVector MemberOfClass;
4455  QualType Composite1 = Context.getCanonicalType(T1),
4456           Composite2 = Context.getCanonicalType(T2);
4457  unsigned NeedConstBefore = 0;
4458  do {
4459    const PointerType *Ptr1, *Ptr2;
4460    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4461        (Ptr2 = Composite2->getAs<PointerType>())) {
4462      Composite1 = Ptr1->getPointeeType();
4463      Composite2 = Ptr2->getPointeeType();
4464
4465      // If we're allowed to create a non-standard composite type, keep track
4466      // of where we need to fill in additional 'const' qualifiers.
4467      if (NonStandardCompositeType &&
4468          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4469        NeedConstBefore = QualifierUnion.size();
4470
4471      QualifierUnion.push_back(
4472                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4473      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4474      continue;
4475    }
4476
4477    const MemberPointerType *MemPtr1, *MemPtr2;
4478    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4479        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4480      Composite1 = MemPtr1->getPointeeType();
4481      Composite2 = MemPtr2->getPointeeType();
4482
4483      // If we're allowed to create a non-standard composite type, keep track
4484      // of where we need to fill in additional 'const' qualifiers.
4485      if (NonStandardCompositeType &&
4486          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4487        NeedConstBefore = QualifierUnion.size();
4488
4489      QualifierUnion.push_back(
4490                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4491      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4492                                             MemPtr2->getClass()));
4493      continue;
4494    }
4495
4496    // FIXME: block pointer types?
4497
4498    // Cannot unwrap any more types.
4499    break;
4500  } while (true);
4501
4502  if (NeedConstBefore && NonStandardCompositeType) {
4503    // Extension: Add 'const' to qualifiers that come before the first qualifier
4504    // mismatch, so that our (non-standard!) composite type meets the
4505    // requirements of C++ [conv.qual]p4 bullet 3.
4506    for (unsigned I = 0; I != NeedConstBefore; ++I) {
4507      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4508        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4509        *NonStandardCompositeType = true;
4510      }
4511    }
4512  }
4513
4514  // Rewrap the composites as pointers or member pointers with the union CVRs.
4515  ContainingClassVector::reverse_iterator MOC
4516    = MemberOfClass.rbegin();
4517  for (QualifierVector::reverse_iterator
4518         I = QualifierUnion.rbegin(),
4519         E = QualifierUnion.rend();
4520       I != E; (void)++I, ++MOC) {
4521    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4522    if (MOC->first && MOC->second) {
4523      // Rebuild member pointer type
4524      Composite1 = Context.getMemberPointerType(
4525                                    Context.getQualifiedType(Composite1, Quals),
4526                                    MOC->first);
4527      Composite2 = Context.getMemberPointerType(
4528                                    Context.getQualifiedType(Composite2, Quals),
4529                                    MOC->second);
4530    } else {
4531      // Rebuild pointer type
4532      Composite1
4533        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4534      Composite2
4535        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4536    }
4537  }
4538
4539  // Try to convert to the first composite pointer type.
4540  InitializedEntity Entity1
4541    = InitializedEntity::InitializeTemporary(Composite1);
4542  InitializationKind Kind
4543    = InitializationKind::CreateCopy(Loc, SourceLocation());
4544  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4545  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4546
4547  if (E1ToC1 && E2ToC1) {
4548    // Conversion to Composite1 is viable.
4549    if (!Context.hasSameType(Composite1, Composite2)) {
4550      // Composite2 is a different type from Composite1. Check whether
4551      // Composite2 is also viable.
4552      InitializedEntity Entity2
4553        = InitializedEntity::InitializeTemporary(Composite2);
4554      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4555      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4556      if (E1ToC2 && E2ToC2) {
4557        // Both Composite1 and Composite2 are viable and are different;
4558        // this is an ambiguity.
4559        return QualType();
4560      }
4561    }
4562
4563    // Convert E1 to Composite1
4564    ExprResult E1Result
4565      = E1ToC1.Perform(*this, Entity1, Kind, E1);
4566    if (E1Result.isInvalid())
4567      return QualType();
4568    E1 = E1Result.takeAs<Expr>();
4569
4570    // Convert E2 to Composite1
4571    ExprResult E2Result
4572      = E2ToC1.Perform(*this, Entity1, Kind, E2);
4573    if (E2Result.isInvalid())
4574      return QualType();
4575    E2 = E2Result.takeAs<Expr>();
4576
4577    return Composite1;
4578  }
4579
4580  // Check whether Composite2 is viable.
4581  InitializedEntity Entity2
4582    = InitializedEntity::InitializeTemporary(Composite2);
4583  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4584  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4585  if (!E1ToC2 || !E2ToC2)
4586    return QualType();
4587
4588  // Convert E1 to Composite2
4589  ExprResult E1Result
4590    = E1ToC2.Perform(*this, Entity2, Kind, E1);
4591  if (E1Result.isInvalid())
4592    return QualType();
4593  E1 = E1Result.takeAs<Expr>();
4594
4595  // Convert E2 to Composite2
4596  ExprResult E2Result
4597    = E2ToC2.Perform(*this, Entity2, Kind, E2);
4598  if (E2Result.isInvalid())
4599    return QualType();
4600  E2 = E2Result.takeAs<Expr>();
4601
4602  return Composite2;
4603}
4604
4605ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4606  if (!E)
4607    return ExprError();
4608
4609  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4610
4611  // If the result is a glvalue, we shouldn't bind it.
4612  if (!E->isRValue())
4613    return Owned(E);
4614
4615  // In ARC, calls that return a retainable type can return retained,
4616  // in which case we have to insert a consuming cast.
4617  if (getLangOpts().ObjCAutoRefCount &&
4618      E->getType()->isObjCRetainableType()) {
4619
4620    bool ReturnsRetained;
4621
4622    // For actual calls, we compute this by examining the type of the
4623    // called value.
4624    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4625      Expr *Callee = Call->getCallee()->IgnoreParens();
4626      QualType T = Callee->getType();
4627
4628      if (T == Context.BoundMemberTy) {
4629        // Handle pointer-to-members.
4630        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4631          T = BinOp->getRHS()->getType();
4632        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4633          T = Mem->getMemberDecl()->getType();
4634      }
4635
4636      if (const PointerType *Ptr = T->getAs<PointerType>())
4637        T = Ptr->getPointeeType();
4638      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4639        T = Ptr->getPointeeType();
4640      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4641        T = MemPtr->getPointeeType();
4642
4643      const FunctionType *FTy = T->getAs<FunctionType>();
4644      assert(FTy && "call to value not of function type?");
4645      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4646
4647    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4648    // type always produce a +1 object.
4649    } else if (isa<StmtExpr>(E)) {
4650      ReturnsRetained = true;
4651
4652    // We hit this case with the lambda conversion-to-block optimization;
4653    // we don't want any extra casts here.
4654    } else if (isa<CastExpr>(E) &&
4655               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4656      return Owned(E);
4657
4658    // For message sends and property references, we try to find an
4659    // actual method.  FIXME: we should infer retention by selector in
4660    // cases where we don't have an actual method.
4661    } else {
4662      ObjCMethodDecl *D = 0;
4663      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4664        D = Send->getMethodDecl();
4665      } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4666        D = BoxedExpr->getBoxingMethod();
4667      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4668        D = ArrayLit->getArrayWithObjectsMethod();
4669      } else if (ObjCDictionaryLiteral *DictLit
4670                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
4671        D = DictLit->getDictWithObjectsMethod();
4672      }
4673
4674      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4675
4676      // Don't do reclaims on performSelector calls; despite their
4677      // return type, the invoked method doesn't necessarily actually
4678      // return an object.
4679      if (!ReturnsRetained &&
4680          D && D->getMethodFamily() == OMF_performSelector)
4681        return Owned(E);
4682    }
4683
4684    // Don't reclaim an object of Class type.
4685    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4686      return Owned(E);
4687
4688    ExprNeedsCleanups = true;
4689
4690    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4691                                   : CK_ARCReclaimReturnedObject);
4692    return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4693                                          VK_RValue));
4694  }
4695
4696  if (!getLangOpts().CPlusPlus)
4697    return Owned(E);
4698
4699  // Search for the base element type (cf. ASTContext::getBaseElementType) with
4700  // a fast path for the common case that the type is directly a RecordType.
4701  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4702  const RecordType *RT = 0;
4703  while (!RT) {
4704    switch (T->getTypeClass()) {
4705    case Type::Record:
4706      RT = cast<RecordType>(T);
4707      break;
4708    case Type::ConstantArray:
4709    case Type::IncompleteArray:
4710    case Type::VariableArray:
4711    case Type::DependentSizedArray:
4712      T = cast<ArrayType>(T)->getElementType().getTypePtr();
4713      break;
4714    default:
4715      return Owned(E);
4716    }
4717  }
4718
4719  // That should be enough to guarantee that this type is complete, if we're
4720  // not processing a decltype expression.
4721  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4722  if (RD->isInvalidDecl() || RD->isDependentContext())
4723    return Owned(E);
4724
4725  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4726  CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4727
4728  if (Destructor) {
4729    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4730    CheckDestructorAccess(E->getExprLoc(), Destructor,
4731                          PDiag(diag::err_access_dtor_temp)
4732                            << E->getType());
4733    DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4734
4735    // If destructor is trivial, we can avoid the extra copy.
4736    if (Destructor->isTrivial())
4737      return Owned(E);
4738
4739    // We need a cleanup, but we don't need to remember the temporary.
4740    ExprNeedsCleanups = true;
4741  }
4742
4743  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4744  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4745
4746  if (IsDecltype)
4747    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4748
4749  return Owned(Bind);
4750}
4751
4752ExprResult
4753Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4754  if (SubExpr.isInvalid())
4755    return ExprError();
4756
4757  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4758}
4759
4760Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4761  assert(SubExpr && "sub expression can't be null!");
4762
4763  CleanupVarDeclMarking();
4764
4765  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4766  assert(ExprCleanupObjects.size() >= FirstCleanup);
4767  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4768  if (!ExprNeedsCleanups)
4769    return SubExpr;
4770
4771  ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4772    = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4773                         ExprCleanupObjects.size() - FirstCleanup);
4774
4775  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4776  DiscardCleanupsInEvaluationContext();
4777
4778  return E;
4779}
4780
4781Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4782  assert(SubStmt && "sub statement can't be null!");
4783
4784  CleanupVarDeclMarking();
4785
4786  if (!ExprNeedsCleanups)
4787    return SubStmt;
4788
4789  // FIXME: In order to attach the temporaries, wrap the statement into
4790  // a StmtExpr; currently this is only used for asm statements.
4791  // This is hacky, either create a new CXXStmtWithTemporaries statement or
4792  // a new AsmStmtWithTemporaries.
4793  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4794                                                      SourceLocation(),
4795                                                      SourceLocation());
4796  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4797                                   SourceLocation());
4798  return MaybeCreateExprWithCleanups(E);
4799}
4800
4801/// Process the expression contained within a decltype. For such expressions,
4802/// certain semantic checks on temporaries are delayed until this point, and
4803/// are omitted for the 'topmost' call in the decltype expression. If the
4804/// topmost call bound a temporary, strip that temporary off the expression.
4805ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4806  ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back();
4807  assert(Rec.IsDecltype && "not in a decltype expression");
4808
4809  // C++11 [expr.call]p11:
4810  //   If a function call is a prvalue of object type,
4811  // -- if the function call is either
4812  //   -- the operand of a decltype-specifier, or
4813  //   -- the right operand of a comma operator that is the operand of a
4814  //      decltype-specifier,
4815  //   a temporary object is not introduced for the prvalue.
4816
4817  // Recursively rebuild ParenExprs and comma expressions to strip out the
4818  // outermost CXXBindTemporaryExpr, if any.
4819  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4820    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4821    if (SubExpr.isInvalid())
4822      return ExprError();
4823    if (SubExpr.get() == PE->getSubExpr())
4824      return Owned(E);
4825    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4826  }
4827  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4828    if (BO->getOpcode() == BO_Comma) {
4829      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4830      if (RHS.isInvalid())
4831        return ExprError();
4832      if (RHS.get() == BO->getRHS())
4833        return Owned(E);
4834      return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4835                                                BO_Comma, BO->getType(),
4836                                                BO->getValueKind(),
4837                                                BO->getObjectKind(),
4838                                                BO->getOperatorLoc()));
4839    }
4840  }
4841
4842  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4843  if (TopBind)
4844    E = TopBind->getSubExpr();
4845
4846  // Disable the special decltype handling now.
4847  Rec.IsDecltype = false;
4848
4849  // In MS mode, don't perform any extra checking of call return types within a
4850  // decltype expression.
4851  if (getLangOpts().MicrosoftMode)
4852    return Owned(E);
4853
4854  // Perform the semantic checks we delayed until this point.
4855  CallExpr *TopCall = dyn_cast<CallExpr>(E);
4856  for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) {
4857    CallExpr *Call = Rec.DelayedDecltypeCalls[I];
4858    if (Call == TopCall)
4859      continue;
4860
4861    if (CheckCallReturnType(Call->getCallReturnType(),
4862                            Call->getLocStart(),
4863                            Call, Call->getDirectCallee()))
4864      return ExprError();
4865  }
4866
4867  // Now all relevant types are complete, check the destructors are accessible
4868  // and non-deleted, and annotate them on the temporaries.
4869  for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) {
4870    CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I];
4871    if (Bind == TopBind)
4872      continue;
4873
4874    CXXTemporary *Temp = Bind->getTemporary();
4875
4876    CXXRecordDecl *RD =
4877      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4878    CXXDestructorDecl *Destructor = LookupDestructor(RD);
4879    Temp->setDestructor(Destructor);
4880
4881    MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
4882    CheckDestructorAccess(Bind->getExprLoc(), Destructor,
4883                          PDiag(diag::err_access_dtor_temp)
4884                            << Bind->getType());
4885    DiagnoseUseOfDecl(Destructor, Bind->getExprLoc());
4886
4887    // We need a cleanup, but we don't need to remember the temporary.
4888    ExprNeedsCleanups = true;
4889  }
4890
4891  // Possibly strip off the top CXXBindTemporaryExpr.
4892  return Owned(E);
4893}
4894
4895ExprResult
4896Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4897                                   tok::TokenKind OpKind, ParsedType &ObjectType,
4898                                   bool &MayBePseudoDestructor) {
4899  // Since this might be a postfix expression, get rid of ParenListExprs.
4900  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4901  if (Result.isInvalid()) return ExprError();
4902  Base = Result.get();
4903
4904  Result = CheckPlaceholderExpr(Base);
4905  if (Result.isInvalid()) return ExprError();
4906  Base = Result.take();
4907
4908  QualType BaseType = Base->getType();
4909  MayBePseudoDestructor = false;
4910  if (BaseType->isDependentType()) {
4911    // If we have a pointer to a dependent type and are using the -> operator,
4912    // the object type is the type that the pointer points to. We might still
4913    // have enough information about that type to do something useful.
4914    if (OpKind == tok::arrow)
4915      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4916        BaseType = Ptr->getPointeeType();
4917
4918    ObjectType = ParsedType::make(BaseType);
4919    MayBePseudoDestructor = true;
4920    return Owned(Base);
4921  }
4922
4923  // C++ [over.match.oper]p8:
4924  //   [...] When operator->returns, the operator-> is applied  to the value
4925  //   returned, with the original second operand.
4926  if (OpKind == tok::arrow) {
4927    // The set of types we've considered so far.
4928    llvm::SmallPtrSet<CanQualType,8> CTypes;
4929    SmallVector<SourceLocation, 8> Locations;
4930    CTypes.insert(Context.getCanonicalType(BaseType));
4931
4932    while (BaseType->isRecordType()) {
4933      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4934      if (Result.isInvalid())
4935        return ExprError();
4936      Base = Result.get();
4937      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4938        Locations.push_back(OpCall->getDirectCallee()->getLocation());
4939      BaseType = Base->getType();
4940      CanQualType CBaseType = Context.getCanonicalType(BaseType);
4941      if (!CTypes.insert(CBaseType)) {
4942        Diag(OpLoc, diag::err_operator_arrow_circular);
4943        for (unsigned i = 0; i < Locations.size(); i++)
4944          Diag(Locations[i], diag::note_declared_at);
4945        return ExprError();
4946      }
4947    }
4948
4949    if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4950      BaseType = BaseType->getPointeeType();
4951  }
4952
4953  // Objective-C properties allow "." access on Objective-C pointer types,
4954  // so adjust the base type to the object type itself.
4955  if (BaseType->isObjCObjectPointerType())
4956    BaseType = BaseType->getPointeeType();
4957
4958  // C++ [basic.lookup.classref]p2:
4959  //   [...] If the type of the object expression is of pointer to scalar
4960  //   type, the unqualified-id is looked up in the context of the complete
4961  //   postfix-expression.
4962  //
4963  // This also indicates that we could be parsing a pseudo-destructor-name.
4964  // Note that Objective-C class and object types can be pseudo-destructor
4965  // expressions or normal member (ivar or property) access expressions.
4966  if (BaseType->isObjCObjectOrInterfaceType()) {
4967    MayBePseudoDestructor = true;
4968  } else if (!BaseType->isRecordType()) {
4969    ObjectType = ParsedType();
4970    MayBePseudoDestructor = true;
4971    return Owned(Base);
4972  }
4973
4974  // The object type must be complete (or dependent), or
4975  // C++11 [expr.prim.general]p3:
4976  //   Unlike the object expression in other contexts, *this is not required to
4977  //   be of complete type for purposes of class member access (5.2.5) outside
4978  //   the member function body.
4979  if (!BaseType->isDependentType() &&
4980      !isThisOutsideMemberFunctionBody(BaseType) &&
4981      RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
4982    return ExprError();
4983
4984  // C++ [basic.lookup.classref]p2:
4985  //   If the id-expression in a class member access (5.2.5) is an
4986  //   unqualified-id, and the type of the object expression is of a class
4987  //   type C (or of pointer to a class type C), the unqualified-id is looked
4988  //   up in the scope of class C. [...]
4989  ObjectType = ParsedType::make(BaseType);
4990  return Base;
4991}
4992
4993ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4994                                                   Expr *MemExpr) {
4995  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4996  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4997    << isa<CXXPseudoDestructorExpr>(MemExpr)
4998    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4999
5000  return ActOnCallExpr(/*Scope*/ 0,
5001                       MemExpr,
5002                       /*LPLoc*/ ExpectedLParenLoc,
5003                       MultiExprArg(),
5004                       /*RPLoc*/ ExpectedLParenLoc);
5005}
5006
5007static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5008                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
5009  if (Base->hasPlaceholderType()) {
5010    ExprResult result = S.CheckPlaceholderExpr(Base);
5011    if (result.isInvalid()) return true;
5012    Base = result.take();
5013  }
5014  ObjectType = Base->getType();
5015
5016  // C++ [expr.pseudo]p2:
5017  //   The left-hand side of the dot operator shall be of scalar type. The
5018  //   left-hand side of the arrow operator shall be of pointer to scalar type.
5019  //   This scalar type is the object type.
5020  // Note that this is rather different from the normal handling for the
5021  // arrow operator.
5022  if (OpKind == tok::arrow) {
5023    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5024      ObjectType = Ptr->getPointeeType();
5025    } else if (!Base->isTypeDependent()) {
5026      // The user wrote "p->" when she probably meant "p."; fix it.
5027      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5028        << ObjectType << true
5029        << FixItHint::CreateReplacement(OpLoc, ".");
5030      if (S.isSFINAEContext())
5031        return true;
5032
5033      OpKind = tok::period;
5034    }
5035  }
5036
5037  return false;
5038}
5039
5040ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5041                                           SourceLocation OpLoc,
5042                                           tok::TokenKind OpKind,
5043                                           const CXXScopeSpec &SS,
5044                                           TypeSourceInfo *ScopeTypeInfo,
5045                                           SourceLocation CCLoc,
5046                                           SourceLocation TildeLoc,
5047                                         PseudoDestructorTypeStorage Destructed,
5048                                           bool HasTrailingLParen) {
5049  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5050
5051  QualType ObjectType;
5052  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5053    return ExprError();
5054
5055  if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5056      !ObjectType->isVectorType()) {
5057    if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5058      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5059    else
5060      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5061        << ObjectType << Base->getSourceRange();
5062    return ExprError();
5063  }
5064
5065  // C++ [expr.pseudo]p2:
5066  //   [...] The cv-unqualified versions of the object type and of the type
5067  //   designated by the pseudo-destructor-name shall be the same type.
5068  if (DestructedTypeInfo) {
5069    QualType DestructedType = DestructedTypeInfo->getType();
5070    SourceLocation DestructedTypeStart
5071      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5072    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5073      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5074        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5075          << ObjectType << DestructedType << Base->getSourceRange()
5076          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5077
5078        // Recover by setting the destructed type to the object type.
5079        DestructedType = ObjectType;
5080        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5081                                                           DestructedTypeStart);
5082        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5083      } else if (DestructedType.getObjCLifetime() !=
5084                                                ObjectType.getObjCLifetime()) {
5085
5086        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5087          // Okay: just pretend that the user provided the correctly-qualified
5088          // type.
5089        } else {
5090          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5091            << ObjectType << DestructedType << Base->getSourceRange()
5092            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5093        }
5094
5095        // Recover by setting the destructed type to the object type.
5096        DestructedType = ObjectType;
5097        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5098                                                           DestructedTypeStart);
5099        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5100      }
5101    }
5102  }
5103
5104  // C++ [expr.pseudo]p2:
5105  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5106  //   form
5107  //
5108  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5109  //
5110  //   shall designate the same scalar type.
5111  if (ScopeTypeInfo) {
5112    QualType ScopeType = ScopeTypeInfo->getType();
5113    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5114        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5115
5116      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5117           diag::err_pseudo_dtor_type_mismatch)
5118        << ObjectType << ScopeType << Base->getSourceRange()
5119        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5120
5121      ScopeType = QualType();
5122      ScopeTypeInfo = 0;
5123    }
5124  }
5125
5126  Expr *Result
5127    = new (Context) CXXPseudoDestructorExpr(Context, Base,
5128                                            OpKind == tok::arrow, OpLoc,
5129                                            SS.getWithLocInContext(Context),
5130                                            ScopeTypeInfo,
5131                                            CCLoc,
5132                                            TildeLoc,
5133                                            Destructed);
5134
5135  if (HasTrailingLParen)
5136    return Owned(Result);
5137
5138  return DiagnoseDtorReference(Destructed.getLocation(), Result);
5139}
5140
5141ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5142                                           SourceLocation OpLoc,
5143                                           tok::TokenKind OpKind,
5144                                           CXXScopeSpec &SS,
5145                                           UnqualifiedId &FirstTypeName,
5146                                           SourceLocation CCLoc,
5147                                           SourceLocation TildeLoc,
5148                                           UnqualifiedId &SecondTypeName,
5149                                           bool HasTrailingLParen) {
5150  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5151          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5152         "Invalid first type name in pseudo-destructor");
5153  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5154          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5155         "Invalid second type name in pseudo-destructor");
5156
5157  QualType ObjectType;
5158  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5159    return ExprError();
5160
5161  // Compute the object type that we should use for name lookup purposes. Only
5162  // record types and dependent types matter.
5163  ParsedType ObjectTypePtrForLookup;
5164  if (!SS.isSet()) {
5165    if (ObjectType->isRecordType())
5166      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5167    else if (ObjectType->isDependentType())
5168      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5169  }
5170
5171  // Convert the name of the type being destructed (following the ~) into a
5172  // type (with source-location information).
5173  QualType DestructedType;
5174  TypeSourceInfo *DestructedTypeInfo = 0;
5175  PseudoDestructorTypeStorage Destructed;
5176  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5177    ParsedType T = getTypeName(*SecondTypeName.Identifier,
5178                               SecondTypeName.StartLocation,
5179                               S, &SS, true, false, ObjectTypePtrForLookup);
5180    if (!T &&
5181        ((SS.isSet() && !computeDeclContext(SS, false)) ||
5182         (!SS.isSet() && ObjectType->isDependentType()))) {
5183      // The name of the type being destroyed is a dependent name, and we
5184      // couldn't find anything useful in scope. Just store the identifier and
5185      // it's location, and we'll perform (qualified) name lookup again at
5186      // template instantiation time.
5187      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5188                                               SecondTypeName.StartLocation);
5189    } else if (!T) {
5190      Diag(SecondTypeName.StartLocation,
5191           diag::err_pseudo_dtor_destructor_non_type)
5192        << SecondTypeName.Identifier << ObjectType;
5193      if (isSFINAEContext())
5194        return ExprError();
5195
5196      // Recover by assuming we had the right type all along.
5197      DestructedType = ObjectType;
5198    } else
5199      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5200  } else {
5201    // Resolve the template-id to a type.
5202    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5203    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5204                                       TemplateId->NumArgs);
5205    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5206                                       TemplateId->TemplateKWLoc,
5207                                       TemplateId->Template,
5208                                       TemplateId->TemplateNameLoc,
5209                                       TemplateId->LAngleLoc,
5210                                       TemplateArgsPtr,
5211                                       TemplateId->RAngleLoc);
5212    if (T.isInvalid() || !T.get()) {
5213      // Recover by assuming we had the right type all along.
5214      DestructedType = ObjectType;
5215    } else
5216      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5217  }
5218
5219  // If we've performed some kind of recovery, (re-)build the type source
5220  // information.
5221  if (!DestructedType.isNull()) {
5222    if (!DestructedTypeInfo)
5223      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5224                                                  SecondTypeName.StartLocation);
5225    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5226  }
5227
5228  // Convert the name of the scope type (the type prior to '::') into a type.
5229  TypeSourceInfo *ScopeTypeInfo = 0;
5230  QualType ScopeType;
5231  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5232      FirstTypeName.Identifier) {
5233    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5234      ParsedType T = getTypeName(*FirstTypeName.Identifier,
5235                                 FirstTypeName.StartLocation,
5236                                 S, &SS, true, false, ObjectTypePtrForLookup);
5237      if (!T) {
5238        Diag(FirstTypeName.StartLocation,
5239             diag::err_pseudo_dtor_destructor_non_type)
5240          << FirstTypeName.Identifier << ObjectType;
5241
5242        if (isSFINAEContext())
5243          return ExprError();
5244
5245        // Just drop this type. It's unnecessary anyway.
5246        ScopeType = QualType();
5247      } else
5248        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5249    } else {
5250      // Resolve the template-id to a type.
5251      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5252      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5253                                         TemplateId->NumArgs);
5254      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5255                                         TemplateId->TemplateKWLoc,
5256                                         TemplateId->Template,
5257                                         TemplateId->TemplateNameLoc,
5258                                         TemplateId->LAngleLoc,
5259                                         TemplateArgsPtr,
5260                                         TemplateId->RAngleLoc);
5261      if (T.isInvalid() || !T.get()) {
5262        // Recover by dropping this type.
5263        ScopeType = QualType();
5264      } else
5265        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5266    }
5267  }
5268
5269  if (!ScopeType.isNull() && !ScopeTypeInfo)
5270    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5271                                                  FirstTypeName.StartLocation);
5272
5273
5274  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5275                                   ScopeTypeInfo, CCLoc, TildeLoc,
5276                                   Destructed, HasTrailingLParen);
5277}
5278
5279ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5280                                           SourceLocation OpLoc,
5281                                           tok::TokenKind OpKind,
5282                                           SourceLocation TildeLoc,
5283                                           const DeclSpec& DS,
5284                                           bool HasTrailingLParen) {
5285  QualType ObjectType;
5286  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5287    return ExprError();
5288
5289  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5290
5291  TypeLocBuilder TLB;
5292  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5293  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5294  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5295  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5296
5297  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5298                                   0, SourceLocation(), TildeLoc,
5299                                   Destructed, HasTrailingLParen);
5300}
5301
5302ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5303                                        CXXConversionDecl *Method,
5304                                        bool HadMultipleCandidates) {
5305  if (Method->getParent()->isLambda() &&
5306      Method->getConversionType()->isBlockPointerType()) {
5307    // This is a lambda coversion to block pointer; check if the argument
5308    // is a LambdaExpr.
5309    Expr *SubE = E;
5310    CastExpr *CE = dyn_cast<CastExpr>(SubE);
5311    if (CE && CE->getCastKind() == CK_NoOp)
5312      SubE = CE->getSubExpr();
5313    SubE = SubE->IgnoreParens();
5314    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5315      SubE = BE->getSubExpr();
5316    if (isa<LambdaExpr>(SubE)) {
5317      // For the conversion to block pointer on a lambda expression, we
5318      // construct a special BlockLiteral instead; this doesn't really make
5319      // a difference in ARC, but outside of ARC the resulting block literal
5320      // follows the normal lifetime rules for block literals instead of being
5321      // autoreleased.
5322      DiagnosticErrorTrap Trap(Diags);
5323      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5324                                                     E->getExprLoc(),
5325                                                     Method, E);
5326      if (Exp.isInvalid())
5327        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5328      return Exp;
5329    }
5330  }
5331
5332
5333  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5334                                          FoundDecl, Method);
5335  if (Exp.isInvalid())
5336    return true;
5337
5338  MemberExpr *ME =
5339      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5340                               SourceLocation(), Context.BoundMemberTy,
5341                               VK_RValue, OK_Ordinary);
5342  if (HadMultipleCandidates)
5343    ME->setHadMultipleCandidates(true);
5344
5345  QualType ResultType = Method->getResultType();
5346  ExprValueKind VK = Expr::getValueKindForType(ResultType);
5347  ResultType = ResultType.getNonLValueExprType(Context);
5348
5349  MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
5350  CXXMemberCallExpr *CE =
5351    new (Context) CXXMemberCallExpr(Context, ME, MultiExprArg(), ResultType, VK,
5352                                    Exp.get()->getLocEnd());
5353  return CE;
5354}
5355
5356ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5357                                      SourceLocation RParen) {
5358  CanThrowResult CanThrow = canThrow(Operand);
5359  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5360                                             CanThrow, KeyLoc, RParen));
5361}
5362
5363ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5364                                   Expr *Operand, SourceLocation RParen) {
5365  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5366}
5367
5368static bool IsSpecialDiscardedValue(Expr *E) {
5369  // In C++11, discarded-value expressions of a certain form are special,
5370  // according to [expr]p10:
5371  //   The lvalue-to-rvalue conversion (4.1) is applied only if the
5372  //   expression is an lvalue of volatile-qualified type and it has
5373  //   one of the following forms:
5374  E = E->IgnoreParens();
5375
5376  //   - id-expression (5.1.1),
5377  if (isa<DeclRefExpr>(E))
5378    return true;
5379
5380  //   - subscripting (5.2.1),
5381  if (isa<ArraySubscriptExpr>(E))
5382    return true;
5383
5384  //   - class member access (5.2.5),
5385  if (isa<MemberExpr>(E))
5386    return true;
5387
5388  //   - indirection (5.3.1),
5389  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5390    if (UO->getOpcode() == UO_Deref)
5391      return true;
5392
5393  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5394    //   - pointer-to-member operation (5.5),
5395    if (BO->isPtrMemOp())
5396      return true;
5397
5398    //   - comma expression (5.18) where the right operand is one of the above.
5399    if (BO->getOpcode() == BO_Comma)
5400      return IsSpecialDiscardedValue(BO->getRHS());
5401  }
5402
5403  //   - conditional expression (5.16) where both the second and the third
5404  //     operands are one of the above, or
5405  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5406    return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5407           IsSpecialDiscardedValue(CO->getFalseExpr());
5408  // The related edge case of "*x ?: *x".
5409  if (BinaryConditionalOperator *BCO =
5410          dyn_cast<BinaryConditionalOperator>(E)) {
5411    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5412      return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5413             IsSpecialDiscardedValue(BCO->getFalseExpr());
5414  }
5415
5416  // Objective-C++ extensions to the rule.
5417  if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5418    return true;
5419
5420  return false;
5421}
5422
5423/// Perform the conversions required for an expression used in a
5424/// context that ignores the result.
5425ExprResult Sema::IgnoredValueConversions(Expr *E) {
5426  if (E->hasPlaceholderType()) {
5427    ExprResult result = CheckPlaceholderExpr(E);
5428    if (result.isInvalid()) return Owned(E);
5429    E = result.take();
5430  }
5431
5432  // C99 6.3.2.1:
5433  //   [Except in specific positions,] an lvalue that does not have
5434  //   array type is converted to the value stored in the
5435  //   designated object (and is no longer an lvalue).
5436  if (E->isRValue()) {
5437    // In C, function designators (i.e. expressions of function type)
5438    // are r-values, but we still want to do function-to-pointer decay
5439    // on them.  This is both technically correct and convenient for
5440    // some clients.
5441    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5442      return DefaultFunctionArrayConversion(E);
5443
5444    return Owned(E);
5445  }
5446
5447  if (getLangOpts().CPlusPlus)  {
5448    // The C++11 standard defines the notion of a discarded-value expression;
5449    // normally, we don't need to do anything to handle it, but if it is a
5450    // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5451    // conversion.
5452    if (getLangOpts().CPlusPlus0x && E->isGLValue() &&
5453        E->getType().isVolatileQualified() &&
5454        IsSpecialDiscardedValue(E)) {
5455      ExprResult Res = DefaultLvalueConversion(E);
5456      if (Res.isInvalid())
5457        return Owned(E);
5458      E = Res.take();
5459    }
5460    return Owned(E);
5461  }
5462
5463  // GCC seems to also exclude expressions of incomplete enum type.
5464  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5465    if (!T->getDecl()->isComplete()) {
5466      // FIXME: stupid workaround for a codegen bug!
5467      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5468      return Owned(E);
5469    }
5470  }
5471
5472  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5473  if (Res.isInvalid())
5474    return Owned(E);
5475  E = Res.take();
5476
5477  if (!E->getType()->isVoidType())
5478    RequireCompleteType(E->getExprLoc(), E->getType(),
5479                        diag::err_incomplete_type);
5480  return Owned(E);
5481}
5482
5483ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC) {
5484  ExprResult FullExpr = Owned(FE);
5485
5486  if (!FullExpr.get())
5487    return ExprError();
5488
5489  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5490    return ExprError();
5491
5492  // Top-level message sends default to 'id' when we're in a debugger.
5493  if (getLangOpts().DebuggerCastResultToId &&
5494      FullExpr.get()->getType() == Context.UnknownAnyTy &&
5495      isa<ObjCMessageExpr>(FullExpr.get())) {
5496    FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5497    if (FullExpr.isInvalid())
5498      return ExprError();
5499  }
5500
5501  FullExpr = CheckPlaceholderExpr(FullExpr.take());
5502  if (FullExpr.isInvalid())
5503    return ExprError();
5504
5505  FullExpr = IgnoredValueConversions(FullExpr.take());
5506  if (FullExpr.isInvalid())
5507    return ExprError();
5508
5509  CheckImplicitConversions(FullExpr.get(), CC);
5510  return MaybeCreateExprWithCleanups(FullExpr);
5511}
5512
5513StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5514  if (!FullStmt) return StmtError();
5515
5516  return MaybeCreateStmtWithCleanups(FullStmt);
5517}
5518
5519Sema::IfExistsResult
5520Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5521                                   CXXScopeSpec &SS,
5522                                   const DeclarationNameInfo &TargetNameInfo) {
5523  DeclarationName TargetName = TargetNameInfo.getName();
5524  if (!TargetName)
5525    return IER_DoesNotExist;
5526
5527  // If the name itself is dependent, then the result is dependent.
5528  if (TargetName.isDependentName())
5529    return IER_Dependent;
5530
5531  // Do the redeclaration lookup in the current scope.
5532  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5533                 Sema::NotForRedeclaration);
5534  LookupParsedName(R, S, &SS);
5535  R.suppressDiagnostics();
5536
5537  switch (R.getResultKind()) {
5538  case LookupResult::Found:
5539  case LookupResult::FoundOverloaded:
5540  case LookupResult::FoundUnresolvedValue:
5541  case LookupResult::Ambiguous:
5542    return IER_Exists;
5543
5544  case LookupResult::NotFound:
5545    return IER_DoesNotExist;
5546
5547  case LookupResult::NotFoundInCurrentInstantiation:
5548    return IER_Dependent;
5549  }
5550
5551  llvm_unreachable("Invalid LookupResult Kind!");
5552}
5553
5554Sema::IfExistsResult
5555Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5556                                   bool IsIfExists, CXXScopeSpec &SS,
5557                                   UnqualifiedId &Name) {
5558  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5559
5560  // Check for unexpanded parameter packs.
5561  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5562  collectUnexpandedParameterPacks(SS, Unexpanded);
5563  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5564  if (!Unexpanded.empty()) {
5565    DiagnoseUnexpandedParameterPacks(KeywordLoc,
5566                                     IsIfExists? UPPC_IfExists
5567                                               : UPPC_IfNotExists,
5568                                     Unexpanded);
5569    return IER_Error;
5570  }
5571
5572  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5573}
5574