1/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
2/* dbus-mempool.h Memory pools
3 *
4 * Copyright (C) 2002, 2003  Red Hat, Inc.
5 *
6 * Licensed under the Academic Free License version 2.1
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
21 *
22 */
23
24#include <config.h>
25#include "dbus-mempool.h"
26#include "dbus-internals.h"
27
28/**
29 * @defgroup DBusMemPool memory pools
30 * @ingroup  DBusInternals
31 * @brief DBusMemPool object
32 *
33 * Types and functions related to DBusMemPool.  A memory pool is used
34 * to decrease memory fragmentation/overhead and increase speed for
35 * blocks of small uniformly-sized objects. The main point is to avoid
36 * the overhead of a malloc block for each small object, speed is
37 * secondary.
38 */
39
40/**
41 * @defgroup DBusMemPoolInternals Memory pool implementation details
42 * @ingroup  DBusInternals
43 * @brief DBusMemPool implementation details
44 *
45 * The guts of DBusMemPool.
46 *
47 * @{
48 */
49
50/**
51 * typedef so DBusFreedElement struct can refer to itself.
52 */
53typedef struct DBusFreedElement DBusFreedElement;
54
55/**
56 * struct representing an element on the free list.
57 * We just cast freed elements to this so we can
58 * make a list out of them.
59 */
60struct DBusFreedElement
61{
62  DBusFreedElement *next; /**< next element of the free list */
63};
64
65/**
66 * The dummy size of the variable-length "elements"
67 * field in DBusMemBlock
68 */
69#define ELEMENT_PADDING 4
70
71/**
72 * Typedef for DBusMemBlock so the struct can recursively
73 * point to itself.
74 */
75typedef struct DBusMemBlock DBusMemBlock;
76
77/**
78 * DBusMemBlock object represents a single malloc()-returned
79 * block that gets chunked up into objects in the memory pool.
80 */
81struct DBusMemBlock
82{
83  DBusMemBlock *next;  /**< next block in the list, which is already used up;
84                        *   only saved so we can free all the blocks
85                        *   when we free the mem pool.
86                        */
87
88  /* this is a long so that "elements" is aligned */
89  long used_so_far;     /**< bytes of this block already allocated as elements. */
90
91  unsigned char elements[ELEMENT_PADDING]; /**< the block data, actually allocated to required size */
92};
93
94/**
95 * Internals fields of DBusMemPool
96 */
97struct DBusMemPool
98{
99  int element_size;                /**< size of a single object in the pool */
100  int block_size;                  /**< size of most recently allocated block */
101  unsigned int zero_elements : 1;  /**< whether to zero-init allocated elements */
102
103  DBusFreedElement *free_elements; /**< a free list of elements to recycle */
104  DBusMemBlock *blocks;            /**< blocks of memory from malloc() */
105  int allocated_elements;          /**< Count of outstanding allocated elements */
106};
107
108/** @} */
109
110/**
111 * @addtogroup DBusMemPool
112 *
113 * @{
114 */
115
116/**
117 * @typedef DBusMemPool
118 *
119 * Opaque object representing a memory pool. Memory pools allow
120 * avoiding per-malloc-block memory overhead when allocating a lot of
121 * small objects that are all the same size. They are slightly
122 * faster than calling malloc() also.
123 */
124
125/**
126 * Creates a new memory pool, or returns #NULL on failure.  Objects in
127 * the pool must be at least sizeof(void*) bytes each, due to the way
128 * memory pools work. To avoid creating 64 bit problems, this means at
129 * least 8 bytes on all platforms, unless you are 4 bytes on 32-bit
130 * and 8 bytes on 64-bit.
131 *
132 * @param element_size size of an element allocated from the pool.
133 * @param zero_elements whether to zero-initialize elements
134 * @returns the new pool or #NULL
135 */
136DBusMemPool*
137_dbus_mem_pool_new (int element_size,
138                    dbus_bool_t zero_elements)
139{
140  DBusMemPool *pool;
141
142  pool = dbus_new0 (DBusMemPool, 1);
143  if (pool == NULL)
144    return NULL;
145
146  /* Make the element size at least 8 bytes. */
147  if (element_size < 8)
148    element_size = 8;
149
150  /* these assertions are equivalent but the first is more clear
151   * to programmers that see it fail.
152   */
153  _dbus_assert (element_size >= (int) sizeof (void*));
154  _dbus_assert (element_size >= (int) sizeof (DBusFreedElement));
155
156  /* align the element size to a pointer boundary so we won't get bus
157   * errors under other architectures.
158   */
159  pool->element_size = _DBUS_ALIGN_VALUE (element_size, sizeof (void *));
160
161  pool->zero_elements = zero_elements != FALSE;
162
163  pool->allocated_elements = 0;
164
165  /* pick a size for the first block; it increases
166   * for each block we need to allocate. This is
167   * actually half the initial block size
168   * since _dbus_mem_pool_alloc() unconditionally
169   * doubles it prior to creating a new block.  */
170  pool->block_size = pool->element_size * 8;
171
172  _dbus_assert ((pool->block_size %
173                 pool->element_size) == 0);
174
175  return pool;
176}
177
178/**
179 * Frees a memory pool (and all elements allocated from it).
180 *
181 * @param pool the memory pool.
182 */
183void
184_dbus_mem_pool_free (DBusMemPool *pool)
185{
186  DBusMemBlock *block;
187
188  block = pool->blocks;
189  while (block != NULL)
190    {
191      DBusMemBlock *next = block->next;
192
193      dbus_free (block);
194
195      block = next;
196    }
197
198  dbus_free (pool);
199}
200
201/**
202 * Allocates an object from the memory pool.
203 * The object must be freed with _dbus_mem_pool_dealloc().
204 *
205 * @param pool the memory pool
206 * @returns the allocated object or #NULL if no memory.
207 */
208void*
209_dbus_mem_pool_alloc (DBusMemPool *pool)
210{
211#ifdef DBUS_BUILD_TESTS
212  if (_dbus_disable_mem_pools ())
213    {
214      DBusMemBlock *block;
215      int alloc_size;
216
217      /* This is obviously really silly, but it's
218       * debug-mode-only code that is compiled out
219       * when tests are disabled (_dbus_disable_mem_pools()
220       * is a constant expression FALSE so this block
221       * should vanish)
222       */
223
224      alloc_size = sizeof (DBusMemBlock) - ELEMENT_PADDING +
225        pool->element_size;
226
227      if (pool->zero_elements)
228        block = dbus_malloc0 (alloc_size);
229      else
230        block = dbus_malloc (alloc_size);
231
232      if (block != NULL)
233        {
234          block->next = pool->blocks;
235          pool->blocks = block;
236          pool->allocated_elements += 1;
237
238          return (void*) &block->elements[0];
239        }
240      else
241        return NULL;
242    }
243  else
244#endif
245    {
246      if (_dbus_decrement_fail_alloc_counter ())
247        {
248          _dbus_verbose (" FAILING mempool alloc\n");
249          return NULL;
250        }
251      else if (pool->free_elements)
252        {
253          DBusFreedElement *element = pool->free_elements;
254
255          pool->free_elements = pool->free_elements->next;
256
257          if (pool->zero_elements)
258            memset (element, '\0', pool->element_size);
259
260          pool->allocated_elements += 1;
261
262          return element;
263        }
264      else
265        {
266          void *element;
267
268          if (pool->blocks == NULL ||
269              pool->blocks->used_so_far == pool->block_size)
270            {
271              /* Need a new block */
272              DBusMemBlock *block;
273              int alloc_size;
274#ifdef DBUS_BUILD_TESTS
275              int saved_counter;
276#endif
277
278              if (pool->block_size <= _DBUS_INT_MAX / 4) /* avoid overflow */
279                {
280                  /* use a larger block size for our next block */
281                  pool->block_size *= 2;
282                  _dbus_assert ((pool->block_size %
283                                 pool->element_size) == 0);
284                }
285
286              alloc_size = sizeof (DBusMemBlock) - ELEMENT_PADDING + pool->block_size;
287
288#ifdef DBUS_BUILD_TESTS
289              /* We save/restore the counter, so that memory pools won't
290               * cause a given function to have different number of
291               * allocations on different invocations. i.e.  when testing
292               * we want consistent alloc patterns. So we skip our
293               * malloc here for purposes of failed alloc simulation.
294               */
295              saved_counter = _dbus_get_fail_alloc_counter ();
296              _dbus_set_fail_alloc_counter (_DBUS_INT_MAX);
297#endif
298
299              if (pool->zero_elements)
300                block = dbus_malloc0 (alloc_size);
301              else
302                block = dbus_malloc (alloc_size);
303
304#ifdef DBUS_BUILD_TESTS
305              _dbus_set_fail_alloc_counter (saved_counter);
306              _dbus_assert (saved_counter == _dbus_get_fail_alloc_counter ());
307#endif
308
309              if (block == NULL)
310                return NULL;
311
312              block->used_so_far = 0;
313              block->next = pool->blocks;
314              pool->blocks = block;
315            }
316
317          element = &pool->blocks->elements[pool->blocks->used_so_far];
318
319          pool->blocks->used_so_far += pool->element_size;
320
321          pool->allocated_elements += 1;
322
323          return element;
324        }
325    }
326}
327
328/**
329 * Deallocates an object previously created with
330 * _dbus_mem_pool_alloc(). The previous object
331 * must have come from this same pool.
332 * @param pool the memory pool
333 * @param element the element earlier allocated.
334 * @returns #TRUE if there are no remaining allocated elements
335 */
336dbus_bool_t
337_dbus_mem_pool_dealloc (DBusMemPool *pool,
338                        void        *element)
339{
340#ifdef DBUS_BUILD_TESTS
341  if (_dbus_disable_mem_pools ())
342    {
343      DBusMemBlock *block;
344      DBusMemBlock *prev;
345
346      /* mmm, fast. ;-) debug-only code, so doesn't matter. */
347
348      prev = NULL;
349      block = pool->blocks;
350
351      while (block != NULL)
352        {
353          if (block->elements == (unsigned char*) element)
354            {
355              if (prev)
356                prev->next = block->next;
357              else
358                pool->blocks = block->next;
359
360              dbus_free (block);
361
362              _dbus_assert (pool->allocated_elements > 0);
363              pool->allocated_elements -= 1;
364
365              if (pool->allocated_elements == 0)
366                _dbus_assert (pool->blocks == NULL);
367
368              return pool->blocks == NULL;
369            }
370          prev = block;
371          block = block->next;
372        }
373
374      _dbus_assert_not_reached ("freed nonexistent block");
375      return FALSE;
376    }
377  else
378#endif
379    {
380      DBusFreedElement *freed;
381
382      freed = element;
383      freed->next = pool->free_elements;
384      pool->free_elements = freed;
385
386      _dbus_assert (pool->allocated_elements > 0);
387      pool->allocated_elements -= 1;
388
389      return pool->allocated_elements == 0;
390    }
391}
392
393/** @} */
394
395#ifdef DBUS_BUILD_TESTS
396#include "dbus-test.h"
397#include <stdio.h>
398#include <time.h>
399
400static void
401time_for_size (int size)
402{
403  int i;
404  int j;
405  clock_t start;
406  clock_t end;
407#define FREE_ARRAY_SIZE 512
408#define N_ITERATIONS FREE_ARRAY_SIZE * 512
409  void *to_free[FREE_ARRAY_SIZE];
410  DBusMemPool *pool;
411
412  _dbus_verbose ("Timings for size %d\n", size);
413
414  _dbus_verbose (" malloc\n");
415
416  start = clock ();
417
418  i = 0;
419  j = 0;
420  while (i < N_ITERATIONS)
421    {
422      to_free[j] = dbus_malloc (size);
423      _dbus_assert (to_free[j] != NULL); /* in a real app of course this is wrong */
424
425      ++j;
426
427      if (j == FREE_ARRAY_SIZE)
428        {
429          j = 0;
430          while (j < FREE_ARRAY_SIZE)
431            {
432              dbus_free (to_free[j]);
433              ++j;
434            }
435
436          j = 0;
437        }
438
439      ++i;
440    }
441
442  end = clock ();
443
444  _dbus_verbose ("  created/destroyed %d elements in %g seconds\n",
445                 N_ITERATIONS, (end - start) / (double) CLOCKS_PER_SEC);
446
447
448
449  _dbus_verbose (" mempools\n");
450
451  start = clock ();
452
453  pool = _dbus_mem_pool_new (size, FALSE);
454
455  i = 0;
456  j = 0;
457  while (i < N_ITERATIONS)
458    {
459      to_free[j] = _dbus_mem_pool_alloc (pool);
460      _dbus_assert (to_free[j] != NULL);  /* in a real app of course this is wrong */
461
462      ++j;
463
464      if (j == FREE_ARRAY_SIZE)
465        {
466          j = 0;
467          while (j < FREE_ARRAY_SIZE)
468            {
469              _dbus_mem_pool_dealloc (pool, to_free[j]);
470              ++j;
471            }
472
473          j = 0;
474        }
475
476      ++i;
477    }
478
479  _dbus_mem_pool_free (pool);
480
481  end = clock ();
482
483  _dbus_verbose ("  created/destroyed %d elements in %g seconds\n",
484                 N_ITERATIONS, (end - start) / (double) CLOCKS_PER_SEC);
485
486  _dbus_verbose (" zeroed malloc\n");
487
488  start = clock ();
489
490  i = 0;
491  j = 0;
492  while (i < N_ITERATIONS)
493    {
494      to_free[j] = dbus_malloc0 (size);
495      _dbus_assert (to_free[j] != NULL); /* in a real app of course this is wrong */
496
497      ++j;
498
499      if (j == FREE_ARRAY_SIZE)
500        {
501          j = 0;
502          while (j < FREE_ARRAY_SIZE)
503            {
504              dbus_free (to_free[j]);
505              ++j;
506            }
507
508          j = 0;
509        }
510
511      ++i;
512    }
513
514  end = clock ();
515
516  _dbus_verbose ("  created/destroyed %d elements in %g seconds\n",
517                 N_ITERATIONS, (end - start) / (double) CLOCKS_PER_SEC);
518
519  _dbus_verbose (" zeroed mempools\n");
520
521  start = clock ();
522
523  pool = _dbus_mem_pool_new (size, TRUE);
524
525  i = 0;
526  j = 0;
527  while (i < N_ITERATIONS)
528    {
529      to_free[j] = _dbus_mem_pool_alloc (pool);
530      _dbus_assert (to_free[j] != NULL);  /* in a real app of course this is wrong */
531
532      ++j;
533
534      if (j == FREE_ARRAY_SIZE)
535        {
536          j = 0;
537          while (j < FREE_ARRAY_SIZE)
538            {
539              _dbus_mem_pool_dealloc (pool, to_free[j]);
540              ++j;
541            }
542
543          j = 0;
544        }
545
546      ++i;
547    }
548
549  _dbus_mem_pool_free (pool);
550
551  end = clock ();
552
553  _dbus_verbose ("  created/destroyed %d elements in %g seconds\n",
554                 N_ITERATIONS, (end - start) / (double) CLOCKS_PER_SEC);
555}
556
557/**
558 * @ingroup DBusMemPoolInternals
559 * Unit test for DBusMemPool
560 * @returns #TRUE on success.
561 */
562dbus_bool_t
563_dbus_mem_pool_test (void)
564{
565  int i;
566  int element_sizes[] = { 4, 8, 16, 50, 124 };
567
568  i = 0;
569  while (i < _DBUS_N_ELEMENTS (element_sizes))
570    {
571      time_for_size (element_sizes[i]);
572      ++i;
573    }
574
575  return TRUE;
576}
577
578#endif /* DBUS_BUILD_TESTS */
579