1//===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// Parallel JIT 11// 12// This test program creates two LLVM functions then calls them from three 13// separate threads. It requires the pthreads library. 14// The three threads are created and then block waiting on a condition variable. 15// Once all threads are blocked on the conditional variable, the main thread 16// wakes them up. This complicated work is performed so that all three threads 17// call into the JIT at the same time (or the best possible approximation of the 18// same time). This test had assertion errors until I got the locking right. 19 20#include <pthread.h> 21#include "llvm/LLVMContext.h" 22#include "llvm/Module.h" 23#include "llvm/Constants.h" 24#include "llvm/DerivedTypes.h" 25#include "llvm/Instructions.h" 26#include "llvm/ExecutionEngine/JIT.h" 27#include "llvm/ExecutionEngine/Interpreter.h" 28#include "llvm/ExecutionEngine/GenericValue.h" 29#include "llvm/Support/TargetSelect.h" 30#include <iostream> 31using namespace llvm; 32 33static Function* createAdd1(Module *M) { 34 // Create the add1 function entry and insert this entry into module M. The 35 // function will have a return type of "int" and take an argument of "int". 36 // The '0' terminates the list of argument types. 37 Function *Add1F = 38 cast<Function>(M->getOrInsertFunction("add1", 39 Type::getInt32Ty(M->getContext()), 40 Type::getInt32Ty(M->getContext()), 41 (Type *)0)); 42 43 // Add a basic block to the function. As before, it automatically inserts 44 // because of the last argument. 45 BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F); 46 47 // Get pointers to the constant `1'. 48 Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1); 49 50 // Get pointers to the integer argument of the add1 function... 51 assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg 52 Argument *ArgX = Add1F->arg_begin(); // Get the arg 53 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. 54 55 // Create the add instruction, inserting it into the end of BB. 56 Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB); 57 58 // Create the return instruction and add it to the basic block 59 ReturnInst::Create(M->getContext(), Add, BB); 60 61 // Now, function add1 is ready. 62 return Add1F; 63} 64 65static Function *CreateFibFunction(Module *M) { 66 // Create the fib function and insert it into module M. This function is said 67 // to return an int and take an int parameter. 68 Function *FibF = 69 cast<Function>(M->getOrInsertFunction("fib", 70 Type::getInt32Ty(M->getContext()), 71 Type::getInt32Ty(M->getContext()), 72 (Type *)0)); 73 74 // Add a basic block to the function. 75 BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF); 76 77 // Get pointers to the constants. 78 Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1); 79 Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2); 80 81 // Get pointer to the integer argument of the add1 function... 82 Argument *ArgX = FibF->arg_begin(); // Get the arg. 83 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. 84 85 // Create the true_block. 86 BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF); 87 // Create an exit block. 88 BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF); 89 90 // Create the "if (arg < 2) goto exitbb" 91 Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond"); 92 BranchInst::Create(RetBB, RecurseBB, CondInst, BB); 93 94 // Create: ret int 1 95 ReturnInst::Create(M->getContext(), One, RetBB); 96 97 // create fib(x-1) 98 Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB); 99 Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB); 100 101 // create fib(x-2) 102 Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB); 103 Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB); 104 105 // fib(x-1)+fib(x-2) 106 Value *Sum = 107 BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB); 108 109 // Create the return instruction and add it to the basic block 110 ReturnInst::Create(M->getContext(), Sum, RecurseBB); 111 112 return FibF; 113} 114 115struct threadParams { 116 ExecutionEngine* EE; 117 Function* F; 118 int value; 119}; 120 121// We block the subthreads just before they begin to execute: 122// we want all of them to call into the JIT at the same time, 123// to verify that the locking is working correctly. 124class WaitForThreads 125{ 126public: 127 WaitForThreads() 128 { 129 n = 0; 130 waitFor = 0; 131 132 int result = pthread_cond_init( &condition, NULL ); 133 assert( result == 0 ); 134 135 result = pthread_mutex_init( &mutex, NULL ); 136 assert( result == 0 ); 137 } 138 139 ~WaitForThreads() 140 { 141 int result = pthread_cond_destroy( &condition ); 142 assert( result == 0 ); 143 144 result = pthread_mutex_destroy( &mutex ); 145 assert( result == 0 ); 146 } 147 148 // All threads will stop here until another thread calls releaseThreads 149 void block() 150 { 151 int result = pthread_mutex_lock( &mutex ); 152 assert( result == 0 ); 153 n ++; 154 //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl; 155 156 assert( waitFor == 0 || n <= waitFor ); 157 if ( waitFor > 0 && n == waitFor ) 158 { 159 // There are enough threads blocked that we can release all of them 160 std::cout << "Unblocking threads from block()" << std::endl; 161 unblockThreads(); 162 } 163 else 164 { 165 // We just need to wait until someone unblocks us 166 result = pthread_cond_wait( &condition, &mutex ); 167 assert( result == 0 ); 168 } 169 170 // unlock the mutex before returning 171 result = pthread_mutex_unlock( &mutex ); 172 assert( result == 0 ); 173 } 174 175 // If there are num or more threads blocked, it will signal them all 176 // Otherwise, this thread blocks until there are enough OTHER threads 177 // blocked 178 void releaseThreads( size_t num ) 179 { 180 int result = pthread_mutex_lock( &mutex ); 181 assert( result == 0 ); 182 183 if ( n >= num ) { 184 std::cout << "Unblocking threads from releaseThreads()" << std::endl; 185 unblockThreads(); 186 } 187 else 188 { 189 waitFor = num; 190 pthread_cond_wait( &condition, &mutex ); 191 } 192 193 // unlock the mutex before returning 194 result = pthread_mutex_unlock( &mutex ); 195 assert( result == 0 ); 196 } 197 198private: 199 void unblockThreads() 200 { 201 // Reset the counters to zero: this way, if any new threads 202 // enter while threads are exiting, they will block instead 203 // of triggering a new release of threads 204 n = 0; 205 206 // Reset waitFor to zero: this way, if waitFor threads enter 207 // while threads are exiting, they will block instead of 208 // triggering a new release of threads 209 waitFor = 0; 210 211 int result = pthread_cond_broadcast( &condition ); 212 (void)result; 213 assert(result == 0); 214 } 215 216 size_t n; 217 size_t waitFor; 218 pthread_cond_t condition; 219 pthread_mutex_t mutex; 220}; 221 222static WaitForThreads synchronize; 223 224void* callFunc( void* param ) 225{ 226 struct threadParams* p = (struct threadParams*) param; 227 228 // Call the `foo' function with no arguments: 229 std::vector<GenericValue> Args(1); 230 Args[0].IntVal = APInt(32, p->value); 231 232 synchronize.block(); // wait until other threads are at this point 233 GenericValue gv = p->EE->runFunction(p->F, Args); 234 235 return (void*)(intptr_t)gv.IntVal.getZExtValue(); 236} 237 238int main() { 239 InitializeNativeTarget(); 240 LLVMContext Context; 241 242 // Create some module to put our function into it. 243 Module *M = new Module("test", Context); 244 245 Function* add1F = createAdd1( M ); 246 Function* fibF = CreateFibFunction( M ); 247 248 // Now we create the JIT. 249 ExecutionEngine* EE = EngineBuilder(M).create(); 250 251 //~ std::cout << "We just constructed this LLVM module:\n\n" << *M; 252 //~ std::cout << "\n\nRunning foo: " << std::flush; 253 254 // Create one thread for add1 and two threads for fib 255 struct threadParams add1 = { EE, add1F, 1000 }; 256 struct threadParams fib1 = { EE, fibF, 39 }; 257 struct threadParams fib2 = { EE, fibF, 42 }; 258 259 pthread_t add1Thread; 260 int result = pthread_create( &add1Thread, NULL, callFunc, &add1 ); 261 if ( result != 0 ) { 262 std::cerr << "Could not create thread" << std::endl; 263 return 1; 264 } 265 266 pthread_t fibThread1; 267 result = pthread_create( &fibThread1, NULL, callFunc, &fib1 ); 268 if ( result != 0 ) { 269 std::cerr << "Could not create thread" << std::endl; 270 return 1; 271 } 272 273 pthread_t fibThread2; 274 result = pthread_create( &fibThread2, NULL, callFunc, &fib2 ); 275 if ( result != 0 ) { 276 std::cerr << "Could not create thread" << std::endl; 277 return 1; 278 } 279 280 synchronize.releaseThreads(3); // wait until other threads are at this point 281 282 void* returnValue; 283 result = pthread_join( add1Thread, &returnValue ); 284 if ( result != 0 ) { 285 std::cerr << "Could not join thread" << std::endl; 286 return 1; 287 } 288 std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl; 289 290 result = pthread_join( fibThread1, &returnValue ); 291 if ( result != 0 ) { 292 std::cerr << "Could not join thread" << std::endl; 293 return 1; 294 } 295 std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl; 296 297 result = pthread_join( fibThread2, &returnValue ); 298 if ( result != 0 ) { 299 std::cerr << "Could not join thread" << std::endl; 300 return 1; 301 } 302 std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl; 303 304 return 0; 305} 306