ParallelJIT.cpp revision 333c40096561218bc3597cf153c0a3895274414c
1//===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// Parallel JIT 11// 12// This test program creates two LLVM functions then calls them from three 13// separate threads. It requires the pthreads library. 14// The three threads are created and then block waiting on a condition variable. 15// Once all threads are blocked on the conditional variable, the main thread 16// wakes them up. This complicated work is performed so that all three threads 17// call into the JIT at the same time (or the best possible approximation of the 18// same time). This test had assertion errors until I got the locking right. 19 20#include <pthread.h> 21#include "llvm/LLVMContext.h" 22#include "llvm/Module.h" 23#include "llvm/Constants.h" 24#include "llvm/DerivedTypes.h" 25#include "llvm/Instructions.h" 26#include "llvm/ModuleProvider.h" 27#include "llvm/ExecutionEngine/JIT.h" 28#include "llvm/ExecutionEngine/Interpreter.h" 29#include "llvm/ExecutionEngine/GenericValue.h" 30#include "llvm/Target/TargetSelect.h" 31#include <iostream> 32using namespace llvm; 33 34static Function* createAdd1(Module *M) { 35 // Create the add1 function entry and insert this entry into module M. The 36 // function will have a return type of "int" and take an argument of "int". 37 // The '0' terminates the list of argument types. 38 Function *Add1F = 39 cast<Function>(M->getOrInsertFunction("add1", Type::Int32Ty, Type::Int32Ty, 40 (Type *)0)); 41 42 // Add a basic block to the function. As before, it automatically inserts 43 // because of the last argument. 44 BasicBlock *BB = BasicBlock::Create("EntryBlock", Add1F); 45 46 // Get pointers to the constant `1'. 47 Value *One = ConstantInt::get(Type::Int32Ty, 1); 48 49 // Get pointers to the integer argument of the add1 function... 50 assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg 51 Argument *ArgX = Add1F->arg_begin(); // Get the arg 52 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. 53 54 // Create the add instruction, inserting it into the end of BB. 55 Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB); 56 57 // Create the return instruction and add it to the basic block 58 ReturnInst::Create(Add, BB); 59 60 // Now, function add1 is ready. 61 return Add1F; 62} 63 64static Function *CreateFibFunction(Module *M) { 65 // Create the fib function and insert it into module M. This function is said 66 // to return an int and take an int parameter. 67 Function *FibF = 68 cast<Function>(M->getOrInsertFunction("fib", Type::Int32Ty, Type::Int32Ty, 69 (Type *)0)); 70 71 // Add a basic block to the function. 72 BasicBlock *BB = BasicBlock::Create("EntryBlock", FibF); 73 74 // Get pointers to the constants. 75 Value *One = ConstantInt::get(Type::Int32Ty, 1); 76 Value *Two = ConstantInt::get(Type::Int32Ty, 2); 77 78 // Get pointer to the integer argument of the add1 function... 79 Argument *ArgX = FibF->arg_begin(); // Get the arg. 80 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. 81 82 // Create the true_block. 83 BasicBlock *RetBB = BasicBlock::Create("return", FibF); 84 // Create an exit block. 85 BasicBlock* RecurseBB = BasicBlock::Create("recurse", FibF); 86 87 // Create the "if (arg < 2) goto exitbb" 88 Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond"); 89 BranchInst::Create(RetBB, RecurseBB, CondInst, BB); 90 91 // Create: ret int 1 92 ReturnInst::Create(One, RetBB); 93 94 // create fib(x-1) 95 Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB); 96 Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB); 97 98 // create fib(x-2) 99 Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB); 100 Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB); 101 102 // fib(x-1)+fib(x-2) 103 Value *Sum = 104 BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB); 105 106 // Create the return instruction and add it to the basic block 107 ReturnInst::Create(Sum, RecurseBB); 108 109 return FibF; 110} 111 112struct threadParams { 113 ExecutionEngine* EE; 114 Function* F; 115 int value; 116}; 117 118// We block the subthreads just before they begin to execute: 119// we want all of them to call into the JIT at the same time, 120// to verify that the locking is working correctly. 121class WaitForThreads 122{ 123public: 124 WaitForThreads() 125 { 126 n = 0; 127 waitFor = 0; 128 129 int result = pthread_cond_init( &condition, NULL ); 130 assert( result == 0 ); 131 132 result = pthread_mutex_init( &mutex, NULL ); 133 assert( result == 0 ); 134 } 135 136 ~WaitForThreads() 137 { 138 int result = pthread_cond_destroy( &condition ); 139 assert( result == 0 ); 140 141 result = pthread_mutex_destroy( &mutex ); 142 assert( result == 0 ); 143 } 144 145 // All threads will stop here until another thread calls releaseThreads 146 void block() 147 { 148 int result = pthread_mutex_lock( &mutex ); 149 assert( result == 0 ); 150 n ++; 151 //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl; 152 153 assert( waitFor == 0 || n <= waitFor ); 154 if ( waitFor > 0 && n == waitFor ) 155 { 156 // There are enough threads blocked that we can release all of them 157 std::cout << "Unblocking threads from block()" << std::endl; 158 unblockThreads(); 159 } 160 else 161 { 162 // We just need to wait until someone unblocks us 163 result = pthread_cond_wait( &condition, &mutex ); 164 assert( result == 0 ); 165 } 166 167 // unlock the mutex before returning 168 result = pthread_mutex_unlock( &mutex ); 169 assert( result == 0 ); 170 } 171 172 // If there are num or more threads blocked, it will signal them all 173 // Otherwise, this thread blocks until there are enough OTHER threads 174 // blocked 175 void releaseThreads( size_t num ) 176 { 177 int result = pthread_mutex_lock( &mutex ); 178 assert( result == 0 ); 179 180 if ( n >= num ) { 181 std::cout << "Unblocking threads from releaseThreads()" << std::endl; 182 unblockThreads(); 183 } 184 else 185 { 186 waitFor = num; 187 pthread_cond_wait( &condition, &mutex ); 188 } 189 190 // unlock the mutex before returning 191 result = pthread_mutex_unlock( &mutex ); 192 assert( result == 0 ); 193 } 194 195private: 196 void unblockThreads() 197 { 198 // Reset the counters to zero: this way, if any new threads 199 // enter while threads are exiting, they will block instead 200 // of triggering a new release of threads 201 n = 0; 202 203 // Reset waitFor to zero: this way, if waitFor threads enter 204 // while threads are exiting, they will block instead of 205 // triggering a new release of threads 206 waitFor = 0; 207 208 int result = pthread_cond_broadcast( &condition ); 209 assert(result == 0); result=result; 210 } 211 212 size_t n; 213 size_t waitFor; 214 pthread_cond_t condition; 215 pthread_mutex_t mutex; 216}; 217 218static WaitForThreads synchronize; 219 220void* callFunc( void* param ) 221{ 222 struct threadParams* p = (struct threadParams*) param; 223 224 // Call the `foo' function with no arguments: 225 std::vector<GenericValue> Args(1); 226 Args[0].IntVal = APInt(32, p->value); 227 228 synchronize.block(); // wait until other threads are at this point 229 GenericValue gv = p->EE->runFunction(p->F, Args); 230 231 return (void*)(intptr_t)gv.IntVal.getZExtValue(); 232} 233 234int main() { 235 InitializeNativeTarget(); 236 LLVMContext Context; 237 238 // Create some module to put our function into it. 239 Module *M = new Module("test", Context); 240 241 Function* add1F = createAdd1( M ); 242 Function* fibF = CreateFibFunction( M ); 243 244 // Now we create the JIT. 245 ExistingModuleProvider* MP = new ExistingModuleProvider(M); 246 ExecutionEngine* EE = ExecutionEngine::create(MP, false); 247 248 //~ std::cout << "We just constructed this LLVM module:\n\n" << *M; 249 //~ std::cout << "\n\nRunning foo: " << std::flush; 250 251 // Create one thread for add1 and two threads for fib 252 struct threadParams add1 = { EE, add1F, 1000 }; 253 struct threadParams fib1 = { EE, fibF, 39 }; 254 struct threadParams fib2 = { EE, fibF, 42 }; 255 256 pthread_t add1Thread; 257 int result = pthread_create( &add1Thread, NULL, callFunc, &add1 ); 258 if ( result != 0 ) { 259 std::cerr << "Could not create thread" << std::endl; 260 return 1; 261 } 262 263 pthread_t fibThread1; 264 result = pthread_create( &fibThread1, NULL, callFunc, &fib1 ); 265 if ( result != 0 ) { 266 std::cerr << "Could not create thread" << std::endl; 267 return 1; 268 } 269 270 pthread_t fibThread2; 271 result = pthread_create( &fibThread2, NULL, callFunc, &fib2 ); 272 if ( result != 0 ) { 273 std::cerr << "Could not create thread" << std::endl; 274 return 1; 275 } 276 277 synchronize.releaseThreads(3); // wait until other threads are at this point 278 279 void* returnValue; 280 result = pthread_join( add1Thread, &returnValue ); 281 if ( result != 0 ) { 282 std::cerr << "Could not join thread" << std::endl; 283 return 1; 284 } 285 std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl; 286 287 result = pthread_join( fibThread1, &returnValue ); 288 if ( result != 0 ) { 289 std::cerr << "Could not join thread" << std::endl; 290 return 1; 291 } 292 std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl; 293 294 result = pthread_join( fibThread2, &returnValue ); 295 if ( result != 0 ) { 296 std::cerr << "Could not join thread" << std::endl; 297 return 1; 298 } 299 std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl; 300 301 return 0; 302} 303