1//===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements inline cost analysis. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "inline-cost" 15#include "llvm/Analysis/InlineCost.h" 16#include "llvm/Analysis/ConstantFolding.h" 17#include "llvm/Analysis/InstructionSimplify.h" 18#include "llvm/Support/CallSite.h" 19#include "llvm/Support/Debug.h" 20#include "llvm/Support/InstVisitor.h" 21#include "llvm/Support/GetElementPtrTypeIterator.h" 22#include "llvm/Support/raw_ostream.h" 23#include "llvm/CallingConv.h" 24#include "llvm/IntrinsicInst.h" 25#include "llvm/Operator.h" 26#include "llvm/GlobalAlias.h" 27#include "llvm/Target/TargetData.h" 28#include "llvm/ADT/STLExtras.h" 29#include "llvm/ADT/SetVector.h" 30#include "llvm/ADT/SmallVector.h" 31#include "llvm/ADT/SmallPtrSet.h" 32#include "llvm/ADT/Statistic.h" 33 34using namespace llvm; 35 36STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 37 38namespace { 39 40class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 41 typedef InstVisitor<CallAnalyzer, bool> Base; 42 friend class InstVisitor<CallAnalyzer, bool>; 43 44 // TargetData if available, or null. 45 const TargetData *const TD; 46 47 // The called function. 48 Function &F; 49 50 int Threshold; 51 int Cost; 52 const bool AlwaysInline; 53 54 bool IsRecursive; 55 bool ExposesReturnsTwice; 56 bool HasDynamicAlloca; 57 unsigned NumInstructions, NumVectorInstructions; 58 int FiftyPercentVectorBonus, TenPercentVectorBonus; 59 int VectorBonus; 60 61 // While we walk the potentially-inlined instructions, we build up and 62 // maintain a mapping of simplified values specific to this callsite. The 63 // idea is to propagate any special information we have about arguments to 64 // this call through the inlinable section of the function, and account for 65 // likely simplifications post-inlining. The most important aspect we track 66 // is CFG altering simplifications -- when we prove a basic block dead, that 67 // can cause dramatic shifts in the cost of inlining a function. 68 DenseMap<Value *, Constant *> SimplifiedValues; 69 70 // Keep track of the values which map back (through function arguments) to 71 // allocas on the caller stack which could be simplified through SROA. 72 DenseMap<Value *, Value *> SROAArgValues; 73 74 // The mapping of caller Alloca values to their accumulated cost savings. If 75 // we have to disable SROA for one of the allocas, this tells us how much 76 // cost must be added. 77 DenseMap<Value *, int> SROAArgCosts; 78 79 // Keep track of values which map to a pointer base and constant offset. 80 DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs; 81 82 // Custom simplification helper routines. 83 bool isAllocaDerivedArg(Value *V); 84 bool lookupSROAArgAndCost(Value *V, Value *&Arg, 85 DenseMap<Value *, int>::iterator &CostIt); 86 void disableSROA(DenseMap<Value *, int>::iterator CostIt); 87 void disableSROA(Value *V); 88 void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, 89 int InstructionCost); 90 bool handleSROACandidate(bool IsSROAValid, 91 DenseMap<Value *, int>::iterator CostIt, 92 int InstructionCost); 93 bool isGEPOffsetConstant(GetElementPtrInst &GEP); 94 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 95 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 96 97 // Custom analysis routines. 98 bool analyzeBlock(BasicBlock *BB); 99 100 // Disable several entry points to the visitor so we don't accidentally use 101 // them by declaring but not defining them here. 102 void visit(Module *); void visit(Module &); 103 void visit(Function *); void visit(Function &); 104 void visit(BasicBlock *); void visit(BasicBlock &); 105 106 // Provide base case for our instruction visit. 107 bool visitInstruction(Instruction &I); 108 109 // Our visit overrides. 110 bool visitAlloca(AllocaInst &I); 111 bool visitPHI(PHINode &I); 112 bool visitGetElementPtr(GetElementPtrInst &I); 113 bool visitBitCast(BitCastInst &I); 114 bool visitPtrToInt(PtrToIntInst &I); 115 bool visitIntToPtr(IntToPtrInst &I); 116 bool visitCastInst(CastInst &I); 117 bool visitUnaryInstruction(UnaryInstruction &I); 118 bool visitICmp(ICmpInst &I); 119 bool visitSub(BinaryOperator &I); 120 bool visitBinaryOperator(BinaryOperator &I); 121 bool visitLoad(LoadInst &I); 122 bool visitStore(StoreInst &I); 123 bool visitCallSite(CallSite CS); 124 125public: 126 CallAnalyzer(const TargetData *TD, Function &Callee, int Threshold) 127 : TD(TD), F(Callee), Threshold(Threshold), Cost(0), 128 AlwaysInline(F.hasFnAttr(Attribute::AlwaysInline)), 129 IsRecursive(false), ExposesReturnsTwice(false), HasDynamicAlloca(false), 130 NumInstructions(0), NumVectorInstructions(0), 131 FiftyPercentVectorBonus(0), TenPercentVectorBonus(0), VectorBonus(0), 132 NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), 133 NumConstantPtrCmps(0), NumConstantPtrDiffs(0), 134 NumInstructionsSimplified(0), SROACostSavings(0), SROACostSavingsLost(0) { 135 } 136 137 bool analyzeCall(CallSite CS); 138 139 int getThreshold() { return Threshold; } 140 int getCost() { return Cost; } 141 142 // Keep a bunch of stats about the cost savings found so we can print them 143 // out when debugging. 144 unsigned NumConstantArgs; 145 unsigned NumConstantOffsetPtrArgs; 146 unsigned NumAllocaArgs; 147 unsigned NumConstantPtrCmps; 148 unsigned NumConstantPtrDiffs; 149 unsigned NumInstructionsSimplified; 150 unsigned SROACostSavings; 151 unsigned SROACostSavingsLost; 152 153 void dump(); 154}; 155 156} // namespace 157 158/// \brief Test whether the given value is an Alloca-derived function argument. 159bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 160 return SROAArgValues.count(V); 161} 162 163/// \brief Lookup the SROA-candidate argument and cost iterator which V maps to. 164/// Returns false if V does not map to a SROA-candidate. 165bool CallAnalyzer::lookupSROAArgAndCost( 166 Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) { 167 if (SROAArgValues.empty() || SROAArgCosts.empty()) 168 return false; 169 170 DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V); 171 if (ArgIt == SROAArgValues.end()) 172 return false; 173 174 Arg = ArgIt->second; 175 CostIt = SROAArgCosts.find(Arg); 176 return CostIt != SROAArgCosts.end(); 177} 178 179/// \brief Disable SROA for the candidate marked by this cost iterator. 180/// 181/// This marks the candidate as no longer viable for SROA, and adds the cost 182/// savings associated with it back into the inline cost measurement. 183void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) { 184 // If we're no longer able to perform SROA we need to undo its cost savings 185 // and prevent subsequent analysis. 186 Cost += CostIt->second; 187 SROACostSavings -= CostIt->second; 188 SROACostSavingsLost += CostIt->second; 189 SROAArgCosts.erase(CostIt); 190} 191 192/// \brief If 'V' maps to a SROA candidate, disable SROA for it. 193void CallAnalyzer::disableSROA(Value *V) { 194 Value *SROAArg; 195 DenseMap<Value *, int>::iterator CostIt; 196 if (lookupSROAArgAndCost(V, SROAArg, CostIt)) 197 disableSROA(CostIt); 198} 199 200/// \brief Accumulate the given cost for a particular SROA candidate. 201void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, 202 int InstructionCost) { 203 CostIt->second += InstructionCost; 204 SROACostSavings += InstructionCost; 205} 206 207/// \brief Helper for the common pattern of handling a SROA candidate. 208/// Either accumulates the cost savings if the SROA remains valid, or disables 209/// SROA for the candidate. 210bool CallAnalyzer::handleSROACandidate(bool IsSROAValid, 211 DenseMap<Value *, int>::iterator CostIt, 212 int InstructionCost) { 213 if (IsSROAValid) { 214 accumulateSROACost(CostIt, InstructionCost); 215 return true; 216 } 217 218 disableSROA(CostIt); 219 return false; 220} 221 222/// \brief Check whether a GEP's indices are all constant. 223/// 224/// Respects any simplified values known during the analysis of this callsite. 225bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) { 226 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 227 if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) 228 return false; 229 230 return true; 231} 232 233/// \brief Accumulate a constant GEP offset into an APInt if possible. 234/// 235/// Returns false if unable to compute the offset for any reason. Respects any 236/// simplified values known during the analysis of this callsite. 237bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 238 if (!TD) 239 return false; 240 241 unsigned IntPtrWidth = TD->getPointerSizeInBits(); 242 assert(IntPtrWidth == Offset.getBitWidth()); 243 244 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 245 GTI != GTE; ++GTI) { 246 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 247 if (!OpC) 248 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 249 OpC = dyn_cast<ConstantInt>(SimpleOp); 250 if (!OpC) 251 return false; 252 if (OpC->isZero()) continue; 253 254 // Handle a struct index, which adds its field offset to the pointer. 255 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 256 unsigned ElementIdx = OpC->getZExtValue(); 257 const StructLayout *SL = TD->getStructLayout(STy); 258 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 259 continue; 260 } 261 262 APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType())); 263 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 264 } 265 return true; 266} 267 268bool CallAnalyzer::visitAlloca(AllocaInst &I) { 269 // FIXME: Check whether inlining will turn a dynamic alloca into a static 270 // alloca, and handle that case. 271 272 // We will happily inline static alloca instructions or dynamic alloca 273 // instructions in always-inline situations. 274 if (AlwaysInline || I.isStaticAlloca()) 275 return Base::visitAlloca(I); 276 277 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 278 // a variety of reasons, and so we would like to not inline them into 279 // functions which don't currently have a dynamic alloca. This simply 280 // disables inlining altogether in the presence of a dynamic alloca. 281 HasDynamicAlloca = true; 282 return false; 283} 284 285bool CallAnalyzer::visitPHI(PHINode &I) { 286 // FIXME: We should potentially be tracking values through phi nodes, 287 // especially when they collapse to a single value due to deleted CFG edges 288 // during inlining. 289 290 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 291 // though we don't want to propagate it's bonuses. The idea is to disable 292 // SROA if it *might* be used in an inappropriate manner. 293 294 // Phi nodes are always zero-cost. 295 return true; 296} 297 298bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 299 Value *SROAArg; 300 DenseMap<Value *, int>::iterator CostIt; 301 bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(), 302 SROAArg, CostIt); 303 304 // Try to fold GEPs of constant-offset call site argument pointers. This 305 // requires target data and inbounds GEPs. 306 if (TD && I.isInBounds()) { 307 // Check if we have a base + offset for the pointer. 308 Value *Ptr = I.getPointerOperand(); 309 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr); 310 if (BaseAndOffset.first) { 311 // Check if the offset of this GEP is constant, and if so accumulate it 312 // into Offset. 313 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) { 314 // Non-constant GEPs aren't folded, and disable SROA. 315 if (SROACandidate) 316 disableSROA(CostIt); 317 return false; 318 } 319 320 // Add the result as a new mapping to Base + Offset. 321 ConstantOffsetPtrs[&I] = BaseAndOffset; 322 323 // Also handle SROA candidates here, we already know that the GEP is 324 // all-constant indexed. 325 if (SROACandidate) 326 SROAArgValues[&I] = SROAArg; 327 328 return true; 329 } 330 } 331 332 if (isGEPOffsetConstant(I)) { 333 if (SROACandidate) 334 SROAArgValues[&I] = SROAArg; 335 336 // Constant GEPs are modeled as free. 337 return true; 338 } 339 340 // Variable GEPs will require math and will disable SROA. 341 if (SROACandidate) 342 disableSROA(CostIt); 343 return false; 344} 345 346bool CallAnalyzer::visitBitCast(BitCastInst &I) { 347 // Propagate constants through bitcasts. 348 if (Constant *COp = dyn_cast<Constant>(I.getOperand(0))) 349 if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) { 350 SimplifiedValues[&I] = C; 351 return true; 352 } 353 354 // Track base/offsets through casts 355 std::pair<Value *, APInt> BaseAndOffset 356 = ConstantOffsetPtrs.lookup(I.getOperand(0)); 357 // Casts don't change the offset, just wrap it up. 358 if (BaseAndOffset.first) 359 ConstantOffsetPtrs[&I] = BaseAndOffset; 360 361 // Also look for SROA candidates here. 362 Value *SROAArg; 363 DenseMap<Value *, int>::iterator CostIt; 364 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) 365 SROAArgValues[&I] = SROAArg; 366 367 // Bitcasts are always zero cost. 368 return true; 369} 370 371bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 372 // Propagate constants through ptrtoint. 373 if (Constant *COp = dyn_cast<Constant>(I.getOperand(0))) 374 if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) { 375 SimplifiedValues[&I] = C; 376 return true; 377 } 378 379 // Track base/offset pairs when converted to a plain integer provided the 380 // integer is large enough to represent the pointer. 381 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 382 if (TD && IntegerSize >= TD->getPointerSizeInBits()) { 383 std::pair<Value *, APInt> BaseAndOffset 384 = ConstantOffsetPtrs.lookup(I.getOperand(0)); 385 if (BaseAndOffset.first) 386 ConstantOffsetPtrs[&I] = BaseAndOffset; 387 } 388 389 // This is really weird. Technically, ptrtoint will disable SROA. However, 390 // unless that ptrtoint is *used* somewhere in the live basic blocks after 391 // inlining, it will be nuked, and SROA should proceed. All of the uses which 392 // would block SROA would also block SROA if applied directly to a pointer, 393 // and so we can just add the integer in here. The only places where SROA is 394 // preserved either cannot fire on an integer, or won't in-and-of themselves 395 // disable SROA (ext) w/o some later use that we would see and disable. 396 Value *SROAArg; 397 DenseMap<Value *, int>::iterator CostIt; 398 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) 399 SROAArgValues[&I] = SROAArg; 400 401 return isInstructionFree(&I, TD); 402} 403 404bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 405 // Propagate constants through ptrtoint. 406 if (Constant *COp = dyn_cast<Constant>(I.getOperand(0))) 407 if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) { 408 SimplifiedValues[&I] = C; 409 return true; 410 } 411 412 // Track base/offset pairs when round-tripped through a pointer without 413 // modifications provided the integer is not too large. 414 Value *Op = I.getOperand(0); 415 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 416 if (TD && IntegerSize <= TD->getPointerSizeInBits()) { 417 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 418 if (BaseAndOffset.first) 419 ConstantOffsetPtrs[&I] = BaseAndOffset; 420 } 421 422 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 423 Value *SROAArg; 424 DenseMap<Value *, int>::iterator CostIt; 425 if (lookupSROAArgAndCost(Op, SROAArg, CostIt)) 426 SROAArgValues[&I] = SROAArg; 427 428 return isInstructionFree(&I, TD); 429} 430 431bool CallAnalyzer::visitCastInst(CastInst &I) { 432 // Propagate constants through ptrtoint. 433 if (Constant *COp = dyn_cast<Constant>(I.getOperand(0))) 434 if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) { 435 SimplifiedValues[&I] = C; 436 return true; 437 } 438 439 // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. 440 disableSROA(I.getOperand(0)); 441 442 return isInstructionFree(&I, TD); 443} 444 445bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { 446 Value *Operand = I.getOperand(0); 447 Constant *Ops[1] = { dyn_cast<Constant>(Operand) }; 448 if (Ops[0] || (Ops[0] = SimplifiedValues.lookup(Operand))) 449 if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(), 450 Ops, TD)) { 451 SimplifiedValues[&I] = C; 452 return true; 453 } 454 455 // Disable any SROA on the argument to arbitrary unary operators. 456 disableSROA(Operand); 457 458 return false; 459} 460 461bool CallAnalyzer::visitICmp(ICmpInst &I) { 462 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 463 // First try to handle simplified comparisons. 464 if (!isa<Constant>(LHS)) 465 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) 466 LHS = SimpleLHS; 467 if (!isa<Constant>(RHS)) 468 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) 469 RHS = SimpleRHS; 470 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 471 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 472 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 473 SimplifiedValues[&I] = C; 474 return true; 475 } 476 477 // Otherwise look for a comparison between constant offset pointers with 478 // a common base. 479 Value *LHSBase, *RHSBase; 480 APInt LHSOffset, RHSOffset; 481 llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 482 if (LHSBase) { 483 llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 484 if (RHSBase && LHSBase == RHSBase) { 485 // We have common bases, fold the icmp to a constant based on the 486 // offsets. 487 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 488 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 489 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 490 SimplifiedValues[&I] = C; 491 ++NumConstantPtrCmps; 492 return true; 493 } 494 } 495 } 496 497 // If the comparison is an equality comparison with null, we can simplify it 498 // for any alloca-derived argument. 499 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1))) 500 if (isAllocaDerivedArg(I.getOperand(0))) { 501 // We can actually predict the result of comparisons between an 502 // alloca-derived value and null. Note that this fires regardless of 503 // SROA firing. 504 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 505 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 506 : ConstantInt::getFalse(I.getType()); 507 return true; 508 } 509 510 // Finally check for SROA candidates in comparisons. 511 Value *SROAArg; 512 DenseMap<Value *, int>::iterator CostIt; 513 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { 514 if (isa<ConstantPointerNull>(I.getOperand(1))) { 515 accumulateSROACost(CostIt, InlineConstants::InstrCost); 516 return true; 517 } 518 519 disableSROA(CostIt); 520 } 521 522 return false; 523} 524 525bool CallAnalyzer::visitSub(BinaryOperator &I) { 526 // Try to handle a special case: we can fold computing the difference of two 527 // constant-related pointers. 528 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 529 Value *LHSBase, *RHSBase; 530 APInt LHSOffset, RHSOffset; 531 llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 532 if (LHSBase) { 533 llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 534 if (RHSBase && LHSBase == RHSBase) { 535 // We have common bases, fold the subtract to a constant based on the 536 // offsets. 537 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 538 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 539 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 540 SimplifiedValues[&I] = C; 541 ++NumConstantPtrDiffs; 542 return true; 543 } 544 } 545 } 546 547 // Otherwise, fall back to the generic logic for simplifying and handling 548 // instructions. 549 return Base::visitSub(I); 550} 551 552bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 553 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 554 if (!isa<Constant>(LHS)) 555 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) 556 LHS = SimpleLHS; 557 if (!isa<Constant>(RHS)) 558 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) 559 RHS = SimpleRHS; 560 Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD); 561 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) { 562 SimplifiedValues[&I] = C; 563 return true; 564 } 565 566 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 567 disableSROA(LHS); 568 disableSROA(RHS); 569 570 return false; 571} 572 573bool CallAnalyzer::visitLoad(LoadInst &I) { 574 Value *SROAArg; 575 DenseMap<Value *, int>::iterator CostIt; 576 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { 577 if (I.isSimple()) { 578 accumulateSROACost(CostIt, InlineConstants::InstrCost); 579 return true; 580 } 581 582 disableSROA(CostIt); 583 } 584 585 return false; 586} 587 588bool CallAnalyzer::visitStore(StoreInst &I) { 589 Value *SROAArg; 590 DenseMap<Value *, int>::iterator CostIt; 591 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { 592 if (I.isSimple()) { 593 accumulateSROACost(CostIt, InlineConstants::InstrCost); 594 return true; 595 } 596 597 disableSROA(CostIt); 598 } 599 600 return false; 601} 602 603bool CallAnalyzer::visitCallSite(CallSite CS) { 604 if (CS.isCall() && cast<CallInst>(CS.getInstruction())->canReturnTwice() && 605 !F.hasFnAttr(Attribute::ReturnsTwice)) { 606 // This aborts the entire analysis. 607 ExposesReturnsTwice = true; 608 return false; 609 } 610 611 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { 612 switch (II->getIntrinsicID()) { 613 default: 614 return Base::visitCallSite(CS); 615 616 case Intrinsic::memset: 617 case Intrinsic::memcpy: 618 case Intrinsic::memmove: 619 // SROA can usually chew through these intrinsics, but they aren't free. 620 return false; 621 } 622 } 623 624 if (Function *F = CS.getCalledFunction()) { 625 if (F == CS.getInstruction()->getParent()->getParent()) { 626 // This flag will fully abort the analysis, so don't bother with anything 627 // else. 628 IsRecursive = true; 629 return false; 630 } 631 632 if (!callIsSmall(CS)) { 633 // We account for the average 1 instruction per call argument setup 634 // here. 635 Cost += CS.arg_size() * InlineConstants::InstrCost; 636 637 // Everything other than inline ASM will also have a significant cost 638 // merely from making the call. 639 if (!isa<InlineAsm>(CS.getCalledValue())) 640 Cost += InlineConstants::CallPenalty; 641 } 642 643 return Base::visitCallSite(CS); 644 } 645 646 // Otherwise we're in a very special case -- an indirect function call. See 647 // if we can be particularly clever about this. 648 Value *Callee = CS.getCalledValue(); 649 650 // First, pay the price of the argument setup. We account for the average 651 // 1 instruction per call argument setup here. 652 Cost += CS.arg_size() * InlineConstants::InstrCost; 653 654 // Next, check if this happens to be an indirect function call to a known 655 // function in this inline context. If not, we've done all we can. 656 Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 657 if (!F) 658 return Base::visitCallSite(CS); 659 660 // If we have a constant that we are calling as a function, we can peer 661 // through it and see the function target. This happens not infrequently 662 // during devirtualization and so we want to give it a hefty bonus for 663 // inlining, but cap that bonus in the event that inlining wouldn't pan 664 // out. Pretend to inline the function, with a custom threshold. 665 CallAnalyzer CA(TD, *F, InlineConstants::IndirectCallThreshold); 666 if (CA.analyzeCall(CS)) { 667 // We were able to inline the indirect call! Subtract the cost from the 668 // bonus we want to apply, but don't go below zero. 669 Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost()); 670 } 671 672 return Base::visitCallSite(CS); 673} 674 675bool CallAnalyzer::visitInstruction(Instruction &I) { 676 // Some instructions are free. All of the free intrinsics can also be 677 // handled by SROA, etc. 678 if (isInstructionFree(&I, TD)) 679 return true; 680 681 // We found something we don't understand or can't handle. Mark any SROA-able 682 // values in the operand list as no longer viable. 683 for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) 684 disableSROA(*OI); 685 686 return false; 687} 688 689 690/// \brief Analyze a basic block for its contribution to the inline cost. 691/// 692/// This method walks the analyzer over every instruction in the given basic 693/// block and accounts for their cost during inlining at this callsite. It 694/// aborts early if the threshold has been exceeded or an impossible to inline 695/// construct has been detected. It returns false if inlining is no longer 696/// viable, and true if inlining remains viable. 697bool CallAnalyzer::analyzeBlock(BasicBlock *BB) { 698 for (BasicBlock::iterator I = BB->begin(), E = llvm::prior(BB->end()); 699 I != E; ++I) { 700 ++NumInstructions; 701 if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) 702 ++NumVectorInstructions; 703 704 // If the instruction simplified to a constant, there is no cost to this 705 // instruction. Visit the instructions using our InstVisitor to account for 706 // all of the per-instruction logic. The visit tree returns true if we 707 // consumed the instruction in any way, and false if the instruction's base 708 // cost should count against inlining. 709 if (Base::visit(I)) 710 ++NumInstructionsSimplified; 711 else 712 Cost += InlineConstants::InstrCost; 713 714 // If the visit this instruction detected an uninlinable pattern, abort. 715 if (IsRecursive || ExposesReturnsTwice || HasDynamicAlloca) 716 return false; 717 718 if (NumVectorInstructions > NumInstructions/2) 719 VectorBonus = FiftyPercentVectorBonus; 720 else if (NumVectorInstructions > NumInstructions/10) 721 VectorBonus = TenPercentVectorBonus; 722 else 723 VectorBonus = 0; 724 725 // Check if we've past the threshold so we don't spin in huge basic 726 // blocks that will never inline. 727 if (!AlwaysInline && Cost > (Threshold + VectorBonus)) 728 return false; 729 } 730 731 return true; 732} 733 734/// \brief Compute the base pointer and cumulative constant offsets for V. 735/// 736/// This strips all constant offsets off of V, leaving it the base pointer, and 737/// accumulates the total constant offset applied in the returned constant. It 738/// returns 0 if V is not a pointer, and returns the constant '0' if there are 739/// no constant offsets applied. 740ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 741 if (!TD || !V->getType()->isPointerTy()) 742 return 0; 743 744 unsigned IntPtrWidth = TD->getPointerSizeInBits(); 745 APInt Offset = APInt::getNullValue(IntPtrWidth); 746 747 // Even though we don't look through PHI nodes, we could be called on an 748 // instruction in an unreachable block, which may be on a cycle. 749 SmallPtrSet<Value *, 4> Visited; 750 Visited.insert(V); 751 do { 752 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 753 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 754 return 0; 755 V = GEP->getPointerOperand(); 756 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 757 V = cast<Operator>(V)->getOperand(0); 758 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 759 if (GA->mayBeOverridden()) 760 break; 761 V = GA->getAliasee(); 762 } else { 763 break; 764 } 765 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 766 } while (Visited.insert(V)); 767 768 Type *IntPtrTy = TD->getIntPtrType(V->getContext()); 769 return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset)); 770} 771 772/// \brief Analyze a call site for potential inlining. 773/// 774/// Returns true if inlining this call is viable, and false if it is not 775/// viable. It computes the cost and adjusts the threshold based on numerous 776/// factors and heuristics. If this method returns false but the computed cost 777/// is below the computed threshold, then inlining was forcibly disabled by 778/// some artifact of the rountine. 779bool CallAnalyzer::analyzeCall(CallSite CS) { 780 ++NumCallsAnalyzed; 781 782 // Track whether the post-inlining function would have more than one basic 783 // block. A single basic block is often intended for inlining. Balloon the 784 // threshold by 50% until we pass the single-BB phase. 785 bool SingleBB = true; 786 int SingleBBBonus = Threshold / 2; 787 Threshold += SingleBBBonus; 788 789 // Unless we are always-inlining, perform some tweaks to the cost and 790 // threshold based on the direct callsite information. 791 if (!AlwaysInline) { 792 // We want to more aggressively inline vector-dense kernels, so up the 793 // threshold, and we'll lower it if the % of vector instructions gets too 794 // low. 795 assert(NumInstructions == 0); 796 assert(NumVectorInstructions == 0); 797 FiftyPercentVectorBonus = Threshold; 798 TenPercentVectorBonus = Threshold / 2; 799 800 // Give out bonuses per argument, as the instructions setting them up will 801 // be gone after inlining. 802 for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) { 803 if (TD && CS.isByValArgument(I)) { 804 // We approximate the number of loads and stores needed by dividing the 805 // size of the byval type by the target's pointer size. 806 PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType()); 807 unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType()); 808 unsigned PointerSize = TD->getPointerSizeInBits(); 809 // Ceiling division. 810 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 811 812 // If it generates more than 8 stores it is likely to be expanded as an 813 // inline memcpy so we take that as an upper bound. Otherwise we assume 814 // one load and one store per word copied. 815 // FIXME: The maxStoresPerMemcpy setting from the target should be used 816 // here instead of a magic number of 8, but it's not available via 817 // TargetData. 818 NumStores = std::min(NumStores, 8U); 819 820 Cost -= 2 * NumStores * InlineConstants::InstrCost; 821 } else { 822 // For non-byval arguments subtract off one instruction per call 823 // argument. 824 Cost -= InlineConstants::InstrCost; 825 } 826 } 827 828 // If there is only one call of the function, and it has internal linkage, 829 // the cost of inlining it drops dramatically. 830 if (F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction()) 831 Cost += InlineConstants::LastCallToStaticBonus; 832 833 // If the instruction after the call, or if the normal destination of the 834 // invoke is an unreachable instruction, the function is noreturn. As such, 835 // there is little point in inlining this unless there is literally zero cost. 836 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 837 if (isa<UnreachableInst>(II->getNormalDest()->begin())) 838 Threshold = 1; 839 } else if (isa<UnreachableInst>(++BasicBlock::iterator(CS.getInstruction()))) 840 Threshold = 1; 841 842 // If this function uses the coldcc calling convention, prefer not to inline 843 // it. 844 if (F.getCallingConv() == CallingConv::Cold) 845 Cost += InlineConstants::ColdccPenalty; 846 847 // Check if we're done. This can happen due to bonuses and penalties. 848 if (Cost > Threshold) 849 return false; 850 } 851 852 if (F.empty()) 853 return true; 854 855 // Track whether we've seen a return instruction. The first return 856 // instruction is free, as at least one will usually disappear in inlining. 857 bool HasReturn = false; 858 859 // Populate our simplified values by mapping from function arguments to call 860 // arguments with known important simplifications. 861 CallSite::arg_iterator CAI = CS.arg_begin(); 862 for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); 863 FAI != FAE; ++FAI, ++CAI) { 864 assert(CAI != CS.arg_end()); 865 if (Constant *C = dyn_cast<Constant>(CAI)) 866 SimplifiedValues[FAI] = C; 867 868 Value *PtrArg = *CAI; 869 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 870 ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue()); 871 872 // We can SROA any pointer arguments derived from alloca instructions. 873 if (isa<AllocaInst>(PtrArg)) { 874 SROAArgValues[FAI] = PtrArg; 875 SROAArgCosts[PtrArg] = 0; 876 } 877 } 878 } 879 NumConstantArgs = SimplifiedValues.size(); 880 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 881 NumAllocaArgs = SROAArgValues.size(); 882 883 // The worklist of live basic blocks in the callee *after* inlining. We avoid 884 // adding basic blocks of the callee which can be proven to be dead for this 885 // particular call site in order to get more accurate cost estimates. This 886 // requires a somewhat heavyweight iteration pattern: we need to walk the 887 // basic blocks in a breadth-first order as we insert live successors. To 888 // accomplish this, prioritizing for small iterations because we exit after 889 // crossing our threshold, we use a small-size optimized SetVector. 890 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 891 SmallPtrSet<BasicBlock *, 16> > BBSetVector; 892 BBSetVector BBWorklist; 893 BBWorklist.insert(&F.getEntryBlock()); 894 // Note that we *must not* cache the size, this loop grows the worklist. 895 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 896 // Bail out the moment we cross the threshold. This means we'll under-count 897 // the cost, but only when undercounting doesn't matter. 898 if (!AlwaysInline && Cost > (Threshold + VectorBonus)) 899 break; 900 901 BasicBlock *BB = BBWorklist[Idx]; 902 if (BB->empty()) 903 continue; 904 905 // Handle the terminator cost here where we can track returns and other 906 // function-wide constructs. 907 TerminatorInst *TI = BB->getTerminator(); 908 909 // We never want to inline functions that contain an indirectbr. This is 910 // incorrect because all the blockaddress's (in static global initializers 911 // for example) would be referring to the original function, and this indirect 912 // jump would jump from the inlined copy of the function into the original 913 // function which is extremely undefined behavior. 914 // FIXME: This logic isn't really right; we can safely inline functions 915 // with indirectbr's as long as no other function or global references the 916 // blockaddress of a block within the current function. And as a QOI issue, 917 // if someone is using a blockaddress without an indirectbr, and that 918 // reference somehow ends up in another function or global, we probably 919 // don't want to inline this function. 920 if (isa<IndirectBrInst>(TI)) 921 return false; 922 923 if (!HasReturn && isa<ReturnInst>(TI)) 924 HasReturn = true; 925 else 926 Cost += InlineConstants::InstrCost; 927 928 // Analyze the cost of this block. If we blow through the threshold, this 929 // returns false, and we can bail on out. 930 if (!analyzeBlock(BB)) { 931 if (IsRecursive || ExposesReturnsTwice || HasDynamicAlloca) 932 return false; 933 break; 934 } 935 936 // Add in the live successors by first checking whether we have terminator 937 // that may be simplified based on the values simplified by this call. 938 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 939 if (BI->isConditional()) { 940 Value *Cond = BI->getCondition(); 941 if (ConstantInt *SimpleCond 942 = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 943 BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0)); 944 continue; 945 } 946 } 947 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 948 Value *Cond = SI->getCondition(); 949 if (ConstantInt *SimpleCond 950 = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 951 BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor()); 952 continue; 953 } 954 } 955 956 // If we're unable to select a particular successor, just count all of 957 // them. 958 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; ++TIdx) 959 BBWorklist.insert(TI->getSuccessor(TIdx)); 960 961 // If we had any successors at this point, than post-inlining is likely to 962 // have them as well. Note that we assume any basic blocks which existed 963 // due to branches or switches which folded above will also fold after 964 // inlining. 965 if (SingleBB && TI->getNumSuccessors() > 1) { 966 // Take off the bonus we applied to the threshold. 967 Threshold -= SingleBBBonus; 968 SingleBB = false; 969 } 970 } 971 972 Threshold += VectorBonus; 973 974 return AlwaysInline || Cost < Threshold; 975} 976 977#ifndef NDEBUG 978/// \brief Dump stats about this call's analysis. 979void CallAnalyzer::dump() { 980#define DEBUG_PRINT_STAT(x) llvm::dbgs() << " " #x ": " << x << "\n" 981 DEBUG_PRINT_STAT(NumConstantArgs); 982 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 983 DEBUG_PRINT_STAT(NumAllocaArgs); 984 DEBUG_PRINT_STAT(NumConstantPtrCmps); 985 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 986 DEBUG_PRINT_STAT(NumInstructionsSimplified); 987 DEBUG_PRINT_STAT(SROACostSavings); 988 DEBUG_PRINT_STAT(SROACostSavingsLost); 989#undef DEBUG_PRINT_STAT 990} 991#endif 992 993InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, int Threshold) { 994 return getInlineCost(CS, CS.getCalledFunction(), Threshold); 995} 996 997InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, Function *Callee, 998 int Threshold) { 999 // Don't inline functions which can be redefined at link-time to mean 1000 // something else. Don't inline functions marked noinline or call sites 1001 // marked noinline. 1002 if (!Callee || Callee->mayBeOverridden() || 1003 Callee->hasFnAttr(Attribute::NoInline) || CS.isNoInline()) 1004 return llvm::InlineCost::getNever(); 1005 1006 DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() << "...\n"); 1007 1008 CallAnalyzer CA(TD, *Callee, Threshold); 1009 bool ShouldInline = CA.analyzeCall(CS); 1010 1011 DEBUG(CA.dump()); 1012 1013 // Check if there was a reason to force inlining or no inlining. 1014 if (!ShouldInline && CA.getCost() < CA.getThreshold()) 1015 return InlineCost::getNever(); 1016 if (ShouldInline && CA.getCost() >= CA.getThreshold()) 1017 return InlineCost::getAlways(); 1018 1019 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 1020} 1021