1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_ARM_LITHIUM_CODEGEN_ARM_H_
29#define V8_ARM_LITHIUM_CODEGEN_ARM_H_
30
31#include "arm/lithium-arm.h"
32#include "arm/lithium-gap-resolver-arm.h"
33#include "deoptimizer.h"
34#include "safepoint-table.h"
35#include "scopes.h"
36
37namespace v8 {
38namespace internal {
39
40// Forward declarations.
41class LDeferredCode;
42class SafepointGenerator;
43
44class LCodeGen BASE_EMBEDDED {
45 public:
46  LCodeGen(LChunk* chunk, MacroAssembler* assembler, CompilationInfo* info)
47      : chunk_(chunk),
48        masm_(assembler),
49        info_(info),
50        current_block_(-1),
51        current_instruction_(-1),
52        instructions_(chunk->instructions()),
53        deoptimizations_(4),
54        deopt_jump_table_(4),
55        deoptimization_literals_(8),
56        inlined_function_count_(0),
57        scope_(info->scope()),
58        status_(UNUSED),
59        deferred_(8),
60        osr_pc_offset_(-1),
61        last_lazy_deopt_pc_(0),
62        resolver_(this),
63        expected_safepoint_kind_(Safepoint::kSimple) {
64    PopulateDeoptimizationLiteralsWithInlinedFunctions();
65  }
66
67
68  // Simple accessors.
69  MacroAssembler* masm() const { return masm_; }
70  CompilationInfo* info() const { return info_; }
71  Isolate* isolate() const { return info_->isolate(); }
72  Factory* factory() const { return isolate()->factory(); }
73  Heap* heap() const { return isolate()->heap(); }
74
75  // Support for converting LOperands to assembler types.
76  // LOperand must be a register.
77  Register ToRegister(LOperand* op) const;
78
79  // LOperand is loaded into scratch, unless already a register.
80  Register EmitLoadRegister(LOperand* op, Register scratch);
81
82  // LOperand must be a double register.
83  DoubleRegister ToDoubleRegister(LOperand* op) const;
84
85  // LOperand is loaded into dbl_scratch, unless already a double register.
86  DoubleRegister EmitLoadDoubleRegister(LOperand* op,
87                                        SwVfpRegister flt_scratch,
88                                        DoubleRegister dbl_scratch);
89  int ToInteger32(LConstantOperand* op) const;
90  double ToDouble(LConstantOperand* op) const;
91  Operand ToOperand(LOperand* op);
92  MemOperand ToMemOperand(LOperand* op) const;
93  // Returns a MemOperand pointing to the high word of a DoubleStackSlot.
94  MemOperand ToHighMemOperand(LOperand* op) const;
95
96  bool IsInteger32(LConstantOperand* op) const;
97  Handle<Object> ToHandle(LConstantOperand* op) const;
98
99  // Try to generate code for the entire chunk, but it may fail if the
100  // chunk contains constructs we cannot handle. Returns true if the
101  // code generation attempt succeeded.
102  bool GenerateCode();
103
104  // Finish the code by setting stack height, safepoint, and bailout
105  // information on it.
106  void FinishCode(Handle<Code> code);
107
108  // Deferred code support.
109  template<int T>
110  void DoDeferredBinaryOpStub(LTemplateInstruction<1, 2, T>* instr,
111                              Token::Value op);
112  void DoDeferredNumberTagD(LNumberTagD* instr);
113  void DoDeferredNumberTagI(LNumberTagI* instr);
114  void DoDeferredTaggedToI(LTaggedToI* instr);
115  void DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr);
116  void DoDeferredStackCheck(LStackCheck* instr);
117  void DoDeferredRandom(LRandom* instr);
118  void DoDeferredStringCharCodeAt(LStringCharCodeAt* instr);
119  void DoDeferredStringCharFromCode(LStringCharFromCode* instr);
120  void DoDeferredAllocateObject(LAllocateObject* instr);
121  void DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
122                                       Label* map_check);
123
124  void DoCheckMapCommon(Register reg, Register scratch, Handle<Map> map,
125                        CompareMapMode mode, LEnvironment* env);
126
127  // Parallel move support.
128  void DoParallelMove(LParallelMove* move);
129  void DoGap(LGap* instr);
130
131  // Emit frame translation commands for an environment.
132  void WriteTranslation(LEnvironment* environment, Translation* translation);
133
134  // Declare methods that deal with the individual node types.
135#define DECLARE_DO(type) void Do##type(L##type* node);
136  LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_DO)
137#undef DECLARE_DO
138
139 private:
140  enum Status {
141    UNUSED,
142    GENERATING,
143    DONE,
144    ABORTED
145  };
146
147  bool is_unused() const { return status_ == UNUSED; }
148  bool is_generating() const { return status_ == GENERATING; }
149  bool is_done() const { return status_ == DONE; }
150  bool is_aborted() const { return status_ == ABORTED; }
151
152  StrictModeFlag strict_mode_flag() const {
153    return info()->is_classic_mode() ? kNonStrictMode : kStrictMode;
154  }
155
156  LChunk* chunk() const { return chunk_; }
157  Scope* scope() const { return scope_; }
158  HGraph* graph() const { return chunk_->graph(); }
159
160  Register scratch0() { return r9; }
161  DwVfpRegister double_scratch0() { return kScratchDoubleReg; }
162
163  int GetNextEmittedBlock(int block);
164  LInstruction* GetNextInstruction();
165
166  void EmitClassOfTest(Label* if_true,
167                       Label* if_false,
168                       Handle<String> class_name,
169                       Register input,
170                       Register temporary,
171                       Register temporary2);
172
173  int GetStackSlotCount() const { return chunk()->spill_slot_count(); }
174  int GetParameterCount() const { return scope()->num_parameters(); }
175
176  void Abort(const char* format, ...);
177  void Comment(const char* format, ...);
178
179  void AddDeferredCode(LDeferredCode* code) { deferred_.Add(code); }
180
181  // Code generation passes.  Returns true if code generation should
182  // continue.
183  bool GeneratePrologue();
184  bool GenerateBody();
185  bool GenerateDeferredCode();
186  bool GenerateDeoptJumpTable();
187  bool GenerateSafepointTable();
188
189  enum SafepointMode {
190    RECORD_SIMPLE_SAFEPOINT,
191    RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS
192  };
193
194  void CallCode(Handle<Code> code,
195                RelocInfo::Mode mode,
196                LInstruction* instr);
197
198  void CallCodeGeneric(Handle<Code> code,
199                       RelocInfo::Mode mode,
200                       LInstruction* instr,
201                       SafepointMode safepoint_mode);
202
203  void CallRuntime(const Runtime::Function* function,
204                   int num_arguments,
205                   LInstruction* instr);
206
207  void CallRuntime(Runtime::FunctionId id,
208                   int num_arguments,
209                   LInstruction* instr) {
210    const Runtime::Function* function = Runtime::FunctionForId(id);
211    CallRuntime(function, num_arguments, instr);
212  }
213
214  void CallRuntimeFromDeferred(Runtime::FunctionId id,
215                               int argc,
216                               LInstruction* instr);
217
218  // Generate a direct call to a known function.  Expects the function
219  // to be in r1.
220  void CallKnownFunction(Handle<JSFunction> function,
221                         int arity,
222                         LInstruction* instr,
223                         CallKind call_kind);
224
225  void LoadHeapObject(Register result, Handle<HeapObject> object);
226
227  void RecordSafepointWithLazyDeopt(LInstruction* instr,
228                                    SafepointMode safepoint_mode);
229
230  void RegisterEnvironmentForDeoptimization(LEnvironment* environment,
231                                            Safepoint::DeoptMode mode);
232  void DeoptimizeIf(Condition cc, LEnvironment* environment);
233
234  void AddToTranslation(Translation* translation,
235                        LOperand* op,
236                        bool is_tagged);
237  void PopulateDeoptimizationData(Handle<Code> code);
238  int DefineDeoptimizationLiteral(Handle<Object> literal);
239
240  void PopulateDeoptimizationLiteralsWithInlinedFunctions();
241
242  Register ToRegister(int index) const;
243  DoubleRegister ToDoubleRegister(int index) const;
244
245  // Specific math operations - used from DoUnaryMathOperation.
246  void EmitIntegerMathAbs(LUnaryMathOperation* instr);
247  void DoMathAbs(LUnaryMathOperation* instr);
248  void DoMathFloor(LUnaryMathOperation* instr);
249  void DoMathRound(LUnaryMathOperation* instr);
250  void DoMathSqrt(LUnaryMathOperation* instr);
251  void DoMathPowHalf(LUnaryMathOperation* instr);
252  void DoMathLog(LUnaryMathOperation* instr);
253  void DoMathTan(LUnaryMathOperation* instr);
254  void DoMathCos(LUnaryMathOperation* instr);
255  void DoMathSin(LUnaryMathOperation* instr);
256
257  // Support for recording safepoint and position information.
258  void RecordSafepoint(LPointerMap* pointers,
259                       Safepoint::Kind kind,
260                       int arguments,
261                       Safepoint::DeoptMode mode);
262  void RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode mode);
263  void RecordSafepoint(Safepoint::DeoptMode mode);
264  void RecordSafepointWithRegisters(LPointerMap* pointers,
265                                    int arguments,
266                                    Safepoint::DeoptMode mode);
267  void RecordSafepointWithRegistersAndDoubles(LPointerMap* pointers,
268                                              int arguments,
269                                              Safepoint::DeoptMode mode);
270  void RecordPosition(int position);
271
272  static Condition TokenToCondition(Token::Value op, bool is_unsigned);
273  void EmitGoto(int block);
274  void EmitBranch(int left_block, int right_block, Condition cc);
275  void EmitNumberUntagD(Register input,
276                        DoubleRegister result,
277                        bool deoptimize_on_undefined,
278                        bool deoptimize_on_minus_zero,
279                        LEnvironment* env);
280
281  // Emits optimized code for typeof x == "y".  Modifies input register.
282  // Returns the condition on which a final split to
283  // true and false label should be made, to optimize fallthrough.
284  Condition EmitTypeofIs(Label* true_label,
285                         Label* false_label,
286                         Register input,
287                         Handle<String> type_name);
288
289  // Emits optimized code for %_IsObject(x).  Preserves input register.
290  // Returns the condition on which a final split to
291  // true and false label should be made, to optimize fallthrough.
292  Condition EmitIsObject(Register input,
293                         Register temp1,
294                         Label* is_not_object,
295                         Label* is_object);
296
297  // Emits optimized code for %_IsString(x).  Preserves input register.
298  // Returns the condition on which a final split to
299  // true and false label should be made, to optimize fallthrough.
300  Condition EmitIsString(Register input,
301                         Register temp1,
302                         Label* is_not_string);
303
304  // Emits optimized code for %_IsConstructCall().
305  // Caller should branch on equal condition.
306  void EmitIsConstructCall(Register temp1, Register temp2);
307
308  void EmitLoadFieldOrConstantFunction(Register result,
309                                       Register object,
310                                       Handle<Map> type,
311                                       Handle<String> name);
312
313  // Emits optimized code to deep-copy the contents of statically known
314  // object graphs (e.g. object literal boilerplate).
315  void EmitDeepCopy(Handle<JSObject> object,
316                    Register result,
317                    Register source,
318                    int* offset);
319
320  struct JumpTableEntry {
321    explicit inline JumpTableEntry(Address entry)
322        : label(),
323          address(entry) { }
324    Label label;
325    Address address;
326  };
327
328  void EnsureSpaceForLazyDeopt();
329
330  LChunk* const chunk_;
331  MacroAssembler* const masm_;
332  CompilationInfo* const info_;
333
334  int current_block_;
335  int current_instruction_;
336  const ZoneList<LInstruction*>* instructions_;
337  ZoneList<LEnvironment*> deoptimizations_;
338  ZoneList<JumpTableEntry> deopt_jump_table_;
339  ZoneList<Handle<Object> > deoptimization_literals_;
340  int inlined_function_count_;
341  Scope* const scope_;
342  Status status_;
343  TranslationBuffer translations_;
344  ZoneList<LDeferredCode*> deferred_;
345  int osr_pc_offset_;
346  int last_lazy_deopt_pc_;
347
348  // Builder that keeps track of safepoints in the code. The table
349  // itself is emitted at the end of the generated code.
350  SafepointTableBuilder safepoints_;
351
352  // Compiler from a set of parallel moves to a sequential list of moves.
353  LGapResolver resolver_;
354
355  Safepoint::Kind expected_safepoint_kind_;
356
357  class PushSafepointRegistersScope BASE_EMBEDDED {
358   public:
359    PushSafepointRegistersScope(LCodeGen* codegen,
360                                Safepoint::Kind kind)
361        : codegen_(codegen) {
362      ASSERT(codegen_->expected_safepoint_kind_ == Safepoint::kSimple);
363      codegen_->expected_safepoint_kind_ = kind;
364
365      switch (codegen_->expected_safepoint_kind_) {
366        case Safepoint::kWithRegisters:
367          codegen_->masm_->PushSafepointRegisters();
368          break;
369        case Safepoint::kWithRegistersAndDoubles:
370          codegen_->masm_->PushSafepointRegistersAndDoubles();
371          break;
372        default:
373          UNREACHABLE();
374      }
375    }
376
377    ~PushSafepointRegistersScope() {
378      Safepoint::Kind kind = codegen_->expected_safepoint_kind_;
379      ASSERT((kind & Safepoint::kWithRegisters) != 0);
380      switch (kind) {
381        case Safepoint::kWithRegisters:
382          codegen_->masm_->PopSafepointRegisters();
383          break;
384        case Safepoint::kWithRegistersAndDoubles:
385          codegen_->masm_->PopSafepointRegistersAndDoubles();
386          break;
387        default:
388          UNREACHABLE();
389      }
390      codegen_->expected_safepoint_kind_ = Safepoint::kSimple;
391    }
392
393   private:
394    LCodeGen* codegen_;
395  };
396
397  friend class LDeferredCode;
398  friend class LEnvironment;
399  friend class SafepointGenerator;
400  DISALLOW_COPY_AND_ASSIGN(LCodeGen);
401};
402
403
404class LDeferredCode: public ZoneObject {
405 public:
406  explicit LDeferredCode(LCodeGen* codegen)
407      : codegen_(codegen),
408        external_exit_(NULL),
409        instruction_index_(codegen->current_instruction_) {
410    codegen->AddDeferredCode(this);
411  }
412
413  virtual ~LDeferredCode() { }
414  virtual void Generate() = 0;
415  virtual LInstruction* instr() = 0;
416
417  void SetExit(Label* exit) { external_exit_ = exit; }
418  Label* entry() { return &entry_; }
419  Label* exit() { return external_exit_ != NULL ? external_exit_ : &exit_; }
420  int instruction_index() const { return instruction_index_; }
421
422 protected:
423  LCodeGen* codegen() const { return codegen_; }
424  MacroAssembler* masm() const { return codegen_->masm(); }
425
426 private:
427  LCodeGen* codegen_;
428  Label entry_;
429  Label exit_;
430  Label* external_exit_;
431  int instruction_index_;
432};
433
434} }  // namespace v8::internal
435
436#endif  // V8_ARM_LITHIUM_CODEGEN_ARM_H_
437