1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2012 the V8 project authors. All rights reserved.
34
35#ifndef V8_ASSEMBLER_H_
36#define V8_ASSEMBLER_H_
37
38#include "v8.h"
39
40#include "allocation.h"
41#include "builtins.h"
42#include "gdb-jit.h"
43#include "isolate.h"
44#include "runtime.h"
45#include "token.h"
46
47namespace v8 {
48
49class ApiFunction;
50
51namespace internal {
52
53struct StatsCounter;
54const unsigned kNoASTId = -1;
55// -----------------------------------------------------------------------------
56// Platform independent assembler base class.
57
58class AssemblerBase: public Malloced {
59 public:
60  explicit AssemblerBase(Isolate* isolate);
61
62  Isolate* isolate() const { return isolate_; }
63  int jit_cookie() { return jit_cookie_; }
64
65  // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
66  // cross-snapshotting.
67  static void QuietNaN(HeapObject* nan) { }
68
69 private:
70  Isolate* isolate_;
71  int jit_cookie_;
72};
73
74
75// -----------------------------------------------------------------------------
76// Labels represent pc locations; they are typically jump or call targets.
77// After declaration, a label can be freely used to denote known or (yet)
78// unknown pc location. Assembler::bind() is used to bind a label to the
79// current pc. A label can be bound only once.
80
81class Label BASE_EMBEDDED {
82 public:
83  enum Distance {
84    kNear, kFar
85  };
86
87  INLINE(Label()) {
88    Unuse();
89    UnuseNear();
90  }
91
92  INLINE(~Label()) {
93    ASSERT(!is_linked());
94    ASSERT(!is_near_linked());
95  }
96
97  INLINE(void Unuse()) { pos_ = 0; }
98  INLINE(void UnuseNear()) { near_link_pos_ = 0; }
99
100  INLINE(bool is_bound() const) { return pos_ <  0; }
101  INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
102  INLINE(bool is_linked() const) { return pos_ >  0; }
103  INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
104
105  // Returns the position of bound or linked labels. Cannot be used
106  // for unused labels.
107  int pos() const;
108  int near_link_pos() const { return near_link_pos_ - 1; }
109
110 private:
111  // pos_ encodes both the binding state (via its sign)
112  // and the binding position (via its value) of a label.
113  //
114  // pos_ <  0  bound label, pos() returns the jump target position
115  // pos_ == 0  unused label
116  // pos_ >  0  linked label, pos() returns the last reference position
117  int pos_;
118
119  // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
120  int near_link_pos_;
121
122  void bind_to(int pos)  {
123    pos_ = -pos - 1;
124    ASSERT(is_bound());
125  }
126  void link_to(int pos, Distance distance = kFar) {
127    if (distance == kNear) {
128      near_link_pos_ = pos + 1;
129      ASSERT(is_near_linked());
130    } else {
131      pos_ = pos + 1;
132      ASSERT(is_linked());
133    }
134  }
135
136  friend class Assembler;
137  friend class RegexpAssembler;
138  friend class Displacement;
139  friend class RegExpMacroAssemblerIrregexp;
140};
141
142
143enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
144
145
146// -----------------------------------------------------------------------------
147// Relocation information
148
149
150// Relocation information consists of the address (pc) of the datum
151// to which the relocation information applies, the relocation mode
152// (rmode), and an optional data field. The relocation mode may be
153// "descriptive" and not indicate a need for relocation, but simply
154// describe a property of the datum. Such rmodes are useful for GC
155// and nice disassembly output.
156
157class RelocInfo BASE_EMBEDDED {
158 public:
159  // The constant kNoPosition is used with the collecting of source positions
160  // in the relocation information. Two types of source positions are collected
161  // "position" (RelocMode position) and "statement position" (RelocMode
162  // statement_position). The "position" is collected at places in the source
163  // code which are of interest when making stack traces to pin-point the source
164  // location of a stack frame as close as possible. The "statement position" is
165  // collected at the beginning at each statement, and is used to indicate
166  // possible break locations. kNoPosition is used to indicate an
167  // invalid/uninitialized position value.
168  static const int kNoPosition = -1;
169
170  // This string is used to add padding comments to the reloc info in cases
171  // where we are not sure to have enough space for patching in during
172  // lazy deoptimization. This is the case if we have indirect calls for which
173  // we do not normally record relocation info.
174  static const char* const kFillerCommentString;
175
176  // The minimum size of a comment is equal to three bytes for the extra tagged
177  // pc + the tag for the data, and kPointerSize for the actual pointer to the
178  // comment.
179  static const int kMinRelocCommentSize = 3 + kPointerSize;
180
181  // The maximum size for a call instruction including pc-jump.
182  static const int kMaxCallSize = 6;
183
184  // The maximum pc delta that will use the short encoding.
185  static const int kMaxSmallPCDelta;
186
187  enum Mode {
188    // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
189    CODE_TARGET,  // Code target which is not any of the above.
190    CODE_TARGET_WITH_ID,
191    CONSTRUCT_CALL,  // code target that is a call to a JavaScript constructor.
192    CODE_TARGET_CONTEXT,  // Code target used for contextual loads and stores.
193    DEBUG_BREAK,  // Code target for the debugger statement.
194    EMBEDDED_OBJECT,
195    GLOBAL_PROPERTY_CELL,
196
197    // Everything after runtime_entry (inclusive) is not GC'ed.
198    RUNTIME_ENTRY,
199    JS_RETURN,  // Marks start of the ExitJSFrame code.
200    COMMENT,
201    POSITION,  // See comment for kNoPosition above.
202    STATEMENT_POSITION,  // See comment for kNoPosition above.
203    DEBUG_BREAK_SLOT,  // Additional code inserted for debug break slot.
204    EXTERNAL_REFERENCE,  // The address of an external C++ function.
205    INTERNAL_REFERENCE,  // An address inside the same function.
206
207    // add more as needed
208    // Pseudo-types
209    NUMBER_OF_MODES,  // There are at most 14 modes with noncompact encoding.
210    NONE,  // never recorded
211    LAST_CODE_ENUM = DEBUG_BREAK,
212    LAST_GCED_ENUM = GLOBAL_PROPERTY_CELL,
213    // Modes <= LAST_COMPACT_ENUM are guaranteed to have compact encoding.
214    LAST_COMPACT_ENUM = CODE_TARGET_WITH_ID
215  };
216
217
218  RelocInfo() {}
219
220  RelocInfo(byte* pc, Mode rmode, intptr_t data, Code* host)
221      : pc_(pc), rmode_(rmode), data_(data), host_(host) {
222  }
223
224  static inline bool IsConstructCall(Mode mode) {
225    return mode == CONSTRUCT_CALL;
226  }
227  static inline bool IsCodeTarget(Mode mode) {
228    return mode <= LAST_CODE_ENUM;
229  }
230  static inline bool IsEmbeddedObject(Mode mode) {
231    return mode == EMBEDDED_OBJECT;
232  }
233  // Is the relocation mode affected by GC?
234  static inline bool IsGCRelocMode(Mode mode) {
235    return mode <= LAST_GCED_ENUM;
236  }
237  static inline bool IsJSReturn(Mode mode) {
238    return mode == JS_RETURN;
239  }
240  static inline bool IsComment(Mode mode) {
241    return mode == COMMENT;
242  }
243  static inline bool IsPosition(Mode mode) {
244    return mode == POSITION || mode == STATEMENT_POSITION;
245  }
246  static inline bool IsStatementPosition(Mode mode) {
247    return mode == STATEMENT_POSITION;
248  }
249  static inline bool IsExternalReference(Mode mode) {
250    return mode == EXTERNAL_REFERENCE;
251  }
252  static inline bool IsInternalReference(Mode mode) {
253    return mode == INTERNAL_REFERENCE;
254  }
255  static inline bool IsDebugBreakSlot(Mode mode) {
256    return mode == DEBUG_BREAK_SLOT;
257  }
258  static inline int ModeMask(Mode mode) { return 1 << mode; }
259
260  // Accessors
261  byte* pc() const { return pc_; }
262  void set_pc(byte* pc) { pc_ = pc; }
263  Mode rmode() const {  return rmode_; }
264  intptr_t data() const { return data_; }
265  Code* host() const { return host_; }
266
267  // Apply a relocation by delta bytes
268  INLINE(void apply(intptr_t delta));
269
270  // Is the pointer this relocation info refers to coded like a plain pointer
271  // or is it strange in some way (e.g. relative or patched into a series of
272  // instructions).
273  bool IsCodedSpecially();
274
275  // Read/modify the code target in the branch/call instruction
276  // this relocation applies to;
277  // can only be called if IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
278  INLINE(Address target_address());
279  INLINE(void set_target_address(Address target,
280                                 WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
281  INLINE(Object* target_object());
282  INLINE(Handle<Object> target_object_handle(Assembler* origin));
283  INLINE(Object** target_object_address());
284  INLINE(void set_target_object(Object* target,
285                                WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
286  INLINE(JSGlobalPropertyCell* target_cell());
287  INLINE(Handle<JSGlobalPropertyCell> target_cell_handle());
288  INLINE(void set_target_cell(JSGlobalPropertyCell* cell,
289                              WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
290
291
292  // Read the address of the word containing the target_address in an
293  // instruction stream.  What this means exactly is architecture-independent.
294  // The only architecture-independent user of this function is the serializer.
295  // The serializer uses it to find out how many raw bytes of instruction to
296  // output before the next target.  Architecture-independent code shouldn't
297  // dereference the pointer it gets back from this.
298  INLINE(Address target_address_address());
299  // This indicates how much space a target takes up when deserializing a code
300  // stream.  For most architectures this is just the size of a pointer.  For
301  // an instruction like movw/movt where the target bits are mixed into the
302  // instruction bits the size of the target will be zero, indicating that the
303  // serializer should not step forwards in memory after a target is resolved
304  // and written.  In this case the target_address_address function above
305  // should return the end of the instructions to be patched, allowing the
306  // deserializer to deserialize the instructions as raw bytes and put them in
307  // place, ready to be patched with the target.
308  INLINE(int target_address_size());
309
310  // Read/modify the reference in the instruction this relocation
311  // applies to; can only be called if rmode_ is external_reference
312  INLINE(Address* target_reference_address());
313
314  // Read/modify the address of a call instruction. This is used to relocate
315  // the break points where straight-line code is patched with a call
316  // instruction.
317  INLINE(Address call_address());
318  INLINE(void set_call_address(Address target));
319  INLINE(Object* call_object());
320  INLINE(void set_call_object(Object* target));
321  INLINE(Object** call_object_address());
322
323  template<typename StaticVisitor> inline void Visit(Heap* heap);
324  inline void Visit(ObjectVisitor* v);
325
326  // Patch the code with some other code.
327  void PatchCode(byte* instructions, int instruction_count);
328
329  // Patch the code with a call.
330  void PatchCodeWithCall(Address target, int guard_bytes);
331
332  // Check whether this return sequence has been patched
333  // with a call to the debugger.
334  INLINE(bool IsPatchedReturnSequence());
335
336  // Check whether this debug break slot has been patched with a call to the
337  // debugger.
338  INLINE(bool IsPatchedDebugBreakSlotSequence());
339
340#ifdef ENABLE_DISASSEMBLER
341  // Printing
342  static const char* RelocModeName(Mode rmode);
343  void Print(FILE* out);
344#endif  // ENABLE_DISASSEMBLER
345#ifdef DEBUG
346  // Debugging
347  void Verify();
348#endif
349
350  static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
351  static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
352  static const int kDataMask =
353      (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
354  static const int kApplyMask;  // Modes affected by apply. Depends on arch.
355
356 private:
357  // On ARM, note that pc_ is the address of the constant pool entry
358  // to be relocated and not the address of the instruction
359  // referencing the constant pool entry (except when rmode_ ==
360  // comment).
361  byte* pc_;
362  Mode rmode_;
363  intptr_t data_;
364  Code* host_;
365#ifdef V8_TARGET_ARCH_MIPS
366  // Code and Embedded Object pointers in mips are stored split
367  // across two consecutive 32-bit instructions. Heap management
368  // routines expect to access these pointers indirectly. The following
369  // location provides a place for these pointers to exist natually
370  // when accessed via the Iterator.
371  Object* reconstructed_obj_ptr_;
372  // External-reference pointers are also split across instruction-pairs
373  // in mips, but are accessed via indirect pointers. This location
374  // provides a place for that pointer to exist naturally. Its address
375  // is returned by RelocInfo::target_reference_address().
376  Address reconstructed_adr_ptr_;
377#endif  // V8_TARGET_ARCH_MIPS
378  friend class RelocIterator;
379};
380
381
382// RelocInfoWriter serializes a stream of relocation info. It writes towards
383// lower addresses.
384class RelocInfoWriter BASE_EMBEDDED {
385 public:
386  RelocInfoWriter() : pos_(NULL),
387                      last_pc_(NULL),
388                      last_id_(0),
389                      last_position_(0) {}
390  RelocInfoWriter(byte* pos, byte* pc) : pos_(pos),
391                                         last_pc_(pc),
392                                         last_id_(0),
393                                         last_position_(0) {}
394
395  byte* pos() const { return pos_; }
396  byte* last_pc() const { return last_pc_; }
397
398  void Write(const RelocInfo* rinfo);
399
400  // Update the state of the stream after reloc info buffer
401  // and/or code is moved while the stream is active.
402  void Reposition(byte* pos, byte* pc) {
403    pos_ = pos;
404    last_pc_ = pc;
405  }
406
407  // Max size (bytes) of a written RelocInfo. Longest encoding is
408  // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
409  // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
410  // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
411  // Here we use the maximum of the two.
412  static const int kMaxSize = 16;
413
414 private:
415  inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
416  inline void WriteTaggedPC(uint32_t pc_delta, int tag);
417  inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
418  inline void WriteExtraTaggedIntData(int data_delta, int top_tag);
419  inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
420  inline void WriteTaggedData(intptr_t data_delta, int tag);
421  inline void WriteExtraTag(int extra_tag, int top_tag);
422
423  byte* pos_;
424  byte* last_pc_;
425  int last_id_;
426  int last_position_;
427  DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
428};
429
430
431// A RelocIterator iterates over relocation information.
432// Typical use:
433//
434//   for (RelocIterator it(code); !it.done(); it.next()) {
435//     // do something with it.rinfo() here
436//   }
437//
438// A mask can be specified to skip unwanted modes.
439class RelocIterator: public Malloced {
440 public:
441  // Create a new iterator positioned at
442  // the beginning of the reloc info.
443  // Relocation information with mode k is included in the
444  // iteration iff bit k of mode_mask is set.
445  explicit RelocIterator(Code* code, int mode_mask = -1);
446  explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
447
448  // Iteration
449  bool done() const { return done_; }
450  void next();
451
452  // Return pointer valid until next next().
453  RelocInfo* rinfo() {
454    ASSERT(!done());
455    return &rinfo_;
456  }
457
458 private:
459  // Advance* moves the position before/after reading.
460  // *Read* reads from current byte(s) into rinfo_.
461  // *Get* just reads and returns info on current byte.
462  void Advance(int bytes = 1) { pos_ -= bytes; }
463  int AdvanceGetTag();
464  int GetExtraTag();
465  int GetTopTag();
466  void ReadTaggedPC();
467  void AdvanceReadPC();
468  void AdvanceReadId();
469  void AdvanceReadPosition();
470  void AdvanceReadData();
471  void AdvanceReadVariableLengthPCJump();
472  int GetLocatableTypeTag();
473  void ReadTaggedId();
474  void ReadTaggedPosition();
475
476  // If the given mode is wanted, set it in rinfo_ and return true.
477  // Else return false. Used for efficiently skipping unwanted modes.
478  bool SetMode(RelocInfo::Mode mode) {
479    return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
480  }
481
482  byte* pos_;
483  byte* end_;
484  RelocInfo rinfo_;
485  bool done_;
486  int mode_mask_;
487  int last_id_;
488  int last_position_;
489  DISALLOW_COPY_AND_ASSIGN(RelocIterator);
490};
491
492
493//------------------------------------------------------------------------------
494// External function
495
496//----------------------------------------------------------------------------
497class IC_Utility;
498class SCTableReference;
499#ifdef ENABLE_DEBUGGER_SUPPORT
500class Debug_Address;
501#endif
502
503
504// An ExternalReference represents a C++ address used in the generated
505// code. All references to C++ functions and variables must be encapsulated in
506// an ExternalReference instance. This is done in order to track the origin of
507// all external references in the code so that they can be bound to the correct
508// addresses when deserializing a heap.
509class ExternalReference BASE_EMBEDDED {
510 public:
511  // Used in the simulator to support different native api calls.
512  enum Type {
513    // Builtin call.
514    // MaybeObject* f(v8::internal::Arguments).
515    BUILTIN_CALL,  // default
516
517    // Builtin that takes float arguments and returns an int.
518    // int f(double, double).
519    BUILTIN_COMPARE_CALL,
520
521    // Builtin call that returns floating point.
522    // double f(double, double).
523    BUILTIN_FP_FP_CALL,
524
525    // Builtin call that returns floating point.
526    // double f(double).
527    BUILTIN_FP_CALL,
528
529    // Builtin call that returns floating point.
530    // double f(double, int).
531    BUILTIN_FP_INT_CALL,
532
533    // Direct call to API function callback.
534    // Handle<Value> f(v8::Arguments&)
535    DIRECT_API_CALL,
536
537    // Direct call to accessor getter callback.
538    // Handle<value> f(Local<String> property, AccessorInfo& info)
539    DIRECT_GETTER_CALL
540  };
541
542  typedef void* ExternalReferenceRedirector(void* original, Type type);
543
544  ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
545
546  ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
547
548  ExternalReference(Builtins::Name name, Isolate* isolate);
549
550  ExternalReference(Runtime::FunctionId id, Isolate* isolate);
551
552  ExternalReference(const Runtime::Function* f, Isolate* isolate);
553
554  ExternalReference(const IC_Utility& ic_utility, Isolate* isolate);
555
556#ifdef ENABLE_DEBUGGER_SUPPORT
557  ExternalReference(const Debug_Address& debug_address, Isolate* isolate);
558#endif
559
560  explicit ExternalReference(StatsCounter* counter);
561
562  ExternalReference(Isolate::AddressId id, Isolate* isolate);
563
564  explicit ExternalReference(const SCTableReference& table_ref);
565
566  // Isolate::Current() as an external reference.
567  static ExternalReference isolate_address();
568
569  // One-of-a-kind references. These references are not part of a general
570  // pattern. This means that they have to be added to the
571  // ExternalReferenceTable in serialize.cc manually.
572
573  static ExternalReference incremental_marking_record_write_function(
574      Isolate* isolate);
575  static ExternalReference incremental_evacuation_record_write_function(
576      Isolate* isolate);
577  static ExternalReference store_buffer_overflow_function(
578      Isolate* isolate);
579  static ExternalReference flush_icache_function(Isolate* isolate);
580  static ExternalReference perform_gc_function(Isolate* isolate);
581  static ExternalReference fill_heap_number_with_random_function(
582      Isolate* isolate);
583  static ExternalReference random_uint32_function(Isolate* isolate);
584  static ExternalReference transcendental_cache_array_address(Isolate* isolate);
585  static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
586
587  static ExternalReference get_date_field_function(Isolate* isolate);
588  static ExternalReference date_cache_stamp(Isolate* isolate);
589
590  // Deoptimization support.
591  static ExternalReference new_deoptimizer_function(Isolate* isolate);
592  static ExternalReference compute_output_frames_function(Isolate* isolate);
593
594  // Static data in the keyed lookup cache.
595  static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
596  static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
597
598  // Static variable Heap::roots_array_start()
599  static ExternalReference roots_array_start(Isolate* isolate);
600
601  // Static variable StackGuard::address_of_jslimit()
602  static ExternalReference address_of_stack_limit(Isolate* isolate);
603
604  // Static variable StackGuard::address_of_real_jslimit()
605  static ExternalReference address_of_real_stack_limit(Isolate* isolate);
606
607  // Static variable RegExpStack::limit_address()
608  static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
609
610  // Static variables for RegExp.
611  static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
612  static ExternalReference address_of_regexp_stack_memory_address(
613      Isolate* isolate);
614  static ExternalReference address_of_regexp_stack_memory_size(
615      Isolate* isolate);
616
617  // Static variable Heap::NewSpaceStart()
618  static ExternalReference new_space_start(Isolate* isolate);
619  static ExternalReference new_space_mask(Isolate* isolate);
620  static ExternalReference heap_always_allocate_scope_depth(Isolate* isolate);
621  static ExternalReference new_space_mark_bits(Isolate* isolate);
622
623  // Write barrier.
624  static ExternalReference store_buffer_top(Isolate* isolate);
625
626  // Used for fast allocation in generated code.
627  static ExternalReference new_space_allocation_top_address(Isolate* isolate);
628  static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
629
630  static ExternalReference double_fp_operation(Token::Value operation,
631                                               Isolate* isolate);
632  static ExternalReference compare_doubles(Isolate* isolate);
633  static ExternalReference power_double_double_function(Isolate* isolate);
634  static ExternalReference power_double_int_function(Isolate* isolate);
635
636  static ExternalReference handle_scope_next_address();
637  static ExternalReference handle_scope_limit_address();
638  static ExternalReference handle_scope_level_address();
639
640  static ExternalReference scheduled_exception_address(Isolate* isolate);
641
642  // Static variables containing common double constants.
643  static ExternalReference address_of_min_int();
644  static ExternalReference address_of_one_half();
645  static ExternalReference address_of_minus_zero();
646  static ExternalReference address_of_zero();
647  static ExternalReference address_of_uint8_max_value();
648  static ExternalReference address_of_negative_infinity();
649  static ExternalReference address_of_canonical_non_hole_nan();
650  static ExternalReference address_of_the_hole_nan();
651
652  static ExternalReference math_sin_double_function(Isolate* isolate);
653  static ExternalReference math_cos_double_function(Isolate* isolate);
654  static ExternalReference math_tan_double_function(Isolate* isolate);
655  static ExternalReference math_log_double_function(Isolate* isolate);
656
657  Address address() const {return reinterpret_cast<Address>(address_);}
658
659#ifdef ENABLE_DEBUGGER_SUPPORT
660  // Function Debug::Break()
661  static ExternalReference debug_break(Isolate* isolate);
662
663  // Used to check if single stepping is enabled in generated code.
664  static ExternalReference debug_step_in_fp_address(Isolate* isolate);
665#endif
666
667#ifndef V8_INTERPRETED_REGEXP
668  // C functions called from RegExp generated code.
669
670  // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
671  static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
672
673  // Function RegExpMacroAssembler*::CheckStackGuardState()
674  static ExternalReference re_check_stack_guard_state(Isolate* isolate);
675
676  // Function NativeRegExpMacroAssembler::GrowStack()
677  static ExternalReference re_grow_stack(Isolate* isolate);
678
679  // byte NativeRegExpMacroAssembler::word_character_bitmap
680  static ExternalReference re_word_character_map();
681
682#endif
683
684  // This lets you register a function that rewrites all external references.
685  // Used by the ARM simulator to catch calls to external references.
686  static void set_redirector(Isolate* isolate,
687                             ExternalReferenceRedirector* redirector) {
688    // We can't stack them.
689    ASSERT(isolate->external_reference_redirector() == NULL);
690    isolate->set_external_reference_redirector(
691        reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
692  }
693
694 private:
695  explicit ExternalReference(void* address)
696      : address_(address) {}
697
698  static void* Redirect(Isolate* isolate,
699                        void* address,
700                        Type type = ExternalReference::BUILTIN_CALL) {
701    ExternalReferenceRedirector* redirector =
702        reinterpret_cast<ExternalReferenceRedirector*>(
703            isolate->external_reference_redirector());
704    if (redirector == NULL) return address;
705    void* answer = (*redirector)(address, type);
706    return answer;
707  }
708
709  static void* Redirect(Isolate* isolate,
710                        Address address_arg,
711                        Type type = ExternalReference::BUILTIN_CALL) {
712    ExternalReferenceRedirector* redirector =
713        reinterpret_cast<ExternalReferenceRedirector*>(
714            isolate->external_reference_redirector());
715    void* address = reinterpret_cast<void*>(address_arg);
716    void* answer = (redirector == NULL) ?
717                   address :
718                   (*redirector)(address, type);
719    return answer;
720  }
721
722  void* address_;
723};
724
725
726// -----------------------------------------------------------------------------
727// Position recording support
728
729struct PositionState {
730  PositionState() : current_position(RelocInfo::kNoPosition),
731                    written_position(RelocInfo::kNoPosition),
732                    current_statement_position(RelocInfo::kNoPosition),
733                    written_statement_position(RelocInfo::kNoPosition) {}
734
735  int current_position;
736  int written_position;
737
738  int current_statement_position;
739  int written_statement_position;
740};
741
742
743class PositionsRecorder BASE_EMBEDDED {
744 public:
745  explicit PositionsRecorder(Assembler* assembler)
746      : assembler_(assembler) {
747#ifdef ENABLE_GDB_JIT_INTERFACE
748    gdbjit_lineinfo_ = NULL;
749#endif
750  }
751
752#ifdef ENABLE_GDB_JIT_INTERFACE
753  ~PositionsRecorder() {
754    delete gdbjit_lineinfo_;
755  }
756
757  void StartGDBJITLineInfoRecording() {
758    if (FLAG_gdbjit) {
759      gdbjit_lineinfo_ = new GDBJITLineInfo();
760    }
761  }
762
763  GDBJITLineInfo* DetachGDBJITLineInfo() {
764    GDBJITLineInfo* lineinfo = gdbjit_lineinfo_;
765    gdbjit_lineinfo_ = NULL;  // To prevent deallocation in destructor.
766    return lineinfo;
767  }
768#endif
769
770  // Set current position to pos.
771  void RecordPosition(int pos);
772
773  // Set current statement position to pos.
774  void RecordStatementPosition(int pos);
775
776  // Write recorded positions to relocation information.
777  bool WriteRecordedPositions();
778
779  int current_position() const { return state_.current_position; }
780
781  int current_statement_position() const {
782    return state_.current_statement_position;
783  }
784
785 private:
786  Assembler* assembler_;
787  PositionState state_;
788#ifdef ENABLE_GDB_JIT_INTERFACE
789  GDBJITLineInfo* gdbjit_lineinfo_;
790#endif
791
792  friend class PreservePositionScope;
793
794  DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
795};
796
797
798class PreservePositionScope BASE_EMBEDDED {
799 public:
800  explicit PreservePositionScope(PositionsRecorder* positions_recorder)
801      : positions_recorder_(positions_recorder),
802        saved_state_(positions_recorder->state_) {}
803
804  ~PreservePositionScope() {
805    positions_recorder_->state_ = saved_state_;
806  }
807
808 private:
809  PositionsRecorder* positions_recorder_;
810  const PositionState saved_state_;
811
812  DISALLOW_COPY_AND_ASSIGN(PreservePositionScope);
813};
814
815
816// -----------------------------------------------------------------------------
817// Utility functions
818
819inline bool is_intn(int x, int n)  {
820  return -(1 << (n-1)) <= x && x < (1 << (n-1));
821}
822
823inline bool is_int8(int x)  { return is_intn(x, 8); }
824inline bool is_int16(int x)  { return is_intn(x, 16); }
825inline bool is_int18(int x)  { return is_intn(x, 18); }
826inline bool is_int24(int x)  { return is_intn(x, 24); }
827
828inline bool is_uintn(int x, int n) {
829  return (x & -(1 << n)) == 0;
830}
831
832inline bool is_uint2(int x)  { return is_uintn(x, 2); }
833inline bool is_uint3(int x)  { return is_uintn(x, 3); }
834inline bool is_uint4(int x)  { return is_uintn(x, 4); }
835inline bool is_uint5(int x)  { return is_uintn(x, 5); }
836inline bool is_uint6(int x)  { return is_uintn(x, 6); }
837inline bool is_uint8(int x)  { return is_uintn(x, 8); }
838inline bool is_uint10(int x)  { return is_uintn(x, 10); }
839inline bool is_uint12(int x)  { return is_uintn(x, 12); }
840inline bool is_uint16(int x)  { return is_uintn(x, 16); }
841inline bool is_uint24(int x)  { return is_uintn(x, 24); }
842inline bool is_uint26(int x)  { return is_uintn(x, 26); }
843inline bool is_uint28(int x)  { return is_uintn(x, 28); }
844
845inline int NumberOfBitsSet(uint32_t x) {
846  unsigned int num_bits_set;
847  for (num_bits_set = 0; x; x >>= 1) {
848    num_bits_set += x & 1;
849  }
850  return num_bits_set;
851}
852
853bool EvalComparison(Token::Value op, double op1, double op2);
854
855// Computes pow(x, y) with the special cases in the spec for Math.pow.
856double power_double_int(double x, int y);
857double power_double_double(double x, double y);
858
859// Helper class for generating code or data associated with the code
860// right after a call instruction. As an example this can be used to
861// generate safepoint data after calls for crankshaft.
862class CallWrapper {
863 public:
864  CallWrapper() { }
865  virtual ~CallWrapper() { }
866  // Called just before emitting a call. Argument is the size of the generated
867  // call code.
868  virtual void BeforeCall(int call_size) const = 0;
869  // Called just after emitting a call, i.e., at the return site for the call.
870  virtual void AfterCall() const = 0;
871};
872
873class NullCallWrapper : public CallWrapper {
874 public:
875  NullCallWrapper() { }
876  virtual ~NullCallWrapper() { }
877  virtual void BeforeCall(int call_size) const { }
878  virtual void AfterCall() const { }
879};
880
881} }  // namespace v8::internal
882
883#endif  // V8_ASSEMBLER_H_
884