1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include <math.h>
29
30#include "../include/v8stdint.h"
31#include "checks.h"
32#include "utils.h"
33
34#include "bignum-dtoa.h"
35
36#include "bignum.h"
37#include "double.h"
38
39namespace v8 {
40namespace internal {
41
42static int NormalizedExponent(uint64_t significand, int exponent) {
43  ASSERT(significand != 0);
44  while ((significand & Double::kHiddenBit) == 0) {
45    significand = significand << 1;
46    exponent = exponent - 1;
47  }
48  return exponent;
49}
50
51
52// Forward declarations:
53// Returns an estimation of k such that 10^(k-1) <= v < 10^k.
54static int EstimatePower(int exponent);
55// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
56// and denominator.
57static void InitialScaledStartValues(double v,
58                                     int estimated_power,
59                                     bool need_boundary_deltas,
60                                     Bignum* numerator,
61                                     Bignum* denominator,
62                                     Bignum* delta_minus,
63                                     Bignum* delta_plus);
64// Multiplies numerator/denominator so that its values lies in the range 1-10.
65// Returns decimal_point s.t.
66//  v = numerator'/denominator' * 10^(decimal_point-1)
67//     where numerator' and denominator' are the values of numerator and
68//     denominator after the call to this function.
69static void FixupMultiply10(int estimated_power, bool is_even,
70                            int* decimal_point,
71                            Bignum* numerator, Bignum* denominator,
72                            Bignum* delta_minus, Bignum* delta_plus);
73// Generates digits from the left to the right and stops when the generated
74// digits yield the shortest decimal representation of v.
75static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
76                                   Bignum* delta_minus, Bignum* delta_plus,
77                                   bool is_even,
78                                   Vector<char> buffer, int* length);
79// Generates 'requested_digits' after the decimal point.
80static void BignumToFixed(int requested_digits, int* decimal_point,
81                          Bignum* numerator, Bignum* denominator,
82                          Vector<char>(buffer), int* length);
83// Generates 'count' digits of numerator/denominator.
84// Once 'count' digits have been produced rounds the result depending on the
85// remainder (remainders of exactly .5 round upwards). Might update the
86// decimal_point when rounding up (for example for 0.9999).
87static void GenerateCountedDigits(int count, int* decimal_point,
88                                  Bignum* numerator, Bignum* denominator,
89                                  Vector<char>(buffer), int* length);
90
91
92void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
93                Vector<char> buffer, int* length, int* decimal_point) {
94  ASSERT(v > 0);
95  ASSERT(!Double(v).IsSpecial());
96  uint64_t significand = Double(v).Significand();
97  bool is_even = (significand & 1) == 0;
98  int exponent = Double(v).Exponent();
99  int normalized_exponent = NormalizedExponent(significand, exponent);
100  // estimated_power might be too low by 1.
101  int estimated_power = EstimatePower(normalized_exponent);
102
103  // Shortcut for Fixed.
104  // The requested digits correspond to the digits after the point. If the
105  // number is much too small, then there is no need in trying to get any
106  // digits.
107  if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
108    buffer[0] = '\0';
109    *length = 0;
110    // Set decimal-point to -requested_digits. This is what Gay does.
111    // Note that it should not have any effect anyways since the string is
112    // empty.
113    *decimal_point = -requested_digits;
114    return;
115  }
116
117  Bignum numerator;
118  Bignum denominator;
119  Bignum delta_minus;
120  Bignum delta_plus;
121  // Make sure the bignum can grow large enough. The smallest double equals
122  // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
123  // The maximum double is 1.7976931348623157e308 which needs fewer than
124  // 308*4 binary digits.
125  ASSERT(Bignum::kMaxSignificantBits >= 324*4);
126  bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
127  InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
128                           &numerator, &denominator,
129                           &delta_minus, &delta_plus);
130  // We now have v = (numerator / denominator) * 10^estimated_power.
131  FixupMultiply10(estimated_power, is_even, decimal_point,
132                  &numerator, &denominator,
133                  &delta_minus, &delta_plus);
134  // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
135  //  1 <= (numerator + delta_plus) / denominator < 10
136  switch (mode) {
137    case BIGNUM_DTOA_SHORTEST:
138      GenerateShortestDigits(&numerator, &denominator,
139                             &delta_minus, &delta_plus,
140                             is_even, buffer, length);
141      break;
142    case BIGNUM_DTOA_FIXED:
143      BignumToFixed(requested_digits, decimal_point,
144                    &numerator, &denominator,
145                    buffer, length);
146      break;
147    case BIGNUM_DTOA_PRECISION:
148      GenerateCountedDigits(requested_digits, decimal_point,
149                            &numerator, &denominator,
150                            buffer, length);
151      break;
152    default:
153      UNREACHABLE();
154  }
155  buffer[*length] = '\0';
156}
157
158
159// The procedure starts generating digits from the left to the right and stops
160// when the generated digits yield the shortest decimal representation of v. A
161// decimal representation of v is a number lying closer to v than to any other
162// double, so it converts to v when read.
163//
164// This is true if d, the decimal representation, is between m- and m+, the
165// upper and lower boundaries. d must be strictly between them if !is_even.
166//           m- := (numerator - delta_minus) / denominator
167//           m+ := (numerator + delta_plus) / denominator
168//
169// Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
170//   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
171//   will be produced. This should be the standard precondition.
172static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
173                                   Bignum* delta_minus, Bignum* delta_plus,
174                                   bool is_even,
175                                   Vector<char> buffer, int* length) {
176  // Small optimization: if delta_minus and delta_plus are the same just reuse
177  // one of the two bignums.
178  if (Bignum::Equal(*delta_minus, *delta_plus)) {
179    delta_plus = delta_minus;
180  }
181  *length = 0;
182  while (true) {
183    uint16_t digit;
184    digit = numerator->DivideModuloIntBignum(*denominator);
185    ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
186    // digit = numerator / denominator (integer division).
187    // numerator = numerator % denominator.
188    buffer[(*length)++] = digit + '0';
189
190    // Can we stop already?
191    // If the remainder of the division is less than the distance to the lower
192    // boundary we can stop. In this case we simply round down (discarding the
193    // remainder).
194    // Similarly we test if we can round up (using the upper boundary).
195    bool in_delta_room_minus;
196    bool in_delta_room_plus;
197    if (is_even) {
198      in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
199    } else {
200      in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
201    }
202    if (is_even) {
203      in_delta_room_plus =
204          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
205    } else {
206      in_delta_room_plus =
207          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
208    }
209    if (!in_delta_room_minus && !in_delta_room_plus) {
210      // Prepare for next iteration.
211      numerator->Times10();
212      delta_minus->Times10();
213      // We optimized delta_plus to be equal to delta_minus (if they share the
214      // same value). So don't multiply delta_plus if they point to the same
215      // object.
216      if (delta_minus != delta_plus) {
217        delta_plus->Times10();
218      }
219    } else if (in_delta_room_minus && in_delta_room_plus) {
220      // Let's see if 2*numerator < denominator.
221      // If yes, then the next digit would be < 5 and we can round down.
222      int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
223      if (compare < 0) {
224        // Remaining digits are less than .5. -> Round down (== do nothing).
225      } else if (compare > 0) {
226        // Remaining digits are more than .5 of denominator. -> Round up.
227        // Note that the last digit could not be a '9' as otherwise the whole
228        // loop would have stopped earlier.
229        // We still have an assert here in case the preconditions were not
230        // satisfied.
231        ASSERT(buffer[(*length) - 1] != '9');
232        buffer[(*length) - 1]++;
233      } else {
234        // Halfway case.
235        // TODO(floitsch): need a way to solve half-way cases.
236        //   For now let's round towards even (since this is what Gay seems to
237        //   do).
238
239        if ((buffer[(*length) - 1] - '0') % 2 == 0) {
240          // Round down => Do nothing.
241        } else {
242          ASSERT(buffer[(*length) - 1] != '9');
243          buffer[(*length) - 1]++;
244        }
245      }
246      return;
247    } else if (in_delta_room_minus) {
248      // Round down (== do nothing).
249      return;
250    } else {  // in_delta_room_plus
251      // Round up.
252      // Note again that the last digit could not be '9' since this would have
253      // stopped the loop earlier.
254      // We still have an ASSERT here, in case the preconditions were not
255      // satisfied.
256      ASSERT(buffer[(*length) -1] != '9');
257      buffer[(*length) - 1]++;
258      return;
259    }
260  }
261}
262
263
264// Let v = numerator / denominator < 10.
265// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
266// from left to right. Once 'count' digits have been produced we decide wether
267// to round up or down. Remainders of exactly .5 round upwards. Numbers such
268// as 9.999999 propagate a carry all the way, and change the
269// exponent (decimal_point), when rounding upwards.
270static void GenerateCountedDigits(int count, int* decimal_point,
271                                  Bignum* numerator, Bignum* denominator,
272                                  Vector<char>(buffer), int* length) {
273  ASSERT(count >= 0);
274  for (int i = 0; i < count - 1; ++i) {
275    uint16_t digit;
276    digit = numerator->DivideModuloIntBignum(*denominator);
277    ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
278    // digit = numerator / denominator (integer division).
279    // numerator = numerator % denominator.
280    buffer[i] = digit + '0';
281    // Prepare for next iteration.
282    numerator->Times10();
283  }
284  // Generate the last digit.
285  uint16_t digit;
286  digit = numerator->DivideModuloIntBignum(*denominator);
287  if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
288    digit++;
289  }
290  buffer[count - 1] = digit + '0';
291  // Correct bad digits (in case we had a sequence of '9's). Propagate the
292  // carry until we hat a non-'9' or til we reach the first digit.
293  for (int i = count - 1; i > 0; --i) {
294    if (buffer[i] != '0' + 10) break;
295    buffer[i] = '0';
296    buffer[i - 1]++;
297  }
298  if (buffer[0] == '0' + 10) {
299    // Propagate a carry past the top place.
300    buffer[0] = '1';
301    (*decimal_point)++;
302  }
303  *length = count;
304}
305
306
307// Generates 'requested_digits' after the decimal point. It might omit
308// trailing '0's. If the input number is too small then no digits at all are
309// generated (ex.: 2 fixed digits for 0.00001).
310//
311// Input verifies:  1 <= (numerator + delta) / denominator < 10.
312static void BignumToFixed(int requested_digits, int* decimal_point,
313                          Bignum* numerator, Bignum* denominator,
314                          Vector<char>(buffer), int* length) {
315  // Note that we have to look at more than just the requested_digits, since
316  // a number could be rounded up. Example: v=0.5 with requested_digits=0.
317  // Even though the power of v equals 0 we can't just stop here.
318  if (-(*decimal_point) > requested_digits) {
319    // The number is definitively too small.
320    // Ex: 0.001 with requested_digits == 1.
321    // Set decimal-point to -requested_digits. This is what Gay does.
322    // Note that it should not have any effect anyways since the string is
323    // empty.
324    *decimal_point = -requested_digits;
325    *length = 0;
326    return;
327  } else if (-(*decimal_point) == requested_digits) {
328    // We only need to verify if the number rounds down or up.
329    // Ex: 0.04 and 0.06 with requested_digits == 1.
330    ASSERT(*decimal_point == -requested_digits);
331    // Initially the fraction lies in range (1, 10]. Multiply the denominator
332    // by 10 so that we can compare more easily.
333    denominator->Times10();
334    if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
335      // If the fraction is >= 0.5 then we have to include the rounded
336      // digit.
337      buffer[0] = '1';
338      *length = 1;
339      (*decimal_point)++;
340    } else {
341      // Note that we caught most of similar cases earlier.
342      *length = 0;
343    }
344    return;
345  } else {
346    // The requested digits correspond to the digits after the point.
347    // The variable 'needed_digits' includes the digits before the point.
348    int needed_digits = (*decimal_point) + requested_digits;
349    GenerateCountedDigits(needed_digits, decimal_point,
350                          numerator, denominator,
351                          buffer, length);
352  }
353}
354
355
356// Returns an estimation of k such that 10^(k-1) <= v < 10^k where
357// v = f * 2^exponent and 2^52 <= f < 2^53.
358// v is hence a normalized double with the given exponent. The output is an
359// approximation for the exponent of the decimal approimation .digits * 10^k.
360//
361// The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
362// Note: this property holds for v's upper boundary m+ too.
363//    10^k <= m+ < 10^k+1.
364//   (see explanation below).
365//
366// Examples:
367//  EstimatePower(0)   => 16
368//  EstimatePower(-52) => 0
369//
370// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
371static int EstimatePower(int exponent) {
372  // This function estimates log10 of v where v = f*2^e (with e == exponent).
373  // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
374  // Note that f is bounded by its container size. Let p = 53 (the double's
375  // significand size). Then 2^(p-1) <= f < 2^p.
376  //
377  // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
378  // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
379  // The computed number undershoots by less than 0.631 (when we compute log3
380  // and not log10).
381  //
382  // Optimization: since we only need an approximated result this computation
383  // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
384  // not really measurable, though.
385  //
386  // Since we want to avoid overshooting we decrement by 1e10 so that
387  // floating-point imprecisions don't affect us.
388  //
389  // Explanation for v's boundary m+: the computation takes advantage of
390  // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
391  // (even for denormals where the delta can be much more important).
392
393  const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
394
395  // For doubles len(f) == 53 (don't forget the hidden bit).
396  const int kSignificandSize = 53;
397  double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
398  return static_cast<int>(estimate);
399}
400
401
402// See comments for InitialScaledStartValues.
403static void InitialScaledStartValuesPositiveExponent(
404    double v, int estimated_power, bool need_boundary_deltas,
405    Bignum* numerator, Bignum* denominator,
406    Bignum* delta_minus, Bignum* delta_plus) {
407  // A positive exponent implies a positive power.
408  ASSERT(estimated_power >= 0);
409  // Since the estimated_power is positive we simply multiply the denominator
410  // by 10^estimated_power.
411
412  // numerator = v.
413  numerator->AssignUInt64(Double(v).Significand());
414  numerator->ShiftLeft(Double(v).Exponent());
415  // denominator = 10^estimated_power.
416  denominator->AssignPowerUInt16(10, estimated_power);
417
418  if (need_boundary_deltas) {
419    // Introduce a common denominator so that the deltas to the boundaries are
420    // integers.
421    denominator->ShiftLeft(1);
422    numerator->ShiftLeft(1);
423    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
424    // denominator (of 2) delta_plus equals 2^e.
425    delta_plus->AssignUInt16(1);
426    delta_plus->ShiftLeft(Double(v).Exponent());
427    // Same for delta_minus (with adjustments below if f == 2^p-1).
428    delta_minus->AssignUInt16(1);
429    delta_minus->ShiftLeft(Double(v).Exponent());
430
431    // If the significand (without the hidden bit) is 0, then the lower
432    // boundary is closer than just half a ulp (unit in the last place).
433    // There is only one exception: if the next lower number is a denormal then
434    // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
435    // have to test it in the other function where exponent < 0).
436    uint64_t v_bits = Double(v).AsUint64();
437    if ((v_bits & Double::kSignificandMask) == 0) {
438      // The lower boundary is closer at half the distance of "normal" numbers.
439      // Increase the common denominator and adapt all but the delta_minus.
440      denominator->ShiftLeft(1);  // *2
441      numerator->ShiftLeft(1);    // *2
442      delta_plus->ShiftLeft(1);   // *2
443    }
444  }
445}
446
447
448// See comments for InitialScaledStartValues
449static void InitialScaledStartValuesNegativeExponentPositivePower(
450    double v, int estimated_power, bool need_boundary_deltas,
451    Bignum* numerator, Bignum* denominator,
452    Bignum* delta_minus, Bignum* delta_plus) {
453  uint64_t significand = Double(v).Significand();
454  int exponent = Double(v).Exponent();
455  // v = f * 2^e with e < 0, and with estimated_power >= 0.
456  // This means that e is close to 0 (have a look at how estimated_power is
457  // computed).
458
459  // numerator = significand
460  //  since v = significand * 2^exponent this is equivalent to
461  //  numerator = v * / 2^-exponent
462  numerator->AssignUInt64(significand);
463  // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
464  denominator->AssignPowerUInt16(10, estimated_power);
465  denominator->ShiftLeft(-exponent);
466
467  if (need_boundary_deltas) {
468    // Introduce a common denominator so that the deltas to the boundaries are
469    // integers.
470    denominator->ShiftLeft(1);
471    numerator->ShiftLeft(1);
472    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
473    // denominator (of 2) delta_plus equals 2^e.
474    // Given that the denominator already includes v's exponent the distance
475    // to the boundaries is simply 1.
476    delta_plus->AssignUInt16(1);
477    // Same for delta_minus (with adjustments below if f == 2^p-1).
478    delta_minus->AssignUInt16(1);
479
480    // If the significand (without the hidden bit) is 0, then the lower
481    // boundary is closer than just one ulp (unit in the last place).
482    // There is only one exception: if the next lower number is a denormal
483    // then the distance is 1 ulp. Since the exponent is close to zero
484    // (otherwise estimated_power would have been negative) this cannot happen
485    // here either.
486    uint64_t v_bits = Double(v).AsUint64();
487    if ((v_bits & Double::kSignificandMask) == 0) {
488      // The lower boundary is closer at half the distance of "normal" numbers.
489      // Increase the denominator and adapt all but the delta_minus.
490      denominator->ShiftLeft(1);  // *2
491      numerator->ShiftLeft(1);    // *2
492      delta_plus->ShiftLeft(1);   // *2
493    }
494  }
495}
496
497
498// See comments for InitialScaledStartValues
499static void InitialScaledStartValuesNegativeExponentNegativePower(
500    double v, int estimated_power, bool need_boundary_deltas,
501    Bignum* numerator, Bignum* denominator,
502    Bignum* delta_minus, Bignum* delta_plus) {
503  const uint64_t kMinimalNormalizedExponent =
504      V8_2PART_UINT64_C(0x00100000, 00000000);
505  uint64_t significand = Double(v).Significand();
506  int exponent = Double(v).Exponent();
507  // Instead of multiplying the denominator with 10^estimated_power we
508  // multiply all values (numerator and deltas) by 10^-estimated_power.
509
510  // Use numerator as temporary container for power_ten.
511  Bignum* power_ten = numerator;
512  power_ten->AssignPowerUInt16(10, -estimated_power);
513
514  if (need_boundary_deltas) {
515    // Since power_ten == numerator we must make a copy of 10^estimated_power
516    // before we complete the computation of the numerator.
517    // delta_plus = delta_minus = 10^estimated_power
518    delta_plus->AssignBignum(*power_ten);
519    delta_minus->AssignBignum(*power_ten);
520  }
521
522  // numerator = significand * 2 * 10^-estimated_power
523  //  since v = significand * 2^exponent this is equivalent to
524  // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
525  // Remember: numerator has been abused as power_ten. So no need to assign it
526  //  to itself.
527  ASSERT(numerator == power_ten);
528  numerator->MultiplyByUInt64(significand);
529
530  // denominator = 2 * 2^-exponent with exponent < 0.
531  denominator->AssignUInt16(1);
532  denominator->ShiftLeft(-exponent);
533
534  if (need_boundary_deltas) {
535    // Introduce a common denominator so that the deltas to the boundaries are
536    // integers.
537    numerator->ShiftLeft(1);
538    denominator->ShiftLeft(1);
539    // With this shift the boundaries have their correct value, since
540    // delta_plus = 10^-estimated_power, and
541    // delta_minus = 10^-estimated_power.
542    // These assignments have been done earlier.
543
544    // The special case where the lower boundary is twice as close.
545    // This time we have to look out for the exception too.
546    uint64_t v_bits = Double(v).AsUint64();
547    if ((v_bits & Double::kSignificandMask) == 0 &&
548        // The only exception where a significand == 0 has its boundaries at
549        // "normal" distances:
550        (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
551      numerator->ShiftLeft(1);    // *2
552      denominator->ShiftLeft(1);  // *2
553      delta_plus->ShiftLeft(1);   // *2
554    }
555  }
556}
557
558
559// Let v = significand * 2^exponent.
560// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
561// and denominator. The functions GenerateShortestDigits and
562// GenerateCountedDigits will then convert this ratio to its decimal
563// representation d, with the required accuracy.
564// Then d * 10^estimated_power is the representation of v.
565// (Note: the fraction and the estimated_power might get adjusted before
566// generating the decimal representation.)
567//
568// The initial start values consist of:
569//  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
570//  - a scaled (common) denominator.
571//  optionally (used by GenerateShortestDigits to decide if it has the shortest
572//  decimal converting back to v):
573//  - v - m-: the distance to the lower boundary.
574//  - m+ - v: the distance to the upper boundary.
575//
576// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
577//
578// Let ep == estimated_power, then the returned values will satisfy:
579//  v / 10^ep = numerator / denominator.
580//  v's boundarys m- and m+:
581//    m- / 10^ep == v / 10^ep - delta_minus / denominator
582//    m+ / 10^ep == v / 10^ep + delta_plus / denominator
583//  Or in other words:
584//    m- == v - delta_minus * 10^ep / denominator;
585//    m+ == v + delta_plus * 10^ep / denominator;
586//
587// Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
588//  or       10^k <= v < 10^(k+1)
589//  we then have 0.1 <= numerator/denominator < 1
590//           or    1 <= numerator/denominator < 10
591//
592// It is then easy to kickstart the digit-generation routine.
593//
594// The boundary-deltas are only filled if need_boundary_deltas is set.
595static void InitialScaledStartValues(double v,
596                                     int estimated_power,
597                                     bool need_boundary_deltas,
598                                     Bignum* numerator,
599                                     Bignum* denominator,
600                                     Bignum* delta_minus,
601                                     Bignum* delta_plus) {
602  if (Double(v).Exponent() >= 0) {
603    InitialScaledStartValuesPositiveExponent(
604        v, estimated_power, need_boundary_deltas,
605        numerator, denominator, delta_minus, delta_plus);
606  } else if (estimated_power >= 0) {
607    InitialScaledStartValuesNegativeExponentPositivePower(
608        v, estimated_power, need_boundary_deltas,
609        numerator, denominator, delta_minus, delta_plus);
610  } else {
611    InitialScaledStartValuesNegativeExponentNegativePower(
612        v, estimated_power, need_boundary_deltas,
613        numerator, denominator, delta_minus, delta_plus);
614  }
615}
616
617
618// This routine multiplies numerator/denominator so that its values lies in the
619// range 1-10. That is after a call to this function we have:
620//    1 <= (numerator + delta_plus) /denominator < 10.
621// Let numerator the input before modification and numerator' the argument
622// after modification, then the output-parameter decimal_point is such that
623//  numerator / denominator * 10^estimated_power ==
624//    numerator' / denominator' * 10^(decimal_point - 1)
625// In some cases estimated_power was too low, and this is already the case. We
626// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
627// estimated_power) but do not touch the numerator or denominator.
628// Otherwise the routine multiplies the numerator and the deltas by 10.
629static void FixupMultiply10(int estimated_power, bool is_even,
630                            int* decimal_point,
631                            Bignum* numerator, Bignum* denominator,
632                            Bignum* delta_minus, Bignum* delta_plus) {
633  bool in_range;
634  if (is_even) {
635    // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
636    // are rounded to the closest floating-point number with even significand.
637    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
638  } else {
639    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
640  }
641  if (in_range) {
642    // Since numerator + delta_plus >= denominator we already have
643    // 1 <= numerator/denominator < 10. Simply update the estimated_power.
644    *decimal_point = estimated_power + 1;
645  } else {
646    *decimal_point = estimated_power;
647    numerator->Times10();
648    if (Bignum::Equal(*delta_minus, *delta_plus)) {
649      delta_minus->Times10();
650      delta_plus->AssignBignum(*delta_minus);
651    } else {
652      delta_minus->Times10();
653      delta_plus->Times10();
654    }
655  }
656}
657
658} }  // namespace v8::internal
659