1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_CODE_STUBS_H_
29#define V8_CODE_STUBS_H_
30
31#include "allocation.h"
32#include "globals.h"
33#include "codegen.h"
34
35namespace v8 {
36namespace internal {
37
38// List of code stubs used on all platforms.
39#define CODE_STUB_LIST_ALL_PLATFORMS(V)  \
40  V(CallFunction)                        \
41  V(CallConstruct)                       \
42  V(UnaryOp)                             \
43  V(BinaryOp)                            \
44  V(StringAdd)                           \
45  V(SubString)                           \
46  V(StringCompare)                       \
47  V(Compare)                             \
48  V(CompareIC)                           \
49  V(MathPow)                             \
50  V(RecordWrite)                         \
51  V(StoreBufferOverflow)                 \
52  V(RegExpExec)                          \
53  V(TranscendentalCache)                 \
54  V(Instanceof)                          \
55  V(ConvertToDouble)                     \
56  V(WriteInt32ToHeapNumber)              \
57  V(StackCheck)                          \
58  V(Interrupt)                           \
59  V(FastNewClosure)                      \
60  V(FastNewContext)                      \
61  V(FastNewBlockContext)                 \
62  V(FastCloneShallowArray)               \
63  V(FastCloneShallowObject)              \
64  V(ToBoolean)                           \
65  V(ToNumber)                            \
66  V(ArgumentsAccess)                     \
67  V(RegExpConstructResult)               \
68  V(NumberToString)                      \
69  V(CEntry)                              \
70  V(JSEntry)                             \
71  V(KeyedLoadElement)                    \
72  V(KeyedStoreElement)                   \
73  V(DebuggerStatement)                   \
74  V(StringDictionaryLookup)              \
75  V(ElementsTransitionAndStore)          \
76  V(StoreArrayLiteralElement)
77
78// List of code stubs only used on ARM platforms.
79#ifdef V8_TARGET_ARCH_ARM
80#define CODE_STUB_LIST_ARM(V)  \
81  V(GetProperty)               \
82  V(SetProperty)               \
83  V(InvokeBuiltin)             \
84  V(RegExpCEntry)              \
85  V(DirectCEntry)
86#else
87#define CODE_STUB_LIST_ARM(V)
88#endif
89
90// List of code stubs only used on MIPS platforms.
91#ifdef V8_TARGET_ARCH_MIPS
92#define CODE_STUB_LIST_MIPS(V)  \
93  V(RegExpCEntry)               \
94  V(DirectCEntry)
95#else
96#define CODE_STUB_LIST_MIPS(V)
97#endif
98
99// Combined list of code stubs.
100#define CODE_STUB_LIST(V)            \
101  CODE_STUB_LIST_ALL_PLATFORMS(V)    \
102  CODE_STUB_LIST_ARM(V)              \
103  CODE_STUB_LIST_MIPS(V)
104
105// Mode to overwrite BinaryExpression values.
106enum OverwriteMode { NO_OVERWRITE, OVERWRITE_LEFT, OVERWRITE_RIGHT };
107enum UnaryOverwriteMode { UNARY_OVERWRITE, UNARY_NO_OVERWRITE };
108
109
110// Stub is base classes of all stubs.
111class CodeStub BASE_EMBEDDED {
112 public:
113  enum Major {
114#define DEF_ENUM(name) name,
115    CODE_STUB_LIST(DEF_ENUM)
116#undef DEF_ENUM
117    NoCache,  // marker for stubs that do custom caching
118    NUMBER_OF_IDS
119  };
120
121  // Retrieve the code for the stub. Generate the code if needed.
122  Handle<Code> GetCode();
123
124  static Major MajorKeyFromKey(uint32_t key) {
125    return static_cast<Major>(MajorKeyBits::decode(key));
126  }
127  static int MinorKeyFromKey(uint32_t key) {
128    return MinorKeyBits::decode(key);
129  }
130
131  // Gets the major key from a code object that is a code stub or binary op IC.
132  static Major GetMajorKey(Code* code_stub) {
133    return static_cast<Major>(code_stub->major_key());
134  }
135
136  static const char* MajorName(Major major_key, bool allow_unknown_keys);
137
138  virtual ~CodeStub() {}
139
140  bool CompilingCallsToThisStubIsGCSafe() {
141    bool is_pregenerated = IsPregenerated();
142    Code* code = NULL;
143    CHECK(!is_pregenerated || FindCodeInCache(&code));
144    return is_pregenerated;
145  }
146
147  // See comment above, where Instanceof is defined.
148  virtual bool IsPregenerated() { return false; }
149
150  static void GenerateStubsAheadOfTime();
151  static void GenerateFPStubs();
152
153  // Some stubs put untagged junk on the stack that cannot be scanned by the
154  // GC.  This means that we must be statically sure that no GC can occur while
155  // they are running.  If that is the case they should override this to return
156  // true, which will cause an assertion if we try to call something that can
157  // GC or if we try to put a stack frame on top of the junk, which would not
158  // result in a traversable stack.
159  virtual bool SometimesSetsUpAFrame() { return true; }
160
161  // Lookup the code in the (possibly custom) cache.
162  bool FindCodeInCache(Code** code_out);
163
164 protected:
165  static const int kMajorBits = 6;
166  static const int kMinorBits = kBitsPerInt - kSmiTagSize - kMajorBits;
167
168 private:
169  // Nonvirtual wrapper around the stub-specific Generate function.  Call
170  // this function to set up the macro assembler and generate the code.
171  void GenerateCode(MacroAssembler* masm);
172
173  // Generates the assembler code for the stub.
174  virtual void Generate(MacroAssembler* masm) = 0;
175
176  // Perform bookkeeping required after code generation when stub code is
177  // initially generated.
178  void RecordCodeGeneration(Code* code, MacroAssembler* masm);
179
180  // Finish the code object after it has been generated.
181  virtual void FinishCode(Handle<Code> code) { }
182
183  // Activate newly generated stub. Is called after
184  // registering stub in the stub cache.
185  virtual void Activate(Code* code) { }
186
187  // Returns information for computing the number key.
188  virtual Major MajorKey() = 0;
189  virtual int MinorKey() = 0;
190
191  // BinaryOpStub needs to override this.
192  virtual int GetCodeKind();
193
194  // BinaryOpStub needs to override this.
195  virtual InlineCacheState GetICState() {
196    return UNINITIALIZED;
197  }
198
199  // Add the code to a specialized cache, specific to an individual
200  // stub type. Please note, this method must add the code object to a
201  // roots object, otherwise we will remove the code during GC.
202  virtual void AddToSpecialCache(Handle<Code> new_object) { }
203
204  // Find code in a specialized cache, work is delegated to the specific stub.
205  virtual bool FindCodeInSpecialCache(Code** code_out) { return false; }
206
207  // If a stub uses a special cache override this.
208  virtual bool UseSpecialCache() { return false; }
209
210  // Returns a name for logging/debugging purposes.
211  SmartArrayPointer<const char> GetName();
212  virtual void PrintName(StringStream* stream);
213
214  // Returns whether the code generated for this stub needs to be allocated as
215  // a fixed (non-moveable) code object.
216  virtual bool NeedsImmovableCode() { return false; }
217
218  // Computes the key based on major and minor.
219  uint32_t GetKey() {
220    ASSERT(static_cast<int>(MajorKey()) < NUMBER_OF_IDS);
221    return MinorKeyBits::encode(MinorKey()) |
222           MajorKeyBits::encode(MajorKey());
223  }
224
225  class MajorKeyBits: public BitField<uint32_t, 0, kMajorBits> {};
226  class MinorKeyBits: public BitField<uint32_t, kMajorBits, kMinorBits> {};
227
228  friend class BreakPointIterator;
229};
230
231
232// Helper interface to prepare to/restore after making runtime calls.
233class RuntimeCallHelper {
234 public:
235  virtual ~RuntimeCallHelper() {}
236
237  virtual void BeforeCall(MacroAssembler* masm) const = 0;
238
239  virtual void AfterCall(MacroAssembler* masm) const = 0;
240
241 protected:
242  RuntimeCallHelper() {}
243
244 private:
245  DISALLOW_COPY_AND_ASSIGN(RuntimeCallHelper);
246};
247
248} }  // namespace v8::internal
249
250#if V8_TARGET_ARCH_IA32
251#include "ia32/code-stubs-ia32.h"
252#elif V8_TARGET_ARCH_X64
253#include "x64/code-stubs-x64.h"
254#elif V8_TARGET_ARCH_ARM
255#include "arm/code-stubs-arm.h"
256#elif V8_TARGET_ARCH_MIPS
257#include "mips/code-stubs-mips.h"
258#else
259#error Unsupported target architecture.
260#endif
261
262namespace v8 {
263namespace internal {
264
265
266// RuntimeCallHelper implementation used in stubs: enters/leaves a
267// newly created internal frame before/after the runtime call.
268class StubRuntimeCallHelper : public RuntimeCallHelper {
269 public:
270  StubRuntimeCallHelper() {}
271
272  virtual void BeforeCall(MacroAssembler* masm) const;
273
274  virtual void AfterCall(MacroAssembler* masm) const;
275};
276
277
278// Trivial RuntimeCallHelper implementation.
279class NopRuntimeCallHelper : public RuntimeCallHelper {
280 public:
281  NopRuntimeCallHelper() {}
282
283  virtual void BeforeCall(MacroAssembler* masm) const {}
284
285  virtual void AfterCall(MacroAssembler* masm) const {}
286};
287
288
289class StackCheckStub : public CodeStub {
290 public:
291  StackCheckStub() { }
292
293  void Generate(MacroAssembler* masm);
294
295 private:
296  Major MajorKey() { return StackCheck; }
297  int MinorKey() { return 0; }
298};
299
300
301class InterruptStub : public CodeStub {
302 public:
303  InterruptStub() { }
304
305  void Generate(MacroAssembler* masm);
306
307 private:
308  Major MajorKey() { return Interrupt; }
309  int MinorKey() { return 0; }
310};
311
312
313class ToNumberStub: public CodeStub {
314 public:
315  ToNumberStub() { }
316
317  void Generate(MacroAssembler* masm);
318
319 private:
320  Major MajorKey() { return ToNumber; }
321  int MinorKey() { return 0; }
322};
323
324
325class FastNewClosureStub : public CodeStub {
326 public:
327  explicit FastNewClosureStub(LanguageMode language_mode)
328    : language_mode_(language_mode) { }
329
330  void Generate(MacroAssembler* masm);
331
332 private:
333  Major MajorKey() { return FastNewClosure; }
334  int MinorKey() { return language_mode_ == CLASSIC_MODE
335        ? kNonStrictMode : kStrictMode; }
336
337  LanguageMode language_mode_;
338};
339
340
341class FastNewContextStub : public CodeStub {
342 public:
343  static const int kMaximumSlots = 64;
344
345  explicit FastNewContextStub(int slots) : slots_(slots) {
346    ASSERT(slots_ > 0 && slots_ <= kMaximumSlots);
347  }
348
349  void Generate(MacroAssembler* masm);
350
351 private:
352  int slots_;
353
354  Major MajorKey() { return FastNewContext; }
355  int MinorKey() { return slots_; }
356};
357
358
359class FastNewBlockContextStub : public CodeStub {
360 public:
361  static const int kMaximumSlots = 64;
362
363  explicit FastNewBlockContextStub(int slots) : slots_(slots) {
364    ASSERT(slots_ > 0 && slots_ <= kMaximumSlots);
365  }
366
367  void Generate(MacroAssembler* masm);
368
369 private:
370  int slots_;
371
372  Major MajorKey() { return FastNewBlockContext; }
373  int MinorKey() { return slots_; }
374};
375
376
377class FastCloneShallowArrayStub : public CodeStub {
378 public:
379  // Maximum length of copied elements array.
380  static const int kMaximumClonedLength = 8;
381
382  enum Mode {
383    CLONE_ELEMENTS,
384    CLONE_DOUBLE_ELEMENTS,
385    COPY_ON_WRITE_ELEMENTS,
386    CLONE_ANY_ELEMENTS
387  };
388
389  FastCloneShallowArrayStub(Mode mode, int length)
390      : mode_(mode),
391        length_((mode == COPY_ON_WRITE_ELEMENTS) ? 0 : length) {
392    ASSERT_GE(length_, 0);
393    ASSERT_LE(length_, kMaximumClonedLength);
394  }
395
396  void Generate(MacroAssembler* masm);
397
398 private:
399  Mode mode_;
400  int length_;
401
402  Major MajorKey() { return FastCloneShallowArray; }
403  int MinorKey() {
404    ASSERT(mode_ == 0 || mode_ == 1 || mode_ == 2 || mode_ == 3);
405    return length_ * 4 +  mode_;
406  }
407};
408
409
410class FastCloneShallowObjectStub : public CodeStub {
411 public:
412  // Maximum number of properties in copied object.
413  static const int kMaximumClonedProperties = 6;
414
415  explicit FastCloneShallowObjectStub(int length) : length_(length) {
416    ASSERT_GE(length_, 0);
417    ASSERT_LE(length_, kMaximumClonedProperties);
418  }
419
420  void Generate(MacroAssembler* masm);
421
422 private:
423  int length_;
424
425  Major MajorKey() { return FastCloneShallowObject; }
426  int MinorKey() { return length_; }
427};
428
429
430class InstanceofStub: public CodeStub {
431 public:
432  enum Flags {
433    kNoFlags = 0,
434    kArgsInRegisters = 1 << 0,
435    kCallSiteInlineCheck = 1 << 1,
436    kReturnTrueFalseObject = 1 << 2
437  };
438
439  explicit InstanceofStub(Flags flags) : flags_(flags) { }
440
441  static Register left();
442  static Register right();
443
444  void Generate(MacroAssembler* masm);
445
446 private:
447  Major MajorKey() { return Instanceof; }
448  int MinorKey() { return static_cast<int>(flags_); }
449
450  bool HasArgsInRegisters() const {
451    return (flags_ & kArgsInRegisters) != 0;
452  }
453
454  bool HasCallSiteInlineCheck() const {
455    return (flags_ & kCallSiteInlineCheck) != 0;
456  }
457
458  bool ReturnTrueFalseObject() const {
459    return (flags_ & kReturnTrueFalseObject) != 0;
460  }
461
462  virtual void PrintName(StringStream* stream);
463
464  Flags flags_;
465};
466
467
468class MathPowStub: public CodeStub {
469 public:
470  enum ExponentType { INTEGER, DOUBLE, TAGGED, ON_STACK};
471
472  explicit MathPowStub(ExponentType exponent_type)
473      : exponent_type_(exponent_type) { }
474  virtual void Generate(MacroAssembler* masm);
475
476 private:
477  virtual CodeStub::Major MajorKey() { return MathPow; }
478  virtual int MinorKey() { return exponent_type_; }
479
480  ExponentType exponent_type_;
481};
482
483
484class ICCompareStub: public CodeStub {
485 public:
486  ICCompareStub(Token::Value op, CompareIC::State state)
487      : op_(op), state_(state) {
488    ASSERT(Token::IsCompareOp(op));
489  }
490
491  virtual void Generate(MacroAssembler* masm);
492
493  void set_known_map(Handle<Map> map) { known_map_ = map; }
494
495 private:
496  class OpField: public BitField<int, 0, 3> { };
497  class StateField: public BitField<int, 3, 5> { };
498
499  virtual void FinishCode(Handle<Code> code) {
500    code->set_compare_state(state_);
501  }
502
503  virtual CodeStub::Major MajorKey() { return CompareIC; }
504  virtual int MinorKey();
505
506  virtual int GetCodeKind() { return Code::COMPARE_IC; }
507
508  void GenerateSmis(MacroAssembler* masm);
509  void GenerateHeapNumbers(MacroAssembler* masm);
510  void GenerateSymbols(MacroAssembler* masm);
511  void GenerateStrings(MacroAssembler* masm);
512  void GenerateObjects(MacroAssembler* masm);
513  void GenerateMiss(MacroAssembler* masm);
514  void GenerateKnownObjects(MacroAssembler* masm);
515
516  bool strict() const { return op_ == Token::EQ_STRICT; }
517  Condition GetCondition() const { return CompareIC::ComputeCondition(op_); }
518
519  virtual void AddToSpecialCache(Handle<Code> new_object);
520  virtual bool FindCodeInSpecialCache(Code** code_out);
521  virtual bool UseSpecialCache() { return state_ == CompareIC::KNOWN_OBJECTS; }
522
523  Token::Value op_;
524  CompareIC::State state_;
525  Handle<Map> known_map_;
526};
527
528
529// Flags that control the compare stub code generation.
530enum CompareFlags {
531  NO_COMPARE_FLAGS = 0,
532  NO_SMI_COMPARE_IN_STUB = 1 << 0,
533  NO_NUMBER_COMPARE_IN_STUB = 1 << 1,
534  CANT_BOTH_BE_NAN = 1 << 2
535};
536
537
538enum NaNInformation {
539  kBothCouldBeNaN,
540  kCantBothBeNaN
541};
542
543
544class CompareStub: public CodeStub {
545 public:
546  CompareStub(Condition cc,
547              bool strict,
548              CompareFlags flags,
549              Register lhs,
550              Register rhs) :
551     cc_(cc),
552      strict_(strict),
553      never_nan_nan_((flags & CANT_BOTH_BE_NAN) != 0),
554      include_number_compare_((flags & NO_NUMBER_COMPARE_IN_STUB) == 0),
555      include_smi_compare_((flags & NO_SMI_COMPARE_IN_STUB) == 0),
556      lhs_(lhs),
557      rhs_(rhs) { }
558
559  CompareStub(Condition cc,
560              bool strict,
561              CompareFlags flags) :
562      cc_(cc),
563      strict_(strict),
564      never_nan_nan_((flags & CANT_BOTH_BE_NAN) != 0),
565      include_number_compare_((flags & NO_NUMBER_COMPARE_IN_STUB) == 0),
566      include_smi_compare_((flags & NO_SMI_COMPARE_IN_STUB) == 0),
567      lhs_(no_reg),
568      rhs_(no_reg) { }
569
570  void Generate(MacroAssembler* masm);
571
572 private:
573  Condition cc_;
574  bool strict_;
575  // Only used for 'equal' comparisons.  Tells the stub that we already know
576  // that at least one side of the comparison is not NaN.  This allows the
577  // stub to use object identity in the positive case.  We ignore it when
578  // generating the minor key for other comparisons to avoid creating more
579  // stubs.
580  bool never_nan_nan_;
581  // Do generate the number comparison code in the stub. Stubs without number
582  // comparison code is used when the number comparison has been inlined, and
583  // the stub will be called if one of the operands is not a number.
584  bool include_number_compare_;
585
586  // Generate the comparison code for two smi operands in the stub.
587  bool include_smi_compare_;
588
589  // Register holding the left hand side of the comparison if the stub gives
590  // a choice, no_reg otherwise.
591
592  Register lhs_;
593  // Register holding the right hand side of the comparison if the stub gives
594  // a choice, no_reg otherwise.
595  Register rhs_;
596
597  // Encoding of the minor key in 16 bits.
598  class StrictField: public BitField<bool, 0, 1> {};
599  class NeverNanNanField: public BitField<bool, 1, 1> {};
600  class IncludeNumberCompareField: public BitField<bool, 2, 1> {};
601  class IncludeSmiCompareField: public  BitField<bool, 3, 1> {};
602  class RegisterField: public BitField<bool, 4, 1> {};
603  class ConditionField: public BitField<int, 5, 11> {};
604
605  Major MajorKey() { return Compare; }
606
607  int MinorKey();
608
609  virtual int GetCodeKind() { return Code::COMPARE_IC; }
610  virtual void FinishCode(Handle<Code> code) {
611    code->set_compare_state(CompareIC::GENERIC);
612  }
613
614  // Branch to the label if the given object isn't a symbol.
615  void BranchIfNonSymbol(MacroAssembler* masm,
616                         Label* label,
617                         Register object,
618                         Register scratch);
619
620  // Unfortunately you have to run without snapshots to see most of these
621  // names in the profile since most compare stubs end up in the snapshot.
622  virtual void PrintName(StringStream* stream);
623};
624
625
626class CEntryStub : public CodeStub {
627 public:
628  explicit CEntryStub(int result_size,
629                      SaveFPRegsMode save_doubles = kDontSaveFPRegs)
630      : result_size_(result_size), save_doubles_(save_doubles) { }
631
632  void Generate(MacroAssembler* masm);
633
634  // The version of this stub that doesn't save doubles is generated ahead of
635  // time, so it's OK to call it from other stubs that can't cope with GC during
636  // their code generation.  On machines that always have gp registers (x64) we
637  // can generate both variants ahead of time.
638  virtual bool IsPregenerated();
639  static void GenerateAheadOfTime();
640
641 private:
642  void GenerateCore(MacroAssembler* masm,
643                    Label* throw_normal_exception,
644                    Label* throw_termination_exception,
645                    Label* throw_out_of_memory_exception,
646                    bool do_gc,
647                    bool always_allocate_scope);
648
649  // Number of pointers/values returned.
650  const int result_size_;
651  SaveFPRegsMode save_doubles_;
652
653  Major MajorKey() { return CEntry; }
654  int MinorKey();
655
656  bool NeedsImmovableCode();
657};
658
659
660class JSEntryStub : public CodeStub {
661 public:
662  JSEntryStub() { }
663
664  void Generate(MacroAssembler* masm) { GenerateBody(masm, false); }
665
666 protected:
667  void GenerateBody(MacroAssembler* masm, bool is_construct);
668
669 private:
670  Major MajorKey() { return JSEntry; }
671  int MinorKey() { return 0; }
672
673  virtual void FinishCode(Handle<Code> code);
674
675  int handler_offset_;
676};
677
678
679class JSConstructEntryStub : public JSEntryStub {
680 public:
681  JSConstructEntryStub() { }
682
683  void Generate(MacroAssembler* masm) { GenerateBody(masm, true); }
684
685 private:
686  int MinorKey() { return 1; }
687
688  virtual void PrintName(StringStream* stream) {
689    stream->Add("JSConstructEntryStub");
690  }
691};
692
693
694class ArgumentsAccessStub: public CodeStub {
695 public:
696  enum Type {
697    READ_ELEMENT,
698    NEW_NON_STRICT_FAST,
699    NEW_NON_STRICT_SLOW,
700    NEW_STRICT
701  };
702
703  explicit ArgumentsAccessStub(Type type) : type_(type) { }
704
705 private:
706  Type type_;
707
708  Major MajorKey() { return ArgumentsAccess; }
709  int MinorKey() { return type_; }
710
711  void Generate(MacroAssembler* masm);
712  void GenerateReadElement(MacroAssembler* masm);
713  void GenerateNewStrict(MacroAssembler* masm);
714  void GenerateNewNonStrictFast(MacroAssembler* masm);
715  void GenerateNewNonStrictSlow(MacroAssembler* masm);
716
717  virtual void PrintName(StringStream* stream);
718};
719
720
721class RegExpExecStub: public CodeStub {
722 public:
723  RegExpExecStub() { }
724
725 private:
726  Major MajorKey() { return RegExpExec; }
727  int MinorKey() { return 0; }
728
729  void Generate(MacroAssembler* masm);
730};
731
732
733class RegExpConstructResultStub: public CodeStub {
734 public:
735  RegExpConstructResultStub() { }
736
737 private:
738  Major MajorKey() { return RegExpConstructResult; }
739  int MinorKey() { return 0; }
740
741  void Generate(MacroAssembler* masm);
742};
743
744
745class CallFunctionStub: public CodeStub {
746 public:
747  CallFunctionStub(int argc, CallFunctionFlags flags)
748      : argc_(argc), flags_(flags) { }
749
750  void Generate(MacroAssembler* masm);
751
752  virtual void FinishCode(Handle<Code> code) {
753    code->set_has_function_cache(RecordCallTarget());
754  }
755
756  static int ExtractArgcFromMinorKey(int minor_key) {
757    return ArgcBits::decode(minor_key);
758  }
759
760 private:
761  int argc_;
762  CallFunctionFlags flags_;
763
764  virtual void PrintName(StringStream* stream);
765
766  // Minor key encoding in 32 bits with Bitfield <Type, shift, size>.
767  class FlagBits: public BitField<CallFunctionFlags, 0, 2> {};
768  class ArgcBits: public BitField<unsigned, 2, 32 - 2> {};
769
770  Major MajorKey() { return CallFunction; }
771  int MinorKey() {
772    // Encode the parameters in a unique 32 bit value.
773    return FlagBits::encode(flags_) | ArgcBits::encode(argc_);
774  }
775
776  bool ReceiverMightBeImplicit() {
777    return (flags_ & RECEIVER_MIGHT_BE_IMPLICIT) != 0;
778  }
779
780  bool RecordCallTarget() {
781    return (flags_ & RECORD_CALL_TARGET) != 0;
782  }
783};
784
785
786class CallConstructStub: public CodeStub {
787 public:
788  explicit CallConstructStub(CallFunctionFlags flags) : flags_(flags) {}
789
790  void Generate(MacroAssembler* masm);
791
792  virtual void FinishCode(Handle<Code> code) {
793    code->set_has_function_cache(RecordCallTarget());
794  }
795
796 private:
797  CallFunctionFlags flags_;
798
799  virtual void PrintName(StringStream* stream);
800
801  Major MajorKey() { return CallConstruct; }
802  int MinorKey() { return flags_; }
803
804  bool RecordCallTarget() {
805    return (flags_ & RECORD_CALL_TARGET) != 0;
806  }
807};
808
809
810enum StringIndexFlags {
811  // Accepts smis or heap numbers.
812  STRING_INDEX_IS_NUMBER,
813
814  // Accepts smis or heap numbers that are valid array indices
815  // (ECMA-262 15.4). Invalid indices are reported as being out of
816  // range.
817  STRING_INDEX_IS_ARRAY_INDEX
818};
819
820
821// Generates code implementing String.prototype.charCodeAt.
822//
823// Only supports the case when the receiver is a string and the index
824// is a number (smi or heap number) that is a valid index into the
825// string. Additional index constraints are specified by the
826// flags. Otherwise, bails out to the provided labels.
827//
828// Register usage: |object| may be changed to another string in a way
829// that doesn't affect charCodeAt/charAt semantics, |index| is
830// preserved, |scratch| and |result| are clobbered.
831class StringCharCodeAtGenerator {
832 public:
833  StringCharCodeAtGenerator(Register object,
834                            Register index,
835                            Register result,
836                            Label* receiver_not_string,
837                            Label* index_not_number,
838                            Label* index_out_of_range,
839                            StringIndexFlags index_flags)
840      : object_(object),
841        index_(index),
842        result_(result),
843        receiver_not_string_(receiver_not_string),
844        index_not_number_(index_not_number),
845        index_out_of_range_(index_out_of_range),
846        index_flags_(index_flags) {
847    ASSERT(!result_.is(object_));
848    ASSERT(!result_.is(index_));
849  }
850
851  // Generates the fast case code. On the fallthrough path |result|
852  // register contains the result.
853  void GenerateFast(MacroAssembler* masm);
854
855  // Generates the slow case code. Must not be naturally
856  // reachable. Expected to be put after a ret instruction (e.g., in
857  // deferred code). Always jumps back to the fast case.
858  void GenerateSlow(MacroAssembler* masm,
859                    const RuntimeCallHelper& call_helper);
860
861 private:
862  Register object_;
863  Register index_;
864  Register result_;
865
866  Label* receiver_not_string_;
867  Label* index_not_number_;
868  Label* index_out_of_range_;
869
870  StringIndexFlags index_flags_;
871
872  Label call_runtime_;
873  Label index_not_smi_;
874  Label got_smi_index_;
875  Label exit_;
876
877  DISALLOW_COPY_AND_ASSIGN(StringCharCodeAtGenerator);
878};
879
880
881// Generates code for creating a one-char string from a char code.
882class StringCharFromCodeGenerator {
883 public:
884  StringCharFromCodeGenerator(Register code,
885                              Register result)
886      : code_(code),
887        result_(result) {
888    ASSERT(!code_.is(result_));
889  }
890
891  // Generates the fast case code. On the fallthrough path |result|
892  // register contains the result.
893  void GenerateFast(MacroAssembler* masm);
894
895  // Generates the slow case code. Must not be naturally
896  // reachable. Expected to be put after a ret instruction (e.g., in
897  // deferred code). Always jumps back to the fast case.
898  void GenerateSlow(MacroAssembler* masm,
899                    const RuntimeCallHelper& call_helper);
900
901 private:
902  Register code_;
903  Register result_;
904
905  Label slow_case_;
906  Label exit_;
907
908  DISALLOW_COPY_AND_ASSIGN(StringCharFromCodeGenerator);
909};
910
911
912// Generates code implementing String.prototype.charAt.
913//
914// Only supports the case when the receiver is a string and the index
915// is a number (smi or heap number) that is a valid index into the
916// string. Additional index constraints are specified by the
917// flags. Otherwise, bails out to the provided labels.
918//
919// Register usage: |object| may be changed to another string in a way
920// that doesn't affect charCodeAt/charAt semantics, |index| is
921// preserved, |scratch1|, |scratch2|, and |result| are clobbered.
922class StringCharAtGenerator {
923 public:
924  StringCharAtGenerator(Register object,
925                        Register index,
926                        Register scratch,
927                        Register result,
928                        Label* receiver_not_string,
929                        Label* index_not_number,
930                        Label* index_out_of_range,
931                        StringIndexFlags index_flags)
932      : char_code_at_generator_(object,
933                                index,
934                                scratch,
935                                receiver_not_string,
936                                index_not_number,
937                                index_out_of_range,
938                                index_flags),
939        char_from_code_generator_(scratch, result) {}
940
941  // Generates the fast case code. On the fallthrough path |result|
942  // register contains the result.
943  void GenerateFast(MacroAssembler* masm);
944
945  // Generates the slow case code. Must not be naturally
946  // reachable. Expected to be put after a ret instruction (e.g., in
947  // deferred code). Always jumps back to the fast case.
948  void GenerateSlow(MacroAssembler* masm,
949                    const RuntimeCallHelper& call_helper);
950
951 private:
952  StringCharCodeAtGenerator char_code_at_generator_;
953  StringCharFromCodeGenerator char_from_code_generator_;
954
955  DISALLOW_COPY_AND_ASSIGN(StringCharAtGenerator);
956};
957
958
959class AllowStubCallsScope {
960 public:
961  AllowStubCallsScope(MacroAssembler* masm, bool allow)
962       : masm_(masm), previous_allow_(masm->allow_stub_calls()) {
963    masm_->set_allow_stub_calls(allow);
964  }
965  ~AllowStubCallsScope() {
966    masm_->set_allow_stub_calls(previous_allow_);
967  }
968
969 private:
970  MacroAssembler* masm_;
971  bool previous_allow_;
972
973  DISALLOW_COPY_AND_ASSIGN(AllowStubCallsScope);
974};
975
976
977class KeyedLoadElementStub : public CodeStub {
978 public:
979  explicit KeyedLoadElementStub(ElementsKind elements_kind)
980      : elements_kind_(elements_kind)
981  { }
982
983  Major MajorKey() { return KeyedLoadElement; }
984  int MinorKey() { return elements_kind_; }
985
986  void Generate(MacroAssembler* masm);
987
988 private:
989  ElementsKind elements_kind_;
990
991  DISALLOW_COPY_AND_ASSIGN(KeyedLoadElementStub);
992};
993
994
995class KeyedStoreElementStub : public CodeStub {
996 public:
997  KeyedStoreElementStub(bool is_js_array,
998                        ElementsKind elements_kind,
999                        KeyedAccessGrowMode grow_mode)
1000      : is_js_array_(is_js_array),
1001        elements_kind_(elements_kind),
1002        grow_mode_(grow_mode) { }
1003
1004  Major MajorKey() { return KeyedStoreElement; }
1005  int MinorKey() {
1006    return ElementsKindBits::encode(elements_kind_) |
1007        IsJSArrayBits::encode(is_js_array_) |
1008        GrowModeBits::encode(grow_mode_);
1009  }
1010
1011  void Generate(MacroAssembler* masm);
1012
1013 private:
1014  class ElementsKindBits: public BitField<ElementsKind,    0, 8> {};
1015  class GrowModeBits: public BitField<KeyedAccessGrowMode, 8, 1> {};
1016  class IsJSArrayBits: public BitField<bool,               9, 1> {};
1017
1018  bool is_js_array_;
1019  ElementsKind elements_kind_;
1020  KeyedAccessGrowMode grow_mode_;
1021
1022  DISALLOW_COPY_AND_ASSIGN(KeyedStoreElementStub);
1023};
1024
1025
1026class ToBooleanStub: public CodeStub {
1027 public:
1028  enum Type {
1029    UNDEFINED,
1030    BOOLEAN,
1031    NULL_TYPE,
1032    SMI,
1033    SPEC_OBJECT,
1034    STRING,
1035    HEAP_NUMBER,
1036    NUMBER_OF_TYPES
1037  };
1038
1039  // At most 8 different types can be distinguished, because the Code object
1040  // only has room for a single byte to hold a set of these types. :-P
1041  STATIC_ASSERT(NUMBER_OF_TYPES <= 8);
1042
1043  class Types {
1044   public:
1045    Types() {}
1046    explicit Types(byte bits) : set_(bits) {}
1047
1048    bool IsEmpty() const { return set_.IsEmpty(); }
1049    bool Contains(Type type) const { return set_.Contains(type); }
1050    void Add(Type type) { set_.Add(type); }
1051    byte ToByte() const { return set_.ToIntegral(); }
1052    void Print(StringStream* stream) const;
1053    void TraceTransition(Types to) const;
1054    bool Record(Handle<Object> object);
1055    bool NeedsMap() const;
1056    bool CanBeUndetectable() const;
1057
1058   private:
1059    EnumSet<Type, byte> set_;
1060  };
1061
1062  static Types no_types() { return Types(); }
1063  static Types all_types() { return Types((1 << NUMBER_OF_TYPES) - 1); }
1064
1065  explicit ToBooleanStub(Register tos, Types types = Types())
1066      : tos_(tos), types_(types) { }
1067
1068  void Generate(MacroAssembler* masm);
1069  virtual int GetCodeKind() { return Code::TO_BOOLEAN_IC; }
1070  virtual void PrintName(StringStream* stream);
1071
1072  virtual bool SometimesSetsUpAFrame() { return false; }
1073
1074 private:
1075  Major MajorKey() { return ToBoolean; }
1076  int MinorKey() { return (tos_.code() << NUMBER_OF_TYPES) | types_.ToByte(); }
1077
1078  virtual void FinishCode(Handle<Code> code) {
1079    code->set_to_boolean_state(types_.ToByte());
1080  }
1081
1082  void CheckOddball(MacroAssembler* masm,
1083                    Type type,
1084                    Heap::RootListIndex value,
1085                    bool result);
1086  void GenerateTypeTransition(MacroAssembler* masm);
1087
1088  Register tos_;
1089  Types types_;
1090};
1091
1092
1093class ElementsTransitionAndStoreStub : public CodeStub {
1094 public:
1095  ElementsTransitionAndStoreStub(ElementsKind from,
1096                                 ElementsKind to,
1097                                 bool is_jsarray,
1098                                 StrictModeFlag strict_mode,
1099                                 KeyedAccessGrowMode grow_mode)
1100      : from_(from),
1101        to_(to),
1102        is_jsarray_(is_jsarray),
1103        strict_mode_(strict_mode),
1104        grow_mode_(grow_mode) {}
1105
1106 private:
1107  class FromBits:       public BitField<ElementsKind,      0, 8> {};
1108  class ToBits:         public BitField<ElementsKind,      8, 8> {};
1109  class IsJSArrayBits:  public BitField<bool,              16, 1> {};
1110  class StrictModeBits: public BitField<StrictModeFlag,    17, 1> {};
1111  class GrowModeBits: public BitField<KeyedAccessGrowMode, 18, 1> {};
1112
1113  Major MajorKey() { return ElementsTransitionAndStore; }
1114  int MinorKey() {
1115    return FromBits::encode(from_) |
1116        ToBits::encode(to_) |
1117        IsJSArrayBits::encode(is_jsarray_) |
1118        StrictModeBits::encode(strict_mode_) |
1119        GrowModeBits::encode(grow_mode_);
1120  }
1121
1122  void Generate(MacroAssembler* masm);
1123
1124  ElementsKind from_;
1125  ElementsKind to_;
1126  bool is_jsarray_;
1127  StrictModeFlag strict_mode_;
1128  KeyedAccessGrowMode grow_mode_;
1129
1130  DISALLOW_COPY_AND_ASSIGN(ElementsTransitionAndStoreStub);
1131};
1132
1133
1134class StoreArrayLiteralElementStub : public CodeStub {
1135 public:
1136  explicit StoreArrayLiteralElementStub() {}
1137
1138 private:
1139  Major MajorKey() { return StoreArrayLiteralElement; }
1140  int MinorKey() { return 0; }
1141
1142  void Generate(MacroAssembler* masm);
1143
1144  DISALLOW_COPY_AND_ASSIGN(StoreArrayLiteralElementStub);
1145};
1146
1147} }  // namespace v8::internal
1148
1149#endif  // V8_CODE_STUBS_H_
1150