1// Copyright 2011 the V8 project authors. All rights reserved. 2// Redistribution and use in source and binary forms, with or without 3// modification, are permitted provided that the following conditions are 4// met: 5// 6// * Redistributions of source code must retain the above copyright 7// notice, this list of conditions and the following disclaimer. 8// * Redistributions in binary form must reproduce the above 9// copyright notice, this list of conditions and the following 10// disclaimer in the documentation and/or other materials provided 11// with the distribution. 12// * Neither the name of Google Inc. nor the names of its 13// contributors may be used to endorse or promote products derived 14// from this software without specific prior written permission. 15// 16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28#include <math.h> 29 30#include "../include/v8stdint.h" 31#include "checks.h" 32#include "utils.h" 33 34#include "double.h" 35#include "fixed-dtoa.h" 36 37namespace v8 { 38namespace internal { 39 40// Represents a 128bit type. This class should be replaced by a native type on 41// platforms that support 128bit integers. 42class UInt128 { 43 public: 44 UInt128() : high_bits_(0), low_bits_(0) { } 45 UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { } 46 47 void Multiply(uint32_t multiplicand) { 48 uint64_t accumulator; 49 50 accumulator = (low_bits_ & kMask32) * multiplicand; 51 uint32_t part = static_cast<uint32_t>(accumulator & kMask32); 52 accumulator >>= 32; 53 accumulator = accumulator + (low_bits_ >> 32) * multiplicand; 54 low_bits_ = (accumulator << 32) + part; 55 accumulator >>= 32; 56 accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; 57 part = static_cast<uint32_t>(accumulator & kMask32); 58 accumulator >>= 32; 59 accumulator = accumulator + (high_bits_ >> 32) * multiplicand; 60 high_bits_ = (accumulator << 32) + part; 61 ASSERT((accumulator >> 32) == 0); 62 } 63 64 void Shift(int shift_amount) { 65 ASSERT(-64 <= shift_amount && shift_amount <= 64); 66 if (shift_amount == 0) { 67 return; 68 } else if (shift_amount == -64) { 69 high_bits_ = low_bits_; 70 low_bits_ = 0; 71 } else if (shift_amount == 64) { 72 low_bits_ = high_bits_; 73 high_bits_ = 0; 74 } else if (shift_amount <= 0) { 75 high_bits_ <<= -shift_amount; 76 high_bits_ += low_bits_ >> (64 + shift_amount); 77 low_bits_ <<= -shift_amount; 78 } else { 79 low_bits_ >>= shift_amount; 80 low_bits_ += high_bits_ << (64 - shift_amount); 81 high_bits_ >>= shift_amount; 82 } 83 } 84 85 // Modifies *this to *this MOD (2^power). 86 // Returns *this DIV (2^power). 87 int DivModPowerOf2(int power) { 88 if (power >= 64) { 89 int result = static_cast<int>(high_bits_ >> (power - 64)); 90 high_bits_ -= static_cast<uint64_t>(result) << (power - 64); 91 return result; 92 } else { 93 uint64_t part_low = low_bits_ >> power; 94 uint64_t part_high = high_bits_ << (64 - power); 95 int result = static_cast<int>(part_low + part_high); 96 high_bits_ = 0; 97 low_bits_ -= part_low << power; 98 return result; 99 } 100 } 101 102 bool IsZero() const { 103 return high_bits_ == 0 && low_bits_ == 0; 104 } 105 106 int BitAt(int position) { 107 if (position >= 64) { 108 return static_cast<int>(high_bits_ >> (position - 64)) & 1; 109 } else { 110 return static_cast<int>(low_bits_ >> position) & 1; 111 } 112 } 113 114 private: 115 static const uint64_t kMask32 = 0xFFFFFFFF; 116 // Value == (high_bits_ << 64) + low_bits_ 117 uint64_t high_bits_; 118 uint64_t low_bits_; 119}; 120 121 122static const int kDoubleSignificandSize = 53; // Includes the hidden bit. 123 124 125static void FillDigits32FixedLength(uint32_t number, int requested_length, 126 Vector<char> buffer, int* length) { 127 for (int i = requested_length - 1; i >= 0; --i) { 128 buffer[(*length) + i] = '0' + number % 10; 129 number /= 10; 130 } 131 *length += requested_length; 132} 133 134 135static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) { 136 int number_length = 0; 137 // We fill the digits in reverse order and exchange them afterwards. 138 while (number != 0) { 139 int digit = number % 10; 140 number /= 10; 141 buffer[(*length) + number_length] = '0' + digit; 142 number_length++; 143 } 144 // Exchange the digits. 145 int i = *length; 146 int j = *length + number_length - 1; 147 while (i < j) { 148 char tmp = buffer[i]; 149 buffer[i] = buffer[j]; 150 buffer[j] = tmp; 151 i++; 152 j--; 153 } 154 *length += number_length; 155} 156 157 158static void FillDigits64FixedLength(uint64_t number, int requested_length, 159 Vector<char> buffer, int* length) { 160 const uint32_t kTen7 = 10000000; 161 // For efficiency cut the number into 3 uint32_t parts, and print those. 162 uint32_t part2 = static_cast<uint32_t>(number % kTen7); 163 number /= kTen7; 164 uint32_t part1 = static_cast<uint32_t>(number % kTen7); 165 uint32_t part0 = static_cast<uint32_t>(number / kTen7); 166 167 FillDigits32FixedLength(part0, 3, buffer, length); 168 FillDigits32FixedLength(part1, 7, buffer, length); 169 FillDigits32FixedLength(part2, 7, buffer, length); 170} 171 172 173static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) { 174 const uint32_t kTen7 = 10000000; 175 // For efficiency cut the number into 3 uint32_t parts, and print those. 176 uint32_t part2 = static_cast<uint32_t>(number % kTen7); 177 number /= kTen7; 178 uint32_t part1 = static_cast<uint32_t>(number % kTen7); 179 uint32_t part0 = static_cast<uint32_t>(number / kTen7); 180 181 if (part0 != 0) { 182 FillDigits32(part0, buffer, length); 183 FillDigits32FixedLength(part1, 7, buffer, length); 184 FillDigits32FixedLength(part2, 7, buffer, length); 185 } else if (part1 != 0) { 186 FillDigits32(part1, buffer, length); 187 FillDigits32FixedLength(part2, 7, buffer, length); 188 } else { 189 FillDigits32(part2, buffer, length); 190 } 191} 192 193 194static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) { 195 // An empty buffer represents 0. 196 if (*length == 0) { 197 buffer[0] = '1'; 198 *decimal_point = 1; 199 *length = 1; 200 return; 201 } 202 // Round the last digit until we either have a digit that was not '9' or until 203 // we reached the first digit. 204 buffer[(*length) - 1]++; 205 for (int i = (*length) - 1; i > 0; --i) { 206 if (buffer[i] != '0' + 10) { 207 return; 208 } 209 buffer[i] = '0'; 210 buffer[i - 1]++; 211 } 212 // If the first digit is now '0' + 10, we would need to set it to '0' and add 213 // a '1' in front. However we reach the first digit only if all following 214 // digits had been '9' before rounding up. Now all trailing digits are '0' and 215 // we simply switch the first digit to '1' and update the decimal-point 216 // (indicating that the point is now one digit to the right). 217 if (buffer[0] == '0' + 10) { 218 buffer[0] = '1'; 219 (*decimal_point)++; 220 } 221} 222 223 224// The given fractionals number represents a fixed-point number with binary 225// point at bit (-exponent). 226// Preconditions: 227// -128 <= exponent <= 0. 228// 0 <= fractionals * 2^exponent < 1 229// The buffer holds the result. 230// The function will round its result. During the rounding-process digits not 231// generated by this function might be updated, and the decimal-point variable 232// might be updated. If this function generates the digits 99 and the buffer 233// already contained "199" (thus yielding a buffer of "19999") then a 234// rounding-up will change the contents of the buffer to "20000". 235static void FillFractionals(uint64_t fractionals, int exponent, 236 int fractional_count, Vector<char> buffer, 237 int* length, int* decimal_point) { 238 ASSERT(-128 <= exponent && exponent <= 0); 239 // 'fractionals' is a fixed-point number, with binary point at bit 240 // (-exponent). Inside the function the non-converted remainder of fractionals 241 // is a fixed-point number, with binary point at bit 'point'. 242 if (-exponent <= 64) { 243 // One 64 bit number is sufficient. 244 ASSERT(fractionals >> 56 == 0); 245 int point = -exponent; 246 for (int i = 0; i < fractional_count; ++i) { 247 if (fractionals == 0) break; 248 // Instead of multiplying by 10 we multiply by 5 and adjust the point 249 // location. This way the fractionals variable will not overflow. 250 // Invariant at the beginning of the loop: fractionals < 2^point. 251 // Initially we have: point <= 64 and fractionals < 2^56 252 // After each iteration the point is decremented by one. 253 // Note that 5^3 = 125 < 128 = 2^7. 254 // Therefore three iterations of this loop will not overflow fractionals 255 // (even without the subtraction at the end of the loop body). At this 256 // time point will satisfy point <= 61 and therefore fractionals < 2^point 257 // and any further multiplication of fractionals by 5 will not overflow. 258 fractionals *= 5; 259 point--; 260 int digit = static_cast<int>(fractionals >> point); 261 buffer[*length] = '0' + digit; 262 (*length)++; 263 fractionals -= static_cast<uint64_t>(digit) << point; 264 } 265 // If the first bit after the point is set we have to round up. 266 if (((fractionals >> (point - 1)) & 1) == 1) { 267 RoundUp(buffer, length, decimal_point); 268 } 269 } else { // We need 128 bits. 270 ASSERT(64 < -exponent && -exponent <= 128); 271 UInt128 fractionals128 = UInt128(fractionals, 0); 272 fractionals128.Shift(-exponent - 64); 273 int point = 128; 274 for (int i = 0; i < fractional_count; ++i) { 275 if (fractionals128.IsZero()) break; 276 // As before: instead of multiplying by 10 we multiply by 5 and adjust the 277 // point location. 278 // This multiplication will not overflow for the same reasons as before. 279 fractionals128.Multiply(5); 280 point--; 281 int digit = fractionals128.DivModPowerOf2(point); 282 buffer[*length] = '0' + digit; 283 (*length)++; 284 } 285 if (fractionals128.BitAt(point - 1) == 1) { 286 RoundUp(buffer, length, decimal_point); 287 } 288 } 289} 290 291 292// Removes leading and trailing zeros. 293// If leading zeros are removed then the decimal point position is adjusted. 294static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) { 295 while (*length > 0 && buffer[(*length) - 1] == '0') { 296 (*length)--; 297 } 298 int first_non_zero = 0; 299 while (first_non_zero < *length && buffer[first_non_zero] == '0') { 300 first_non_zero++; 301 } 302 if (first_non_zero != 0) { 303 for (int i = first_non_zero; i < *length; ++i) { 304 buffer[i - first_non_zero] = buffer[i]; 305 } 306 *length -= first_non_zero; 307 *decimal_point -= first_non_zero; 308 } 309} 310 311 312bool FastFixedDtoa(double v, 313 int fractional_count, 314 Vector<char> buffer, 315 int* length, 316 int* decimal_point) { 317 const uint32_t kMaxUInt32 = 0xFFFFFFFF; 318 uint64_t significand = Double(v).Significand(); 319 int exponent = Double(v).Exponent(); 320 // v = significand * 2^exponent (with significand a 53bit integer). 321 // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we 322 // don't know how to compute the representation. 2^73 ~= 9.5*10^21. 323 // If necessary this limit could probably be increased, but we don't need 324 // more. 325 if (exponent > 20) return false; 326 if (fractional_count > 20) return false; 327 *length = 0; 328 // At most kDoubleSignificandSize bits of the significand are non-zero. 329 // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero 330 // bits: 0..11*..0xxx..53*..xx 331 if (exponent + kDoubleSignificandSize > 64) { 332 // The exponent must be > 11. 333 // 334 // We know that v = significand * 2^exponent. 335 // And the exponent > 11. 336 // We simplify the task by dividing v by 10^17. 337 // The quotient delivers the first digits, and the remainder fits into a 64 338 // bit number. 339 // Dividing by 10^17 is equivalent to dividing by 5^17*2^17. 340 const uint64_t kFive17 = V8_2PART_UINT64_C(0xB1, A2BC2EC5); // 5^17 341 uint64_t divisor = kFive17; 342 int divisor_power = 17; 343 uint64_t dividend = significand; 344 uint32_t quotient; 345 uint64_t remainder; 346 // Let v = f * 2^e with f == significand and e == exponent. 347 // Then need q (quotient) and r (remainder) as follows: 348 // v = q * 10^17 + r 349 // f * 2^e = q * 10^17 + r 350 // f * 2^e = q * 5^17 * 2^17 + r 351 // If e > 17 then 352 // f * 2^(e-17) = q * 5^17 + r/2^17 353 // else 354 // f = q * 5^17 * 2^(17-e) + r/2^e 355 if (exponent > divisor_power) { 356 // We only allow exponents of up to 20 and therefore (17 - e) <= 3 357 dividend <<= exponent - divisor_power; 358 quotient = static_cast<uint32_t>(dividend / divisor); 359 remainder = (dividend % divisor) << divisor_power; 360 } else { 361 divisor <<= divisor_power - exponent; 362 quotient = static_cast<uint32_t>(dividend / divisor); 363 remainder = (dividend % divisor) << exponent; 364 } 365 FillDigits32(quotient, buffer, length); 366 FillDigits64FixedLength(remainder, divisor_power, buffer, length); 367 *decimal_point = *length; 368 } else if (exponent >= 0) { 369 // 0 <= exponent <= 11 370 significand <<= exponent; 371 FillDigits64(significand, buffer, length); 372 *decimal_point = *length; 373 } else if (exponent > -kDoubleSignificandSize) { 374 // We have to cut the number. 375 uint64_t integrals = significand >> -exponent; 376 uint64_t fractionals = significand - (integrals << -exponent); 377 if (integrals > kMaxUInt32) { 378 FillDigits64(integrals, buffer, length); 379 } else { 380 FillDigits32(static_cast<uint32_t>(integrals), buffer, length); 381 } 382 *decimal_point = *length; 383 FillFractionals(fractionals, exponent, fractional_count, 384 buffer, length, decimal_point); 385 } else if (exponent < -128) { 386 // This configuration (with at most 20 digits) means that all digits must be 387 // 0. 388 ASSERT(fractional_count <= 20); 389 buffer[0] = '\0'; 390 *length = 0; 391 *decimal_point = -fractional_count; 392 } else { 393 *decimal_point = 0; 394 FillFractionals(significand, exponent, fractional_count, 395 buffer, length, decimal_point); 396 } 397 TrimZeros(buffer, length, decimal_point); 398 buffer[*length] = '\0'; 399 if ((*length) == 0) { 400 // The string is empty and the decimal_point thus has no importance. Mimick 401 // Gay's dtoa and and set it to -fractional_count. 402 *decimal_point = -fractional_count; 403 } 404 return true; 405} 406 407} } // namespace v8::internal 408