1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_JSREGEXP_H_
29#define V8_JSREGEXP_H_
30
31#include "allocation.h"
32#include "assembler.h"
33#include "zone-inl.h"
34
35namespace v8 {
36namespace internal {
37
38class NodeVisitor;
39class RegExpCompiler;
40class RegExpMacroAssembler;
41class RegExpNode;
42class RegExpTree;
43
44class RegExpImpl {
45 public:
46  // Whether V8 is compiled with native regexp support or not.
47  static bool UsesNativeRegExp() {
48#ifdef V8_INTERPRETED_REGEXP
49    return false;
50#else
51    return true;
52#endif
53  }
54
55  // Creates a regular expression literal in the old space.
56  // This function calls the garbage collector if necessary.
57  static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
58                                            Handle<String> pattern,
59                                            Handle<String> flags,
60                                            bool* has_pending_exception);
61
62  // Returns a string representation of a regular expression.
63  // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
64  // This function calls the garbage collector if necessary.
65  static Handle<String> ToString(Handle<Object> value);
66
67  // Parses the RegExp pattern and prepares the JSRegExp object with
68  // generic data and choice of implementation - as well as what
69  // the implementation wants to store in the data field.
70  // Returns false if compilation fails.
71  static Handle<Object> Compile(Handle<JSRegExp> re,
72                                Handle<String> pattern,
73                                Handle<String> flags);
74
75  // See ECMA-262 section 15.10.6.2.
76  // This function calls the garbage collector if necessary.
77  static Handle<Object> Exec(Handle<JSRegExp> regexp,
78                             Handle<String> subject,
79                             int index,
80                             Handle<JSArray> lastMatchInfo);
81
82  // Prepares a JSRegExp object with Irregexp-specific data.
83  static void IrregexpInitialize(Handle<JSRegExp> re,
84                                 Handle<String> pattern,
85                                 JSRegExp::Flags flags,
86                                 int capture_register_count);
87
88
89  static void AtomCompile(Handle<JSRegExp> re,
90                          Handle<String> pattern,
91                          JSRegExp::Flags flags,
92                          Handle<String> match_pattern);
93
94  static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
95                                 Handle<String> subject,
96                                 int index,
97                                 Handle<JSArray> lastMatchInfo);
98
99  enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
100
101  // Prepare a RegExp for being executed one or more times (using
102  // IrregexpExecOnce) on the subject.
103  // This ensures that the regexp is compiled for the subject, and that
104  // the subject is flat.
105  // Returns the number of integer spaces required by IrregexpExecOnce
106  // as its "registers" argument. If the regexp cannot be compiled,
107  // an exception is set as pending, and this function returns negative.
108  static int IrregexpPrepare(Handle<JSRegExp> regexp,
109                             Handle<String> subject);
110
111  // Execute a regular expression once on the subject, starting from
112  // character "index".
113  // If successful, returns RE_SUCCESS and set the capture positions
114  // in the first registers.
115  // If matching fails, returns RE_FAILURE.
116  // If execution fails, sets a pending exception and returns RE_EXCEPTION.
117  static IrregexpResult IrregexpExecOnce(Handle<JSRegExp> regexp,
118                                         Handle<String> subject,
119                                         int index,
120                                         Vector<int> registers);
121
122  // Execute an Irregexp bytecode pattern.
123  // On a successful match, the result is a JSArray containing
124  // captured positions. On a failure, the result is the null value.
125  // Returns an empty handle in case of an exception.
126  static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
127                                     Handle<String> subject,
128                                     int index,
129                                     Handle<JSArray> lastMatchInfo);
130
131  // Array index in the lastMatchInfo array.
132  static const int kLastCaptureCount = 0;
133  static const int kLastSubject = 1;
134  static const int kLastInput = 2;
135  static const int kFirstCapture = 3;
136  static const int kLastMatchOverhead = 3;
137
138  // Direct offset into the lastMatchInfo array.
139  static const int kLastCaptureCountOffset =
140      FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
141  static const int kLastSubjectOffset =
142      FixedArray::kHeaderSize + kLastSubject * kPointerSize;
143  static const int kLastInputOffset =
144      FixedArray::kHeaderSize + kLastInput * kPointerSize;
145  static const int kFirstCaptureOffset =
146      FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
147
148  // Used to access the lastMatchInfo array.
149  static int GetCapture(FixedArray* array, int index) {
150    return Smi::cast(array->get(index + kFirstCapture))->value();
151  }
152
153  static void SetLastCaptureCount(FixedArray* array, int to) {
154    array->set(kLastCaptureCount, Smi::FromInt(to));
155  }
156
157  static void SetLastSubject(FixedArray* array, String* to) {
158    array->set(kLastSubject, to);
159  }
160
161  static void SetLastInput(FixedArray* array, String* to) {
162    array->set(kLastInput, to);
163  }
164
165  static void SetCapture(FixedArray* array, int index, int to) {
166    array->set(index + kFirstCapture, Smi::FromInt(to));
167  }
168
169  static int GetLastCaptureCount(FixedArray* array) {
170    return Smi::cast(array->get(kLastCaptureCount))->value();
171  }
172
173  // For acting on the JSRegExp data FixedArray.
174  static int IrregexpMaxRegisterCount(FixedArray* re);
175  static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
176  static int IrregexpNumberOfCaptures(FixedArray* re);
177  static int IrregexpNumberOfRegisters(FixedArray* re);
178  static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
179  static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
180
181  // Limit the space regexps take up on the heap.  In order to limit this we
182  // would like to keep track of the amount of regexp code on the heap.  This
183  // is not tracked, however.  As a conservative approximation we track the
184  // total regexp code compiled including code that has subsequently been freed
185  // and the total executable memory at any point.
186  static const int kRegExpExecutableMemoryLimit = 16 * MB;
187  static const int kRegWxpCompiledLimit = 1 * MB;
188
189 private:
190  static String* last_ascii_string_;
191  static String* two_byte_cached_string_;
192
193  static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
194  static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
195
196
197  // Set the subject cache.  The previous string buffer is not deleted, so the
198  // caller should ensure that it doesn't leak.
199  static void SetSubjectCache(String* subject,
200                              char* utf8_subject,
201                              int uft8_length,
202                              int character_position,
203                              int utf8_position);
204
205  // A one element cache of the last utf8_subject string and its length.  The
206  // subject JS String object is cached in the heap.  We also cache a
207  // translation between position and utf8 position.
208  static char* utf8_subject_cache_;
209  static int utf8_length_cache_;
210  static int utf8_position_;
211  static int character_position_;
212};
213
214
215// Represents the location of one element relative to the intersection of
216// two sets. Corresponds to the four areas of a Venn diagram.
217enum ElementInSetsRelation {
218  kInsideNone = 0,
219  kInsideFirst = 1,
220  kInsideSecond = 2,
221  kInsideBoth = 3
222};
223
224
225// Represents the relation of two sets.
226// Sets can be either disjoint, partially or fully overlapping, or equal.
227class SetRelation BASE_EMBEDDED {
228 public:
229  // Relation is represented by a bit saying whether there are elements in
230  // one set that is not in the other, and a bit saying that there are elements
231  // that are in both sets.
232
233  // Location of an element. Corresponds to the internal areas of
234  // a Venn diagram.
235  enum {
236    kInFirst = 1 << kInsideFirst,
237    kInSecond = 1 << kInsideSecond,
238    kInBoth = 1 << kInsideBoth
239  };
240  SetRelation() : bits_(0) {}
241  ~SetRelation() {}
242  // Add the existence of objects in a particular
243  void SetElementsInFirstSet() { bits_ |= kInFirst; }
244  void SetElementsInSecondSet() { bits_ |= kInSecond; }
245  void SetElementsInBothSets() { bits_ |= kInBoth; }
246  // Check the currently known relation of the sets (common functions only,
247  // for other combinations, use value() to get the bits and check them
248  // manually).
249  // Sets are completely disjoint.
250  bool Disjoint() { return (bits_ & kInBoth) == 0; }
251  // Sets are equal.
252  bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; }
253  // First set contains second.
254  bool Contains() { return (bits_ & kInSecond) == 0; }
255  // Second set contains first.
256  bool ContainedIn() { return (bits_ & kInFirst) == 0; }
257  bool NonTrivialIntersection() {
258    return (bits_ == (kInFirst | kInSecond | kInBoth));
259  }
260  int value() { return bits_; }
261
262 private:
263  int bits_;
264};
265
266
267class CharacterRange {
268 public:
269  CharacterRange() : from_(0), to_(0) { }
270  // For compatibility with the CHECK_OK macro
271  CharacterRange(void* null) { ASSERT_EQ(NULL, null); }  //NOLINT
272  CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
273  static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
274  static Vector<const uc16> GetWordBounds();
275  static inline CharacterRange Singleton(uc16 value) {
276    return CharacterRange(value, value);
277  }
278  static inline CharacterRange Range(uc16 from, uc16 to) {
279    ASSERT(from <= to);
280    return CharacterRange(from, to);
281  }
282  static inline CharacterRange Everything() {
283    return CharacterRange(0, 0xFFFF);
284  }
285  bool Contains(uc16 i) { return from_ <= i && i <= to_; }
286  uc16 from() const { return from_; }
287  void set_from(uc16 value) { from_ = value; }
288  uc16 to() const { return to_; }
289  void set_to(uc16 value) { to_ = value; }
290  bool is_valid() { return from_ <= to_; }
291  bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
292  bool IsSingleton() { return (from_ == to_); }
293  void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii);
294  static void Split(ZoneList<CharacterRange>* base,
295                    Vector<const uc16> overlay,
296                    ZoneList<CharacterRange>** included,
297                    ZoneList<CharacterRange>** excluded);
298  // Whether a range list is in canonical form: Ranges ordered by from value,
299  // and ranges non-overlapping and non-adjacent.
300  static bool IsCanonical(ZoneList<CharacterRange>* ranges);
301  // Convert range list to canonical form. The characters covered by the ranges
302  // will still be the same, but no character is in more than one range, and
303  // adjacent ranges are merged. The resulting list may be shorter than the
304  // original, but cannot be longer.
305  static void Canonicalize(ZoneList<CharacterRange>* ranges);
306  // Check how the set of characters defined by a CharacterRange list relates
307  // to the set of word characters. List must be in canonical form.
308  static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges);
309  // Takes two character range lists (representing character sets) in canonical
310  // form and merges them.
311  // The characters that are only covered by the first set are added to
312  // first_set_only_out. the characters that are only in the second set are
313  // added to second_set_only_out, and the characters that are in both are
314  // added to both_sets_out.
315  // The pointers to first_set_only_out, second_set_only_out and both_sets_out
316  // should be to empty lists, but they need not be distinct, and may be NULL.
317  // If NULL, the characters are dropped, and if two arguments are the same
318  // pointer, the result is the union of the two sets that would be created
319  // if the pointers had been distinct.
320  // This way, the Merge function can compute all the usual set operations:
321  // union (all three out-sets are equal), intersection (only both_sets_out is
322  // non-NULL), and set difference (only first_set is non-NULL).
323  static void Merge(ZoneList<CharacterRange>* first_set,
324                    ZoneList<CharacterRange>* second_set,
325                    ZoneList<CharacterRange>* first_set_only_out,
326                    ZoneList<CharacterRange>* second_set_only_out,
327                    ZoneList<CharacterRange>* both_sets_out);
328  // Negate the contents of a character range in canonical form.
329  static void Negate(ZoneList<CharacterRange>* src,
330                     ZoneList<CharacterRange>* dst);
331  static const int kStartMarker = (1 << 24);
332  static const int kPayloadMask = (1 << 24) - 1;
333
334 private:
335  uc16 from_;
336  uc16 to_;
337};
338
339
340// A set of unsigned integers that behaves especially well on small
341// integers (< 32).  May do zone-allocation.
342class OutSet: public ZoneObject {
343 public:
344  OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
345  OutSet* Extend(unsigned value);
346  bool Get(unsigned value);
347  static const unsigned kFirstLimit = 32;
348
349 private:
350  // Destructively set a value in this set.  In most cases you want
351  // to use Extend instead to ensure that only one instance exists
352  // that contains the same values.
353  void Set(unsigned value);
354
355  // The successors are a list of sets that contain the same values
356  // as this set and the one more value that is not present in this
357  // set.
358  ZoneList<OutSet*>* successors() { return successors_; }
359
360  OutSet(uint32_t first, ZoneList<unsigned>* remaining)
361      : first_(first), remaining_(remaining), successors_(NULL) { }
362  uint32_t first_;
363  ZoneList<unsigned>* remaining_;
364  ZoneList<OutSet*>* successors_;
365  friend class Trace;
366};
367
368
369// A mapping from integers, specified as ranges, to a set of integers.
370// Used for mapping character ranges to choices.
371class DispatchTable : public ZoneObject {
372 public:
373  class Entry {
374   public:
375    Entry() : from_(0), to_(0), out_set_(NULL) { }
376    Entry(uc16 from, uc16 to, OutSet* out_set)
377        : from_(from), to_(to), out_set_(out_set) { }
378    uc16 from() { return from_; }
379    uc16 to() { return to_; }
380    void set_to(uc16 value) { to_ = value; }
381    void AddValue(int value) { out_set_ = out_set_->Extend(value); }
382    OutSet* out_set() { return out_set_; }
383   private:
384    uc16 from_;
385    uc16 to_;
386    OutSet* out_set_;
387  };
388
389  class Config {
390   public:
391    typedef uc16 Key;
392    typedef Entry Value;
393    static const uc16 kNoKey;
394    static const Entry NoValue() { return Value(); }
395    static inline int Compare(uc16 a, uc16 b) {
396      if (a == b)
397        return 0;
398      else if (a < b)
399        return -1;
400      else
401        return 1;
402    }
403  };
404
405  void AddRange(CharacterRange range, int value);
406  OutSet* Get(uc16 value);
407  void Dump();
408
409  template <typename Callback>
410  void ForEach(Callback* callback) { return tree()->ForEach(callback); }
411
412 private:
413  // There can't be a static empty set since it allocates its
414  // successors in a zone and caches them.
415  OutSet* empty() { return &empty_; }
416  OutSet empty_;
417  ZoneSplayTree<Config>* tree() { return &tree_; }
418  ZoneSplayTree<Config> tree_;
419};
420
421
422#define FOR_EACH_NODE_TYPE(VISIT)                                    \
423  VISIT(End)                                                         \
424  VISIT(Action)                                                      \
425  VISIT(Choice)                                                      \
426  VISIT(BackReference)                                               \
427  VISIT(Assertion)                                                   \
428  VISIT(Text)
429
430
431#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT)                            \
432  VISIT(Disjunction)                                                 \
433  VISIT(Alternative)                                                 \
434  VISIT(Assertion)                                                   \
435  VISIT(CharacterClass)                                              \
436  VISIT(Atom)                                                        \
437  VISIT(Quantifier)                                                  \
438  VISIT(Capture)                                                     \
439  VISIT(Lookahead)                                                   \
440  VISIT(BackReference)                                               \
441  VISIT(Empty)                                                       \
442  VISIT(Text)
443
444
445#define FORWARD_DECLARE(Name) class RegExp##Name;
446FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
447#undef FORWARD_DECLARE
448
449
450class TextElement {
451 public:
452  enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
453  TextElement() : type(UNINITIALIZED) { }
454  explicit TextElement(Type t) : type(t), cp_offset(-1) { }
455  static TextElement Atom(RegExpAtom* atom);
456  static TextElement CharClass(RegExpCharacterClass* char_class);
457  int length();
458  Type type;
459  union {
460    RegExpAtom* u_atom;
461    RegExpCharacterClass* u_char_class;
462  } data;
463  int cp_offset;
464};
465
466
467class Trace;
468
469
470struct NodeInfo {
471  NodeInfo()
472      : being_analyzed(false),
473        been_analyzed(false),
474        follows_word_interest(false),
475        follows_newline_interest(false),
476        follows_start_interest(false),
477        at_end(false),
478        visited(false) { }
479
480  // Returns true if the interests and assumptions of this node
481  // matches the given one.
482  bool Matches(NodeInfo* that) {
483    return (at_end == that->at_end) &&
484           (follows_word_interest == that->follows_word_interest) &&
485           (follows_newline_interest == that->follows_newline_interest) &&
486           (follows_start_interest == that->follows_start_interest);
487  }
488
489  // Updates the interests of this node given the interests of the
490  // node preceding it.
491  void AddFromPreceding(NodeInfo* that) {
492    at_end |= that->at_end;
493    follows_word_interest |= that->follows_word_interest;
494    follows_newline_interest |= that->follows_newline_interest;
495    follows_start_interest |= that->follows_start_interest;
496  }
497
498  bool HasLookbehind() {
499    return follows_word_interest ||
500           follows_newline_interest ||
501           follows_start_interest;
502  }
503
504  // Sets the interests of this node to include the interests of the
505  // following node.
506  void AddFromFollowing(NodeInfo* that) {
507    follows_word_interest |= that->follows_word_interest;
508    follows_newline_interest |= that->follows_newline_interest;
509    follows_start_interest |= that->follows_start_interest;
510  }
511
512  void ResetCompilationState() {
513    being_analyzed = false;
514    been_analyzed = false;
515  }
516
517  bool being_analyzed: 1;
518  bool been_analyzed: 1;
519
520  // These bits are set of this node has to know what the preceding
521  // character was.
522  bool follows_word_interest: 1;
523  bool follows_newline_interest: 1;
524  bool follows_start_interest: 1;
525
526  bool at_end: 1;
527  bool visited: 1;
528};
529
530
531class SiblingList {
532 public:
533  SiblingList() : list_(NULL) { }
534  int length() {
535    return list_ == NULL ? 0 : list_->length();
536  }
537  void Ensure(RegExpNode* parent) {
538    if (list_ == NULL) {
539      list_ = new ZoneList<RegExpNode*>(2);
540      list_->Add(parent);
541    }
542  }
543  void Add(RegExpNode* node) { list_->Add(node); }
544  RegExpNode* Get(int index) { return list_->at(index); }
545 private:
546  ZoneList<RegExpNode*>* list_;
547};
548
549
550// Details of a quick mask-compare check that can look ahead in the
551// input stream.
552class QuickCheckDetails {
553 public:
554  QuickCheckDetails()
555      : characters_(0),
556        mask_(0),
557        value_(0),
558        cannot_match_(false) { }
559  explicit QuickCheckDetails(int characters)
560      : characters_(characters),
561        mask_(0),
562        value_(0),
563        cannot_match_(false) { }
564  bool Rationalize(bool ascii);
565  // Merge in the information from another branch of an alternation.
566  void Merge(QuickCheckDetails* other, int from_index);
567  // Advance the current position by some amount.
568  void Advance(int by, bool ascii);
569  void Clear();
570  bool cannot_match() { return cannot_match_; }
571  void set_cannot_match() { cannot_match_ = true; }
572  struct Position {
573    Position() : mask(0), value(0), determines_perfectly(false) { }
574    uc16 mask;
575    uc16 value;
576    bool determines_perfectly;
577  };
578  int characters() { return characters_; }
579  void set_characters(int characters) { characters_ = characters; }
580  Position* positions(int index) {
581    ASSERT(index >= 0);
582    ASSERT(index < characters_);
583    return positions_ + index;
584  }
585  uint32_t mask() { return mask_; }
586  uint32_t value() { return value_; }
587
588 private:
589  // How many characters do we have quick check information from.  This is
590  // the same for all branches of a choice node.
591  int characters_;
592  Position positions_[4];
593  // These values are the condensate of the above array after Rationalize().
594  uint32_t mask_;
595  uint32_t value_;
596  // If set to true, there is no way this quick check can match at all.
597  // E.g., if it requires to be at the start of the input, and isn't.
598  bool cannot_match_;
599};
600
601
602class RegExpNode: public ZoneObject {
603 public:
604  RegExpNode() : first_character_set_(NULL), trace_count_(0) { }
605  virtual ~RegExpNode();
606  virtual void Accept(NodeVisitor* visitor) = 0;
607  // Generates a goto to this node or actually generates the code at this point.
608  virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
609  // How many characters must this node consume at a minimum in order to
610  // succeed.  If we have found at least 'still_to_find' characters that
611  // must be consumed there is no need to ask any following nodes whether
612  // they are sure to eat any more characters.  The not_at_start argument is
613  // used to indicate that we know we are not at the start of the input.  In
614  // this case anchored branches will always fail and can be ignored when
615  // determining how many characters are consumed on success.
616  virtual int EatsAtLeast(int still_to_find,
617                          int recursion_depth,
618                          bool not_at_start) = 0;
619  // Emits some quick code that checks whether the preloaded characters match.
620  // Falls through on certain failure, jumps to the label on possible success.
621  // If the node cannot make a quick check it does nothing and returns false.
622  bool EmitQuickCheck(RegExpCompiler* compiler,
623                      Trace* trace,
624                      bool preload_has_checked_bounds,
625                      Label* on_possible_success,
626                      QuickCheckDetails* details_return,
627                      bool fall_through_on_failure);
628  // For a given number of characters this returns a mask and a value.  The
629  // next n characters are anded with the mask and compared with the value.
630  // A comparison failure indicates the node cannot match the next n characters.
631  // A comparison success indicates the node may match.
632  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
633                                    RegExpCompiler* compiler,
634                                    int characters_filled_in,
635                                    bool not_at_start) = 0;
636  static const int kNodeIsTooComplexForGreedyLoops = -1;
637  virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
638  Label* label() { return &label_; }
639  // If non-generic code is generated for a node (i.e. the node is not at the
640  // start of the trace) then it cannot be reused.  This variable sets a limit
641  // on how often we allow that to happen before we insist on starting a new
642  // trace and generating generic code for a node that can be reused by flushing
643  // the deferred actions in the current trace and generating a goto.
644  static const int kMaxCopiesCodeGenerated = 10;
645
646  NodeInfo* info() { return &info_; }
647
648  void AddSibling(RegExpNode* node) { siblings_.Add(node); }
649
650  // Static version of EnsureSibling that expresses the fact that the
651  // result has the same type as the input.
652  template <class C>
653  static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
654    return static_cast<C*>(node->EnsureSibling(info, cloned));
655  }
656
657  SiblingList* siblings() { return &siblings_; }
658  void set_siblings(SiblingList* other) { siblings_ = *other; }
659
660  // Return the set of possible next characters recognized by the regexp
661  // (or a safe subset, potentially the set of all characters).
662  ZoneList<CharacterRange>* FirstCharacterSet();
663
664  // Compute (if possible within the budget of traversed nodes) the
665  // possible first characters of the input matched by this node and
666  // its continuation. Returns the remaining budget after the computation.
667  // If the budget is spent, the result is negative, and the cached
668  // first_character_set_ value isn't set.
669  virtual int ComputeFirstCharacterSet(int budget);
670
671  // Get and set the cached first character set value.
672  ZoneList<CharacterRange>* first_character_set() {
673    return first_character_set_;
674  }
675  void set_first_character_set(ZoneList<CharacterRange>* character_set) {
676    first_character_set_ = character_set;
677  }
678
679 protected:
680  enum LimitResult { DONE, CONTINUE };
681  static const int kComputeFirstCharacterSetFail = -1;
682
683  LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
684
685  // Returns a sibling of this node whose interests and assumptions
686  // match the ones in the given node info.  If no sibling exists NULL
687  // is returned.
688  RegExpNode* TryGetSibling(NodeInfo* info);
689
690  // Returns a sibling of this node whose interests match the ones in
691  // the given node info.  The info must not contain any assertions.
692  // If no node exists a new one will be created by cloning the current
693  // node.  The result will always be an instance of the same concrete
694  // class as this node.
695  RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
696
697  // Returns a clone of this node initialized using the copy constructor
698  // of its concrete class.  Note that the node may have to be pre-
699  // processed before it is on a usable state.
700  virtual RegExpNode* Clone() = 0;
701
702 private:
703  static const int kFirstCharBudget = 10;
704  Label label_;
705  NodeInfo info_;
706  SiblingList siblings_;
707  ZoneList<CharacterRange>* first_character_set_;
708  // This variable keeps track of how many times code has been generated for
709  // this node (in different traces).  We don't keep track of where the
710  // generated code is located unless the code is generated at the start of
711  // a trace, in which case it is generic and can be reused by flushing the
712  // deferred operations in the current trace and generating a goto.
713  int trace_count_;
714};
715
716
717// A simple closed interval.
718class Interval {
719 public:
720  Interval() : from_(kNone), to_(kNone) { }
721  Interval(int from, int to) : from_(from), to_(to) { }
722  Interval Union(Interval that) {
723    if (that.from_ == kNone)
724      return *this;
725    else if (from_ == kNone)
726      return that;
727    else
728      return Interval(Min(from_, that.from_), Max(to_, that.to_));
729  }
730  bool Contains(int value) {
731    return (from_ <= value) && (value <= to_);
732  }
733  bool is_empty() { return from_ == kNone; }
734  int from() { return from_; }
735  int to() { return to_; }
736  static Interval Empty() { return Interval(); }
737  static const int kNone = -1;
738 private:
739  int from_;
740  int to_;
741};
742
743
744class SeqRegExpNode: public RegExpNode {
745 public:
746  explicit SeqRegExpNode(RegExpNode* on_success)
747      : on_success_(on_success) { }
748  RegExpNode* on_success() { return on_success_; }
749  void set_on_success(RegExpNode* node) { on_success_ = node; }
750 private:
751  RegExpNode* on_success_;
752};
753
754
755class ActionNode: public SeqRegExpNode {
756 public:
757  enum Type {
758    SET_REGISTER,
759    INCREMENT_REGISTER,
760    STORE_POSITION,
761    BEGIN_SUBMATCH,
762    POSITIVE_SUBMATCH_SUCCESS,
763    EMPTY_MATCH_CHECK,
764    CLEAR_CAPTURES
765  };
766  static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
767  static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
768  static ActionNode* StorePosition(int reg,
769                                   bool is_capture,
770                                   RegExpNode* on_success);
771  static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
772  static ActionNode* BeginSubmatch(int stack_pointer_reg,
773                                   int position_reg,
774                                   RegExpNode* on_success);
775  static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
776                                             int restore_reg,
777                                             int clear_capture_count,
778                                             int clear_capture_from,
779                                             RegExpNode* on_success);
780  static ActionNode* EmptyMatchCheck(int start_register,
781                                     int repetition_register,
782                                     int repetition_limit,
783                                     RegExpNode* on_success);
784  virtual void Accept(NodeVisitor* visitor);
785  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
786  virtual int EatsAtLeast(int still_to_find,
787                          int recursion_depth,
788                          bool not_at_start);
789  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
790                                    RegExpCompiler* compiler,
791                                    int filled_in,
792                                    bool not_at_start) {
793    return on_success()->GetQuickCheckDetails(
794        details, compiler, filled_in, not_at_start);
795  }
796  Type type() { return type_; }
797  // TODO(erikcorry): We should allow some action nodes in greedy loops.
798  virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
799  virtual ActionNode* Clone() { return new ActionNode(*this); }
800  virtual int ComputeFirstCharacterSet(int budget);
801
802 private:
803  union {
804    struct {
805      int reg;
806      int value;
807    } u_store_register;
808    struct {
809      int reg;
810    } u_increment_register;
811    struct {
812      int reg;
813      bool is_capture;
814    } u_position_register;
815    struct {
816      int stack_pointer_register;
817      int current_position_register;
818      int clear_register_count;
819      int clear_register_from;
820    } u_submatch;
821    struct {
822      int start_register;
823      int repetition_register;
824      int repetition_limit;
825    } u_empty_match_check;
826    struct {
827      int range_from;
828      int range_to;
829    } u_clear_captures;
830  } data_;
831  ActionNode(Type type, RegExpNode* on_success)
832      : SeqRegExpNode(on_success),
833        type_(type) { }
834  Type type_;
835  friend class DotPrinter;
836};
837
838
839class TextNode: public SeqRegExpNode {
840 public:
841  TextNode(ZoneList<TextElement>* elms,
842           RegExpNode* on_success)
843      : SeqRegExpNode(on_success),
844        elms_(elms) { }
845  TextNode(RegExpCharacterClass* that,
846           RegExpNode* on_success)
847      : SeqRegExpNode(on_success),
848        elms_(new ZoneList<TextElement>(1)) {
849    elms_->Add(TextElement::CharClass(that));
850  }
851  virtual void Accept(NodeVisitor* visitor);
852  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
853  virtual int EatsAtLeast(int still_to_find,
854                          int recursion_depth,
855                          bool not_at_start);
856  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
857                                    RegExpCompiler* compiler,
858                                    int characters_filled_in,
859                                    bool not_at_start);
860  ZoneList<TextElement>* elements() { return elms_; }
861  void MakeCaseIndependent(bool is_ascii);
862  virtual int GreedyLoopTextLength();
863  virtual TextNode* Clone() {
864    TextNode* result = new TextNode(*this);
865    result->CalculateOffsets();
866    return result;
867  }
868  void CalculateOffsets();
869  virtual int ComputeFirstCharacterSet(int budget);
870
871 private:
872  enum TextEmitPassType {
873    NON_ASCII_MATCH,             // Check for characters that can't match.
874    SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
875    NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
876    CASE_CHARACTER_MATCH,        // Case-independent single character check.
877    CHARACTER_CLASS_MATCH        // Character class.
878  };
879  static bool SkipPass(int pass, bool ignore_case);
880  static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
881  static const int kLastPass = CHARACTER_CLASS_MATCH;
882  void TextEmitPass(RegExpCompiler* compiler,
883                    TextEmitPassType pass,
884                    bool preloaded,
885                    Trace* trace,
886                    bool first_element_checked,
887                    int* checked_up_to);
888  int Length();
889  ZoneList<TextElement>* elms_;
890};
891
892
893class AssertionNode: public SeqRegExpNode {
894 public:
895  enum AssertionNodeType {
896    AT_END,
897    AT_START,
898    AT_BOUNDARY,
899    AT_NON_BOUNDARY,
900    AFTER_NEWLINE,
901    // Types not directly expressible in regexp syntax.
902    // Used for modifying a boundary node if its following character is
903    // known to be word and/or non-word.
904    AFTER_NONWORD_CHARACTER,
905    AFTER_WORD_CHARACTER
906  };
907  static AssertionNode* AtEnd(RegExpNode* on_success) {
908    return new AssertionNode(AT_END, on_success);
909  }
910  static AssertionNode* AtStart(RegExpNode* on_success) {
911    return new AssertionNode(AT_START, on_success);
912  }
913  static AssertionNode* AtBoundary(RegExpNode* on_success) {
914    return new AssertionNode(AT_BOUNDARY, on_success);
915  }
916  static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
917    return new AssertionNode(AT_NON_BOUNDARY, on_success);
918  }
919  static AssertionNode* AfterNewline(RegExpNode* on_success) {
920    return new AssertionNode(AFTER_NEWLINE, on_success);
921  }
922  virtual void Accept(NodeVisitor* visitor);
923  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
924  virtual int EatsAtLeast(int still_to_find,
925                          int recursion_depth,
926                          bool not_at_start);
927  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
928                                    RegExpCompiler* compiler,
929                                    int filled_in,
930                                    bool not_at_start);
931  virtual int ComputeFirstCharacterSet(int budget);
932  virtual AssertionNode* Clone() { return new AssertionNode(*this); }
933  AssertionNodeType type() { return type_; }
934  void set_type(AssertionNodeType type) { type_ = type; }
935
936 private:
937  AssertionNode(AssertionNodeType t, RegExpNode* on_success)
938      : SeqRegExpNode(on_success), type_(t) { }
939  AssertionNodeType type_;
940};
941
942
943class BackReferenceNode: public SeqRegExpNode {
944 public:
945  BackReferenceNode(int start_reg,
946                    int end_reg,
947                    RegExpNode* on_success)
948      : SeqRegExpNode(on_success),
949        start_reg_(start_reg),
950        end_reg_(end_reg) { }
951  virtual void Accept(NodeVisitor* visitor);
952  int start_register() { return start_reg_; }
953  int end_register() { return end_reg_; }
954  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
955  virtual int EatsAtLeast(int still_to_find,
956                          int recursion_depth,
957                          bool not_at_start);
958  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
959                                    RegExpCompiler* compiler,
960                                    int characters_filled_in,
961                                    bool not_at_start) {
962    return;
963  }
964  virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
965  virtual int ComputeFirstCharacterSet(int budget);
966
967 private:
968  int start_reg_;
969  int end_reg_;
970};
971
972
973class EndNode: public RegExpNode {
974 public:
975  enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
976  explicit EndNode(Action action) : action_(action) { }
977  virtual void Accept(NodeVisitor* visitor);
978  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
979  virtual int EatsAtLeast(int still_to_find,
980                          int recursion_depth,
981                          bool not_at_start) { return 0; }
982  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
983                                    RegExpCompiler* compiler,
984                                    int characters_filled_in,
985                                    bool not_at_start) {
986    // Returning 0 from EatsAtLeast should ensure we never get here.
987    UNREACHABLE();
988  }
989  virtual EndNode* Clone() { return new EndNode(*this); }
990 private:
991  Action action_;
992};
993
994
995class NegativeSubmatchSuccess: public EndNode {
996 public:
997  NegativeSubmatchSuccess(int stack_pointer_reg,
998                          int position_reg,
999                          int clear_capture_count,
1000                          int clear_capture_start)
1001      : EndNode(NEGATIVE_SUBMATCH_SUCCESS),
1002        stack_pointer_register_(stack_pointer_reg),
1003        current_position_register_(position_reg),
1004        clear_capture_count_(clear_capture_count),
1005        clear_capture_start_(clear_capture_start) { }
1006  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1007
1008 private:
1009  int stack_pointer_register_;
1010  int current_position_register_;
1011  int clear_capture_count_;
1012  int clear_capture_start_;
1013};
1014
1015
1016class Guard: public ZoneObject {
1017 public:
1018  enum Relation { LT, GEQ };
1019  Guard(int reg, Relation op, int value)
1020      : reg_(reg),
1021        op_(op),
1022        value_(value) { }
1023  int reg() { return reg_; }
1024  Relation op() { return op_; }
1025  int value() { return value_; }
1026
1027 private:
1028  int reg_;
1029  Relation op_;
1030  int value_;
1031};
1032
1033
1034class GuardedAlternative {
1035 public:
1036  explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
1037  void AddGuard(Guard* guard);
1038  RegExpNode* node() { return node_; }
1039  void set_node(RegExpNode* node) { node_ = node; }
1040  ZoneList<Guard*>* guards() { return guards_; }
1041
1042 private:
1043  RegExpNode* node_;
1044  ZoneList<Guard*>* guards_;
1045};
1046
1047
1048class AlternativeGeneration;
1049
1050
1051class ChoiceNode: public RegExpNode {
1052 public:
1053  explicit ChoiceNode(int expected_size)
1054      : alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
1055        table_(NULL),
1056        not_at_start_(false),
1057        being_calculated_(false) { }
1058  virtual void Accept(NodeVisitor* visitor);
1059  void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
1060  ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
1061  DispatchTable* GetTable(bool ignore_case);
1062  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1063  virtual int EatsAtLeast(int still_to_find,
1064                          int recursion_depth,
1065                          bool not_at_start);
1066  int EatsAtLeastHelper(int still_to_find,
1067                        int recursion_depth,
1068                        RegExpNode* ignore_this_node,
1069                        bool not_at_start);
1070  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1071                                    RegExpCompiler* compiler,
1072                                    int characters_filled_in,
1073                                    bool not_at_start);
1074  virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
1075
1076  bool being_calculated() { return being_calculated_; }
1077  bool not_at_start() { return not_at_start_; }
1078  void set_not_at_start() { not_at_start_ = true; }
1079  void set_being_calculated(bool b) { being_calculated_ = b; }
1080  virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
1081
1082 protected:
1083  int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
1084  ZoneList<GuardedAlternative>* alternatives_;
1085
1086 private:
1087  friend class DispatchTableConstructor;
1088  friend class Analysis;
1089  void GenerateGuard(RegExpMacroAssembler* macro_assembler,
1090                     Guard* guard,
1091                     Trace* trace);
1092  int CalculatePreloadCharacters(RegExpCompiler* compiler, bool not_at_start);
1093  void EmitOutOfLineContinuation(RegExpCompiler* compiler,
1094                                 Trace* trace,
1095                                 GuardedAlternative alternative,
1096                                 AlternativeGeneration* alt_gen,
1097                                 int preload_characters,
1098                                 bool next_expects_preload);
1099  DispatchTable* table_;
1100  // If true, this node is never checked at the start of the input.
1101  // Allows a new trace to start with at_start() set to false.
1102  bool not_at_start_;
1103  bool being_calculated_;
1104};
1105
1106
1107class NegativeLookaheadChoiceNode: public ChoiceNode {
1108 public:
1109  explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
1110                                       GuardedAlternative then_do_this)
1111      : ChoiceNode(2) {
1112    AddAlternative(this_must_fail);
1113    AddAlternative(then_do_this);
1114  }
1115  virtual int EatsAtLeast(int still_to_find,
1116                          int recursion_depth,
1117                          bool not_at_start);
1118  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1119                                    RegExpCompiler* compiler,
1120                                    int characters_filled_in,
1121                                    bool not_at_start);
1122  // For a negative lookahead we don't emit the quick check for the
1123  // alternative that is expected to fail.  This is because quick check code
1124  // starts by loading enough characters for the alternative that takes fewest
1125  // characters, but on a negative lookahead the negative branch did not take
1126  // part in that calculation (EatsAtLeast) so the assumptions don't hold.
1127  virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
1128  virtual int ComputeFirstCharacterSet(int budget);
1129};
1130
1131
1132class LoopChoiceNode: public ChoiceNode {
1133 public:
1134  explicit LoopChoiceNode(bool body_can_be_zero_length)
1135      : ChoiceNode(2),
1136        loop_node_(NULL),
1137        continue_node_(NULL),
1138        body_can_be_zero_length_(body_can_be_zero_length) { }
1139  void AddLoopAlternative(GuardedAlternative alt);
1140  void AddContinueAlternative(GuardedAlternative alt);
1141  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1142  virtual int EatsAtLeast(int still_to_find,
1143                          int recursion_depth,
1144                          bool not_at_start);
1145  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1146                                    RegExpCompiler* compiler,
1147                                    int characters_filled_in,
1148                                    bool not_at_start);
1149  virtual int ComputeFirstCharacterSet(int budget);
1150  virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
1151  RegExpNode* loop_node() { return loop_node_; }
1152  RegExpNode* continue_node() { return continue_node_; }
1153  bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1154  virtual void Accept(NodeVisitor* visitor);
1155
1156 private:
1157  // AddAlternative is made private for loop nodes because alternatives
1158  // should not be added freely, we need to keep track of which node
1159  // goes back to the node itself.
1160  void AddAlternative(GuardedAlternative node) {
1161    ChoiceNode::AddAlternative(node);
1162  }
1163
1164  RegExpNode* loop_node_;
1165  RegExpNode* continue_node_;
1166  bool body_can_be_zero_length_;
1167};
1168
1169
1170// There are many ways to generate code for a node.  This class encapsulates
1171// the current way we should be generating.  In other words it encapsulates
1172// the current state of the code generator.  The effect of this is that we
1173// generate code for paths that the matcher can take through the regular
1174// expression.  A given node in the regexp can be code-generated several times
1175// as it can be part of several traces.  For example for the regexp:
1176// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1177// of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
1178// to match foo is generated only once (the traces have a common prefix).  The
1179// code to store the capture is deferred and generated (twice) after the places
1180// where baz has been matched.
1181class Trace {
1182 public:
1183  // A value for a property that is either known to be true, know to be false,
1184  // or not known.
1185  enum TriBool {
1186    UNKNOWN = -1, FALSE = 0, TRUE = 1
1187  };
1188
1189  class DeferredAction {
1190   public:
1191    DeferredAction(ActionNode::Type type, int reg)
1192        : type_(type), reg_(reg), next_(NULL) { }
1193    DeferredAction* next() { return next_; }
1194    bool Mentions(int reg);
1195    int reg() { return reg_; }
1196    ActionNode::Type type() { return type_; }
1197   private:
1198    ActionNode::Type type_;
1199    int reg_;
1200    DeferredAction* next_;
1201    friend class Trace;
1202  };
1203
1204  class DeferredCapture : public DeferredAction {
1205   public:
1206    DeferredCapture(int reg, bool is_capture, Trace* trace)
1207        : DeferredAction(ActionNode::STORE_POSITION, reg),
1208          cp_offset_(trace->cp_offset()),
1209          is_capture_(is_capture) { }
1210    int cp_offset() { return cp_offset_; }
1211    bool is_capture() { return is_capture_; }
1212   private:
1213    int cp_offset_;
1214    bool is_capture_;
1215    void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1216  };
1217
1218  class DeferredSetRegister : public DeferredAction {
1219   public:
1220    DeferredSetRegister(int reg, int value)
1221        : DeferredAction(ActionNode::SET_REGISTER, reg),
1222          value_(value) { }
1223    int value() { return value_; }
1224   private:
1225    int value_;
1226  };
1227
1228  class DeferredClearCaptures : public DeferredAction {
1229   public:
1230    explicit DeferredClearCaptures(Interval range)
1231        : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1232          range_(range) { }
1233    Interval range() { return range_; }
1234   private:
1235    Interval range_;
1236  };
1237
1238  class DeferredIncrementRegister : public DeferredAction {
1239   public:
1240    explicit DeferredIncrementRegister(int reg)
1241        : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1242  };
1243
1244  Trace()
1245      : cp_offset_(0),
1246        actions_(NULL),
1247        backtrack_(NULL),
1248        stop_node_(NULL),
1249        loop_label_(NULL),
1250        characters_preloaded_(0),
1251        bound_checked_up_to_(0),
1252        flush_budget_(100),
1253        at_start_(UNKNOWN) { }
1254
1255  // End the trace.  This involves flushing the deferred actions in the trace
1256  // and pushing a backtrack location onto the backtrack stack.  Once this is
1257  // done we can start a new trace or go to one that has already been
1258  // generated.
1259  void Flush(RegExpCompiler* compiler, RegExpNode* successor);
1260  int cp_offset() { return cp_offset_; }
1261  DeferredAction* actions() { return actions_; }
1262  // A trivial trace is one that has no deferred actions or other state that
1263  // affects the assumptions used when generating code.  There is no recorded
1264  // backtrack location in a trivial trace, so with a trivial trace we will
1265  // generate code that, on a failure to match, gets the backtrack location
1266  // from the backtrack stack rather than using a direct jump instruction.  We
1267  // always start code generation with a trivial trace and non-trivial traces
1268  // are created as we emit code for nodes or add to the list of deferred
1269  // actions in the trace.  The location of the code generated for a node using
1270  // a trivial trace is recorded in a label in the node so that gotos can be
1271  // generated to that code.
1272  bool is_trivial() {
1273    return backtrack_ == NULL &&
1274           actions_ == NULL &&
1275           cp_offset_ == 0 &&
1276           characters_preloaded_ == 0 &&
1277           bound_checked_up_to_ == 0 &&
1278           quick_check_performed_.characters() == 0 &&
1279           at_start_ == UNKNOWN;
1280  }
1281  TriBool at_start() { return at_start_; }
1282  void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
1283  Label* backtrack() { return backtrack_; }
1284  Label* loop_label() { return loop_label_; }
1285  RegExpNode* stop_node() { return stop_node_; }
1286  int characters_preloaded() { return characters_preloaded_; }
1287  int bound_checked_up_to() { return bound_checked_up_to_; }
1288  int flush_budget() { return flush_budget_; }
1289  QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1290  bool mentions_reg(int reg);
1291  // Returns true if a deferred position store exists to the specified
1292  // register and stores the offset in the out-parameter.  Otherwise
1293  // returns false.
1294  bool GetStoredPosition(int reg, int* cp_offset);
1295  // These set methods and AdvanceCurrentPositionInTrace should be used only on
1296  // new traces - the intention is that traces are immutable after creation.
1297  void add_action(DeferredAction* new_action) {
1298    ASSERT(new_action->next_ == NULL);
1299    new_action->next_ = actions_;
1300    actions_ = new_action;
1301  }
1302  void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
1303  void set_stop_node(RegExpNode* node) { stop_node_ = node; }
1304  void set_loop_label(Label* label) { loop_label_ = label; }
1305  void set_characters_preloaded(int count) { characters_preloaded_ = count; }
1306  void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
1307  void set_flush_budget(int to) { flush_budget_ = to; }
1308  void set_quick_check_performed(QuickCheckDetails* d) {
1309    quick_check_performed_ = *d;
1310  }
1311  void InvalidateCurrentCharacter();
1312  void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1313
1314 private:
1315  int FindAffectedRegisters(OutSet* affected_registers);
1316  void PerformDeferredActions(RegExpMacroAssembler* macro,
1317                               int max_register,
1318                               OutSet& affected_registers,
1319                               OutSet* registers_to_pop,
1320                               OutSet* registers_to_clear);
1321  void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1322                                int max_register,
1323                                OutSet& registers_to_pop,
1324                                OutSet& registers_to_clear);
1325  int cp_offset_;
1326  DeferredAction* actions_;
1327  Label* backtrack_;
1328  RegExpNode* stop_node_;
1329  Label* loop_label_;
1330  int characters_preloaded_;
1331  int bound_checked_up_to_;
1332  QuickCheckDetails quick_check_performed_;
1333  int flush_budget_;
1334  TriBool at_start_;
1335};
1336
1337
1338class NodeVisitor {
1339 public:
1340  virtual ~NodeVisitor() { }
1341#define DECLARE_VISIT(Type)                                          \
1342  virtual void Visit##Type(Type##Node* that) = 0;
1343FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1344#undef DECLARE_VISIT
1345  virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1346};
1347
1348
1349// Node visitor used to add the start set of the alternatives to the
1350// dispatch table of a choice node.
1351class DispatchTableConstructor: public NodeVisitor {
1352 public:
1353  DispatchTableConstructor(DispatchTable* table, bool ignore_case)
1354      : table_(table),
1355        choice_index_(-1),
1356        ignore_case_(ignore_case) { }
1357
1358  void BuildTable(ChoiceNode* node);
1359
1360  void AddRange(CharacterRange range) {
1361    table()->AddRange(range, choice_index_);
1362  }
1363
1364  void AddInverse(ZoneList<CharacterRange>* ranges);
1365
1366#define DECLARE_VISIT(Type)                                          \
1367  virtual void Visit##Type(Type##Node* that);
1368FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1369#undef DECLARE_VISIT
1370
1371  DispatchTable* table() { return table_; }
1372  void set_choice_index(int value) { choice_index_ = value; }
1373
1374 protected:
1375  DispatchTable* table_;
1376  int choice_index_;
1377  bool ignore_case_;
1378};
1379
1380
1381// Assertion propagation moves information about assertions such as
1382// \b to the affected nodes.  For instance, in /.\b./ information must
1383// be propagated to the first '.' that whatever follows needs to know
1384// if it matched a word or a non-word, and to the second '.' that it
1385// has to check if it succeeds a word or non-word.  In this case the
1386// result will be something like:
1387//
1388//   +-------+        +------------+
1389//   |   .   |        |      .     |
1390//   +-------+  --->  +------------+
1391//   | word? |        | check word |
1392//   +-------+        +------------+
1393class Analysis: public NodeVisitor {
1394 public:
1395  Analysis(bool ignore_case, bool is_ascii)
1396      : ignore_case_(ignore_case),
1397        is_ascii_(is_ascii),
1398        error_message_(NULL) { }
1399  void EnsureAnalyzed(RegExpNode* node);
1400
1401#define DECLARE_VISIT(Type)                                          \
1402  virtual void Visit##Type(Type##Node* that);
1403FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1404#undef DECLARE_VISIT
1405  virtual void VisitLoopChoice(LoopChoiceNode* that);
1406
1407  bool has_failed() { return error_message_ != NULL; }
1408  const char* error_message() {
1409    ASSERT(error_message_ != NULL);
1410    return error_message_;
1411  }
1412  void fail(const char* error_message) {
1413    error_message_ = error_message;
1414  }
1415
1416 private:
1417  bool ignore_case_;
1418  bool is_ascii_;
1419  const char* error_message_;
1420
1421  DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1422};
1423
1424
1425struct RegExpCompileData {
1426  RegExpCompileData()
1427    : tree(NULL),
1428      node(NULL),
1429      simple(true),
1430      contains_anchor(false),
1431      capture_count(0) { }
1432  RegExpTree* tree;
1433  RegExpNode* node;
1434  bool simple;
1435  bool contains_anchor;
1436  Handle<String> error;
1437  int capture_count;
1438};
1439
1440
1441class RegExpEngine: public AllStatic {
1442 public:
1443  struct CompilationResult {
1444    explicit CompilationResult(const char* error_message)
1445        : error_message(error_message),
1446          code(HEAP->the_hole_value()),
1447          num_registers(0) {}
1448    CompilationResult(Object* code, int registers)
1449      : error_message(NULL),
1450        code(code),
1451        num_registers(registers) {}
1452    const char* error_message;
1453    Object* code;
1454    int num_registers;
1455  };
1456
1457  static CompilationResult Compile(RegExpCompileData* input,
1458                                   bool ignore_case,
1459                                   bool multiline,
1460                                   Handle<String> pattern,
1461                                   bool is_ascii);
1462
1463  static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1464};
1465
1466
1467class OffsetsVector {
1468 public:
1469  inline OffsetsVector(int num_registers, Isolate* isolate)
1470      : offsets_vector_length_(num_registers) {
1471    if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
1472      vector_ = NewArray<int>(offsets_vector_length_);
1473    } else {
1474      vector_ = isolate->jsregexp_static_offsets_vector();
1475    }
1476  }
1477  inline ~OffsetsVector() {
1478    if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
1479      DeleteArray(vector_);
1480      vector_ = NULL;
1481    }
1482  }
1483  inline int* vector() { return vector_; }
1484  inline int length() { return offsets_vector_length_; }
1485
1486  static const int kStaticOffsetsVectorSize = 50;
1487
1488 private:
1489  static Address static_offsets_vector_address(Isolate* isolate) {
1490    return reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector());
1491  }
1492
1493  int* vector_;
1494  int offsets_vector_length_;
1495
1496  friend class ExternalReference;
1497};
1498
1499
1500} }  // namespace v8::internal
1501
1502#endif  // V8_JSREGEXP_H_
1503