1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29#include "lithium-allocator-inl.h"
30
31#include "hydrogen.h"
32#include "string-stream.h"
33
34#if V8_TARGET_ARCH_IA32
35#include "ia32/lithium-ia32.h"
36#elif V8_TARGET_ARCH_X64
37#include "x64/lithium-x64.h"
38#elif V8_TARGET_ARCH_ARM
39#include "arm/lithium-arm.h"
40#elif V8_TARGET_ARCH_MIPS
41#include "mips/lithium-mips.h"
42#else
43#error "Unknown architecture."
44#endif
45
46namespace v8 {
47namespace internal {
48
49static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
50  return a.Value() < b.Value() ? a : b;
51}
52
53
54static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
55  return a.Value() > b.Value() ? a : b;
56}
57
58
59UsePosition::UsePosition(LifetimePosition pos, LOperand* operand)
60    : operand_(operand),
61      hint_(NULL),
62      pos_(pos),
63      next_(NULL),
64      requires_reg_(false),
65      register_beneficial_(true) {
66  if (operand_ != NULL && operand_->IsUnallocated()) {
67    LUnallocated* unalloc = LUnallocated::cast(operand_);
68    requires_reg_ = unalloc->HasRegisterPolicy();
69    register_beneficial_ = !unalloc->HasAnyPolicy();
70  }
71  ASSERT(pos_.IsValid());
72}
73
74
75bool UsePosition::HasHint() const {
76  return hint_ != NULL && !hint_->IsUnallocated();
77}
78
79
80bool UsePosition::RequiresRegister() const {
81  return requires_reg_;
82}
83
84
85bool UsePosition::RegisterIsBeneficial() const {
86  return register_beneficial_;
87}
88
89
90void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
91  ASSERT(Contains(pos) && pos.Value() != start().Value());
92  UseInterval* after = new(zone) UseInterval(pos, end_);
93  after->next_ = next_;
94  next_ = after;
95  end_ = pos;
96}
97
98
99#ifdef DEBUG
100
101
102void LiveRange::Verify() const {
103  UsePosition* cur = first_pos_;
104  while (cur != NULL) {
105    ASSERT(Start().Value() <= cur->pos().Value() &&
106           cur->pos().Value() <= End().Value());
107    cur = cur->next();
108  }
109}
110
111
112bool LiveRange::HasOverlap(UseInterval* target) const {
113  UseInterval* current_interval = first_interval_;
114  while (current_interval != NULL) {
115    // Intervals overlap if the start of one is contained in the other.
116    if (current_interval->Contains(target->start()) ||
117        target->Contains(current_interval->start())) {
118      return true;
119    }
120    current_interval = current_interval->next();
121  }
122  return false;
123}
124
125
126#endif
127
128
129LiveRange::LiveRange(int id, Zone* zone)
130    : id_(id),
131      spilled_(false),
132      is_double_(false),
133      assigned_register_(kInvalidAssignment),
134      last_interval_(NULL),
135      first_interval_(NULL),
136      first_pos_(NULL),
137      parent_(NULL),
138      next_(NULL),
139      current_interval_(NULL),
140      last_processed_use_(NULL),
141      spill_operand_(new(zone) LOperand()),
142      spill_start_index_(kMaxInt) { }
143
144
145void LiveRange::set_assigned_register(int reg,
146                                      RegisterKind register_kind,
147                                      Zone* zone) {
148  ASSERT(!HasRegisterAssigned() && !IsSpilled());
149  assigned_register_ = reg;
150  is_double_ = (register_kind == DOUBLE_REGISTERS);
151  ConvertOperands(zone);
152}
153
154
155void LiveRange::MakeSpilled(Zone* zone) {
156  ASSERT(!IsSpilled());
157  ASSERT(TopLevel()->HasAllocatedSpillOperand());
158  spilled_ = true;
159  assigned_register_ = kInvalidAssignment;
160  ConvertOperands(zone);
161}
162
163
164bool LiveRange::HasAllocatedSpillOperand() const {
165  ASSERT(spill_operand_ != NULL);
166  return !spill_operand_->IsIgnored();
167}
168
169
170void LiveRange::SetSpillOperand(LOperand* operand) {
171  ASSERT(!operand->IsUnallocated());
172  ASSERT(spill_operand_ != NULL);
173  ASSERT(spill_operand_->IsIgnored());
174  spill_operand_->ConvertTo(operand->kind(), operand->index());
175}
176
177
178UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
179  UsePosition* use_pos = last_processed_use_;
180  if (use_pos == NULL) use_pos = first_pos();
181  while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
182    use_pos = use_pos->next();
183  }
184  last_processed_use_ = use_pos;
185  return use_pos;
186}
187
188
189UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
190    LifetimePosition start) {
191  UsePosition* pos = NextUsePosition(start);
192  while (pos != NULL && !pos->RegisterIsBeneficial()) {
193    pos = pos->next();
194  }
195  return pos;
196}
197
198
199UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
200  UsePosition* pos = NextUsePosition(start);
201  while (pos != NULL && !pos->RequiresRegister()) {
202    pos = pos->next();
203  }
204  return pos;
205}
206
207
208bool LiveRange::CanBeSpilled(LifetimePosition pos) {
209  // TODO(kmillikin): Comment. Now.
210  if (pos.Value() <= Start().Value() && HasRegisterAssigned()) return false;
211
212  // We cannot spill a live range that has a use requiring a register
213  // at the current or the immediate next position.
214  UsePosition* use_pos = NextRegisterPosition(pos);
215  if (use_pos == NULL) return true;
216  return
217      use_pos->pos().Value() > pos.NextInstruction().InstructionEnd().Value();
218}
219
220
221UsePosition* LiveRange::FirstPosWithHint() const {
222  UsePosition* pos = first_pos_;
223  while (pos != NULL && !pos->HasHint()) pos = pos->next();
224  return pos;
225}
226
227
228LOperand* LiveRange::CreateAssignedOperand(Zone* zone) {
229  LOperand* op = NULL;
230  if (HasRegisterAssigned()) {
231    ASSERT(!IsSpilled());
232    if (IsDouble()) {
233      op = LDoubleRegister::Create(assigned_register());
234    } else {
235      op = LRegister::Create(assigned_register());
236    }
237  } else if (IsSpilled()) {
238    ASSERT(!HasRegisterAssigned());
239    op = TopLevel()->GetSpillOperand();
240    ASSERT(!op->IsUnallocated());
241  } else {
242    LUnallocated* unalloc = new(zone) LUnallocated(LUnallocated::NONE);
243    unalloc->set_virtual_register(id_);
244    op = unalloc;
245  }
246  return op;
247}
248
249
250UseInterval* LiveRange::FirstSearchIntervalForPosition(
251    LifetimePosition position) const {
252  if (current_interval_ == NULL) return first_interval_;
253  if (current_interval_->start().Value() > position.Value()) {
254    current_interval_ = NULL;
255    return first_interval_;
256  }
257  return current_interval_;
258}
259
260
261void LiveRange::AdvanceLastProcessedMarker(
262    UseInterval* to_start_of, LifetimePosition but_not_past) const {
263  if (to_start_of == NULL) return;
264  if (to_start_of->start().Value() > but_not_past.Value()) return;
265  LifetimePosition start =
266      current_interval_ == NULL ? LifetimePosition::Invalid()
267                                : current_interval_->start();
268  if (to_start_of->start().Value() > start.Value()) {
269    current_interval_ = to_start_of;
270  }
271}
272
273
274void LiveRange::SplitAt(LifetimePosition position,
275                        LiveRange* result,
276                        Zone* zone) {
277  ASSERT(Start().Value() < position.Value());
278  ASSERT(result->IsEmpty());
279  // Find the last interval that ends before the position. If the
280  // position is contained in one of the intervals in the chain, we
281  // split that interval and use the first part.
282  UseInterval* current = FirstSearchIntervalForPosition(position);
283
284  // If the split position coincides with the beginning of a use interval
285  // we need to split use positons in a special way.
286  bool split_at_start = false;
287
288  if (current->start().Value() == position.Value()) {
289    // When splitting at start we need to locate the previous use interval.
290    current = first_interval_;
291  }
292
293  while (current != NULL) {
294    if (current->Contains(position)) {
295      current->SplitAt(position, zone);
296      break;
297    }
298    UseInterval* next = current->next();
299    if (next->start().Value() >= position.Value()) {
300      split_at_start = (next->start().Value() == position.Value());
301      break;
302    }
303    current = next;
304  }
305
306  // Partition original use intervals to the two live ranges.
307  UseInterval* before = current;
308  UseInterval* after = before->next();
309  result->last_interval_ = (last_interval_ == before)
310      ? after            // Only interval in the range after split.
311      : last_interval_;  // Last interval of the original range.
312  result->first_interval_ = after;
313  last_interval_ = before;
314
315  // Find the last use position before the split and the first use
316  // position after it.
317  UsePosition* use_after = first_pos_;
318  UsePosition* use_before = NULL;
319  if (split_at_start) {
320    // The split position coincides with the beginning of a use interval (the
321    // end of a lifetime hole). Use at this position should be attributed to
322    // the split child because split child owns use interval covering it.
323    while (use_after != NULL && use_after->pos().Value() < position.Value()) {
324      use_before = use_after;
325      use_after = use_after->next();
326    }
327  } else {
328    while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
329      use_before = use_after;
330      use_after = use_after->next();
331    }
332  }
333
334  // Partition original use positions to the two live ranges.
335  if (use_before != NULL) {
336    use_before->next_ = NULL;
337  } else {
338    first_pos_ = NULL;
339  }
340  result->first_pos_ = use_after;
341
342  // Discard cached iteration state. It might be pointing
343  // to the use that no longer belongs to this live range.
344  last_processed_use_ = NULL;
345  current_interval_ = NULL;
346
347  // Link the new live range in the chain before any of the other
348  // ranges linked from the range before the split.
349  result->parent_ = (parent_ == NULL) ? this : parent_;
350  result->next_ = next_;
351  next_ = result;
352
353#ifdef DEBUG
354  Verify();
355  result->Verify();
356#endif
357}
358
359
360// This implements an ordering on live ranges so that they are ordered by their
361// start positions.  This is needed for the correctness of the register
362// allocation algorithm.  If two live ranges start at the same offset then there
363// is a tie breaker based on where the value is first used.  This part of the
364// ordering is merely a heuristic.
365bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
366  LifetimePosition start = Start();
367  LifetimePosition other_start = other->Start();
368  if (start.Value() == other_start.Value()) {
369    UsePosition* pos = FirstPosWithHint();
370    if (pos == NULL) return false;
371    UsePosition* other_pos = other->first_pos();
372    if (other_pos == NULL) return true;
373    return pos->pos().Value() < other_pos->pos().Value();
374  }
375  return start.Value() < other_start.Value();
376}
377
378
379void LiveRange::ShortenTo(LifetimePosition start) {
380  LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value());
381  ASSERT(first_interval_ != NULL);
382  ASSERT(first_interval_->start().Value() <= start.Value());
383  ASSERT(start.Value() < first_interval_->end().Value());
384  first_interval_->set_start(start);
385}
386
387
388void LiveRange::EnsureInterval(LifetimePosition start,
389                               LifetimePosition end,
390                               Zone* zone) {
391  LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
392                         id_,
393                         start.Value(),
394                         end.Value());
395  LifetimePosition new_end = end;
396  while (first_interval_ != NULL &&
397         first_interval_->start().Value() <= end.Value()) {
398    if (first_interval_->end().Value() > end.Value()) {
399      new_end = first_interval_->end();
400    }
401    first_interval_ = first_interval_->next();
402  }
403
404  UseInterval* new_interval = new(zone) UseInterval(start, new_end);
405  new_interval->next_ = first_interval_;
406  first_interval_ = new_interval;
407  if (new_interval->next() == NULL) {
408    last_interval_ = new_interval;
409  }
410}
411
412
413void LiveRange::AddUseInterval(LifetimePosition start,
414                               LifetimePosition end,
415                               Zone* zone) {
416  LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n",
417                         id_,
418                         start.Value(),
419                         end.Value());
420  if (first_interval_ == NULL) {
421    UseInterval* interval = new(zone) UseInterval(start, end);
422    first_interval_ = interval;
423    last_interval_ = interval;
424  } else {
425    if (end.Value() == first_interval_->start().Value()) {
426      first_interval_->set_start(start);
427    } else if (end.Value() < first_interval_->start().Value()) {
428      UseInterval* interval = new(zone) UseInterval(start, end);
429      interval->set_next(first_interval_);
430      first_interval_ = interval;
431    } else {
432      // Order of instruction's processing (see ProcessInstructions) guarantees
433      // that each new use interval either precedes or intersects with
434      // last added interval.
435      ASSERT(start.Value() < first_interval_->end().Value());
436      first_interval_->start_ = Min(start, first_interval_->start_);
437      first_interval_->end_ = Max(end, first_interval_->end_);
438    }
439  }
440}
441
442
443UsePosition* LiveRange::AddUsePosition(LifetimePosition pos,
444                                       LOperand* operand,
445                                       Zone* zone) {
446  LAllocator::TraceAlloc("Add to live range %d use position %d\n",
447                         id_,
448                         pos.Value());
449  UsePosition* use_pos = new(zone) UsePosition(pos, operand);
450  UsePosition* prev = NULL;
451  UsePosition* current = first_pos_;
452  while (current != NULL && current->pos().Value() < pos.Value()) {
453    prev = current;
454    current = current->next();
455  }
456
457  if (prev == NULL) {
458    use_pos->set_next(first_pos_);
459    first_pos_ = use_pos;
460  } else {
461    use_pos->next_ = prev->next_;
462    prev->next_ = use_pos;
463  }
464
465  return use_pos;
466}
467
468
469void LiveRange::ConvertOperands(Zone* zone) {
470  LOperand* op = CreateAssignedOperand(zone);
471  UsePosition* use_pos = first_pos();
472  while (use_pos != NULL) {
473    ASSERT(Start().Value() <= use_pos->pos().Value() &&
474           use_pos->pos().Value() <= End().Value());
475
476    if (use_pos->HasOperand()) {
477      ASSERT(op->IsRegister() || op->IsDoubleRegister() ||
478             !use_pos->RequiresRegister());
479      use_pos->operand()->ConvertTo(op->kind(), op->index());
480    }
481    use_pos = use_pos->next();
482  }
483}
484
485
486bool LiveRange::CanCover(LifetimePosition position) const {
487  if (IsEmpty()) return false;
488  return Start().Value() <= position.Value() &&
489         position.Value() < End().Value();
490}
491
492
493bool LiveRange::Covers(LifetimePosition position) {
494  if (!CanCover(position)) return false;
495  UseInterval* start_search = FirstSearchIntervalForPosition(position);
496  for (UseInterval* interval = start_search;
497       interval != NULL;
498       interval = interval->next()) {
499    ASSERT(interval->next() == NULL ||
500           interval->next()->start().Value() >= interval->start().Value());
501    AdvanceLastProcessedMarker(interval, position);
502    if (interval->Contains(position)) return true;
503    if (interval->start().Value() > position.Value()) return false;
504  }
505  return false;
506}
507
508
509LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
510  UseInterval* b = other->first_interval();
511  if (b == NULL) return LifetimePosition::Invalid();
512  LifetimePosition advance_last_processed_up_to = b->start();
513  UseInterval* a = FirstSearchIntervalForPosition(b->start());
514  while (a != NULL && b != NULL) {
515    if (a->start().Value() > other->End().Value()) break;
516    if (b->start().Value() > End().Value()) break;
517    LifetimePosition cur_intersection = a->Intersect(b);
518    if (cur_intersection.IsValid()) {
519      return cur_intersection;
520    }
521    if (a->start().Value() < b->start().Value()) {
522      a = a->next();
523      if (a == NULL || a->start().Value() > other->End().Value()) break;
524      AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
525    } else {
526      b = b->next();
527    }
528  }
529  return LifetimePosition::Invalid();
530}
531
532
533LAllocator::LAllocator(int num_values, HGraph* graph)
534    : zone_(graph->zone()),
535      chunk_(NULL),
536      live_in_sets_(graph->blocks()->length()),
537      live_ranges_(num_values * 2),
538      fixed_live_ranges_(NULL),
539      fixed_double_live_ranges_(NULL),
540      unhandled_live_ranges_(num_values * 2),
541      active_live_ranges_(8),
542      inactive_live_ranges_(8),
543      reusable_slots_(8),
544      next_virtual_register_(num_values),
545      first_artificial_register_(num_values),
546      mode_(GENERAL_REGISTERS),
547      num_registers_(-1),
548      graph_(graph),
549      has_osr_entry_(false),
550      allocation_ok_(true) { }
551
552
553void LAllocator::InitializeLivenessAnalysis() {
554  // Initialize the live_in sets for each block to NULL.
555  int block_count = graph_->blocks()->length();
556  live_in_sets_.Initialize(block_count);
557  live_in_sets_.AddBlock(NULL, block_count);
558}
559
560
561BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) {
562  // Compute live out for the given block, except not including backward
563  // successor edges.
564  BitVector* live_out = new(zone_) BitVector(next_virtual_register_, zone_);
565
566  // Process all successor blocks.
567  for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
568    // Add values live on entry to the successor. Note the successor's
569    // live_in will not be computed yet for backwards edges.
570    HBasicBlock* successor = it.Current();
571    BitVector* live_in = live_in_sets_[successor->block_id()];
572    if (live_in != NULL) live_out->Union(*live_in);
573
574    // All phi input operands corresponding to this successor edge are live
575    // out from this block.
576    int index = successor->PredecessorIndexOf(block);
577    const ZoneList<HPhi*>* phis = successor->phis();
578    for (int i = 0; i < phis->length(); ++i) {
579      HPhi* phi = phis->at(i);
580      if (!phi->OperandAt(index)->IsConstant()) {
581        live_out->Add(phi->OperandAt(index)->id());
582      }
583    }
584  }
585
586  return live_out;
587}
588
589
590void LAllocator::AddInitialIntervals(HBasicBlock* block,
591                                     BitVector* live_out) {
592  // Add an interval that includes the entire block to the live range for
593  // each live_out value.
594  LifetimePosition start = LifetimePosition::FromInstructionIndex(
595      block->first_instruction_index());
596  LifetimePosition end = LifetimePosition::FromInstructionIndex(
597      block->last_instruction_index()).NextInstruction();
598  BitVector::Iterator iterator(live_out);
599  while (!iterator.Done()) {
600    int operand_index = iterator.Current();
601    LiveRange* range = LiveRangeFor(operand_index);
602    range->AddUseInterval(start, end, zone_);
603    iterator.Advance();
604  }
605}
606
607
608int LAllocator::FixedDoubleLiveRangeID(int index) {
609  return -index - 1 - Register::kNumAllocatableRegisters;
610}
611
612
613LOperand* LAllocator::AllocateFixed(LUnallocated* operand,
614                                    int pos,
615                                    bool is_tagged) {
616  TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
617  ASSERT(operand->HasFixedPolicy());
618  if (operand->policy() == LUnallocated::FIXED_SLOT) {
619    operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_index());
620  } else if (operand->policy() == LUnallocated::FIXED_REGISTER) {
621    int reg_index = operand->fixed_index();
622    operand->ConvertTo(LOperand::REGISTER, reg_index);
623  } else if (operand->policy() == LUnallocated::FIXED_DOUBLE_REGISTER) {
624    int reg_index = operand->fixed_index();
625    operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index);
626  } else {
627    UNREACHABLE();
628  }
629  if (is_tagged) {
630    TraceAlloc("Fixed reg is tagged at %d\n", pos);
631    LInstruction* instr = InstructionAt(pos);
632    if (instr->HasPointerMap()) {
633      instr->pointer_map()->RecordPointer(operand);
634    }
635  }
636  return operand;
637}
638
639
640LiveRange* LAllocator::FixedLiveRangeFor(int index) {
641  ASSERT(index < Register::kNumAllocatableRegisters);
642  LiveRange* result = fixed_live_ranges_[index];
643  if (result == NULL) {
644    result = new(zone_) LiveRange(FixedLiveRangeID(index), zone_);
645    ASSERT(result->IsFixed());
646    result->set_assigned_register(index, GENERAL_REGISTERS, zone_);
647    fixed_live_ranges_[index] = result;
648  }
649  return result;
650}
651
652
653LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) {
654  ASSERT(index < DoubleRegister::kNumAllocatableRegisters);
655  LiveRange* result = fixed_double_live_ranges_[index];
656  if (result == NULL) {
657    result = new(zone_) LiveRange(FixedDoubleLiveRangeID(index), zone_);
658    ASSERT(result->IsFixed());
659    result->set_assigned_register(index, DOUBLE_REGISTERS, zone_);
660    fixed_double_live_ranges_[index] = result;
661  }
662  return result;
663}
664
665
666LiveRange* LAllocator::LiveRangeFor(int index) {
667  if (index >= live_ranges_.length()) {
668    live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1);
669  }
670  LiveRange* result = live_ranges_[index];
671  if (result == NULL) {
672    result = new(zone_) LiveRange(index, zone_);
673    live_ranges_[index] = result;
674  }
675  return result;
676}
677
678
679LGap* LAllocator::GetLastGap(HBasicBlock* block) {
680  int last_instruction = block->last_instruction_index();
681  int index = chunk_->NearestGapPos(last_instruction);
682  return GapAt(index);
683}
684
685
686HPhi* LAllocator::LookupPhi(LOperand* operand) const {
687  if (!operand->IsUnallocated()) return NULL;
688  int index = LUnallocated::cast(operand)->virtual_register();
689  HValue* instr = graph_->LookupValue(index);
690  if (instr != NULL && instr->IsPhi()) {
691    return HPhi::cast(instr);
692  }
693  return NULL;
694}
695
696
697LiveRange* LAllocator::LiveRangeFor(LOperand* operand) {
698  if (operand->IsUnallocated()) {
699    return LiveRangeFor(LUnallocated::cast(operand)->virtual_register());
700  } else if (operand->IsRegister()) {
701    return FixedLiveRangeFor(operand->index());
702  } else if (operand->IsDoubleRegister()) {
703    return FixedDoubleLiveRangeFor(operand->index());
704  } else {
705    return NULL;
706  }
707}
708
709
710void LAllocator::Define(LifetimePosition position,
711                        LOperand* operand,
712                        LOperand* hint) {
713  LiveRange* range = LiveRangeFor(operand);
714  if (range == NULL) return;
715
716  if (range->IsEmpty() || range->Start().Value() > position.Value()) {
717    // Can happen if there is a definition without use.
718    range->AddUseInterval(position, position.NextInstruction(), zone_);
719    range->AddUsePosition(position.NextInstruction(), NULL, zone_);
720  } else {
721    range->ShortenTo(position);
722  }
723
724  if (operand->IsUnallocated()) {
725    LUnallocated* unalloc_operand = LUnallocated::cast(operand);
726    range->AddUsePosition(position, unalloc_operand, zone_)->set_hint(hint);
727  }
728}
729
730
731void LAllocator::Use(LifetimePosition block_start,
732                     LifetimePosition position,
733                     LOperand* operand,
734                     LOperand* hint) {
735  LiveRange* range = LiveRangeFor(operand);
736  if (range == NULL) return;
737  if (operand->IsUnallocated()) {
738    LUnallocated* unalloc_operand = LUnallocated::cast(operand);
739    range->AddUsePosition(position, unalloc_operand, zone_)->set_hint(hint);
740  }
741  range->AddUseInterval(block_start, position, zone_);
742}
743
744
745void LAllocator::AddConstraintsGapMove(int index,
746                                       LOperand* from,
747                                       LOperand* to) {
748  LGap* gap = GapAt(index);
749  LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START);
750  if (from->IsUnallocated()) {
751    const ZoneList<LMoveOperands>* move_operands = move->move_operands();
752    for (int i = 0; i < move_operands->length(); ++i) {
753      LMoveOperands cur = move_operands->at(i);
754      LOperand* cur_to = cur.destination();
755      if (cur_to->IsUnallocated()) {
756        if (LUnallocated::cast(cur_to)->virtual_register() ==
757            LUnallocated::cast(from)->virtual_register()) {
758          move->AddMove(cur.source(), to);
759          return;
760        }
761      }
762    }
763  }
764  move->AddMove(from, to);
765}
766
767
768void LAllocator::MeetRegisterConstraints(HBasicBlock* block) {
769  int start = block->first_instruction_index();
770  int end = block->last_instruction_index();
771  for (int i = start; i <= end; ++i) {
772    if (IsGapAt(i)) {
773      LInstruction* instr = NULL;
774      LInstruction* prev_instr = NULL;
775      if (i < end) instr = InstructionAt(i + 1);
776      if (i > start) prev_instr = InstructionAt(i - 1);
777      MeetConstraintsBetween(prev_instr, instr, i);
778      if (!AllocationOk()) return;
779    }
780  }
781}
782
783
784void LAllocator::MeetConstraintsBetween(LInstruction* first,
785                                        LInstruction* second,
786                                        int gap_index) {
787  // Handle fixed temporaries.
788  if (first != NULL) {
789    for (TempIterator it(first); !it.Done(); it.Advance()) {
790      LUnallocated* temp = LUnallocated::cast(it.Current());
791      if (temp->HasFixedPolicy()) {
792        AllocateFixed(temp, gap_index - 1, false);
793      }
794    }
795  }
796
797  // Handle fixed output operand.
798  if (first != NULL && first->Output() != NULL) {
799    LUnallocated* first_output = LUnallocated::cast(first->Output());
800    LiveRange* range = LiveRangeFor(first_output->virtual_register());
801    bool assigned = false;
802    if (first_output->HasFixedPolicy()) {
803      LUnallocated* output_copy = first_output->CopyUnconstrained();
804      bool is_tagged = HasTaggedValue(first_output->virtual_register());
805      AllocateFixed(first_output, gap_index, is_tagged);
806
807      // This value is produced on the stack, we never need to spill it.
808      if (first_output->IsStackSlot()) {
809        range->SetSpillOperand(first_output);
810        range->SetSpillStartIndex(gap_index - 1);
811        assigned = true;
812      }
813      chunk_->AddGapMove(gap_index, first_output, output_copy);
814    }
815
816    if (!assigned) {
817      range->SetSpillStartIndex(gap_index);
818
819      // This move to spill operand is not a real use. Liveness analysis
820      // and splitting of live ranges do not account for it.
821      // Thus it should be inserted to a lifetime position corresponding to
822      // the instruction end.
823      LGap* gap = GapAt(gap_index);
824      LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE);
825      move->AddMove(first_output, range->GetSpillOperand());
826    }
827  }
828
829  // Handle fixed input operands of second instruction.
830  if (second != NULL) {
831    for (UseIterator it(second); !it.Done(); it.Advance()) {
832      LUnallocated* cur_input = LUnallocated::cast(it.Current());
833      if (cur_input->HasFixedPolicy()) {
834        LUnallocated* input_copy = cur_input->CopyUnconstrained();
835        bool is_tagged = HasTaggedValue(cur_input->virtual_register());
836        AllocateFixed(cur_input, gap_index + 1, is_tagged);
837        AddConstraintsGapMove(gap_index, input_copy, cur_input);
838      } else if (cur_input->policy() == LUnallocated::WRITABLE_REGISTER) {
839        // The live range of writable input registers always goes until the end
840        // of the instruction.
841        ASSERT(!cur_input->IsUsedAtStart());
842
843        LUnallocated* input_copy = cur_input->CopyUnconstrained();
844        cur_input->set_virtual_register(GetVirtualRegister());
845        if (!AllocationOk()) return;
846
847        if (RequiredRegisterKind(input_copy->virtual_register()) ==
848            DOUBLE_REGISTERS) {
849          double_artificial_registers_.Add(
850              cur_input->virtual_register() - first_artificial_register_,
851              zone_);
852        }
853
854        AddConstraintsGapMove(gap_index, input_copy, cur_input);
855      }
856    }
857  }
858
859  // Handle "output same as input" for second instruction.
860  if (second != NULL && second->Output() != NULL) {
861    LUnallocated* second_output = LUnallocated::cast(second->Output());
862    if (second_output->HasSameAsInputPolicy()) {
863      LUnallocated* cur_input = LUnallocated::cast(second->FirstInput());
864      int output_vreg = second_output->virtual_register();
865      int input_vreg = cur_input->virtual_register();
866
867      LUnallocated* input_copy = cur_input->CopyUnconstrained();
868      cur_input->set_virtual_register(second_output->virtual_register());
869      AddConstraintsGapMove(gap_index, input_copy, cur_input);
870
871      if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
872        int index = gap_index + 1;
873        LInstruction* instr = InstructionAt(index);
874        if (instr->HasPointerMap()) {
875          instr->pointer_map()->RecordPointer(input_copy);
876        }
877      } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
878        // The input is assumed to immediately have a tagged representation,
879        // before the pointer map can be used. I.e. the pointer map at the
880        // instruction will include the output operand (whose value at the
881        // beginning of the instruction is equal to the input operand). If
882        // this is not desired, then the pointer map at this instruction needs
883        // to be adjusted manually.
884      }
885    }
886  }
887}
888
889
890void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) {
891  int block_start = block->first_instruction_index();
892  int index = block->last_instruction_index();
893
894  LifetimePosition block_start_position =
895      LifetimePosition::FromInstructionIndex(block_start);
896
897  while (index >= block_start) {
898    LifetimePosition curr_position =
899        LifetimePosition::FromInstructionIndex(index);
900
901    if (IsGapAt(index)) {
902      // We have a gap at this position.
903      LGap* gap = GapAt(index);
904      LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START);
905      const ZoneList<LMoveOperands>* move_operands = move->move_operands();
906      for (int i = 0; i < move_operands->length(); ++i) {
907        LMoveOperands* cur = &move_operands->at(i);
908        if (cur->IsIgnored()) continue;
909        LOperand* from = cur->source();
910        LOperand* to = cur->destination();
911        HPhi* phi = LookupPhi(to);
912        LOperand* hint = to;
913        if (phi != NULL) {
914          // This is a phi resolving move.
915          if (!phi->block()->IsLoopHeader()) {
916            hint = LiveRangeFor(phi->id())->FirstHint();
917          }
918        } else {
919          if (to->IsUnallocated()) {
920            if (live->Contains(LUnallocated::cast(to)->virtual_register())) {
921              Define(curr_position, to, from);
922              live->Remove(LUnallocated::cast(to)->virtual_register());
923            } else {
924              cur->Eliminate();
925              continue;
926            }
927          } else {
928            Define(curr_position, to, from);
929          }
930        }
931        Use(block_start_position, curr_position, from, hint);
932        if (from->IsUnallocated()) {
933          live->Add(LUnallocated::cast(from)->virtual_register());
934        }
935      }
936    } else {
937      ASSERT(!IsGapAt(index));
938      LInstruction* instr = InstructionAt(index);
939
940      if (instr != NULL) {
941        LOperand* output = instr->Output();
942        if (output != NULL) {
943          if (output->IsUnallocated()) {
944            live->Remove(LUnallocated::cast(output)->virtual_register());
945          }
946          Define(curr_position, output, NULL);
947        }
948
949        if (instr->IsMarkedAsCall()) {
950          for (int i = 0; i < Register::kNumAllocatableRegisters; ++i) {
951            if (output == NULL || !output->IsRegister() ||
952                output->index() != i) {
953              LiveRange* range = FixedLiveRangeFor(i);
954              range->AddUseInterval(curr_position,
955                                    curr_position.InstructionEnd(),
956                                    zone_);
957            }
958          }
959        }
960
961        if (instr->IsMarkedAsCall() || instr->IsMarkedAsSaveDoubles()) {
962          for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; ++i) {
963            if (output == NULL || !output->IsDoubleRegister() ||
964                output->index() != i) {
965              LiveRange* range = FixedDoubleLiveRangeFor(i);
966              range->AddUseInterval(curr_position,
967                                    curr_position.InstructionEnd(),
968                                    zone_);
969            }
970          }
971        }
972
973        for (UseIterator it(instr); !it.Done(); it.Advance()) {
974          LOperand* input = it.Current();
975
976          LifetimePosition use_pos;
977          if (input->IsUnallocated() &&
978              LUnallocated::cast(input)->IsUsedAtStart()) {
979            use_pos = curr_position;
980          } else {
981            use_pos = curr_position.InstructionEnd();
982          }
983
984          Use(block_start_position, use_pos, input, NULL);
985          if (input->IsUnallocated()) {
986            live->Add(LUnallocated::cast(input)->virtual_register());
987          }
988        }
989
990        for (TempIterator it(instr); !it.Done(); it.Advance()) {
991          LOperand* temp = it.Current();
992          if (instr->IsMarkedAsCall()) {
993            if (temp->IsRegister()) continue;
994            if (temp->IsUnallocated()) {
995              LUnallocated* temp_unalloc = LUnallocated::cast(temp);
996              if (temp_unalloc->HasFixedPolicy()) {
997                continue;
998              }
999            }
1000          }
1001          Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
1002          Define(curr_position, temp, NULL);
1003        }
1004      }
1005    }
1006
1007    index = index - 1;
1008  }
1009}
1010
1011
1012void LAllocator::ResolvePhis(HBasicBlock* block) {
1013  const ZoneList<HPhi*>* phis = block->phis();
1014  for (int i = 0; i < phis->length(); ++i) {
1015    HPhi* phi = phis->at(i);
1016    LUnallocated* phi_operand = new(zone_) LUnallocated(LUnallocated::NONE);
1017    phi_operand->set_virtual_register(phi->id());
1018    for (int j = 0; j < phi->OperandCount(); ++j) {
1019      HValue* op = phi->OperandAt(j);
1020      LOperand* operand = NULL;
1021      if (op->IsConstant() && op->EmitAtUses()) {
1022        HConstant* constant = HConstant::cast(op);
1023        operand = chunk_->DefineConstantOperand(constant);
1024      } else {
1025        ASSERT(!op->EmitAtUses());
1026        LUnallocated* unalloc = new(zone_) LUnallocated(LUnallocated::ANY);
1027        unalloc->set_virtual_register(op->id());
1028        operand = unalloc;
1029      }
1030      HBasicBlock* cur_block = block->predecessors()->at(j);
1031      // The gap move must be added without any special processing as in
1032      // the AddConstraintsGapMove.
1033      chunk_->AddGapMove(cur_block->last_instruction_index() - 1,
1034                         operand,
1035                         phi_operand);
1036
1037      // We are going to insert a move before the branch instruction.
1038      // Some branch instructions (e.g. loops' back edges)
1039      // can potentially cause a GC so they have a pointer map.
1040      // By inserting a move we essentially create a copy of a
1041      // value which is invisible to PopulatePointerMaps(), because we store
1042      // it into a location different from the operand of a live range
1043      // covering a branch instruction.
1044      // Thus we need to manually record a pointer.
1045      LInstruction* branch =
1046          InstructionAt(cur_block->last_instruction_index());
1047      if (branch->HasPointerMap()) {
1048        if (phi->representation().IsTagged()) {
1049          branch->pointer_map()->RecordPointer(phi_operand);
1050        } else if (!phi->representation().IsDouble()) {
1051          branch->pointer_map()->RecordUntagged(phi_operand);
1052        }
1053      }
1054    }
1055
1056    LiveRange* live_range = LiveRangeFor(phi->id());
1057    LLabel* label = chunk_->GetLabel(phi->block()->block_id());
1058    label->GetOrCreateParallelMove(LGap::START)->
1059        AddMove(phi_operand, live_range->GetSpillOperand());
1060    live_range->SetSpillStartIndex(phi->block()->first_instruction_index());
1061  }
1062}
1063
1064
1065bool LAllocator::Allocate(LChunk* chunk) {
1066  ASSERT(chunk_ == NULL);
1067  chunk_ = chunk;
1068  MeetRegisterConstraints();
1069  if (!AllocationOk()) return false;
1070  ResolvePhis();
1071  BuildLiveRanges();
1072  AllocateGeneralRegisters();
1073  if (!AllocationOk()) return false;
1074  AllocateDoubleRegisters();
1075  if (!AllocationOk()) return false;
1076  PopulatePointerMaps();
1077  if (has_osr_entry_) ProcessOsrEntry();
1078  ConnectRanges();
1079  ResolveControlFlow();
1080  return true;
1081}
1082
1083
1084void LAllocator::MeetRegisterConstraints() {
1085  HPhase phase("L_Register constraints", chunk_);
1086  first_artificial_register_ = next_virtual_register_;
1087  const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1088  for (int i = 0; i < blocks->length(); ++i) {
1089    HBasicBlock* block = blocks->at(i);
1090    MeetRegisterConstraints(block);
1091    if (!AllocationOk()) return;
1092  }
1093}
1094
1095
1096void LAllocator::ResolvePhis() {
1097  HPhase phase("L_Resolve phis", chunk_);
1098
1099  // Process the blocks in reverse order.
1100  const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1101  for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1102    HBasicBlock* block = blocks->at(block_id);
1103    ResolvePhis(block);
1104  }
1105}
1106
1107
1108void LAllocator::ResolveControlFlow(LiveRange* range,
1109                                    HBasicBlock* block,
1110                                    HBasicBlock* pred) {
1111  LifetimePosition pred_end =
1112      LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
1113  LifetimePosition cur_start =
1114      LifetimePosition::FromInstructionIndex(block->first_instruction_index());
1115  LiveRange* pred_cover = NULL;
1116  LiveRange* cur_cover = NULL;
1117  LiveRange* cur_range = range;
1118  while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
1119    if (cur_range->CanCover(cur_start)) {
1120      ASSERT(cur_cover == NULL);
1121      cur_cover = cur_range;
1122    }
1123    if (cur_range->CanCover(pred_end)) {
1124      ASSERT(pred_cover == NULL);
1125      pred_cover = cur_range;
1126    }
1127    cur_range = cur_range->next();
1128  }
1129
1130  if (cur_cover->IsSpilled()) return;
1131  ASSERT(pred_cover != NULL && cur_cover != NULL);
1132  if (pred_cover != cur_cover) {
1133    LOperand* pred_op = pred_cover->CreateAssignedOperand(zone_);
1134    LOperand* cur_op = cur_cover->CreateAssignedOperand(zone_);
1135    if (!pred_op->Equals(cur_op)) {
1136      LGap* gap = NULL;
1137      if (block->predecessors()->length() == 1) {
1138        gap = GapAt(block->first_instruction_index());
1139      } else {
1140        ASSERT(pred->end()->SecondSuccessor() == NULL);
1141        gap = GetLastGap(pred);
1142
1143        // We are going to insert a move before the branch instruction.
1144        // Some branch instructions (e.g. loops' back edges)
1145        // can potentially cause a GC so they have a pointer map.
1146        // By inserting a move we essentially create a copy of a
1147        // value which is invisible to PopulatePointerMaps(), because we store
1148        // it into a location different from the operand of a live range
1149        // covering a branch instruction.
1150        // Thus we need to manually record a pointer.
1151        LInstruction* branch = InstructionAt(pred->last_instruction_index());
1152        if (branch->HasPointerMap()) {
1153          if (HasTaggedValue(range->id())) {
1154            branch->pointer_map()->RecordPointer(cur_op);
1155          } else if (!cur_op->IsDoubleStackSlot() &&
1156                     !cur_op->IsDoubleRegister()) {
1157            branch->pointer_map()->RemovePointer(cur_op);
1158          }
1159        }
1160      }
1161      gap->GetOrCreateParallelMove(LGap::START)->AddMove(pred_op, cur_op);
1162    }
1163  }
1164}
1165
1166
1167LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) {
1168  int index = pos.InstructionIndex();
1169  if (IsGapAt(index)) {
1170    LGap* gap = GapAt(index);
1171    return gap->GetOrCreateParallelMove(
1172        pos.IsInstructionStart() ? LGap::START : LGap::END);
1173  }
1174  int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
1175  return GapAt(gap_pos)->GetOrCreateParallelMove(
1176      (gap_pos < index) ? LGap::AFTER : LGap::BEFORE);
1177}
1178
1179
1180HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) {
1181  LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex()));
1182  return gap->block();
1183}
1184
1185
1186void LAllocator::ConnectRanges() {
1187  HPhase phase("L_Connect ranges", this);
1188  for (int i = 0; i < live_ranges()->length(); ++i) {
1189    LiveRange* first_range = live_ranges()->at(i);
1190    if (first_range == NULL || first_range->parent() != NULL) continue;
1191
1192    LiveRange* second_range = first_range->next();
1193    while (second_range != NULL) {
1194      LifetimePosition pos = second_range->Start();
1195
1196      if (!second_range->IsSpilled()) {
1197        // Add gap move if the two live ranges touch and there is no block
1198        // boundary.
1199        if (first_range->End().Value() == pos.Value()) {
1200          bool should_insert = true;
1201          if (IsBlockBoundary(pos)) {
1202            should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
1203          }
1204          if (should_insert) {
1205            LParallelMove* move = GetConnectingParallelMove(pos);
1206            LOperand* prev_operand = first_range->CreateAssignedOperand(zone_);
1207            LOperand* cur_operand = second_range->CreateAssignedOperand(zone_);
1208            move->AddMove(prev_operand, cur_operand);
1209          }
1210        }
1211      }
1212
1213      first_range = second_range;
1214      second_range = second_range->next();
1215    }
1216  }
1217}
1218
1219
1220bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const {
1221  if (block->predecessors()->length() != 1) return false;
1222  return block->predecessors()->first()->block_id() == block->block_id() - 1;
1223}
1224
1225
1226void LAllocator::ResolveControlFlow() {
1227  HPhase phase("L_Resolve control flow", this);
1228  const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1229  for (int block_id = 1; block_id < blocks->length(); ++block_id) {
1230    HBasicBlock* block = blocks->at(block_id);
1231    if (CanEagerlyResolveControlFlow(block)) continue;
1232    BitVector* live = live_in_sets_[block->block_id()];
1233    BitVector::Iterator iterator(live);
1234    while (!iterator.Done()) {
1235      int operand_index = iterator.Current();
1236      for (int i = 0; i < block->predecessors()->length(); ++i) {
1237        HBasicBlock* cur = block->predecessors()->at(i);
1238        LiveRange* cur_range = LiveRangeFor(operand_index);
1239        ResolveControlFlow(cur_range, block, cur);
1240      }
1241      iterator.Advance();
1242    }
1243  }
1244}
1245
1246
1247void LAllocator::BuildLiveRanges() {
1248  HPhase phase("L_Build live ranges", this);
1249  InitializeLivenessAnalysis();
1250  // Process the blocks in reverse order.
1251  const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1252  for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1253    HBasicBlock* block = blocks->at(block_id);
1254    BitVector* live = ComputeLiveOut(block);
1255    // Initially consider all live_out values live for the entire block. We
1256    // will shorten these intervals if necessary.
1257    AddInitialIntervals(block, live);
1258
1259    // Process the instructions in reverse order, generating and killing
1260    // live values.
1261    ProcessInstructions(block, live);
1262    // All phi output operands are killed by this block.
1263    const ZoneList<HPhi*>* phis = block->phis();
1264    for (int i = 0; i < phis->length(); ++i) {
1265      // The live range interval already ends at the first instruction of the
1266      // block.
1267      HPhi* phi = phis->at(i);
1268      live->Remove(phi->id());
1269
1270      LOperand* hint = NULL;
1271      LOperand* phi_operand = NULL;
1272      LGap* gap = GetLastGap(phi->block()->predecessors()->at(0));
1273      LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START);
1274      for (int j = 0; j < move->move_operands()->length(); ++j) {
1275        LOperand* to = move->move_operands()->at(j).destination();
1276        if (to->IsUnallocated() &&
1277            LUnallocated::cast(to)->virtual_register() == phi->id()) {
1278          hint = move->move_operands()->at(j).source();
1279          phi_operand = to;
1280          break;
1281        }
1282      }
1283      ASSERT(hint != NULL);
1284
1285      LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
1286              block->first_instruction_index());
1287      Define(block_start, phi_operand, hint);
1288    }
1289
1290    // Now live is live_in for this block except not including values live
1291    // out on backward successor edges.
1292    live_in_sets_[block_id] = live;
1293
1294    // If this block is a loop header go back and patch up the necessary
1295    // predecessor blocks.
1296    if (block->IsLoopHeader()) {
1297      // TODO(kmillikin): Need to be able to get the last block of the loop
1298      // in the loop information. Add a live range stretching from the first
1299      // loop instruction to the last for each value live on entry to the
1300      // header.
1301      HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
1302      BitVector::Iterator iterator(live);
1303      LifetimePosition start = LifetimePosition::FromInstructionIndex(
1304          block->first_instruction_index());
1305      LifetimePosition end = LifetimePosition::FromInstructionIndex(
1306          back_edge->last_instruction_index()).NextInstruction();
1307      while (!iterator.Done()) {
1308        int operand_index = iterator.Current();
1309        LiveRange* range = LiveRangeFor(operand_index);
1310        range->EnsureInterval(start, end, zone_);
1311        iterator.Advance();
1312      }
1313
1314      for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) {
1315        live_in_sets_[i]->Union(*live);
1316      }
1317    }
1318
1319#ifdef DEBUG
1320    if (block_id == 0) {
1321      BitVector::Iterator iterator(live);
1322      bool found = false;
1323      while (!iterator.Done()) {
1324        found = true;
1325        int operand_index = iterator.Current();
1326        PrintF("Function: %s\n",
1327               *chunk_->info()->function()->debug_name()->ToCString());
1328        PrintF("Value %d used before first definition!\n", operand_index);
1329        LiveRange* range = LiveRangeFor(operand_index);
1330        PrintF("First use is at %d\n", range->first_pos()->pos().Value());
1331        iterator.Advance();
1332      }
1333      ASSERT(!found);
1334    }
1335#endif
1336  }
1337}
1338
1339
1340bool LAllocator::SafePointsAreInOrder() const {
1341  const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1342  int safe_point = 0;
1343  for (int i = 0; i < pointer_maps->length(); ++i) {
1344    LPointerMap* map = pointer_maps->at(i);
1345    if (safe_point > map->lithium_position()) return false;
1346    safe_point = map->lithium_position();
1347  }
1348  return true;
1349}
1350
1351
1352void LAllocator::PopulatePointerMaps() {
1353  HPhase phase("L_Populate pointer maps", this);
1354  const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1355
1356  ASSERT(SafePointsAreInOrder());
1357
1358  // Iterate over all safe point positions and record a pointer
1359  // for all spilled live ranges at this point.
1360  int first_safe_point_index = 0;
1361  int last_range_start = 0;
1362  for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
1363    LiveRange* range = live_ranges()->at(range_idx);
1364    if (range == NULL) continue;
1365    // Iterate over the first parts of multi-part live ranges.
1366    if (range->parent() != NULL) continue;
1367    // Skip non-pointer values.
1368    if (!HasTaggedValue(range->id())) continue;
1369    // Skip empty live ranges.
1370    if (range->IsEmpty()) continue;
1371
1372    // Find the extent of the range and its children.
1373    int start = range->Start().InstructionIndex();
1374    int end = 0;
1375    for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
1376      LifetimePosition this_end = cur->End();
1377      if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
1378      ASSERT(cur->Start().InstructionIndex() >= start);
1379    }
1380
1381    // Most of the ranges are in order, but not all.  Keep an eye on when
1382    // they step backwards and reset the first_safe_point_index so we don't
1383    // miss any safe points.
1384    if (start < last_range_start) {
1385      first_safe_point_index = 0;
1386    }
1387    last_range_start = start;
1388
1389    // Step across all the safe points that are before the start of this range,
1390    // recording how far we step in order to save doing this for the next range.
1391    while (first_safe_point_index < pointer_maps->length()) {
1392      LPointerMap* map = pointer_maps->at(first_safe_point_index);
1393      int safe_point = map->lithium_position();
1394      if (safe_point >= start) break;
1395      first_safe_point_index++;
1396    }
1397
1398    // Step through the safe points to see whether they are in the range.
1399    for (int safe_point_index = first_safe_point_index;
1400         safe_point_index < pointer_maps->length();
1401         ++safe_point_index) {
1402      LPointerMap* map = pointer_maps->at(safe_point_index);
1403      int safe_point = map->lithium_position();
1404
1405      // The safe points are sorted so we can stop searching here.
1406      if (safe_point - 1 > end) break;
1407
1408      // Advance to the next active range that covers the current
1409      // safe point position.
1410      LifetimePosition safe_point_pos =
1411          LifetimePosition::FromInstructionIndex(safe_point);
1412      LiveRange* cur = range;
1413      while (cur != NULL && !cur->Covers(safe_point_pos.PrevInstruction())) {
1414        cur = cur->next();
1415      }
1416      if (cur == NULL) continue;
1417
1418      // Check if the live range is spilled and the safe point is after
1419      // the spill position.
1420      if (range->HasAllocatedSpillOperand() &&
1421          safe_point >= range->spill_start_index()) {
1422        TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
1423                   range->id(), range->spill_start_index(), safe_point);
1424        map->RecordPointer(range->GetSpillOperand());
1425      }
1426
1427      if (!cur->IsSpilled()) {
1428        TraceAlloc("Pointer in register for range %d (start at %d) "
1429                   "at safe point %d\n",
1430                   cur->id(), cur->Start().Value(), safe_point);
1431        LOperand* operand = cur->CreateAssignedOperand(zone_);
1432        ASSERT(!operand->IsStackSlot());
1433        map->RecordPointer(operand);
1434      }
1435    }
1436  }
1437}
1438
1439
1440void LAllocator::ProcessOsrEntry() {
1441  const ZoneList<LInstruction*>* instrs = chunk_->instructions();
1442
1443  // Linear search for the OSR entry instruction in the chunk.
1444  int index = -1;
1445  while (++index < instrs->length() &&
1446         !instrs->at(index)->IsOsrEntry()) {
1447  }
1448  ASSERT(index < instrs->length());
1449  LOsrEntry* instruction = LOsrEntry::cast(instrs->at(index));
1450
1451  LifetimePosition position = LifetimePosition::FromInstructionIndex(index);
1452  for (int i = 0; i < live_ranges()->length(); ++i) {
1453    LiveRange* range = live_ranges()->at(i);
1454    if (range != NULL) {
1455      if (range->Covers(position) &&
1456          range->HasRegisterAssigned() &&
1457          range->TopLevel()->HasAllocatedSpillOperand()) {
1458        int reg_index = range->assigned_register();
1459        LOperand* spill_operand = range->TopLevel()->GetSpillOperand();
1460        if (range->IsDouble()) {
1461          instruction->MarkSpilledDoubleRegister(reg_index, spill_operand);
1462        } else {
1463          instruction->MarkSpilledRegister(reg_index, spill_operand);
1464        }
1465      }
1466    }
1467  }
1468}
1469
1470
1471void LAllocator::AllocateGeneralRegisters() {
1472  HPhase phase("L_Allocate general registers", this);
1473  num_registers_ = Register::kNumAllocatableRegisters;
1474  AllocateRegisters();
1475}
1476
1477
1478void LAllocator::AllocateDoubleRegisters() {
1479  HPhase phase("L_Allocate double registers", this);
1480  num_registers_ = DoubleRegister::kNumAllocatableRegisters;
1481  mode_ = DOUBLE_REGISTERS;
1482  AllocateRegisters();
1483}
1484
1485
1486void LAllocator::AllocateRegisters() {
1487  ASSERT(unhandled_live_ranges_.is_empty());
1488
1489  for (int i = 0; i < live_ranges_.length(); ++i) {
1490    if (live_ranges_[i] != NULL) {
1491      if (RequiredRegisterKind(live_ranges_[i]->id()) == mode_) {
1492        AddToUnhandledUnsorted(live_ranges_[i]);
1493      }
1494    }
1495  }
1496  SortUnhandled();
1497  ASSERT(UnhandledIsSorted());
1498
1499  ASSERT(reusable_slots_.is_empty());
1500  ASSERT(active_live_ranges_.is_empty());
1501  ASSERT(inactive_live_ranges_.is_empty());
1502
1503  if (mode_ == DOUBLE_REGISTERS) {
1504    for (int i = 0; i < fixed_double_live_ranges_.length(); ++i) {
1505      LiveRange* current = fixed_double_live_ranges_.at(i);
1506      if (current != NULL) {
1507        AddToInactive(current);
1508      }
1509    }
1510  } else {
1511    for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
1512      LiveRange* current = fixed_live_ranges_.at(i);
1513      if (current != NULL) {
1514        AddToInactive(current);
1515      }
1516    }
1517  }
1518
1519  while (!unhandled_live_ranges_.is_empty()) {
1520    ASSERT(UnhandledIsSorted());
1521    LiveRange* current = unhandled_live_ranges_.RemoveLast();
1522    ASSERT(UnhandledIsSorted());
1523    LifetimePosition position = current->Start();
1524    TraceAlloc("Processing interval %d start=%d\n",
1525               current->id(),
1526               position.Value());
1527
1528    if (current->HasAllocatedSpillOperand()) {
1529      TraceAlloc("Live range %d already has a spill operand\n", current->id());
1530      LifetimePosition next_pos = position;
1531      if (IsGapAt(next_pos.InstructionIndex())) {
1532        next_pos = next_pos.NextInstruction();
1533      }
1534      UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
1535      // If the range already has a spill operand and it doesn't need a
1536      // register immediately, split it and spill the first part of the range.
1537      if (pos == NULL) {
1538        Spill(current);
1539        continue;
1540      } else if (pos->pos().Value() >
1541                 current->Start().NextInstruction().Value()) {
1542        // Do not spill live range eagerly if use position that can benefit from
1543        // the register is too close to the start of live range.
1544        SpillBetween(current, current->Start(), pos->pos());
1545        if (!AllocationOk()) return;
1546        ASSERT(UnhandledIsSorted());
1547        continue;
1548      }
1549    }
1550
1551    for (int i = 0; i < active_live_ranges_.length(); ++i) {
1552      LiveRange* cur_active = active_live_ranges_.at(i);
1553      if (cur_active->End().Value() <= position.Value()) {
1554        ActiveToHandled(cur_active);
1555        --i;  // The live range was removed from the list of active live ranges.
1556      } else if (!cur_active->Covers(position)) {
1557        ActiveToInactive(cur_active);
1558        --i;  // The live range was removed from the list of active live ranges.
1559      }
1560    }
1561
1562    for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1563      LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1564      if (cur_inactive->End().Value() <= position.Value()) {
1565        InactiveToHandled(cur_inactive);
1566        --i;  // Live range was removed from the list of inactive live ranges.
1567      } else if (cur_inactive->Covers(position)) {
1568        InactiveToActive(cur_inactive);
1569        --i;  // Live range was removed from the list of inactive live ranges.
1570      }
1571    }
1572
1573    ASSERT(!current->HasRegisterAssigned() && !current->IsSpilled());
1574
1575    bool result = TryAllocateFreeReg(current);
1576    if (!AllocationOk()) return;
1577
1578    if (!result) AllocateBlockedReg(current);
1579    if (!AllocationOk()) return;
1580
1581    if (current->HasRegisterAssigned()) {
1582      AddToActive(current);
1583    }
1584  }
1585
1586  reusable_slots_.Rewind(0);
1587  active_live_ranges_.Rewind(0);
1588  inactive_live_ranges_.Rewind(0);
1589}
1590
1591
1592const char* LAllocator::RegisterName(int allocation_index) {
1593  if (mode_ == GENERAL_REGISTERS) {
1594    return Register::AllocationIndexToString(allocation_index);
1595  } else {
1596    return DoubleRegister::AllocationIndexToString(allocation_index);
1597  }
1598}
1599
1600
1601void LAllocator::TraceAlloc(const char* msg, ...) {
1602  if (FLAG_trace_alloc) {
1603    va_list arguments;
1604    va_start(arguments, msg);
1605    OS::VPrint(msg, arguments);
1606    va_end(arguments);
1607  }
1608}
1609
1610
1611bool LAllocator::HasTaggedValue(int virtual_register) const {
1612  HValue* value = graph_->LookupValue(virtual_register);
1613  if (value == NULL) return false;
1614  return value->representation().IsTagged();
1615}
1616
1617
1618RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const {
1619  if (virtual_register < first_artificial_register_) {
1620    HValue* value = graph_->LookupValue(virtual_register);
1621    if (value != NULL && value->representation().IsDouble()) {
1622      return DOUBLE_REGISTERS;
1623    }
1624  } else if (double_artificial_registers_.Contains(
1625      virtual_register - first_artificial_register_)) {
1626    return DOUBLE_REGISTERS;
1627  }
1628
1629  return GENERAL_REGISTERS;
1630}
1631
1632
1633void LAllocator::AddToActive(LiveRange* range) {
1634  TraceAlloc("Add live range %d to active\n", range->id());
1635  active_live_ranges_.Add(range);
1636}
1637
1638
1639void LAllocator::AddToInactive(LiveRange* range) {
1640  TraceAlloc("Add live range %d to inactive\n", range->id());
1641  inactive_live_ranges_.Add(range);
1642}
1643
1644
1645void LAllocator::AddToUnhandledSorted(LiveRange* range) {
1646  if (range == NULL || range->IsEmpty()) return;
1647  ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled());
1648  for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
1649    LiveRange* cur_range = unhandled_live_ranges_.at(i);
1650    if (range->ShouldBeAllocatedBefore(cur_range)) {
1651      TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
1652      unhandled_live_ranges_.InsertAt(i + 1, range);
1653      ASSERT(UnhandledIsSorted());
1654      return;
1655    }
1656  }
1657  TraceAlloc("Add live range %d to unhandled at start\n", range->id());
1658  unhandled_live_ranges_.InsertAt(0, range);
1659  ASSERT(UnhandledIsSorted());
1660}
1661
1662
1663void LAllocator::AddToUnhandledUnsorted(LiveRange* range) {
1664  if (range == NULL || range->IsEmpty()) return;
1665  ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled());
1666  TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
1667  unhandled_live_ranges_.Add(range);
1668}
1669
1670
1671static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
1672  ASSERT(!(*a)->ShouldBeAllocatedBefore(*b) ||
1673         !(*b)->ShouldBeAllocatedBefore(*a));
1674  if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
1675  if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
1676  return (*a)->id() - (*b)->id();
1677}
1678
1679
1680// Sort the unhandled live ranges so that the ranges to be processed first are
1681// at the end of the array list.  This is convenient for the register allocation
1682// algorithm because it is efficient to remove elements from the end.
1683void LAllocator::SortUnhandled() {
1684  TraceAlloc("Sort unhandled\n");
1685  unhandled_live_ranges_.Sort(&UnhandledSortHelper);
1686}
1687
1688
1689bool LAllocator::UnhandledIsSorted() {
1690  int len = unhandled_live_ranges_.length();
1691  for (int i = 1; i < len; i++) {
1692    LiveRange* a = unhandled_live_ranges_.at(i - 1);
1693    LiveRange* b = unhandled_live_ranges_.at(i);
1694    if (a->Start().Value() < b->Start().Value()) return false;
1695  }
1696  return true;
1697}
1698
1699
1700void LAllocator::FreeSpillSlot(LiveRange* range) {
1701  // Check that we are the last range.
1702  if (range->next() != NULL) return;
1703
1704  if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
1705
1706  int index = range->TopLevel()->GetSpillOperand()->index();
1707  if (index >= 0) {
1708    reusable_slots_.Add(range);
1709  }
1710}
1711
1712
1713LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) {
1714  if (reusable_slots_.is_empty()) return NULL;
1715  if (reusable_slots_.first()->End().Value() >
1716      range->TopLevel()->Start().Value()) {
1717    return NULL;
1718  }
1719  LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand();
1720  reusable_slots_.Remove(0);
1721  return result;
1722}
1723
1724
1725void LAllocator::ActiveToHandled(LiveRange* range) {
1726  ASSERT(active_live_ranges_.Contains(range));
1727  active_live_ranges_.RemoveElement(range);
1728  TraceAlloc("Moving live range %d from active to handled\n", range->id());
1729  FreeSpillSlot(range);
1730}
1731
1732
1733void LAllocator::ActiveToInactive(LiveRange* range) {
1734  ASSERT(active_live_ranges_.Contains(range));
1735  active_live_ranges_.RemoveElement(range);
1736  inactive_live_ranges_.Add(range);
1737  TraceAlloc("Moving live range %d from active to inactive\n", range->id());
1738}
1739
1740
1741void LAllocator::InactiveToHandled(LiveRange* range) {
1742  ASSERT(inactive_live_ranges_.Contains(range));
1743  inactive_live_ranges_.RemoveElement(range);
1744  TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
1745  FreeSpillSlot(range);
1746}
1747
1748
1749void LAllocator::InactiveToActive(LiveRange* range) {
1750  ASSERT(inactive_live_ranges_.Contains(range));
1751  inactive_live_ranges_.RemoveElement(range);
1752  active_live_ranges_.Add(range);
1753  TraceAlloc("Moving live range %d from inactive to active\n", range->id());
1754}
1755
1756
1757// TryAllocateFreeReg and AllocateBlockedReg assume this
1758// when allocating local arrays.
1759STATIC_ASSERT(DoubleRegister::kNumAllocatableRegisters >=
1760              Register::kNumAllocatableRegisters);
1761
1762
1763bool LAllocator::TryAllocateFreeReg(LiveRange* current) {
1764  LifetimePosition free_until_pos[DoubleRegister::kNumAllocatableRegisters];
1765
1766  for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; i++) {
1767    free_until_pos[i] = LifetimePosition::MaxPosition();
1768  }
1769
1770  for (int i = 0; i < active_live_ranges_.length(); ++i) {
1771    LiveRange* cur_active = active_live_ranges_.at(i);
1772    free_until_pos[cur_active->assigned_register()] =
1773        LifetimePosition::FromInstructionIndex(0);
1774  }
1775
1776  for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1777    LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1778    ASSERT(cur_inactive->End().Value() > current->Start().Value());
1779    LifetimePosition next_intersection =
1780        cur_inactive->FirstIntersection(current);
1781    if (!next_intersection.IsValid()) continue;
1782    int cur_reg = cur_inactive->assigned_register();
1783    free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
1784  }
1785
1786  UsePosition* hinted_use = current->FirstPosWithHint();
1787  if (hinted_use != NULL) {
1788    LOperand* hint = hinted_use->hint();
1789    if (hint->IsRegister() || hint->IsDoubleRegister()) {
1790      int register_index = hint->index();
1791      TraceAlloc(
1792          "Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
1793          RegisterName(register_index),
1794          free_until_pos[register_index].Value(),
1795          current->id(),
1796          current->End().Value());
1797
1798      // The desired register is free until the end of the current live range.
1799      if (free_until_pos[register_index].Value() >= current->End().Value()) {
1800        TraceAlloc("Assigning preferred reg %s to live range %d\n",
1801                   RegisterName(register_index),
1802                   current->id());
1803        current->set_assigned_register(register_index, mode_, zone_);
1804        return true;
1805      }
1806    }
1807  }
1808
1809  // Find the register which stays free for the longest time.
1810  int reg = 0;
1811  for (int i = 1; i < RegisterCount(); ++i) {
1812    if (free_until_pos[i].Value() > free_until_pos[reg].Value()) {
1813      reg = i;
1814    }
1815  }
1816
1817  LifetimePosition pos = free_until_pos[reg];
1818
1819  if (pos.Value() <= current->Start().Value()) {
1820    // All registers are blocked.
1821    return false;
1822  }
1823
1824  if (pos.Value() < current->End().Value()) {
1825    // Register reg is available at the range start but becomes blocked before
1826    // the range end. Split current at position where it becomes blocked.
1827    LiveRange* tail = SplitRangeAt(current, pos);
1828    if (!AllocationOk()) return false;
1829    AddToUnhandledSorted(tail);
1830  }
1831
1832
1833  // Register reg is available at the range start and is free until
1834  // the range end.
1835  ASSERT(pos.Value() >= current->End().Value());
1836  TraceAlloc("Assigning free reg %s to live range %d\n",
1837             RegisterName(reg),
1838             current->id());
1839  current->set_assigned_register(reg, mode_, zone_);
1840
1841  return true;
1842}
1843
1844
1845void LAllocator::AllocateBlockedReg(LiveRange* current) {
1846  UsePosition* register_use = current->NextRegisterPosition(current->Start());
1847  if (register_use == NULL) {
1848    // There is no use in the current live range that requires a register.
1849    // We can just spill it.
1850    Spill(current);
1851    return;
1852  }
1853
1854
1855  LifetimePosition use_pos[DoubleRegister::kNumAllocatableRegisters];
1856  LifetimePosition block_pos[DoubleRegister::kNumAllocatableRegisters];
1857
1858  for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; i++) {
1859    use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
1860  }
1861
1862  for (int i = 0; i < active_live_ranges_.length(); ++i) {
1863    LiveRange* range = active_live_ranges_[i];
1864    int cur_reg = range->assigned_register();
1865    if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
1866      block_pos[cur_reg] = use_pos[cur_reg] =
1867          LifetimePosition::FromInstructionIndex(0);
1868    } else {
1869      UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial(
1870          current->Start());
1871      if (next_use == NULL) {
1872        use_pos[cur_reg] = range->End();
1873      } else {
1874        use_pos[cur_reg] = next_use->pos();
1875      }
1876    }
1877  }
1878
1879  for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1880    LiveRange* range = inactive_live_ranges_.at(i);
1881    ASSERT(range->End().Value() > current->Start().Value());
1882    LifetimePosition next_intersection = range->FirstIntersection(current);
1883    if (!next_intersection.IsValid()) continue;
1884    int cur_reg = range->assigned_register();
1885    if (range->IsFixed()) {
1886      block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
1887      use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
1888    } else {
1889      use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
1890    }
1891  }
1892
1893  int reg = 0;
1894  for (int i = 1; i < RegisterCount(); ++i) {
1895    if (use_pos[i].Value() > use_pos[reg].Value()) {
1896      reg = i;
1897    }
1898  }
1899
1900  LifetimePosition pos = use_pos[reg];
1901
1902  if (pos.Value() < register_use->pos().Value()) {
1903    // All registers are blocked before the first use that requires a register.
1904    // Spill starting part of live range up to that use.
1905    //
1906    // Corner case: the first use position is equal to the start of the range.
1907    // In this case we have nothing to spill and SpillBetween will just return
1908    // this range to the list of unhandled ones. This will lead to the infinite
1909    // loop.
1910    ASSERT(current->Start().Value() < register_use->pos().Value());
1911    SpillBetween(current, current->Start(), register_use->pos());
1912    return;
1913  }
1914
1915  if (block_pos[reg].Value() < current->End().Value()) {
1916    // Register becomes blocked before the current range end. Split before that
1917    // position.
1918    LiveRange* tail = SplitBetween(current,
1919                                   current->Start(),
1920                                   block_pos[reg].InstructionStart());
1921    AddToUnhandledSorted(tail);
1922  }
1923
1924  // Register reg is not blocked for the whole range.
1925  ASSERT(block_pos[reg].Value() >= current->End().Value());
1926  TraceAlloc("Assigning blocked reg %s to live range %d\n",
1927             RegisterName(reg),
1928             current->id());
1929  current->set_assigned_register(reg, mode_, zone_);
1930
1931  // This register was not free. Thus we need to find and spill
1932  // parts of active and inactive live regions that use the same register
1933  // at the same lifetime positions as current.
1934  SplitAndSpillIntersecting(current);
1935}
1936
1937
1938void LAllocator::SplitAndSpillIntersecting(LiveRange* current) {
1939  ASSERT(current->HasRegisterAssigned());
1940  int reg = current->assigned_register();
1941  LifetimePosition split_pos = current->Start();
1942  for (int i = 0; i < active_live_ranges_.length(); ++i) {
1943    LiveRange* range = active_live_ranges_[i];
1944    if (range->assigned_register() == reg) {
1945      UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1946      if (next_pos == NULL) {
1947        SpillAfter(range, split_pos);
1948      } else {
1949        SpillBetween(range, split_pos, next_pos->pos());
1950      }
1951      ActiveToHandled(range);
1952      --i;
1953    }
1954  }
1955
1956  for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1957    LiveRange* range = inactive_live_ranges_[i];
1958    ASSERT(range->End().Value() > current->Start().Value());
1959    if (range->assigned_register() == reg && !range->IsFixed()) {
1960      LifetimePosition next_intersection = range->FirstIntersection(current);
1961      if (next_intersection.IsValid()) {
1962        UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1963        if (next_pos == NULL) {
1964          SpillAfter(range, split_pos);
1965        } else {
1966          next_intersection = Min(next_intersection, next_pos->pos());
1967          SpillBetween(range, split_pos, next_intersection);
1968        }
1969        InactiveToHandled(range);
1970        --i;
1971      }
1972    }
1973  }
1974}
1975
1976
1977bool LAllocator::IsBlockBoundary(LifetimePosition pos) {
1978  return pos.IsInstructionStart() &&
1979      InstructionAt(pos.InstructionIndex())->IsLabel();
1980}
1981
1982
1983LiveRange* LAllocator::SplitRangeAt(LiveRange* range, LifetimePosition pos) {
1984  ASSERT(!range->IsFixed());
1985  TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
1986
1987  if (pos.Value() <= range->Start().Value()) return range;
1988
1989  // We can't properly connect liveranges if split occured at the end
1990  // of control instruction.
1991  ASSERT(pos.IsInstructionStart() ||
1992         !chunk_->instructions()->at(pos.InstructionIndex())->IsControl());
1993
1994  LiveRange* result = LiveRangeFor(GetVirtualRegister());
1995  if (!AllocationOk()) return NULL;
1996  range->SplitAt(pos, result, zone_);
1997  return result;
1998}
1999
2000
2001LiveRange* LAllocator::SplitBetween(LiveRange* range,
2002                                    LifetimePosition start,
2003                                    LifetimePosition end) {
2004  ASSERT(!range->IsFixed());
2005  TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
2006             range->id(),
2007             start.Value(),
2008             end.Value());
2009
2010  LifetimePosition split_pos = FindOptimalSplitPos(start, end);
2011  ASSERT(split_pos.Value() >= start.Value());
2012  return SplitRangeAt(range, split_pos);
2013}
2014
2015
2016LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start,
2017                                                 LifetimePosition end) {
2018  int start_instr = start.InstructionIndex();
2019  int end_instr = end.InstructionIndex();
2020  ASSERT(start_instr <= end_instr);
2021
2022  // We have no choice
2023  if (start_instr == end_instr) return end;
2024
2025  HBasicBlock* start_block = GetBlock(start);
2026  HBasicBlock* end_block = GetBlock(end);
2027
2028  if (end_block == start_block) {
2029    // The interval is split in the same basic block. Split at the latest
2030    // possible position.
2031    return end;
2032  }
2033
2034  HBasicBlock* block = end_block;
2035  // Find header of outermost loop.
2036  while (block->parent_loop_header() != NULL &&
2037      block->parent_loop_header()->block_id() > start_block->block_id()) {
2038    block = block->parent_loop_header();
2039  }
2040
2041  // We did not find any suitable outer loop. Split at the latest possible
2042  // position unless end_block is a loop header itself.
2043  if (block == end_block && !end_block->IsLoopHeader()) return end;
2044
2045  return LifetimePosition::FromInstructionIndex(
2046      block->first_instruction_index());
2047}
2048
2049
2050void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
2051  LiveRange* second_part = SplitRangeAt(range, pos);
2052  if (!AllocationOk()) return;
2053  Spill(second_part);
2054}
2055
2056
2057void LAllocator::SpillBetween(LiveRange* range,
2058                              LifetimePosition start,
2059                              LifetimePosition end) {
2060  ASSERT(start.Value() < end.Value());
2061  LiveRange* second_part = SplitRangeAt(range, start);
2062  if (!AllocationOk()) return;
2063
2064  if (second_part->Start().Value() < end.Value()) {
2065    // The split result intersects with [start, end[.
2066    // Split it at position between ]start+1, end[, spill the middle part
2067    // and put the rest to unhandled.
2068    LiveRange* third_part = SplitBetween(
2069        second_part,
2070        second_part->Start().InstructionEnd(),
2071        end.PrevInstruction().InstructionEnd());
2072
2073    ASSERT(third_part != second_part);
2074
2075    Spill(second_part);
2076    AddToUnhandledSorted(third_part);
2077  } else {
2078    // The split result does not intersect with [start, end[.
2079    // Nothing to spill. Just put it to unhandled as whole.
2080    AddToUnhandledSorted(second_part);
2081  }
2082}
2083
2084
2085void LAllocator::Spill(LiveRange* range) {
2086  ASSERT(!range->IsSpilled());
2087  TraceAlloc("Spilling live range %d\n", range->id());
2088  LiveRange* first = range->TopLevel();
2089
2090  if (!first->HasAllocatedSpillOperand()) {
2091    LOperand* op = TryReuseSpillSlot(range);
2092    if (op == NULL) op = chunk_->GetNextSpillSlot(mode_ == DOUBLE_REGISTERS);
2093    first->SetSpillOperand(op);
2094  }
2095  range->MakeSpilled(zone_);
2096}
2097
2098
2099int LAllocator::RegisterCount() const {
2100  return num_registers_;
2101}
2102
2103
2104#ifdef DEBUG
2105
2106
2107void LAllocator::Verify() const {
2108  for (int i = 0; i < live_ranges()->length(); ++i) {
2109    LiveRange* current = live_ranges()->at(i);
2110    if (current != NULL) current->Verify();
2111  }
2112}
2113
2114
2115#endif
2116
2117
2118} }  // namespace v8::internal
2119