1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_X64)
31
32#include "bootstrapper.h"
33#include "codegen.h"
34#include "assembler-x64.h"
35#include "macro-assembler-x64.h"
36#include "serialize.h"
37#include "debug.h"
38#include "heap.h"
39
40namespace v8 {
41namespace internal {
42
43MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
44    : Assembler(arg_isolate, buffer, size),
45      generating_stub_(false),
46      allow_stub_calls_(true),
47      has_frame_(false),
48      root_array_available_(true) {
49  if (isolate() != NULL) {
50    code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
51                                  isolate());
52  }
53}
54
55
56static intptr_t RootRegisterDelta(ExternalReference other, Isolate* isolate) {
57  Address roots_register_value = kRootRegisterBias +
58      reinterpret_cast<Address>(isolate->heap()->roots_array_start());
59  intptr_t delta = other.address() - roots_register_value;
60  return delta;
61}
62
63
64Operand MacroAssembler::ExternalOperand(ExternalReference target,
65                                        Register scratch) {
66  if (root_array_available_ && !Serializer::enabled()) {
67    intptr_t delta = RootRegisterDelta(target, isolate());
68    if (is_int32(delta)) {
69      Serializer::TooLateToEnableNow();
70      return Operand(kRootRegister, static_cast<int32_t>(delta));
71    }
72  }
73  movq(scratch, target);
74  return Operand(scratch, 0);
75}
76
77
78void MacroAssembler::Load(Register destination, ExternalReference source) {
79  if (root_array_available_ && !Serializer::enabled()) {
80    intptr_t delta = RootRegisterDelta(source, isolate());
81    if (is_int32(delta)) {
82      Serializer::TooLateToEnableNow();
83      movq(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
84      return;
85    }
86  }
87  // Safe code.
88  if (destination.is(rax)) {
89    load_rax(source);
90  } else {
91    movq(kScratchRegister, source);
92    movq(destination, Operand(kScratchRegister, 0));
93  }
94}
95
96
97void MacroAssembler::Store(ExternalReference destination, Register source) {
98  if (root_array_available_ && !Serializer::enabled()) {
99    intptr_t delta = RootRegisterDelta(destination, isolate());
100    if (is_int32(delta)) {
101      Serializer::TooLateToEnableNow();
102      movq(Operand(kRootRegister, static_cast<int32_t>(delta)), source);
103      return;
104    }
105  }
106  // Safe code.
107  if (source.is(rax)) {
108    store_rax(destination);
109  } else {
110    movq(kScratchRegister, destination);
111    movq(Operand(kScratchRegister, 0), source);
112  }
113}
114
115
116void MacroAssembler::LoadAddress(Register destination,
117                                 ExternalReference source) {
118  if (root_array_available_ && !Serializer::enabled()) {
119    intptr_t delta = RootRegisterDelta(source, isolate());
120    if (is_int32(delta)) {
121      Serializer::TooLateToEnableNow();
122      lea(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
123      return;
124    }
125  }
126  // Safe code.
127  movq(destination, source);
128}
129
130
131int MacroAssembler::LoadAddressSize(ExternalReference source) {
132  if (root_array_available_ && !Serializer::enabled()) {
133    // This calculation depends on the internals of LoadAddress.
134    // It's correctness is ensured by the asserts in the Call
135    // instruction below.
136    intptr_t delta = RootRegisterDelta(source, isolate());
137    if (is_int32(delta)) {
138      Serializer::TooLateToEnableNow();
139      // Operand is lea(scratch, Operand(kRootRegister, delta));
140      // Opcodes : REX.W 8D ModRM Disp8/Disp32  - 4 or 7.
141      int size = 4;
142      if (!is_int8(static_cast<int32_t>(delta))) {
143        size += 3;  // Need full four-byte displacement in lea.
144      }
145      return size;
146    }
147  }
148  // Size of movq(destination, src);
149  return 10;
150}
151
152
153void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
154  ASSERT(root_array_available_);
155  movq(destination, Operand(kRootRegister,
156                            (index << kPointerSizeLog2) - kRootRegisterBias));
157}
158
159
160void MacroAssembler::LoadRootIndexed(Register destination,
161                                     Register variable_offset,
162                                     int fixed_offset) {
163  ASSERT(root_array_available_);
164  movq(destination,
165       Operand(kRootRegister,
166               variable_offset, times_pointer_size,
167               (fixed_offset << kPointerSizeLog2) - kRootRegisterBias));
168}
169
170
171void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) {
172  ASSERT(root_array_available_);
173  movq(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias),
174       source);
175}
176
177
178void MacroAssembler::PushRoot(Heap::RootListIndex index) {
179  ASSERT(root_array_available_);
180  push(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias));
181}
182
183
184void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
185  ASSERT(root_array_available_);
186  cmpq(with, Operand(kRootRegister,
187                     (index << kPointerSizeLog2) - kRootRegisterBias));
188}
189
190
191void MacroAssembler::CompareRoot(const Operand& with,
192                                 Heap::RootListIndex index) {
193  ASSERT(root_array_available_);
194  ASSERT(!with.AddressUsesRegister(kScratchRegister));
195  LoadRoot(kScratchRegister, index);
196  cmpq(with, kScratchRegister);
197}
198
199
200void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
201                                         Register addr,
202                                         Register scratch,
203                                         SaveFPRegsMode save_fp,
204                                         RememberedSetFinalAction and_then) {
205  if (FLAG_debug_code) {
206    Label ok;
207    JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
208    int3();
209    bind(&ok);
210  }
211  // Load store buffer top.
212  LoadRoot(scratch, Heap::kStoreBufferTopRootIndex);
213  // Store pointer to buffer.
214  movq(Operand(scratch, 0), addr);
215  // Increment buffer top.
216  addq(scratch, Immediate(kPointerSize));
217  // Write back new top of buffer.
218  StoreRoot(scratch, Heap::kStoreBufferTopRootIndex);
219  // Call stub on end of buffer.
220  Label done;
221  // Check for end of buffer.
222  testq(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
223  if (and_then == kReturnAtEnd) {
224    Label buffer_overflowed;
225    j(not_equal, &buffer_overflowed, Label::kNear);
226    ret(0);
227    bind(&buffer_overflowed);
228  } else {
229    ASSERT(and_then == kFallThroughAtEnd);
230    j(equal, &done, Label::kNear);
231  }
232  StoreBufferOverflowStub store_buffer_overflow =
233      StoreBufferOverflowStub(save_fp);
234  CallStub(&store_buffer_overflow);
235  if (and_then == kReturnAtEnd) {
236    ret(0);
237  } else {
238    ASSERT(and_then == kFallThroughAtEnd);
239    bind(&done);
240  }
241}
242
243
244void MacroAssembler::InNewSpace(Register object,
245                                Register scratch,
246                                Condition cc,
247                                Label* branch,
248                                Label::Distance distance) {
249  if (Serializer::enabled()) {
250    // Can't do arithmetic on external references if it might get serialized.
251    // The mask isn't really an address.  We load it as an external reference in
252    // case the size of the new space is different between the snapshot maker
253    // and the running system.
254    if (scratch.is(object)) {
255      movq(kScratchRegister, ExternalReference::new_space_mask(isolate()));
256      and_(scratch, kScratchRegister);
257    } else {
258      movq(scratch, ExternalReference::new_space_mask(isolate()));
259      and_(scratch, object);
260    }
261    movq(kScratchRegister, ExternalReference::new_space_start(isolate()));
262    cmpq(scratch, kScratchRegister);
263    j(cc, branch, distance);
264  } else {
265    ASSERT(is_int32(static_cast<int64_t>(HEAP->NewSpaceMask())));
266    intptr_t new_space_start =
267        reinterpret_cast<intptr_t>(HEAP->NewSpaceStart());
268    movq(kScratchRegister, -new_space_start, RelocInfo::NONE);
269    if (scratch.is(object)) {
270      addq(scratch, kScratchRegister);
271    } else {
272      lea(scratch, Operand(object, kScratchRegister, times_1, 0));
273    }
274    and_(scratch, Immediate(static_cast<int32_t>(HEAP->NewSpaceMask())));
275    j(cc, branch, distance);
276  }
277}
278
279
280void MacroAssembler::RecordWriteField(
281    Register object,
282    int offset,
283    Register value,
284    Register dst,
285    SaveFPRegsMode save_fp,
286    RememberedSetAction remembered_set_action,
287    SmiCheck smi_check) {
288  // The compiled code assumes that record write doesn't change the
289  // context register, so we check that none of the clobbered
290  // registers are rsi.
291  ASSERT(!value.is(rsi) && !dst.is(rsi));
292
293  // First, check if a write barrier is even needed. The tests below
294  // catch stores of Smis.
295  Label done;
296
297  // Skip barrier if writing a smi.
298  if (smi_check == INLINE_SMI_CHECK) {
299    JumpIfSmi(value, &done);
300  }
301
302  // Although the object register is tagged, the offset is relative to the start
303  // of the object, so so offset must be a multiple of kPointerSize.
304  ASSERT(IsAligned(offset, kPointerSize));
305
306  lea(dst, FieldOperand(object, offset));
307  if (emit_debug_code()) {
308    Label ok;
309    testb(dst, Immediate((1 << kPointerSizeLog2) - 1));
310    j(zero, &ok, Label::kNear);
311    int3();
312    bind(&ok);
313  }
314
315  RecordWrite(
316      object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK);
317
318  bind(&done);
319
320  // Clobber clobbered input registers when running with the debug-code flag
321  // turned on to provoke errors.
322  if (emit_debug_code()) {
323    movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
324    movq(dst, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
325  }
326}
327
328
329void MacroAssembler::RecordWriteArray(Register object,
330                                      Register value,
331                                      Register index,
332                                      SaveFPRegsMode save_fp,
333                                      RememberedSetAction remembered_set_action,
334                                      SmiCheck smi_check) {
335  // First, check if a write barrier is even needed. The tests below
336  // catch stores of Smis.
337  Label done;
338
339  // Skip barrier if writing a smi.
340  if (smi_check == INLINE_SMI_CHECK) {
341    JumpIfSmi(value, &done);
342  }
343
344  // Array access: calculate the destination address. Index is not a smi.
345  Register dst = index;
346  lea(dst, Operand(object, index, times_pointer_size,
347                   FixedArray::kHeaderSize - kHeapObjectTag));
348
349  RecordWrite(
350      object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK);
351
352  bind(&done);
353
354  // Clobber clobbered input registers when running with the debug-code flag
355  // turned on to provoke errors.
356  if (emit_debug_code()) {
357    movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
358    movq(index, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
359  }
360}
361
362
363void MacroAssembler::RecordWrite(Register object,
364                                 Register address,
365                                 Register value,
366                                 SaveFPRegsMode fp_mode,
367                                 RememberedSetAction remembered_set_action,
368                                 SmiCheck smi_check) {
369  // The compiled code assumes that record write doesn't change the
370  // context register, so we check that none of the clobbered
371  // registers are rsi.
372  ASSERT(!value.is(rsi) && !address.is(rsi));
373
374  ASSERT(!object.is(value));
375  ASSERT(!object.is(address));
376  ASSERT(!value.is(address));
377  if (emit_debug_code()) {
378    AbortIfSmi(object);
379  }
380
381  if (remembered_set_action == OMIT_REMEMBERED_SET &&
382      !FLAG_incremental_marking) {
383    return;
384  }
385
386  if (FLAG_debug_code) {
387    Label ok;
388    cmpq(value, Operand(address, 0));
389    j(equal, &ok, Label::kNear);
390    int3();
391    bind(&ok);
392  }
393
394  // First, check if a write barrier is even needed. The tests below
395  // catch stores of smis and stores into the young generation.
396  Label done;
397
398  if (smi_check == INLINE_SMI_CHECK) {
399    // Skip barrier if writing a smi.
400    JumpIfSmi(value, &done);
401  }
402
403  CheckPageFlag(value,
404                value,  // Used as scratch.
405                MemoryChunk::kPointersToHereAreInterestingMask,
406                zero,
407                &done,
408                Label::kNear);
409
410  CheckPageFlag(object,
411                value,  // Used as scratch.
412                MemoryChunk::kPointersFromHereAreInterestingMask,
413                zero,
414                &done,
415                Label::kNear);
416
417  RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
418  CallStub(&stub);
419
420  bind(&done);
421
422  // Clobber clobbered registers when running with the debug-code flag
423  // turned on to provoke errors.
424  if (emit_debug_code()) {
425    movq(address, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
426    movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
427  }
428}
429
430
431void MacroAssembler::Assert(Condition cc, const char* msg) {
432  if (emit_debug_code()) Check(cc, msg);
433}
434
435
436void MacroAssembler::AssertFastElements(Register elements) {
437  if (emit_debug_code()) {
438    Label ok;
439    CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
440                Heap::kFixedArrayMapRootIndex);
441    j(equal, &ok, Label::kNear);
442    CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
443                Heap::kFixedDoubleArrayMapRootIndex);
444    j(equal, &ok, Label::kNear);
445    CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
446                Heap::kFixedCOWArrayMapRootIndex);
447    j(equal, &ok, Label::kNear);
448    Abort("JSObject with fast elements map has slow elements");
449    bind(&ok);
450  }
451}
452
453
454void MacroAssembler::Check(Condition cc, const char* msg) {
455  Label L;
456  j(cc, &L, Label::kNear);
457  Abort(msg);
458  // Control will not return here.
459  bind(&L);
460}
461
462
463void MacroAssembler::CheckStackAlignment() {
464  int frame_alignment = OS::ActivationFrameAlignment();
465  int frame_alignment_mask = frame_alignment - 1;
466  if (frame_alignment > kPointerSize) {
467    ASSERT(IsPowerOf2(frame_alignment));
468    Label alignment_as_expected;
469    testq(rsp, Immediate(frame_alignment_mask));
470    j(zero, &alignment_as_expected, Label::kNear);
471    // Abort if stack is not aligned.
472    int3();
473    bind(&alignment_as_expected);
474  }
475}
476
477
478void MacroAssembler::NegativeZeroTest(Register result,
479                                      Register op,
480                                      Label* then_label) {
481  Label ok;
482  testl(result, result);
483  j(not_zero, &ok, Label::kNear);
484  testl(op, op);
485  j(sign, then_label);
486  bind(&ok);
487}
488
489
490void MacroAssembler::Abort(const char* msg) {
491  // We want to pass the msg string like a smi to avoid GC
492  // problems, however msg is not guaranteed to be aligned
493  // properly. Instead, we pass an aligned pointer that is
494  // a proper v8 smi, but also pass the alignment difference
495  // from the real pointer as a smi.
496  intptr_t p1 = reinterpret_cast<intptr_t>(msg);
497  intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
498  // Note: p0 might not be a valid Smi _value_, but it has a valid Smi tag.
499  ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
500#ifdef DEBUG
501  if (msg != NULL) {
502    RecordComment("Abort message: ");
503    RecordComment(msg);
504  }
505#endif
506  push(rax);
507  movq(kScratchRegister, p0, RelocInfo::NONE);
508  push(kScratchRegister);
509  movq(kScratchRegister,
510       reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(p1 - p0))),
511       RelocInfo::NONE);
512  push(kScratchRegister);
513
514  if (!has_frame_) {
515    // We don't actually want to generate a pile of code for this, so just
516    // claim there is a stack frame, without generating one.
517    FrameScope scope(this, StackFrame::NONE);
518    CallRuntime(Runtime::kAbort, 2);
519  } else {
520    CallRuntime(Runtime::kAbort, 2);
521  }
522  // Control will not return here.
523  int3();
524}
525
526
527void MacroAssembler::CallStub(CodeStub* stub, unsigned ast_id) {
528  ASSERT(AllowThisStubCall(stub));  // Calls are not allowed in some stubs
529  Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
530}
531
532
533void MacroAssembler::TailCallStub(CodeStub* stub) {
534  ASSERT(allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe());
535  Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
536}
537
538
539void MacroAssembler::StubReturn(int argc) {
540  ASSERT(argc >= 1 && generating_stub());
541  ret((argc - 1) * kPointerSize);
542}
543
544
545bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
546  if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false;
547  return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe();
548}
549
550
551void MacroAssembler::IllegalOperation(int num_arguments) {
552  if (num_arguments > 0) {
553    addq(rsp, Immediate(num_arguments * kPointerSize));
554  }
555  LoadRoot(rax, Heap::kUndefinedValueRootIndex);
556}
557
558
559void MacroAssembler::IndexFromHash(Register hash, Register index) {
560  // The assert checks that the constants for the maximum number of digits
561  // for an array index cached in the hash field and the number of bits
562  // reserved for it does not conflict.
563  ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
564         (1 << String::kArrayIndexValueBits));
565  // We want the smi-tagged index in key. Even if we subsequently go to
566  // the slow case, converting the key to a smi is always valid.
567  // key: string key
568  // hash: key's hash field, including its array index value.
569  and_(hash, Immediate(String::kArrayIndexValueMask));
570  shr(hash, Immediate(String::kHashShift));
571  // Here we actually clobber the key which will be used if calling into
572  // runtime later. However as the new key is the numeric value of a string key
573  // there is no difference in using either key.
574  Integer32ToSmi(index, hash);
575}
576
577
578void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) {
579  CallRuntime(Runtime::FunctionForId(id), num_arguments);
580}
581
582
583void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
584  const Runtime::Function* function = Runtime::FunctionForId(id);
585  Set(rax, function->nargs);
586  LoadAddress(rbx, ExternalReference(function, isolate()));
587  CEntryStub ces(1, kSaveFPRegs);
588  CallStub(&ces);
589}
590
591
592void MacroAssembler::CallRuntime(const Runtime::Function* f,
593                                 int num_arguments) {
594  // If the expected number of arguments of the runtime function is
595  // constant, we check that the actual number of arguments match the
596  // expectation.
597  if (f->nargs >= 0 && f->nargs != num_arguments) {
598    IllegalOperation(num_arguments);
599    return;
600  }
601
602  // TODO(1236192): Most runtime routines don't need the number of
603  // arguments passed in because it is constant. At some point we
604  // should remove this need and make the runtime routine entry code
605  // smarter.
606  Set(rax, num_arguments);
607  LoadAddress(rbx, ExternalReference(f, isolate()));
608  CEntryStub ces(f->result_size);
609  CallStub(&ces);
610}
611
612
613void MacroAssembler::CallExternalReference(const ExternalReference& ext,
614                                           int num_arguments) {
615  Set(rax, num_arguments);
616  LoadAddress(rbx, ext);
617
618  CEntryStub stub(1);
619  CallStub(&stub);
620}
621
622
623void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
624                                               int num_arguments,
625                                               int result_size) {
626  // ----------- S t a t e -------------
627  //  -- rsp[0] : return address
628  //  -- rsp[8] : argument num_arguments - 1
629  //  ...
630  //  -- rsp[8 * num_arguments] : argument 0 (receiver)
631  // -----------------------------------
632
633  // TODO(1236192): Most runtime routines don't need the number of
634  // arguments passed in because it is constant. At some point we
635  // should remove this need and make the runtime routine entry code
636  // smarter.
637  Set(rax, num_arguments);
638  JumpToExternalReference(ext, result_size);
639}
640
641
642void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
643                                     int num_arguments,
644                                     int result_size) {
645  TailCallExternalReference(ExternalReference(fid, isolate()),
646                            num_arguments,
647                            result_size);
648}
649
650
651static int Offset(ExternalReference ref0, ExternalReference ref1) {
652  int64_t offset = (ref0.address() - ref1.address());
653  // Check that fits into int.
654  ASSERT(static_cast<int>(offset) == offset);
655  return static_cast<int>(offset);
656}
657
658
659void MacroAssembler::PrepareCallApiFunction(int arg_stack_space) {
660#ifdef _WIN64
661  // We need to prepare a slot for result handle on stack and put
662  // a pointer to it into 1st arg register.
663  EnterApiExitFrame(arg_stack_space + 1);
664
665  // rcx must be used to pass the pointer to the return value slot.
666  lea(rcx, StackSpaceOperand(arg_stack_space));
667#else
668  EnterApiExitFrame(arg_stack_space);
669#endif
670}
671
672
673void MacroAssembler::CallApiFunctionAndReturn(Address function_address,
674                                              int stack_space) {
675  Label empty_result;
676  Label prologue;
677  Label promote_scheduled_exception;
678  Label delete_allocated_handles;
679  Label leave_exit_frame;
680  Label write_back;
681
682  Factory* factory = isolate()->factory();
683  ExternalReference next_address =
684      ExternalReference::handle_scope_next_address();
685  const int kNextOffset = 0;
686  const int kLimitOffset = Offset(
687      ExternalReference::handle_scope_limit_address(),
688      next_address);
689  const int kLevelOffset = Offset(
690      ExternalReference::handle_scope_level_address(),
691      next_address);
692  ExternalReference scheduled_exception_address =
693      ExternalReference::scheduled_exception_address(isolate());
694
695  // Allocate HandleScope in callee-save registers.
696  Register prev_next_address_reg = r14;
697  Register prev_limit_reg = rbx;
698  Register base_reg = r15;
699  movq(base_reg, next_address);
700  movq(prev_next_address_reg, Operand(base_reg, kNextOffset));
701  movq(prev_limit_reg, Operand(base_reg, kLimitOffset));
702  addl(Operand(base_reg, kLevelOffset), Immediate(1));
703  // Call the api function!
704  movq(rax, reinterpret_cast<int64_t>(function_address),
705       RelocInfo::RUNTIME_ENTRY);
706  call(rax);
707
708#ifdef _WIN64
709  // rax keeps a pointer to v8::Handle, unpack it.
710  movq(rax, Operand(rax, 0));
711#endif
712  // Check if the result handle holds 0.
713  testq(rax, rax);
714  j(zero, &empty_result);
715  // It was non-zero.  Dereference to get the result value.
716  movq(rax, Operand(rax, 0));
717  bind(&prologue);
718
719  // No more valid handles (the result handle was the last one). Restore
720  // previous handle scope.
721  subl(Operand(base_reg, kLevelOffset), Immediate(1));
722  movq(Operand(base_reg, kNextOffset), prev_next_address_reg);
723  cmpq(prev_limit_reg, Operand(base_reg, kLimitOffset));
724  j(not_equal, &delete_allocated_handles);
725  bind(&leave_exit_frame);
726
727  // Check if the function scheduled an exception.
728  movq(rsi, scheduled_exception_address);
729  Cmp(Operand(rsi, 0), factory->the_hole_value());
730  j(not_equal, &promote_scheduled_exception);
731
732  LeaveApiExitFrame();
733  ret(stack_space * kPointerSize);
734
735  bind(&promote_scheduled_exception);
736  TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
737
738  bind(&empty_result);
739  // It was zero; the result is undefined.
740  Move(rax, factory->undefined_value());
741  jmp(&prologue);
742
743  // HandleScope limit has changed. Delete allocated extensions.
744  bind(&delete_allocated_handles);
745  movq(Operand(base_reg, kLimitOffset), prev_limit_reg);
746  movq(prev_limit_reg, rax);
747#ifdef _WIN64
748  LoadAddress(rcx, ExternalReference::isolate_address());
749#else
750  LoadAddress(rdi, ExternalReference::isolate_address());
751#endif
752  LoadAddress(rax,
753              ExternalReference::delete_handle_scope_extensions(isolate()));
754  call(rax);
755  movq(rax, prev_limit_reg);
756  jmp(&leave_exit_frame);
757}
758
759
760void MacroAssembler::JumpToExternalReference(const ExternalReference& ext,
761                                             int result_size) {
762  // Set the entry point and jump to the C entry runtime stub.
763  LoadAddress(rbx, ext);
764  CEntryStub ces(result_size);
765  jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
766}
767
768
769void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
770                                   InvokeFlag flag,
771                                   const CallWrapper& call_wrapper) {
772  // You can't call a builtin without a valid frame.
773  ASSERT(flag == JUMP_FUNCTION || has_frame());
774
775  // Rely on the assertion to check that the number of provided
776  // arguments match the expected number of arguments. Fake a
777  // parameter count to avoid emitting code to do the check.
778  ParameterCount expected(0);
779  GetBuiltinEntry(rdx, id);
780  InvokeCode(rdx, expected, expected, flag, call_wrapper, CALL_AS_METHOD);
781}
782
783
784void MacroAssembler::GetBuiltinFunction(Register target,
785                                        Builtins::JavaScript id) {
786  // Load the builtins object into target register.
787  movq(target, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
788  movq(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
789  movq(target, FieldOperand(target,
790                            JSBuiltinsObject::OffsetOfFunctionWithId(id)));
791}
792
793
794void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
795  ASSERT(!target.is(rdi));
796  // Load the JavaScript builtin function from the builtins object.
797  GetBuiltinFunction(rdi, id);
798  movq(target, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
799}
800
801
802#define REG(Name) { kRegister_ ## Name ## _Code }
803
804static const Register saved_regs[] = {
805  REG(rax), REG(rcx), REG(rdx), REG(rbx), REG(rbp), REG(rsi), REG(rdi), REG(r8),
806  REG(r9), REG(r10), REG(r11)
807};
808
809#undef REG
810
811static const int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register);
812
813
814void MacroAssembler::PushCallerSaved(SaveFPRegsMode fp_mode,
815                                     Register exclusion1,
816                                     Register exclusion2,
817                                     Register exclusion3) {
818  // We don't allow a GC during a store buffer overflow so there is no need to
819  // store the registers in any particular way, but we do have to store and
820  // restore them.
821  for (int i = 0; i < kNumberOfSavedRegs; i++) {
822    Register reg = saved_regs[i];
823    if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
824      push(reg);
825    }
826  }
827  // R12 to r15 are callee save on all platforms.
828  if (fp_mode == kSaveFPRegs) {
829    CpuFeatures::Scope scope(SSE2);
830    subq(rsp, Immediate(kDoubleSize * XMMRegister::kNumRegisters));
831    for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
832      XMMRegister reg = XMMRegister::from_code(i);
833      movsd(Operand(rsp, i * kDoubleSize), reg);
834    }
835  }
836}
837
838
839void MacroAssembler::PopCallerSaved(SaveFPRegsMode fp_mode,
840                                    Register exclusion1,
841                                    Register exclusion2,
842                                    Register exclusion3) {
843  if (fp_mode == kSaveFPRegs) {
844    CpuFeatures::Scope scope(SSE2);
845    for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
846      XMMRegister reg = XMMRegister::from_code(i);
847      movsd(reg, Operand(rsp, i * kDoubleSize));
848    }
849    addq(rsp, Immediate(kDoubleSize * XMMRegister::kNumRegisters));
850  }
851  for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) {
852    Register reg = saved_regs[i];
853    if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
854      pop(reg);
855    }
856  }
857}
858
859
860void MacroAssembler::Set(Register dst, int64_t x) {
861  if (x == 0) {
862    xorl(dst, dst);
863  } else if (is_uint32(x)) {
864    movl(dst, Immediate(static_cast<uint32_t>(x)));
865  } else if (is_int32(x)) {
866    movq(dst, Immediate(static_cast<int32_t>(x)));
867  } else {
868    movq(dst, x, RelocInfo::NONE);
869  }
870}
871
872void MacroAssembler::Set(const Operand& dst, int64_t x) {
873  if (is_int32(x)) {
874    movq(dst, Immediate(static_cast<int32_t>(x)));
875  } else {
876    Set(kScratchRegister, x);
877    movq(dst, kScratchRegister);
878  }
879}
880
881// ----------------------------------------------------------------------------
882// Smi tagging, untagging and tag detection.
883
884Register MacroAssembler::GetSmiConstant(Smi* source) {
885  int value = source->value();
886  if (value == 0) {
887    xorl(kScratchRegister, kScratchRegister);
888    return kScratchRegister;
889  }
890  if (value == 1) {
891    return kSmiConstantRegister;
892  }
893  LoadSmiConstant(kScratchRegister, source);
894  return kScratchRegister;
895}
896
897void MacroAssembler::LoadSmiConstant(Register dst, Smi* source) {
898  if (emit_debug_code()) {
899    movq(dst,
900         reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)),
901         RelocInfo::NONE);
902    cmpq(dst, kSmiConstantRegister);
903    if (allow_stub_calls()) {
904      Assert(equal, "Uninitialized kSmiConstantRegister");
905    } else {
906      Label ok;
907      j(equal, &ok, Label::kNear);
908      int3();
909      bind(&ok);
910    }
911  }
912  int value = source->value();
913  if (value == 0) {
914    xorl(dst, dst);
915    return;
916  }
917  bool negative = value < 0;
918  unsigned int uvalue = negative ? -value : value;
919
920  switch (uvalue) {
921    case 9:
922      lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_8, 0));
923      break;
924    case 8:
925      xorl(dst, dst);
926      lea(dst, Operand(dst, kSmiConstantRegister, times_8, 0));
927      break;
928    case 4:
929      xorl(dst, dst);
930      lea(dst, Operand(dst, kSmiConstantRegister, times_4, 0));
931      break;
932    case 5:
933      lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_4, 0));
934      break;
935    case 3:
936      lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_2, 0));
937      break;
938    case 2:
939      lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_1, 0));
940      break;
941    case 1:
942      movq(dst, kSmiConstantRegister);
943      break;
944    case 0:
945      UNREACHABLE();
946      return;
947    default:
948      movq(dst, reinterpret_cast<uint64_t>(source), RelocInfo::NONE);
949      return;
950  }
951  if (negative) {
952    neg(dst);
953  }
954}
955
956
957void MacroAssembler::Integer32ToSmi(Register dst, Register src) {
958  STATIC_ASSERT(kSmiTag == 0);
959  if (!dst.is(src)) {
960    movl(dst, src);
961  }
962  shl(dst, Immediate(kSmiShift));
963}
964
965
966void MacroAssembler::Integer32ToSmiField(const Operand& dst, Register src) {
967  if (emit_debug_code()) {
968    testb(dst, Immediate(0x01));
969    Label ok;
970    j(zero, &ok, Label::kNear);
971    if (allow_stub_calls()) {
972      Abort("Integer32ToSmiField writing to non-smi location");
973    } else {
974      int3();
975    }
976    bind(&ok);
977  }
978  ASSERT(kSmiShift % kBitsPerByte == 0);
979  movl(Operand(dst, kSmiShift / kBitsPerByte), src);
980}
981
982
983void MacroAssembler::Integer64PlusConstantToSmi(Register dst,
984                                                Register src,
985                                                int constant) {
986  if (dst.is(src)) {
987    addl(dst, Immediate(constant));
988  } else {
989    leal(dst, Operand(src, constant));
990  }
991  shl(dst, Immediate(kSmiShift));
992}
993
994
995void MacroAssembler::SmiToInteger32(Register dst, Register src) {
996  STATIC_ASSERT(kSmiTag == 0);
997  if (!dst.is(src)) {
998    movq(dst, src);
999  }
1000  shr(dst, Immediate(kSmiShift));
1001}
1002
1003
1004void MacroAssembler::SmiToInteger32(Register dst, const Operand& src) {
1005  movl(dst, Operand(src, kSmiShift / kBitsPerByte));
1006}
1007
1008
1009void MacroAssembler::SmiToInteger64(Register dst, Register src) {
1010  STATIC_ASSERT(kSmiTag == 0);
1011  if (!dst.is(src)) {
1012    movq(dst, src);
1013  }
1014  sar(dst, Immediate(kSmiShift));
1015}
1016
1017
1018void MacroAssembler::SmiToInteger64(Register dst, const Operand& src) {
1019  movsxlq(dst, Operand(src, kSmiShift / kBitsPerByte));
1020}
1021
1022
1023void MacroAssembler::SmiTest(Register src) {
1024  testq(src, src);
1025}
1026
1027
1028void MacroAssembler::SmiCompare(Register smi1, Register smi2) {
1029  if (emit_debug_code()) {
1030    AbortIfNotSmi(smi1);
1031    AbortIfNotSmi(smi2);
1032  }
1033  cmpq(smi1, smi2);
1034}
1035
1036
1037void MacroAssembler::SmiCompare(Register dst, Smi* src) {
1038  if (emit_debug_code()) {
1039    AbortIfNotSmi(dst);
1040  }
1041  Cmp(dst, src);
1042}
1043
1044
1045void MacroAssembler::Cmp(Register dst, Smi* src) {
1046  ASSERT(!dst.is(kScratchRegister));
1047  if (src->value() == 0) {
1048    testq(dst, dst);
1049  } else {
1050    Register constant_reg = GetSmiConstant(src);
1051    cmpq(dst, constant_reg);
1052  }
1053}
1054
1055
1056void MacroAssembler::SmiCompare(Register dst, const Operand& src) {
1057  if (emit_debug_code()) {
1058    AbortIfNotSmi(dst);
1059    AbortIfNotSmi(src);
1060  }
1061  cmpq(dst, src);
1062}
1063
1064
1065void MacroAssembler::SmiCompare(const Operand& dst, Register src) {
1066  if (emit_debug_code()) {
1067    AbortIfNotSmi(dst);
1068    AbortIfNotSmi(src);
1069  }
1070  cmpq(dst, src);
1071}
1072
1073
1074void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) {
1075  if (emit_debug_code()) {
1076    AbortIfNotSmi(dst);
1077  }
1078  cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src->value()));
1079}
1080
1081
1082void MacroAssembler::Cmp(const Operand& dst, Smi* src) {
1083  // The Operand cannot use the smi register.
1084  Register smi_reg = GetSmiConstant(src);
1085  ASSERT(!dst.AddressUsesRegister(smi_reg));
1086  cmpq(dst, smi_reg);
1087}
1088
1089
1090void MacroAssembler::SmiCompareInteger32(const Operand& dst, Register src) {
1091  cmpl(Operand(dst, kSmiShift / kBitsPerByte), src);
1092}
1093
1094
1095void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
1096                                                           Register src,
1097                                                           int power) {
1098  ASSERT(power >= 0);
1099  ASSERT(power < 64);
1100  if (power == 0) {
1101    SmiToInteger64(dst, src);
1102    return;
1103  }
1104  if (!dst.is(src)) {
1105    movq(dst, src);
1106  }
1107  if (power < kSmiShift) {
1108    sar(dst, Immediate(kSmiShift - power));
1109  } else if (power > kSmiShift) {
1110    shl(dst, Immediate(power - kSmiShift));
1111  }
1112}
1113
1114
1115void MacroAssembler::PositiveSmiDivPowerOfTwoToInteger32(Register dst,
1116                                                         Register src,
1117                                                         int power) {
1118  ASSERT((0 <= power) && (power < 32));
1119  if (dst.is(src)) {
1120    shr(dst, Immediate(power + kSmiShift));
1121  } else {
1122    UNIMPLEMENTED();  // Not used.
1123  }
1124}
1125
1126
1127void MacroAssembler::SmiOrIfSmis(Register dst, Register src1, Register src2,
1128                                 Label* on_not_smis,
1129                                 Label::Distance near_jump) {
1130  if (dst.is(src1) || dst.is(src2)) {
1131    ASSERT(!src1.is(kScratchRegister));
1132    ASSERT(!src2.is(kScratchRegister));
1133    movq(kScratchRegister, src1);
1134    or_(kScratchRegister, src2);
1135    JumpIfNotSmi(kScratchRegister, on_not_smis, near_jump);
1136    movq(dst, kScratchRegister);
1137  } else {
1138    movq(dst, src1);
1139    or_(dst, src2);
1140    JumpIfNotSmi(dst, on_not_smis, near_jump);
1141  }
1142}
1143
1144
1145Condition MacroAssembler::CheckSmi(Register src) {
1146  STATIC_ASSERT(kSmiTag == 0);
1147  testb(src, Immediate(kSmiTagMask));
1148  return zero;
1149}
1150
1151
1152Condition MacroAssembler::CheckSmi(const Operand& src) {
1153  STATIC_ASSERT(kSmiTag == 0);
1154  testb(src, Immediate(kSmiTagMask));
1155  return zero;
1156}
1157
1158
1159Condition MacroAssembler::CheckNonNegativeSmi(Register src) {
1160  STATIC_ASSERT(kSmiTag == 0);
1161  // Test that both bits of the mask 0x8000000000000001 are zero.
1162  movq(kScratchRegister, src);
1163  rol(kScratchRegister, Immediate(1));
1164  testb(kScratchRegister, Immediate(3));
1165  return zero;
1166}
1167
1168
1169Condition MacroAssembler::CheckBothSmi(Register first, Register second) {
1170  if (first.is(second)) {
1171    return CheckSmi(first);
1172  }
1173  STATIC_ASSERT(kSmiTag == 0 && kHeapObjectTag == 1 && kHeapObjectTagMask == 3);
1174  leal(kScratchRegister, Operand(first, second, times_1, 0));
1175  testb(kScratchRegister, Immediate(0x03));
1176  return zero;
1177}
1178
1179
1180Condition MacroAssembler::CheckBothNonNegativeSmi(Register first,
1181                                                  Register second) {
1182  if (first.is(second)) {
1183    return CheckNonNegativeSmi(first);
1184  }
1185  movq(kScratchRegister, first);
1186  or_(kScratchRegister, second);
1187  rol(kScratchRegister, Immediate(1));
1188  testl(kScratchRegister, Immediate(3));
1189  return zero;
1190}
1191
1192
1193Condition MacroAssembler::CheckEitherSmi(Register first,
1194                                         Register second,
1195                                         Register scratch) {
1196  if (first.is(second)) {
1197    return CheckSmi(first);
1198  }
1199  if (scratch.is(second)) {
1200    andl(scratch, first);
1201  } else {
1202    if (!scratch.is(first)) {
1203      movl(scratch, first);
1204    }
1205    andl(scratch, second);
1206  }
1207  testb(scratch, Immediate(kSmiTagMask));
1208  return zero;
1209}
1210
1211
1212Condition MacroAssembler::CheckIsMinSmi(Register src) {
1213  ASSERT(!src.is(kScratchRegister));
1214  // If we overflow by subtracting one, it's the minimal smi value.
1215  cmpq(src, kSmiConstantRegister);
1216  return overflow;
1217}
1218
1219
1220Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) {
1221  // A 32-bit integer value can always be converted to a smi.
1222  return always;
1223}
1224
1225
1226Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) {
1227  // An unsigned 32-bit integer value is valid as long as the high bit
1228  // is not set.
1229  testl(src, src);
1230  return positive;
1231}
1232
1233
1234void MacroAssembler::CheckSmiToIndicator(Register dst, Register src) {
1235  if (dst.is(src)) {
1236    andl(dst, Immediate(kSmiTagMask));
1237  } else {
1238    movl(dst, Immediate(kSmiTagMask));
1239    andl(dst, src);
1240  }
1241}
1242
1243
1244void MacroAssembler::CheckSmiToIndicator(Register dst, const Operand& src) {
1245  if (!(src.AddressUsesRegister(dst))) {
1246    movl(dst, Immediate(kSmiTagMask));
1247    andl(dst, src);
1248  } else {
1249    movl(dst, src);
1250    andl(dst, Immediate(kSmiTagMask));
1251  }
1252}
1253
1254
1255void MacroAssembler::JumpIfNotValidSmiValue(Register src,
1256                                            Label* on_invalid,
1257                                            Label::Distance near_jump) {
1258  Condition is_valid = CheckInteger32ValidSmiValue(src);
1259  j(NegateCondition(is_valid), on_invalid, near_jump);
1260}
1261
1262
1263void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src,
1264                                                Label* on_invalid,
1265                                                Label::Distance near_jump) {
1266  Condition is_valid = CheckUInteger32ValidSmiValue(src);
1267  j(NegateCondition(is_valid), on_invalid, near_jump);
1268}
1269
1270
1271void MacroAssembler::JumpIfSmi(Register src,
1272                               Label* on_smi,
1273                               Label::Distance near_jump) {
1274  Condition smi = CheckSmi(src);
1275  j(smi, on_smi, near_jump);
1276}
1277
1278
1279void MacroAssembler::JumpIfNotSmi(Register src,
1280                                  Label* on_not_smi,
1281                                  Label::Distance near_jump) {
1282  Condition smi = CheckSmi(src);
1283  j(NegateCondition(smi), on_not_smi, near_jump);
1284}
1285
1286
1287void MacroAssembler::JumpUnlessNonNegativeSmi(
1288    Register src, Label* on_not_smi_or_negative,
1289    Label::Distance near_jump) {
1290  Condition non_negative_smi = CheckNonNegativeSmi(src);
1291  j(NegateCondition(non_negative_smi), on_not_smi_or_negative, near_jump);
1292}
1293
1294
1295void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
1296                                             Smi* constant,
1297                                             Label* on_equals,
1298                                             Label::Distance near_jump) {
1299  SmiCompare(src, constant);
1300  j(equal, on_equals, near_jump);
1301}
1302
1303
1304void MacroAssembler::JumpIfNotBothSmi(Register src1,
1305                                      Register src2,
1306                                      Label* on_not_both_smi,
1307                                      Label::Distance near_jump) {
1308  Condition both_smi = CheckBothSmi(src1, src2);
1309  j(NegateCondition(both_smi), on_not_both_smi, near_jump);
1310}
1311
1312
1313void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1,
1314                                                  Register src2,
1315                                                  Label* on_not_both_smi,
1316                                                  Label::Distance near_jump) {
1317  Condition both_smi = CheckBothNonNegativeSmi(src1, src2);
1318  j(NegateCondition(both_smi), on_not_both_smi, near_jump);
1319}
1320
1321
1322void MacroAssembler::SmiTryAddConstant(Register dst,
1323                                       Register src,
1324                                       Smi* constant,
1325                                       Label* on_not_smi_result,
1326                                       Label::Distance near_jump) {
1327  // Does not assume that src is a smi.
1328  ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask));
1329  STATIC_ASSERT(kSmiTag == 0);
1330  ASSERT(!dst.is(kScratchRegister));
1331  ASSERT(!src.is(kScratchRegister));
1332
1333  JumpIfNotSmi(src, on_not_smi_result, near_jump);
1334  Register tmp = (dst.is(src) ? kScratchRegister : dst);
1335  LoadSmiConstant(tmp, constant);
1336  addq(tmp, src);
1337  j(overflow, on_not_smi_result, near_jump);
1338  if (dst.is(src)) {
1339    movq(dst, tmp);
1340  }
1341}
1342
1343
1344void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) {
1345  if (constant->value() == 0) {
1346    if (!dst.is(src)) {
1347      movq(dst, src);
1348    }
1349    return;
1350  } else if (dst.is(src)) {
1351    ASSERT(!dst.is(kScratchRegister));
1352    switch (constant->value()) {
1353      case 1:
1354        addq(dst, kSmiConstantRegister);
1355        return;
1356      case 2:
1357        lea(dst, Operand(src, kSmiConstantRegister, times_2, 0));
1358        return;
1359      case 4:
1360        lea(dst, Operand(src, kSmiConstantRegister, times_4, 0));
1361        return;
1362      case 8:
1363        lea(dst, Operand(src, kSmiConstantRegister, times_8, 0));
1364        return;
1365      default:
1366        Register constant_reg = GetSmiConstant(constant);
1367        addq(dst, constant_reg);
1368        return;
1369    }
1370  } else {
1371    switch (constant->value()) {
1372      case 1:
1373        lea(dst, Operand(src, kSmiConstantRegister, times_1, 0));
1374        return;
1375      case 2:
1376        lea(dst, Operand(src, kSmiConstantRegister, times_2, 0));
1377        return;
1378      case 4:
1379        lea(dst, Operand(src, kSmiConstantRegister, times_4, 0));
1380        return;
1381      case 8:
1382        lea(dst, Operand(src, kSmiConstantRegister, times_8, 0));
1383        return;
1384      default:
1385        LoadSmiConstant(dst, constant);
1386        addq(dst, src);
1387        return;
1388    }
1389  }
1390}
1391
1392
1393void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) {
1394  if (constant->value() != 0) {
1395    addl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(constant->value()));
1396  }
1397}
1398
1399
1400void MacroAssembler::SmiAddConstant(Register dst,
1401                                    Register src,
1402                                    Smi* constant,
1403                                    Label* on_not_smi_result,
1404                                    Label::Distance near_jump) {
1405  if (constant->value() == 0) {
1406    if (!dst.is(src)) {
1407      movq(dst, src);
1408    }
1409  } else if (dst.is(src)) {
1410    ASSERT(!dst.is(kScratchRegister));
1411
1412    LoadSmiConstant(kScratchRegister, constant);
1413    addq(kScratchRegister, src);
1414    j(overflow, on_not_smi_result, near_jump);
1415    movq(dst, kScratchRegister);
1416  } else {
1417    LoadSmiConstant(dst, constant);
1418    addq(dst, src);
1419    j(overflow, on_not_smi_result, near_jump);
1420  }
1421}
1422
1423
1424void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) {
1425  if (constant->value() == 0) {
1426    if (!dst.is(src)) {
1427      movq(dst, src);
1428    }
1429  } else if (dst.is(src)) {
1430    ASSERT(!dst.is(kScratchRegister));
1431    Register constant_reg = GetSmiConstant(constant);
1432    subq(dst, constant_reg);
1433  } else {
1434    if (constant->value() == Smi::kMinValue) {
1435      LoadSmiConstant(dst, constant);
1436      // Adding and subtracting the min-value gives the same result, it only
1437      // differs on the overflow bit, which we don't check here.
1438      addq(dst, src);
1439    } else {
1440      // Subtract by adding the negation.
1441      LoadSmiConstant(dst, Smi::FromInt(-constant->value()));
1442      addq(dst, src);
1443    }
1444  }
1445}
1446
1447
1448void MacroAssembler::SmiSubConstant(Register dst,
1449                                    Register src,
1450                                    Smi* constant,
1451                                    Label* on_not_smi_result,
1452                                    Label::Distance near_jump) {
1453  if (constant->value() == 0) {
1454    if (!dst.is(src)) {
1455      movq(dst, src);
1456    }
1457  } else if (dst.is(src)) {
1458    ASSERT(!dst.is(kScratchRegister));
1459    if (constant->value() == Smi::kMinValue) {
1460      // Subtracting min-value from any non-negative value will overflow.
1461      // We test the non-negativeness before doing the subtraction.
1462      testq(src, src);
1463      j(not_sign, on_not_smi_result, near_jump);
1464      LoadSmiConstant(kScratchRegister, constant);
1465      subq(dst, kScratchRegister);
1466    } else {
1467      // Subtract by adding the negation.
1468      LoadSmiConstant(kScratchRegister, Smi::FromInt(-constant->value()));
1469      addq(kScratchRegister, dst);
1470      j(overflow, on_not_smi_result, near_jump);
1471      movq(dst, kScratchRegister);
1472    }
1473  } else {
1474    if (constant->value() == Smi::kMinValue) {
1475      // Subtracting min-value from any non-negative value will overflow.
1476      // We test the non-negativeness before doing the subtraction.
1477      testq(src, src);
1478      j(not_sign, on_not_smi_result, near_jump);
1479      LoadSmiConstant(dst, constant);
1480      // Adding and subtracting the min-value gives the same result, it only
1481      // differs on the overflow bit, which we don't check here.
1482      addq(dst, src);
1483    } else {
1484      // Subtract by adding the negation.
1485      LoadSmiConstant(dst, Smi::FromInt(-(constant->value())));
1486      addq(dst, src);
1487      j(overflow, on_not_smi_result, near_jump);
1488    }
1489  }
1490}
1491
1492
1493void MacroAssembler::SmiNeg(Register dst,
1494                            Register src,
1495                            Label* on_smi_result,
1496                            Label::Distance near_jump) {
1497  if (dst.is(src)) {
1498    ASSERT(!dst.is(kScratchRegister));
1499    movq(kScratchRegister, src);
1500    neg(dst);  // Low 32 bits are retained as zero by negation.
1501    // Test if result is zero or Smi::kMinValue.
1502    cmpq(dst, kScratchRegister);
1503    j(not_equal, on_smi_result, near_jump);
1504    movq(src, kScratchRegister);
1505  } else {
1506    movq(dst, src);
1507    neg(dst);
1508    cmpq(dst, src);
1509    // If the result is zero or Smi::kMinValue, negation failed to create a smi.
1510    j(not_equal, on_smi_result, near_jump);
1511  }
1512}
1513
1514
1515void MacroAssembler::SmiAdd(Register dst,
1516                            Register src1,
1517                            Register src2,
1518                            Label* on_not_smi_result,
1519                            Label::Distance near_jump) {
1520  ASSERT_NOT_NULL(on_not_smi_result);
1521  ASSERT(!dst.is(src2));
1522  if (dst.is(src1)) {
1523    movq(kScratchRegister, src1);
1524    addq(kScratchRegister, src2);
1525    j(overflow, on_not_smi_result, near_jump);
1526    movq(dst, kScratchRegister);
1527  } else {
1528    movq(dst, src1);
1529    addq(dst, src2);
1530    j(overflow, on_not_smi_result, near_jump);
1531  }
1532}
1533
1534
1535void MacroAssembler::SmiAdd(Register dst,
1536                            Register src1,
1537                            const Operand& src2,
1538                            Label* on_not_smi_result,
1539                            Label::Distance near_jump) {
1540  ASSERT_NOT_NULL(on_not_smi_result);
1541  if (dst.is(src1)) {
1542    movq(kScratchRegister, src1);
1543    addq(kScratchRegister, src2);
1544    j(overflow, on_not_smi_result, near_jump);
1545    movq(dst, kScratchRegister);
1546  } else {
1547    ASSERT(!src2.AddressUsesRegister(dst));
1548    movq(dst, src1);
1549    addq(dst, src2);
1550    j(overflow, on_not_smi_result, near_jump);
1551  }
1552}
1553
1554
1555void MacroAssembler::SmiAdd(Register dst,
1556                            Register src1,
1557                            Register src2) {
1558  // No overflow checking. Use only when it's known that
1559  // overflowing is impossible.
1560  if (!dst.is(src1)) {
1561    if (emit_debug_code()) {
1562      movq(kScratchRegister, src1);
1563      addq(kScratchRegister, src2);
1564      Check(no_overflow, "Smi addition overflow");
1565    }
1566    lea(dst, Operand(src1, src2, times_1, 0));
1567  } else {
1568    addq(dst, src2);
1569    Assert(no_overflow, "Smi addition overflow");
1570  }
1571}
1572
1573
1574void MacroAssembler::SmiSub(Register dst,
1575                            Register src1,
1576                            Register src2,
1577                            Label* on_not_smi_result,
1578                            Label::Distance near_jump) {
1579  ASSERT_NOT_NULL(on_not_smi_result);
1580  ASSERT(!dst.is(src2));
1581  if (dst.is(src1)) {
1582    cmpq(dst, src2);
1583    j(overflow, on_not_smi_result, near_jump);
1584    subq(dst, src2);
1585  } else {
1586    movq(dst, src1);
1587    subq(dst, src2);
1588    j(overflow, on_not_smi_result, near_jump);
1589  }
1590}
1591
1592
1593void MacroAssembler::SmiSub(Register dst, Register src1, Register src2) {
1594  // No overflow checking. Use only when it's known that
1595  // overflowing is impossible (e.g., subtracting two positive smis).
1596  ASSERT(!dst.is(src2));
1597  if (!dst.is(src1)) {
1598    movq(dst, src1);
1599  }
1600  subq(dst, src2);
1601  Assert(no_overflow, "Smi subtraction overflow");
1602}
1603
1604
1605void MacroAssembler::SmiSub(Register dst,
1606                            Register src1,
1607                            const Operand& src2,
1608                            Label* on_not_smi_result,
1609                            Label::Distance near_jump) {
1610  ASSERT_NOT_NULL(on_not_smi_result);
1611  if (dst.is(src1)) {
1612    movq(kScratchRegister, src2);
1613    cmpq(src1, kScratchRegister);
1614    j(overflow, on_not_smi_result, near_jump);
1615    subq(src1, kScratchRegister);
1616  } else {
1617    movq(dst, src1);
1618    subq(dst, src2);
1619    j(overflow, on_not_smi_result, near_jump);
1620  }
1621}
1622
1623
1624void MacroAssembler::SmiSub(Register dst,
1625                            Register src1,
1626                            const Operand& src2) {
1627  // No overflow checking. Use only when it's known that
1628  // overflowing is impossible (e.g., subtracting two positive smis).
1629  if (!dst.is(src1)) {
1630    movq(dst, src1);
1631  }
1632  subq(dst, src2);
1633  Assert(no_overflow, "Smi subtraction overflow");
1634}
1635
1636
1637void MacroAssembler::SmiMul(Register dst,
1638                            Register src1,
1639                            Register src2,
1640                            Label* on_not_smi_result,
1641                            Label::Distance near_jump) {
1642  ASSERT(!dst.is(src2));
1643  ASSERT(!dst.is(kScratchRegister));
1644  ASSERT(!src1.is(kScratchRegister));
1645  ASSERT(!src2.is(kScratchRegister));
1646
1647  if (dst.is(src1)) {
1648    Label failure, zero_correct_result;
1649    movq(kScratchRegister, src1);  // Create backup for later testing.
1650    SmiToInteger64(dst, src1);
1651    imul(dst, src2);
1652    j(overflow, &failure, Label::kNear);
1653
1654    // Check for negative zero result.  If product is zero, and one
1655    // argument is negative, go to slow case.
1656    Label correct_result;
1657    testq(dst, dst);
1658    j(not_zero, &correct_result, Label::kNear);
1659
1660    movq(dst, kScratchRegister);
1661    xor_(dst, src2);
1662    // Result was positive zero.
1663    j(positive, &zero_correct_result, Label::kNear);
1664
1665    bind(&failure);  // Reused failure exit, restores src1.
1666    movq(src1, kScratchRegister);
1667    jmp(on_not_smi_result, near_jump);
1668
1669    bind(&zero_correct_result);
1670    Set(dst, 0);
1671
1672    bind(&correct_result);
1673  } else {
1674    SmiToInteger64(dst, src1);
1675    imul(dst, src2);
1676    j(overflow, on_not_smi_result, near_jump);
1677    // Check for negative zero result.  If product is zero, and one
1678    // argument is negative, go to slow case.
1679    Label correct_result;
1680    testq(dst, dst);
1681    j(not_zero, &correct_result, Label::kNear);
1682    // One of src1 and src2 is zero, the check whether the other is
1683    // negative.
1684    movq(kScratchRegister, src1);
1685    xor_(kScratchRegister, src2);
1686    j(negative, on_not_smi_result, near_jump);
1687    bind(&correct_result);
1688  }
1689}
1690
1691
1692void MacroAssembler::SmiDiv(Register dst,
1693                            Register src1,
1694                            Register src2,
1695                            Label* on_not_smi_result,
1696                            Label::Distance near_jump) {
1697  ASSERT(!src1.is(kScratchRegister));
1698  ASSERT(!src2.is(kScratchRegister));
1699  ASSERT(!dst.is(kScratchRegister));
1700  ASSERT(!src2.is(rax));
1701  ASSERT(!src2.is(rdx));
1702  ASSERT(!src1.is(rdx));
1703
1704  // Check for 0 divisor (result is +/-Infinity).
1705  testq(src2, src2);
1706  j(zero, on_not_smi_result, near_jump);
1707
1708  if (src1.is(rax)) {
1709    movq(kScratchRegister, src1);
1710  }
1711  SmiToInteger32(rax, src1);
1712  // We need to rule out dividing Smi::kMinValue by -1, since that would
1713  // overflow in idiv and raise an exception.
1714  // We combine this with negative zero test (negative zero only happens
1715  // when dividing zero by a negative number).
1716
1717  // We overshoot a little and go to slow case if we divide min-value
1718  // by any negative value, not just -1.
1719  Label safe_div;
1720  testl(rax, Immediate(0x7fffffff));
1721  j(not_zero, &safe_div, Label::kNear);
1722  testq(src2, src2);
1723  if (src1.is(rax)) {
1724    j(positive, &safe_div, Label::kNear);
1725    movq(src1, kScratchRegister);
1726    jmp(on_not_smi_result, near_jump);
1727  } else {
1728    j(negative, on_not_smi_result, near_jump);
1729  }
1730  bind(&safe_div);
1731
1732  SmiToInteger32(src2, src2);
1733  // Sign extend src1 into edx:eax.
1734  cdq();
1735  idivl(src2);
1736  Integer32ToSmi(src2, src2);
1737  // Check that the remainder is zero.
1738  testl(rdx, rdx);
1739  if (src1.is(rax)) {
1740    Label smi_result;
1741    j(zero, &smi_result, Label::kNear);
1742    movq(src1, kScratchRegister);
1743    jmp(on_not_smi_result, near_jump);
1744    bind(&smi_result);
1745  } else {
1746    j(not_zero, on_not_smi_result, near_jump);
1747  }
1748  if (!dst.is(src1) && src1.is(rax)) {
1749    movq(src1, kScratchRegister);
1750  }
1751  Integer32ToSmi(dst, rax);
1752}
1753
1754
1755void MacroAssembler::SmiMod(Register dst,
1756                            Register src1,
1757                            Register src2,
1758                            Label* on_not_smi_result,
1759                            Label::Distance near_jump) {
1760  ASSERT(!dst.is(kScratchRegister));
1761  ASSERT(!src1.is(kScratchRegister));
1762  ASSERT(!src2.is(kScratchRegister));
1763  ASSERT(!src2.is(rax));
1764  ASSERT(!src2.is(rdx));
1765  ASSERT(!src1.is(rdx));
1766  ASSERT(!src1.is(src2));
1767
1768  testq(src2, src2);
1769  j(zero, on_not_smi_result, near_jump);
1770
1771  if (src1.is(rax)) {
1772    movq(kScratchRegister, src1);
1773  }
1774  SmiToInteger32(rax, src1);
1775  SmiToInteger32(src2, src2);
1776
1777  // Test for the edge case of dividing Smi::kMinValue by -1 (will overflow).
1778  Label safe_div;
1779  cmpl(rax, Immediate(Smi::kMinValue));
1780  j(not_equal, &safe_div, Label::kNear);
1781  cmpl(src2, Immediate(-1));
1782  j(not_equal, &safe_div, Label::kNear);
1783  // Retag inputs and go slow case.
1784  Integer32ToSmi(src2, src2);
1785  if (src1.is(rax)) {
1786    movq(src1, kScratchRegister);
1787  }
1788  jmp(on_not_smi_result, near_jump);
1789  bind(&safe_div);
1790
1791  // Sign extend eax into edx:eax.
1792  cdq();
1793  idivl(src2);
1794  // Restore smi tags on inputs.
1795  Integer32ToSmi(src2, src2);
1796  if (src1.is(rax)) {
1797    movq(src1, kScratchRegister);
1798  }
1799  // Check for a negative zero result.  If the result is zero, and the
1800  // dividend is negative, go slow to return a floating point negative zero.
1801  Label smi_result;
1802  testl(rdx, rdx);
1803  j(not_zero, &smi_result, Label::kNear);
1804  testq(src1, src1);
1805  j(negative, on_not_smi_result, near_jump);
1806  bind(&smi_result);
1807  Integer32ToSmi(dst, rdx);
1808}
1809
1810
1811void MacroAssembler::SmiNot(Register dst, Register src) {
1812  ASSERT(!dst.is(kScratchRegister));
1813  ASSERT(!src.is(kScratchRegister));
1814  // Set tag and padding bits before negating, so that they are zero afterwards.
1815  movl(kScratchRegister, Immediate(~0));
1816  if (dst.is(src)) {
1817    xor_(dst, kScratchRegister);
1818  } else {
1819    lea(dst, Operand(src, kScratchRegister, times_1, 0));
1820  }
1821  not_(dst);
1822}
1823
1824
1825void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) {
1826  ASSERT(!dst.is(src2));
1827  if (!dst.is(src1)) {
1828    movq(dst, src1);
1829  }
1830  and_(dst, src2);
1831}
1832
1833
1834void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) {
1835  if (constant->value() == 0) {
1836    Set(dst, 0);
1837  } else if (dst.is(src)) {
1838    ASSERT(!dst.is(kScratchRegister));
1839    Register constant_reg = GetSmiConstant(constant);
1840    and_(dst, constant_reg);
1841  } else {
1842    LoadSmiConstant(dst, constant);
1843    and_(dst, src);
1844  }
1845}
1846
1847
1848void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) {
1849  if (!dst.is(src1)) {
1850    ASSERT(!src1.is(src2));
1851    movq(dst, src1);
1852  }
1853  or_(dst, src2);
1854}
1855
1856
1857void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) {
1858  if (dst.is(src)) {
1859    ASSERT(!dst.is(kScratchRegister));
1860    Register constant_reg = GetSmiConstant(constant);
1861    or_(dst, constant_reg);
1862  } else {
1863    LoadSmiConstant(dst, constant);
1864    or_(dst, src);
1865  }
1866}
1867
1868
1869void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) {
1870  if (!dst.is(src1)) {
1871    ASSERT(!src1.is(src2));
1872    movq(dst, src1);
1873  }
1874  xor_(dst, src2);
1875}
1876
1877
1878void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) {
1879  if (dst.is(src)) {
1880    ASSERT(!dst.is(kScratchRegister));
1881    Register constant_reg = GetSmiConstant(constant);
1882    xor_(dst, constant_reg);
1883  } else {
1884    LoadSmiConstant(dst, constant);
1885    xor_(dst, src);
1886  }
1887}
1888
1889
1890void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst,
1891                                                     Register src,
1892                                                     int shift_value) {
1893  ASSERT(is_uint5(shift_value));
1894  if (shift_value > 0) {
1895    if (dst.is(src)) {
1896      sar(dst, Immediate(shift_value + kSmiShift));
1897      shl(dst, Immediate(kSmiShift));
1898    } else {
1899      UNIMPLEMENTED();  // Not used.
1900    }
1901  }
1902}
1903
1904
1905void MacroAssembler::SmiShiftLeftConstant(Register dst,
1906                                          Register src,
1907                                          int shift_value) {
1908  if (!dst.is(src)) {
1909    movq(dst, src);
1910  }
1911  if (shift_value > 0) {
1912    shl(dst, Immediate(shift_value));
1913  }
1914}
1915
1916
1917void MacroAssembler::SmiShiftLogicalRightConstant(
1918    Register dst, Register src, int shift_value,
1919    Label* on_not_smi_result, Label::Distance near_jump) {
1920  // Logic right shift interprets its result as an *unsigned* number.
1921  if (dst.is(src)) {
1922    UNIMPLEMENTED();  // Not used.
1923  } else {
1924    movq(dst, src);
1925    if (shift_value == 0) {
1926      testq(dst, dst);
1927      j(negative, on_not_smi_result, near_jump);
1928    }
1929    shr(dst, Immediate(shift_value + kSmiShift));
1930    shl(dst, Immediate(kSmiShift));
1931  }
1932}
1933
1934
1935void MacroAssembler::SmiShiftLeft(Register dst,
1936                                  Register src1,
1937                                  Register src2) {
1938  ASSERT(!dst.is(rcx));
1939  // Untag shift amount.
1940  if (!dst.is(src1)) {
1941    movq(dst, src1);
1942  }
1943  SmiToInteger32(rcx, src2);
1944  // Shift amount specified by lower 5 bits, not six as the shl opcode.
1945  and_(rcx, Immediate(0x1f));
1946  shl_cl(dst);
1947}
1948
1949
1950void MacroAssembler::SmiShiftLogicalRight(Register dst,
1951                                          Register src1,
1952                                          Register src2,
1953                                          Label* on_not_smi_result,
1954                                          Label::Distance near_jump) {
1955  ASSERT(!dst.is(kScratchRegister));
1956  ASSERT(!src1.is(kScratchRegister));
1957  ASSERT(!src2.is(kScratchRegister));
1958  ASSERT(!dst.is(rcx));
1959  // dst and src1 can be the same, because the one case that bails out
1960  // is a shift by 0, which leaves dst, and therefore src1, unchanged.
1961  if (src1.is(rcx) || src2.is(rcx)) {
1962    movq(kScratchRegister, rcx);
1963  }
1964  if (!dst.is(src1)) {
1965    movq(dst, src1);
1966  }
1967  SmiToInteger32(rcx, src2);
1968  orl(rcx, Immediate(kSmiShift));
1969  shr_cl(dst);  // Shift is rcx modulo 0x1f + 32.
1970  shl(dst, Immediate(kSmiShift));
1971  testq(dst, dst);
1972  if (src1.is(rcx) || src2.is(rcx)) {
1973    Label positive_result;
1974    j(positive, &positive_result, Label::kNear);
1975    if (src1.is(rcx)) {
1976      movq(src1, kScratchRegister);
1977    } else {
1978      movq(src2, kScratchRegister);
1979    }
1980    jmp(on_not_smi_result, near_jump);
1981    bind(&positive_result);
1982  } else {
1983    // src2 was zero and src1 negative.
1984    j(negative, on_not_smi_result, near_jump);
1985  }
1986}
1987
1988
1989void MacroAssembler::SmiShiftArithmeticRight(Register dst,
1990                                             Register src1,
1991                                             Register src2) {
1992  ASSERT(!dst.is(kScratchRegister));
1993  ASSERT(!src1.is(kScratchRegister));
1994  ASSERT(!src2.is(kScratchRegister));
1995  ASSERT(!dst.is(rcx));
1996  if (src1.is(rcx)) {
1997    movq(kScratchRegister, src1);
1998  } else if (src2.is(rcx)) {
1999    movq(kScratchRegister, src2);
2000  }
2001  if (!dst.is(src1)) {
2002    movq(dst, src1);
2003  }
2004  SmiToInteger32(rcx, src2);
2005  orl(rcx, Immediate(kSmiShift));
2006  sar_cl(dst);  // Shift 32 + original rcx & 0x1f.
2007  shl(dst, Immediate(kSmiShift));
2008  if (src1.is(rcx)) {
2009    movq(src1, kScratchRegister);
2010  } else if (src2.is(rcx)) {
2011    movq(src2, kScratchRegister);
2012  }
2013}
2014
2015
2016void MacroAssembler::SelectNonSmi(Register dst,
2017                                  Register src1,
2018                                  Register src2,
2019                                  Label* on_not_smis,
2020                                  Label::Distance near_jump) {
2021  ASSERT(!dst.is(kScratchRegister));
2022  ASSERT(!src1.is(kScratchRegister));
2023  ASSERT(!src2.is(kScratchRegister));
2024  ASSERT(!dst.is(src1));
2025  ASSERT(!dst.is(src2));
2026  // Both operands must not be smis.
2027#ifdef DEBUG
2028  if (allow_stub_calls()) {  // Check contains a stub call.
2029    Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2));
2030    Check(not_both_smis, "Both registers were smis in SelectNonSmi.");
2031  }
2032#endif
2033  STATIC_ASSERT(kSmiTag == 0);
2034  ASSERT_EQ(0, Smi::FromInt(0));
2035  movl(kScratchRegister, Immediate(kSmiTagMask));
2036  and_(kScratchRegister, src1);
2037  testl(kScratchRegister, src2);
2038  // If non-zero then both are smis.
2039  j(not_zero, on_not_smis, near_jump);
2040
2041  // Exactly one operand is a smi.
2042  ASSERT_EQ(1, static_cast<int>(kSmiTagMask));
2043  // kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
2044  subq(kScratchRegister, Immediate(1));
2045  // If src1 is a smi, then scratch register all 1s, else it is all 0s.
2046  movq(dst, src1);
2047  xor_(dst, src2);
2048  and_(dst, kScratchRegister);
2049  // If src1 is a smi, dst holds src1 ^ src2, else it is zero.
2050  xor_(dst, src1);
2051  // If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi.
2052}
2053
2054
2055SmiIndex MacroAssembler::SmiToIndex(Register dst,
2056                                    Register src,
2057                                    int shift) {
2058  ASSERT(is_uint6(shift));
2059  // There is a possible optimization if shift is in the range 60-63, but that
2060  // will (and must) never happen.
2061  if (!dst.is(src)) {
2062    movq(dst, src);
2063  }
2064  if (shift < kSmiShift) {
2065    sar(dst, Immediate(kSmiShift - shift));
2066  } else {
2067    shl(dst, Immediate(shift - kSmiShift));
2068  }
2069  return SmiIndex(dst, times_1);
2070}
2071
2072SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst,
2073                                            Register src,
2074                                            int shift) {
2075  // Register src holds a positive smi.
2076  ASSERT(is_uint6(shift));
2077  if (!dst.is(src)) {
2078    movq(dst, src);
2079  }
2080  neg(dst);
2081  if (shift < kSmiShift) {
2082    sar(dst, Immediate(kSmiShift - shift));
2083  } else {
2084    shl(dst, Immediate(shift - kSmiShift));
2085  }
2086  return SmiIndex(dst, times_1);
2087}
2088
2089
2090void MacroAssembler::AddSmiField(Register dst, const Operand& src) {
2091  ASSERT_EQ(0, kSmiShift % kBitsPerByte);
2092  addl(dst, Operand(src, kSmiShift / kBitsPerByte));
2093}
2094
2095
2096void MacroAssembler::JumpIfNotString(Register object,
2097                                     Register object_map,
2098                                     Label* not_string,
2099                                     Label::Distance near_jump) {
2100  Condition is_smi = CheckSmi(object);
2101  j(is_smi, not_string, near_jump);
2102  CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map);
2103  j(above_equal, not_string, near_jump);
2104}
2105
2106
2107void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(
2108    Register first_object,
2109    Register second_object,
2110    Register scratch1,
2111    Register scratch2,
2112    Label* on_fail,
2113    Label::Distance near_jump) {
2114  // Check that both objects are not smis.
2115  Condition either_smi = CheckEitherSmi(first_object, second_object);
2116  j(either_smi, on_fail, near_jump);
2117
2118  // Load instance type for both strings.
2119  movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset));
2120  movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset));
2121  movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
2122  movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
2123
2124  // Check that both are flat ASCII strings.
2125  ASSERT(kNotStringTag != 0);
2126  const int kFlatAsciiStringMask =
2127      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
2128  const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
2129
2130  andl(scratch1, Immediate(kFlatAsciiStringMask));
2131  andl(scratch2, Immediate(kFlatAsciiStringMask));
2132  // Interleave the bits to check both scratch1 and scratch2 in one test.
2133  ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
2134  lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
2135  cmpl(scratch1,
2136       Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
2137  j(not_equal, on_fail, near_jump);
2138}
2139
2140
2141void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
2142    Register instance_type,
2143    Register scratch,
2144    Label* failure,
2145    Label::Distance near_jump) {
2146  if (!scratch.is(instance_type)) {
2147    movl(scratch, instance_type);
2148  }
2149
2150  const int kFlatAsciiStringMask =
2151      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
2152
2153  andl(scratch, Immediate(kFlatAsciiStringMask));
2154  cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
2155  j(not_equal, failure, near_jump);
2156}
2157
2158
2159void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
2160    Register first_object_instance_type,
2161    Register second_object_instance_type,
2162    Register scratch1,
2163    Register scratch2,
2164    Label* on_fail,
2165    Label::Distance near_jump) {
2166  // Load instance type for both strings.
2167  movq(scratch1, first_object_instance_type);
2168  movq(scratch2, second_object_instance_type);
2169
2170  // Check that both are flat ASCII strings.
2171  ASSERT(kNotStringTag != 0);
2172  const int kFlatAsciiStringMask =
2173      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
2174  const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
2175
2176  andl(scratch1, Immediate(kFlatAsciiStringMask));
2177  andl(scratch2, Immediate(kFlatAsciiStringMask));
2178  // Interleave the bits to check both scratch1 and scratch2 in one test.
2179  ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
2180  lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
2181  cmpl(scratch1,
2182       Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
2183  j(not_equal, on_fail, near_jump);
2184}
2185
2186
2187
2188void MacroAssembler::Move(Register dst, Register src) {
2189  if (!dst.is(src)) {
2190    movq(dst, src);
2191  }
2192}
2193
2194
2195void MacroAssembler::Move(Register dst, Handle<Object> source) {
2196  ASSERT(!source->IsFailure());
2197  if (source->IsSmi()) {
2198    Move(dst, Smi::cast(*source));
2199  } else {
2200    movq(dst, source, RelocInfo::EMBEDDED_OBJECT);
2201  }
2202}
2203
2204
2205void MacroAssembler::Move(const Operand& dst, Handle<Object> source) {
2206  ASSERT(!source->IsFailure());
2207  if (source->IsSmi()) {
2208    Move(dst, Smi::cast(*source));
2209  } else {
2210    movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
2211    movq(dst, kScratchRegister);
2212  }
2213}
2214
2215
2216void MacroAssembler::Cmp(Register dst, Handle<Object> source) {
2217  if (source->IsSmi()) {
2218    Cmp(dst, Smi::cast(*source));
2219  } else {
2220    Move(kScratchRegister, source);
2221    cmpq(dst, kScratchRegister);
2222  }
2223}
2224
2225
2226void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) {
2227  if (source->IsSmi()) {
2228    Cmp(dst, Smi::cast(*source));
2229  } else {
2230    ASSERT(source->IsHeapObject());
2231    movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
2232    cmpq(dst, kScratchRegister);
2233  }
2234}
2235
2236
2237void MacroAssembler::Push(Handle<Object> source) {
2238  if (source->IsSmi()) {
2239    Push(Smi::cast(*source));
2240  } else {
2241    ASSERT(source->IsHeapObject());
2242    movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
2243    push(kScratchRegister);
2244  }
2245}
2246
2247
2248void MacroAssembler::LoadHeapObject(Register result,
2249                                    Handle<HeapObject> object) {
2250  if (isolate()->heap()->InNewSpace(*object)) {
2251    Handle<JSGlobalPropertyCell> cell =
2252        isolate()->factory()->NewJSGlobalPropertyCell(object);
2253    movq(result, cell, RelocInfo::GLOBAL_PROPERTY_CELL);
2254    movq(result, Operand(result, 0));
2255  } else {
2256    Move(result, object);
2257  }
2258}
2259
2260
2261void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
2262  if (isolate()->heap()->InNewSpace(*object)) {
2263    Handle<JSGlobalPropertyCell> cell =
2264        isolate()->factory()->NewJSGlobalPropertyCell(object);
2265    movq(kScratchRegister, cell, RelocInfo::GLOBAL_PROPERTY_CELL);
2266    movq(kScratchRegister, Operand(kScratchRegister, 0));
2267    push(kScratchRegister);
2268  } else {
2269    Push(object);
2270  }
2271}
2272
2273
2274void MacroAssembler::LoadGlobalCell(Register dst,
2275                                    Handle<JSGlobalPropertyCell> cell) {
2276  if (dst.is(rax)) {
2277    load_rax(cell.location(), RelocInfo::GLOBAL_PROPERTY_CELL);
2278  } else {
2279    movq(dst, cell, RelocInfo::GLOBAL_PROPERTY_CELL);
2280    movq(dst, Operand(dst, 0));
2281  }
2282}
2283
2284
2285void MacroAssembler::Push(Smi* source) {
2286  intptr_t smi = reinterpret_cast<intptr_t>(source);
2287  if (is_int32(smi)) {
2288    push(Immediate(static_cast<int32_t>(smi)));
2289  } else {
2290    Register constant = GetSmiConstant(source);
2291    push(constant);
2292  }
2293}
2294
2295
2296void MacroAssembler::Drop(int stack_elements) {
2297  if (stack_elements > 0) {
2298    addq(rsp, Immediate(stack_elements * kPointerSize));
2299  }
2300}
2301
2302
2303void MacroAssembler::Test(const Operand& src, Smi* source) {
2304  testl(Operand(src, kIntSize), Immediate(source->value()));
2305}
2306
2307
2308void MacroAssembler::TestBit(const Operand& src, int bits) {
2309  int byte_offset = bits / kBitsPerByte;
2310  int bit_in_byte = bits & (kBitsPerByte - 1);
2311  testb(Operand(src, byte_offset), Immediate(1 << bit_in_byte));
2312}
2313
2314
2315void MacroAssembler::Jump(ExternalReference ext) {
2316  LoadAddress(kScratchRegister, ext);
2317  jmp(kScratchRegister);
2318}
2319
2320
2321void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) {
2322  movq(kScratchRegister, destination, rmode);
2323  jmp(kScratchRegister);
2324}
2325
2326
2327void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) {
2328  // TODO(X64): Inline this
2329  jmp(code_object, rmode);
2330}
2331
2332
2333int MacroAssembler::CallSize(ExternalReference ext) {
2334  // Opcode for call kScratchRegister is: Rex.B FF D4 (three bytes).
2335  const int kCallInstructionSize = 3;
2336  return LoadAddressSize(ext) + kCallInstructionSize;
2337}
2338
2339
2340void MacroAssembler::Call(ExternalReference ext) {
2341#ifdef DEBUG
2342  int end_position = pc_offset() + CallSize(ext);
2343#endif
2344  LoadAddress(kScratchRegister, ext);
2345  call(kScratchRegister);
2346#ifdef DEBUG
2347  CHECK_EQ(end_position, pc_offset());
2348#endif
2349}
2350
2351
2352void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) {
2353#ifdef DEBUG
2354  int end_position = pc_offset() + CallSize(destination, rmode);
2355#endif
2356  movq(kScratchRegister, destination, rmode);
2357  call(kScratchRegister);
2358#ifdef DEBUG
2359  CHECK_EQ(pc_offset(), end_position);
2360#endif
2361}
2362
2363
2364void MacroAssembler::Call(Handle<Code> code_object,
2365                          RelocInfo::Mode rmode,
2366                          unsigned ast_id) {
2367#ifdef DEBUG
2368  int end_position = pc_offset() + CallSize(code_object);
2369#endif
2370  ASSERT(RelocInfo::IsCodeTarget(rmode));
2371  call(code_object, rmode, ast_id);
2372#ifdef DEBUG
2373  CHECK_EQ(end_position, pc_offset());
2374#endif
2375}
2376
2377
2378void MacroAssembler::Pushad() {
2379  push(rax);
2380  push(rcx);
2381  push(rdx);
2382  push(rbx);
2383  // Not pushing rsp or rbp.
2384  push(rsi);
2385  push(rdi);
2386  push(r8);
2387  push(r9);
2388  // r10 is kScratchRegister.
2389  push(r11);
2390  // r12 is kSmiConstantRegister.
2391  // r13 is kRootRegister.
2392  push(r14);
2393  push(r15);
2394  STATIC_ASSERT(11 == kNumSafepointSavedRegisters);
2395  // Use lea for symmetry with Popad.
2396  int sp_delta =
2397      (kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
2398  lea(rsp, Operand(rsp, -sp_delta));
2399}
2400
2401
2402void MacroAssembler::Popad() {
2403  // Popad must not change the flags, so use lea instead of addq.
2404  int sp_delta =
2405      (kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
2406  lea(rsp, Operand(rsp, sp_delta));
2407  pop(r15);
2408  pop(r14);
2409  pop(r11);
2410  pop(r9);
2411  pop(r8);
2412  pop(rdi);
2413  pop(rsi);
2414  pop(rbx);
2415  pop(rdx);
2416  pop(rcx);
2417  pop(rax);
2418}
2419
2420
2421void MacroAssembler::Dropad() {
2422  addq(rsp, Immediate(kNumSafepointRegisters * kPointerSize));
2423}
2424
2425
2426// Order general registers are pushed by Pushad:
2427// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
2428const int
2429MacroAssembler::kSafepointPushRegisterIndices[Register::kNumRegisters] = {
2430    0,
2431    1,
2432    2,
2433    3,
2434    -1,
2435    -1,
2436    4,
2437    5,
2438    6,
2439    7,
2440    -1,
2441    8,
2442    -1,
2443    -1,
2444    9,
2445    10
2446};
2447
2448
2449void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
2450  movq(SafepointRegisterSlot(dst), src);
2451}
2452
2453
2454void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
2455  movq(dst, SafepointRegisterSlot(src));
2456}
2457
2458
2459Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
2460  return Operand(rsp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
2461}
2462
2463
2464void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
2465                                    int handler_index) {
2466  // Adjust this code if not the case.
2467  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
2468  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2469  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
2470  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
2471  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
2472  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
2473
2474  // We will build up the handler from the bottom by pushing on the stack.
2475  // First push the frame pointer and context.
2476  if (kind == StackHandler::JS_ENTRY) {
2477    // The frame pointer does not point to a JS frame so we save NULL for
2478    // rbp. We expect the code throwing an exception to check rbp before
2479    // dereferencing it to restore the context.
2480    push(Immediate(0));  // NULL frame pointer.
2481    Push(Smi::FromInt(0));  // No context.
2482  } else {
2483    push(rbp);
2484    push(rsi);
2485  }
2486
2487  // Push the state and the code object.
2488  unsigned state =
2489      StackHandler::IndexField::encode(handler_index) |
2490      StackHandler::KindField::encode(kind);
2491  push(Immediate(state));
2492  Push(CodeObject());
2493
2494  // Link the current handler as the next handler.
2495  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
2496  push(ExternalOperand(handler_address));
2497  // Set this new handler as the current one.
2498  movq(ExternalOperand(handler_address), rsp);
2499}
2500
2501
2502void MacroAssembler::PopTryHandler() {
2503  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2504  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
2505  pop(ExternalOperand(handler_address));
2506  addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
2507}
2508
2509
2510void MacroAssembler::JumpToHandlerEntry() {
2511  // Compute the handler entry address and jump to it.  The handler table is
2512  // a fixed array of (smi-tagged) code offsets.
2513  // rax = exception, rdi = code object, rdx = state.
2514  movq(rbx, FieldOperand(rdi, Code::kHandlerTableOffset));
2515  shr(rdx, Immediate(StackHandler::kKindWidth));
2516  movq(rdx, FieldOperand(rbx, rdx, times_8, FixedArray::kHeaderSize));
2517  SmiToInteger64(rdx, rdx);
2518  lea(rdi, FieldOperand(rdi, rdx, times_1, Code::kHeaderSize));
2519  jmp(rdi);
2520}
2521
2522
2523void MacroAssembler::Throw(Register value) {
2524  // Adjust this code if not the case.
2525  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
2526  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2527  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
2528  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
2529  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
2530  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
2531
2532  // The exception is expected in rax.
2533  if (!value.is(rax)) {
2534    movq(rax, value);
2535  }
2536  // Drop the stack pointer to the top of the top handler.
2537  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
2538  movq(rsp, ExternalOperand(handler_address));
2539  // Restore the next handler.
2540  pop(ExternalOperand(handler_address));
2541
2542  // Remove the code object and state, compute the handler address in rdi.
2543  pop(rdi);  // Code object.
2544  pop(rdx);  // Offset and state.
2545
2546  // Restore the context and frame pointer.
2547  pop(rsi);  // Context.
2548  pop(rbp);  // Frame pointer.
2549
2550  // If the handler is a JS frame, restore the context to the frame.
2551  // (kind == ENTRY) == (rbp == 0) == (rsi == 0), so we could test either
2552  // rbp or rsi.
2553  Label skip;
2554  testq(rsi, rsi);
2555  j(zero, &skip, Label::kNear);
2556  movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
2557  bind(&skip);
2558
2559  JumpToHandlerEntry();
2560}
2561
2562
2563void MacroAssembler::ThrowUncatchable(Register value) {
2564  // Adjust this code if not the case.
2565  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
2566  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2567  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
2568  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
2569  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
2570  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
2571
2572  // The exception is expected in rax.
2573  if (!value.is(rax)) {
2574    movq(rax, value);
2575  }
2576  // Drop the stack pointer to the top of the top stack handler.
2577  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
2578  Load(rsp, handler_address);
2579
2580  // Unwind the handlers until the top ENTRY handler is found.
2581  Label fetch_next, check_kind;
2582  jmp(&check_kind, Label::kNear);
2583  bind(&fetch_next);
2584  movq(rsp, Operand(rsp, StackHandlerConstants::kNextOffset));
2585
2586  bind(&check_kind);
2587  STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
2588  testl(Operand(rsp, StackHandlerConstants::kStateOffset),
2589        Immediate(StackHandler::KindField::kMask));
2590  j(not_zero, &fetch_next);
2591
2592  // Set the top handler address to next handler past the top ENTRY handler.
2593  pop(ExternalOperand(handler_address));
2594
2595  // Remove the code object and state, compute the handler address in rdi.
2596  pop(rdi);  // Code object.
2597  pop(rdx);  // Offset and state.
2598
2599  // Clear the context pointer and frame pointer (0 was saved in the handler).
2600  pop(rsi);
2601  pop(rbp);
2602
2603  JumpToHandlerEntry();
2604}
2605
2606
2607void MacroAssembler::Ret() {
2608  ret(0);
2609}
2610
2611
2612void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
2613  if (is_uint16(bytes_dropped)) {
2614    ret(bytes_dropped);
2615  } else {
2616    pop(scratch);
2617    addq(rsp, Immediate(bytes_dropped));
2618    push(scratch);
2619    ret(0);
2620  }
2621}
2622
2623
2624void MacroAssembler::FCmp() {
2625  fucomip();
2626  fstp(0);
2627}
2628
2629
2630void MacroAssembler::CmpObjectType(Register heap_object,
2631                                   InstanceType type,
2632                                   Register map) {
2633  movq(map, FieldOperand(heap_object, HeapObject::kMapOffset));
2634  CmpInstanceType(map, type);
2635}
2636
2637
2638void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
2639  cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
2640       Immediate(static_cast<int8_t>(type)));
2641}
2642
2643
2644void MacroAssembler::CheckFastElements(Register map,
2645                                       Label* fail,
2646                                       Label::Distance distance) {
2647  STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
2648  STATIC_ASSERT(FAST_ELEMENTS == 1);
2649  cmpb(FieldOperand(map, Map::kBitField2Offset),
2650       Immediate(Map::kMaximumBitField2FastElementValue));
2651  j(above, fail, distance);
2652}
2653
2654
2655void MacroAssembler::CheckFastObjectElements(Register map,
2656                                             Label* fail,
2657                                             Label::Distance distance) {
2658  STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
2659  STATIC_ASSERT(FAST_ELEMENTS == 1);
2660  cmpb(FieldOperand(map, Map::kBitField2Offset),
2661       Immediate(Map::kMaximumBitField2FastSmiOnlyElementValue));
2662  j(below_equal, fail, distance);
2663  cmpb(FieldOperand(map, Map::kBitField2Offset),
2664       Immediate(Map::kMaximumBitField2FastElementValue));
2665  j(above, fail, distance);
2666}
2667
2668
2669void MacroAssembler::CheckFastSmiOnlyElements(Register map,
2670                                              Label* fail,
2671                                              Label::Distance distance) {
2672  STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
2673  cmpb(FieldOperand(map, Map::kBitField2Offset),
2674       Immediate(Map::kMaximumBitField2FastSmiOnlyElementValue));
2675  j(above, fail, distance);
2676}
2677
2678
2679void MacroAssembler::StoreNumberToDoubleElements(
2680    Register maybe_number,
2681    Register elements,
2682    Register index,
2683    XMMRegister xmm_scratch,
2684    Label* fail) {
2685  Label smi_value, is_nan, maybe_nan, not_nan, have_double_value, done;
2686
2687  JumpIfSmi(maybe_number, &smi_value, Label::kNear);
2688
2689  CheckMap(maybe_number,
2690           isolate()->factory()->heap_number_map(),
2691           fail,
2692           DONT_DO_SMI_CHECK);
2693
2694  // Double value, canonicalize NaN.
2695  uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
2696  cmpl(FieldOperand(maybe_number, offset),
2697       Immediate(kNaNOrInfinityLowerBoundUpper32));
2698  j(greater_equal, &maybe_nan, Label::kNear);
2699
2700  bind(&not_nan);
2701  movsd(xmm_scratch, FieldOperand(maybe_number, HeapNumber::kValueOffset));
2702  bind(&have_double_value);
2703  movsd(FieldOperand(elements, index, times_8, FixedDoubleArray::kHeaderSize),
2704        xmm_scratch);
2705  jmp(&done);
2706
2707  bind(&maybe_nan);
2708  // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
2709  // it's an Infinity, and the non-NaN code path applies.
2710  j(greater, &is_nan, Label::kNear);
2711  cmpl(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
2712  j(zero, &not_nan);
2713  bind(&is_nan);
2714  // Convert all NaNs to the same canonical NaN value when they are stored in
2715  // the double array.
2716  Set(kScratchRegister, BitCast<uint64_t>(
2717      FixedDoubleArray::canonical_not_the_hole_nan_as_double()));
2718  movq(xmm_scratch, kScratchRegister);
2719  jmp(&have_double_value, Label::kNear);
2720
2721  bind(&smi_value);
2722  // Value is a smi. convert to a double and store.
2723  // Preserve original value.
2724  SmiToInteger32(kScratchRegister, maybe_number);
2725  cvtlsi2sd(xmm_scratch, kScratchRegister);
2726  movsd(FieldOperand(elements, index, times_8, FixedDoubleArray::kHeaderSize),
2727        xmm_scratch);
2728  bind(&done);
2729}
2730
2731
2732void MacroAssembler::CompareMap(Register obj,
2733                                Handle<Map> map,
2734                                Label* early_success,
2735                                CompareMapMode mode) {
2736  Cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
2737  if (mode == ALLOW_ELEMENT_TRANSITION_MAPS) {
2738    Map* transitioned_fast_element_map(
2739        map->LookupElementsTransitionMap(FAST_ELEMENTS, NULL));
2740    ASSERT(transitioned_fast_element_map == NULL ||
2741           map->elements_kind() != FAST_ELEMENTS);
2742    if (transitioned_fast_element_map != NULL) {
2743      j(equal, early_success, Label::kNear);
2744      Cmp(FieldOperand(obj, HeapObject::kMapOffset),
2745          Handle<Map>(transitioned_fast_element_map));
2746    }
2747
2748    Map* transitioned_double_map(
2749        map->LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, NULL));
2750    ASSERT(transitioned_double_map == NULL ||
2751           map->elements_kind() == FAST_SMI_ONLY_ELEMENTS);
2752    if (transitioned_double_map != NULL) {
2753      j(equal, early_success, Label::kNear);
2754      Cmp(FieldOperand(obj, HeapObject::kMapOffset),
2755          Handle<Map>(transitioned_double_map));
2756    }
2757  }
2758}
2759
2760
2761void MacroAssembler::CheckMap(Register obj,
2762                              Handle<Map> map,
2763                              Label* fail,
2764                              SmiCheckType smi_check_type,
2765                              CompareMapMode mode) {
2766  if (smi_check_type == DO_SMI_CHECK) {
2767    JumpIfSmi(obj, fail);
2768  }
2769
2770  Label success;
2771  CompareMap(obj, map, &success, mode);
2772  j(not_equal, fail);
2773  bind(&success);
2774}
2775
2776
2777void MacroAssembler::ClampUint8(Register reg) {
2778  Label done;
2779  testl(reg, Immediate(0xFFFFFF00));
2780  j(zero, &done, Label::kNear);
2781  setcc(negative, reg);  // 1 if negative, 0 if positive.
2782  decb(reg);  // 0 if negative, 255 if positive.
2783  bind(&done);
2784}
2785
2786
2787void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
2788                                        XMMRegister temp_xmm_reg,
2789                                        Register result_reg,
2790                                        Register temp_reg) {
2791  Label done;
2792  Set(result_reg, 0);
2793  xorps(temp_xmm_reg, temp_xmm_reg);
2794  ucomisd(input_reg, temp_xmm_reg);
2795  j(below, &done, Label::kNear);
2796  uint64_t one_half = BitCast<uint64_t, double>(0.5);
2797  Set(temp_reg, one_half);
2798  movq(temp_xmm_reg, temp_reg);
2799  addsd(temp_xmm_reg, input_reg);
2800  cvttsd2si(result_reg, temp_xmm_reg);
2801  testl(result_reg, Immediate(0xFFFFFF00));
2802  j(zero, &done, Label::kNear);
2803  Set(result_reg, 255);
2804  bind(&done);
2805}
2806
2807
2808void MacroAssembler::LoadInstanceDescriptors(Register map,
2809                                             Register descriptors) {
2810  movq(descriptors, FieldOperand(map,
2811                                 Map::kInstanceDescriptorsOrBitField3Offset));
2812  Label not_smi;
2813  JumpIfNotSmi(descriptors, &not_smi, Label::kNear);
2814  Move(descriptors, isolate()->factory()->empty_descriptor_array());
2815  bind(&not_smi);
2816}
2817
2818
2819void MacroAssembler::DispatchMap(Register obj,
2820                                 Handle<Map> map,
2821                                 Handle<Code> success,
2822                                 SmiCheckType smi_check_type) {
2823  Label fail;
2824  if (smi_check_type == DO_SMI_CHECK) {
2825    JumpIfSmi(obj, &fail);
2826  }
2827  Cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
2828  j(equal, success, RelocInfo::CODE_TARGET);
2829
2830  bind(&fail);
2831}
2832
2833
2834void MacroAssembler::AbortIfNotNumber(Register object) {
2835  Label ok;
2836  Condition is_smi = CheckSmi(object);
2837  j(is_smi, &ok, Label::kNear);
2838  Cmp(FieldOperand(object, HeapObject::kMapOffset),
2839      isolate()->factory()->heap_number_map());
2840  Assert(equal, "Operand not a number");
2841  bind(&ok);
2842}
2843
2844
2845void MacroAssembler::AbortIfSmi(Register object) {
2846  Condition is_smi = CheckSmi(object);
2847  Assert(NegateCondition(is_smi), "Operand is a smi");
2848}
2849
2850
2851void MacroAssembler::AbortIfNotSmi(Register object) {
2852  Condition is_smi = CheckSmi(object);
2853  Assert(is_smi, "Operand is not a smi");
2854}
2855
2856
2857void MacroAssembler::AbortIfNotSmi(const Operand& object) {
2858  Condition is_smi = CheckSmi(object);
2859  Assert(is_smi, "Operand is not a smi");
2860}
2861
2862
2863void MacroAssembler::AbortIfNotZeroExtended(Register int32_register) {
2864  ASSERT(!int32_register.is(kScratchRegister));
2865  movq(kScratchRegister, 0x100000000l, RelocInfo::NONE);
2866  cmpq(kScratchRegister, int32_register);
2867  Assert(above_equal, "32 bit value in register is not zero-extended");
2868}
2869
2870
2871void MacroAssembler::AbortIfNotString(Register object) {
2872  testb(object, Immediate(kSmiTagMask));
2873  Assert(not_equal, "Operand is not a string");
2874  push(object);
2875  movq(object, FieldOperand(object, HeapObject::kMapOffset));
2876  CmpInstanceType(object, FIRST_NONSTRING_TYPE);
2877  pop(object);
2878  Assert(below, "Operand is not a string");
2879}
2880
2881
2882void MacroAssembler::AbortIfNotRootValue(Register src,
2883                                         Heap::RootListIndex root_value_index,
2884                                         const char* message) {
2885  ASSERT(!src.is(kScratchRegister));
2886  LoadRoot(kScratchRegister, root_value_index);
2887  cmpq(src, kScratchRegister);
2888  Check(equal, message);
2889}
2890
2891
2892
2893Condition MacroAssembler::IsObjectStringType(Register heap_object,
2894                                             Register map,
2895                                             Register instance_type) {
2896  movq(map, FieldOperand(heap_object, HeapObject::kMapOffset));
2897  movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
2898  STATIC_ASSERT(kNotStringTag != 0);
2899  testb(instance_type, Immediate(kIsNotStringMask));
2900  return zero;
2901}
2902
2903
2904void MacroAssembler::TryGetFunctionPrototype(Register function,
2905                                             Register result,
2906                                             Label* miss,
2907                                             bool miss_on_bound_function) {
2908  // Check that the receiver isn't a smi.
2909  testl(function, Immediate(kSmiTagMask));
2910  j(zero, miss);
2911
2912  // Check that the function really is a function.
2913  CmpObjectType(function, JS_FUNCTION_TYPE, result);
2914  j(not_equal, miss);
2915
2916  if (miss_on_bound_function) {
2917    movq(kScratchRegister,
2918         FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
2919    // It's not smi-tagged (stored in the top half of a smi-tagged 8-byte
2920    // field).
2921    TestBit(FieldOperand(kScratchRegister,
2922                         SharedFunctionInfo::kCompilerHintsOffset),
2923            SharedFunctionInfo::kBoundFunction);
2924    j(not_zero, miss);
2925  }
2926
2927  // Make sure that the function has an instance prototype.
2928  Label non_instance;
2929  testb(FieldOperand(result, Map::kBitFieldOffset),
2930        Immediate(1 << Map::kHasNonInstancePrototype));
2931  j(not_zero, &non_instance, Label::kNear);
2932
2933  // Get the prototype or initial map from the function.
2934  movq(result,
2935       FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2936
2937  // If the prototype or initial map is the hole, don't return it and
2938  // simply miss the cache instead. This will allow us to allocate a
2939  // prototype object on-demand in the runtime system.
2940  CompareRoot(result, Heap::kTheHoleValueRootIndex);
2941  j(equal, miss);
2942
2943  // If the function does not have an initial map, we're done.
2944  Label done;
2945  CmpObjectType(result, MAP_TYPE, kScratchRegister);
2946  j(not_equal, &done, Label::kNear);
2947
2948  // Get the prototype from the initial map.
2949  movq(result, FieldOperand(result, Map::kPrototypeOffset));
2950  jmp(&done, Label::kNear);
2951
2952  // Non-instance prototype: Fetch prototype from constructor field
2953  // in initial map.
2954  bind(&non_instance);
2955  movq(result, FieldOperand(result, Map::kConstructorOffset));
2956
2957  // All done.
2958  bind(&done);
2959}
2960
2961
2962void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
2963  if (FLAG_native_code_counters && counter->Enabled()) {
2964    Operand counter_operand = ExternalOperand(ExternalReference(counter));
2965    movl(counter_operand, Immediate(value));
2966  }
2967}
2968
2969
2970void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
2971  ASSERT(value > 0);
2972  if (FLAG_native_code_counters && counter->Enabled()) {
2973    Operand counter_operand = ExternalOperand(ExternalReference(counter));
2974    if (value == 1) {
2975      incl(counter_operand);
2976    } else {
2977      addl(counter_operand, Immediate(value));
2978    }
2979  }
2980}
2981
2982
2983void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
2984  ASSERT(value > 0);
2985  if (FLAG_native_code_counters && counter->Enabled()) {
2986    Operand counter_operand = ExternalOperand(ExternalReference(counter));
2987    if (value == 1) {
2988      decl(counter_operand);
2989    } else {
2990      subl(counter_operand, Immediate(value));
2991    }
2992  }
2993}
2994
2995
2996#ifdef ENABLE_DEBUGGER_SUPPORT
2997void MacroAssembler::DebugBreak() {
2998  Set(rax, 0);  // No arguments.
2999  LoadAddress(rbx, ExternalReference(Runtime::kDebugBreak, isolate()));
3000  CEntryStub ces(1);
3001  ASSERT(AllowThisStubCall(&ces));
3002  Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
3003}
3004#endif  // ENABLE_DEBUGGER_SUPPORT
3005
3006
3007void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) {
3008  // This macro takes the dst register to make the code more readable
3009  // at the call sites. However, the dst register has to be rcx to
3010  // follow the calling convention which requires the call type to be
3011  // in rcx.
3012  ASSERT(dst.is(rcx));
3013  if (call_kind == CALL_AS_FUNCTION) {
3014    LoadSmiConstant(dst, Smi::FromInt(1));
3015  } else {
3016    LoadSmiConstant(dst, Smi::FromInt(0));
3017  }
3018}
3019
3020
3021void MacroAssembler::InvokeCode(Register code,
3022                                const ParameterCount& expected,
3023                                const ParameterCount& actual,
3024                                InvokeFlag flag,
3025                                const CallWrapper& call_wrapper,
3026                                CallKind call_kind) {
3027  // You can't call a function without a valid frame.
3028  ASSERT(flag == JUMP_FUNCTION || has_frame());
3029
3030  Label done;
3031  bool definitely_mismatches = false;
3032  InvokePrologue(expected,
3033                 actual,
3034                 Handle<Code>::null(),
3035                 code,
3036                 &done,
3037                 &definitely_mismatches,
3038                 flag,
3039                 Label::kNear,
3040                 call_wrapper,
3041                 call_kind);
3042  if (!definitely_mismatches) {
3043    if (flag == CALL_FUNCTION) {
3044      call_wrapper.BeforeCall(CallSize(code));
3045      SetCallKind(rcx, call_kind);
3046      call(code);
3047      call_wrapper.AfterCall();
3048    } else {
3049      ASSERT(flag == JUMP_FUNCTION);
3050      SetCallKind(rcx, call_kind);
3051      jmp(code);
3052    }
3053    bind(&done);
3054  }
3055}
3056
3057
3058void MacroAssembler::InvokeCode(Handle<Code> code,
3059                                const ParameterCount& expected,
3060                                const ParameterCount& actual,
3061                                RelocInfo::Mode rmode,
3062                                InvokeFlag flag,
3063                                const CallWrapper& call_wrapper,
3064                                CallKind call_kind) {
3065  // You can't call a function without a valid frame.
3066  ASSERT(flag == JUMP_FUNCTION || has_frame());
3067
3068  Label done;
3069  bool definitely_mismatches = false;
3070  Register dummy = rax;
3071  InvokePrologue(expected,
3072                 actual,
3073                 code,
3074                 dummy,
3075                 &done,
3076                 &definitely_mismatches,
3077                 flag,
3078                 Label::kNear,
3079                 call_wrapper,
3080                 call_kind);
3081  if (!definitely_mismatches) {
3082    if (flag == CALL_FUNCTION) {
3083      call_wrapper.BeforeCall(CallSize(code));
3084      SetCallKind(rcx, call_kind);
3085      Call(code, rmode);
3086      call_wrapper.AfterCall();
3087    } else {
3088      ASSERT(flag == JUMP_FUNCTION);
3089      SetCallKind(rcx, call_kind);
3090      Jump(code, rmode);
3091    }
3092    bind(&done);
3093  }
3094}
3095
3096
3097void MacroAssembler::InvokeFunction(Register function,
3098                                    const ParameterCount& actual,
3099                                    InvokeFlag flag,
3100                                    const CallWrapper& call_wrapper,
3101                                    CallKind call_kind) {
3102  // You can't call a function without a valid frame.
3103  ASSERT(flag == JUMP_FUNCTION || has_frame());
3104
3105  ASSERT(function.is(rdi));
3106  movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
3107  movq(rsi, FieldOperand(function, JSFunction::kContextOffset));
3108  movsxlq(rbx,
3109          FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset));
3110  // Advances rdx to the end of the Code object header, to the start of
3111  // the executable code.
3112  movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
3113
3114  ParameterCount expected(rbx);
3115  InvokeCode(rdx, expected, actual, flag, call_wrapper, call_kind);
3116}
3117
3118
3119void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
3120                                    const ParameterCount& actual,
3121                                    InvokeFlag flag,
3122                                    const CallWrapper& call_wrapper,
3123                                    CallKind call_kind) {
3124  // You can't call a function without a valid frame.
3125  ASSERT(flag == JUMP_FUNCTION || has_frame());
3126
3127  // Get the function and setup the context.
3128  LoadHeapObject(rdi, function);
3129  movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
3130
3131  // We call indirectly through the code field in the function to
3132  // allow recompilation to take effect without changing any of the
3133  // call sites.
3134  movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
3135  ParameterCount expected(function->shared()->formal_parameter_count());
3136  InvokeCode(rdx, expected, actual, flag, call_wrapper, call_kind);
3137}
3138
3139
3140void MacroAssembler::InvokePrologue(const ParameterCount& expected,
3141                                    const ParameterCount& actual,
3142                                    Handle<Code> code_constant,
3143                                    Register code_register,
3144                                    Label* done,
3145                                    bool* definitely_mismatches,
3146                                    InvokeFlag flag,
3147                                    Label::Distance near_jump,
3148                                    const CallWrapper& call_wrapper,
3149                                    CallKind call_kind) {
3150  bool definitely_matches = false;
3151  *definitely_mismatches = false;
3152  Label invoke;
3153  if (expected.is_immediate()) {
3154    ASSERT(actual.is_immediate());
3155    if (expected.immediate() == actual.immediate()) {
3156      definitely_matches = true;
3157    } else {
3158      Set(rax, actual.immediate());
3159      if (expected.immediate() ==
3160              SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
3161        // Don't worry about adapting arguments for built-ins that
3162        // don't want that done. Skip adaption code by making it look
3163        // like we have a match between expected and actual number of
3164        // arguments.
3165        definitely_matches = true;
3166      } else {
3167        *definitely_mismatches = true;
3168        Set(rbx, expected.immediate());
3169      }
3170    }
3171  } else {
3172    if (actual.is_immediate()) {
3173      // Expected is in register, actual is immediate. This is the
3174      // case when we invoke function values without going through the
3175      // IC mechanism.
3176      cmpq(expected.reg(), Immediate(actual.immediate()));
3177      j(equal, &invoke, Label::kNear);
3178      ASSERT(expected.reg().is(rbx));
3179      Set(rax, actual.immediate());
3180    } else if (!expected.reg().is(actual.reg())) {
3181      // Both expected and actual are in (different) registers. This
3182      // is the case when we invoke functions using call and apply.
3183      cmpq(expected.reg(), actual.reg());
3184      j(equal, &invoke, Label::kNear);
3185      ASSERT(actual.reg().is(rax));
3186      ASSERT(expected.reg().is(rbx));
3187    }
3188  }
3189
3190  if (!definitely_matches) {
3191    Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline();
3192    if (!code_constant.is_null()) {
3193      movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT);
3194      addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
3195    } else if (!code_register.is(rdx)) {
3196      movq(rdx, code_register);
3197    }
3198
3199    if (flag == CALL_FUNCTION) {
3200      call_wrapper.BeforeCall(CallSize(adaptor));
3201      SetCallKind(rcx, call_kind);
3202      Call(adaptor, RelocInfo::CODE_TARGET);
3203      call_wrapper.AfterCall();
3204      if (!*definitely_mismatches) {
3205        jmp(done, near_jump);
3206      }
3207    } else {
3208      SetCallKind(rcx, call_kind);
3209      Jump(adaptor, RelocInfo::CODE_TARGET);
3210    }
3211    bind(&invoke);
3212  }
3213}
3214
3215
3216void MacroAssembler::EnterFrame(StackFrame::Type type) {
3217  push(rbp);
3218  movq(rbp, rsp);
3219  push(rsi);  // Context.
3220  Push(Smi::FromInt(type));
3221  movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
3222  push(kScratchRegister);
3223  if (emit_debug_code()) {
3224    movq(kScratchRegister,
3225         isolate()->factory()->undefined_value(),
3226         RelocInfo::EMBEDDED_OBJECT);
3227    cmpq(Operand(rsp, 0), kScratchRegister);
3228    Check(not_equal, "code object not properly patched");
3229  }
3230}
3231
3232
3233void MacroAssembler::LeaveFrame(StackFrame::Type type) {
3234  if (emit_debug_code()) {
3235    Move(kScratchRegister, Smi::FromInt(type));
3236    cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister);
3237    Check(equal, "stack frame types must match");
3238  }
3239  movq(rsp, rbp);
3240  pop(rbp);
3241}
3242
3243
3244void MacroAssembler::EnterExitFramePrologue(bool save_rax) {
3245  // Set up the frame structure on the stack.
3246  // All constants are relative to the frame pointer of the exit frame.
3247  ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
3248  ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
3249  ASSERT(ExitFrameConstants::kCallerFPOffset ==  0 * kPointerSize);
3250  push(rbp);
3251  movq(rbp, rsp);
3252
3253  // Reserve room for entry stack pointer and push the code object.
3254  ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
3255  push(Immediate(0));  // Saved entry sp, patched before call.
3256  movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
3257  push(kScratchRegister);  // Accessed from EditFrame::code_slot.
3258
3259  // Save the frame pointer and the context in top.
3260  if (save_rax) {
3261    movq(r14, rax);  // Backup rax in callee-save register.
3262  }
3263
3264  Store(ExternalReference(Isolate::kCEntryFPAddress, isolate()), rbp);
3265  Store(ExternalReference(Isolate::kContextAddress, isolate()), rsi);
3266}
3267
3268
3269void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space,
3270                                            bool save_doubles) {
3271#ifdef _WIN64
3272  const int kShadowSpace = 4;
3273  arg_stack_space += kShadowSpace;
3274#endif
3275  // Optionally save all XMM registers.
3276  if (save_doubles) {
3277    int space = XMMRegister::kNumRegisters * kDoubleSize +
3278        arg_stack_space * kPointerSize;
3279    subq(rsp, Immediate(space));
3280    int offset = -2 * kPointerSize;
3281    for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) {
3282      XMMRegister reg = XMMRegister::FromAllocationIndex(i);
3283      movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg);
3284    }
3285  } else if (arg_stack_space > 0) {
3286    subq(rsp, Immediate(arg_stack_space * kPointerSize));
3287  }
3288
3289  // Get the required frame alignment for the OS.
3290  const int kFrameAlignment = OS::ActivationFrameAlignment();
3291  if (kFrameAlignment > 0) {
3292    ASSERT(IsPowerOf2(kFrameAlignment));
3293    ASSERT(is_int8(kFrameAlignment));
3294    and_(rsp, Immediate(-kFrameAlignment));
3295  }
3296
3297  // Patch the saved entry sp.
3298  movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp);
3299}
3300
3301
3302void MacroAssembler::EnterExitFrame(int arg_stack_space, bool save_doubles) {
3303  EnterExitFramePrologue(true);
3304
3305  // Set up argv in callee-saved register r15. It is reused in LeaveExitFrame,
3306  // so it must be retained across the C-call.
3307  int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
3308  lea(r15, Operand(rbp, r14, times_pointer_size, offset));
3309
3310  EnterExitFrameEpilogue(arg_stack_space, save_doubles);
3311}
3312
3313
3314void MacroAssembler::EnterApiExitFrame(int arg_stack_space) {
3315  EnterExitFramePrologue(false);
3316  EnterExitFrameEpilogue(arg_stack_space, false);
3317}
3318
3319
3320void MacroAssembler::LeaveExitFrame(bool save_doubles) {
3321  // Registers:
3322  // r15 : argv
3323  if (save_doubles) {
3324    int offset = -2 * kPointerSize;
3325    for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) {
3326      XMMRegister reg = XMMRegister::FromAllocationIndex(i);
3327      movsd(reg, Operand(rbp, offset - ((i + 1) * kDoubleSize)));
3328    }
3329  }
3330  // Get the return address from the stack and restore the frame pointer.
3331  movq(rcx, Operand(rbp, 1 * kPointerSize));
3332  movq(rbp, Operand(rbp, 0 * kPointerSize));
3333
3334  // Drop everything up to and including the arguments and the receiver
3335  // from the caller stack.
3336  lea(rsp, Operand(r15, 1 * kPointerSize));
3337
3338  // Push the return address to get ready to return.
3339  push(rcx);
3340
3341  LeaveExitFrameEpilogue();
3342}
3343
3344
3345void MacroAssembler::LeaveApiExitFrame() {
3346  movq(rsp, rbp);
3347  pop(rbp);
3348
3349  LeaveExitFrameEpilogue();
3350}
3351
3352
3353void MacroAssembler::LeaveExitFrameEpilogue() {
3354  // Restore current context from top and clear it in debug mode.
3355  ExternalReference context_address(Isolate::kContextAddress, isolate());
3356  Operand context_operand = ExternalOperand(context_address);
3357  movq(rsi, context_operand);
3358#ifdef DEBUG
3359  movq(context_operand, Immediate(0));
3360#endif
3361
3362  // Clear the top frame.
3363  ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
3364                                       isolate());
3365  Operand c_entry_fp_operand = ExternalOperand(c_entry_fp_address);
3366  movq(c_entry_fp_operand, Immediate(0));
3367}
3368
3369
3370void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
3371                                            Register scratch,
3372                                            Label* miss) {
3373  Label same_contexts;
3374
3375  ASSERT(!holder_reg.is(scratch));
3376  ASSERT(!scratch.is(kScratchRegister));
3377  // Load current lexical context from the stack frame.
3378  movq(scratch, Operand(rbp, StandardFrameConstants::kContextOffset));
3379
3380  // When generating debug code, make sure the lexical context is set.
3381  if (emit_debug_code()) {
3382    cmpq(scratch, Immediate(0));
3383    Check(not_equal, "we should not have an empty lexical context");
3384  }
3385  // Load the global context of the current context.
3386  int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
3387  movq(scratch, FieldOperand(scratch, offset));
3388  movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));
3389
3390  // Check the context is a global context.
3391  if (emit_debug_code()) {
3392    Cmp(FieldOperand(scratch, HeapObject::kMapOffset),
3393        isolate()->factory()->global_context_map());
3394    Check(equal, "JSGlobalObject::global_context should be a global context.");
3395  }
3396
3397  // Check if both contexts are the same.
3398  cmpq(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
3399  j(equal, &same_contexts);
3400
3401  // Compare security tokens.
3402  // Check that the security token in the calling global object is
3403  // compatible with the security token in the receiving global
3404  // object.
3405
3406  // Check the context is a global context.
3407  if (emit_debug_code()) {
3408    // Preserve original value of holder_reg.
3409    push(holder_reg);
3410    movq(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
3411    CompareRoot(holder_reg, Heap::kNullValueRootIndex);
3412    Check(not_equal, "JSGlobalProxy::context() should not be null.");
3413
3414    // Read the first word and compare to global_context_map(),
3415    movq(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
3416    CompareRoot(holder_reg, Heap::kGlobalContextMapRootIndex);
3417    Check(equal, "JSGlobalObject::global_context should be a global context.");
3418    pop(holder_reg);
3419  }
3420
3421  movq(kScratchRegister,
3422       FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
3423  int token_offset =
3424      Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize;
3425  movq(scratch, FieldOperand(scratch, token_offset));
3426  cmpq(scratch, FieldOperand(kScratchRegister, token_offset));
3427  j(not_equal, miss);
3428
3429  bind(&same_contexts);
3430}
3431
3432
3433void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
3434  // First of all we assign the hash seed to scratch.
3435  LoadRoot(scratch, Heap::kHashSeedRootIndex);
3436  SmiToInteger32(scratch, scratch);
3437
3438  // Xor original key with a seed.
3439  xorl(r0, scratch);
3440
3441  // Compute the hash code from the untagged key.  This must be kept in sync
3442  // with ComputeIntegerHash in utils.h.
3443  //
3444  // hash = ~hash + (hash << 15);
3445  movl(scratch, r0);
3446  notl(r0);
3447  shll(scratch, Immediate(15));
3448  addl(r0, scratch);
3449  // hash = hash ^ (hash >> 12);
3450  movl(scratch, r0);
3451  shrl(scratch, Immediate(12));
3452  xorl(r0, scratch);
3453  // hash = hash + (hash << 2);
3454  leal(r0, Operand(r0, r0, times_4, 0));
3455  // hash = hash ^ (hash >> 4);
3456  movl(scratch, r0);
3457  shrl(scratch, Immediate(4));
3458  xorl(r0, scratch);
3459  // hash = hash * 2057;
3460  imull(r0, r0, Immediate(2057));
3461  // hash = hash ^ (hash >> 16);
3462  movl(scratch, r0);
3463  shrl(scratch, Immediate(16));
3464  xorl(r0, scratch);
3465}
3466
3467
3468
3469void MacroAssembler::LoadFromNumberDictionary(Label* miss,
3470                                              Register elements,
3471                                              Register key,
3472                                              Register r0,
3473                                              Register r1,
3474                                              Register r2,
3475                                              Register result) {
3476  // Register use:
3477  //
3478  // elements - holds the slow-case elements of the receiver on entry.
3479  //            Unchanged unless 'result' is the same register.
3480  //
3481  // key      - holds the smi key on entry.
3482  //            Unchanged unless 'result' is the same register.
3483  //
3484  // Scratch registers:
3485  //
3486  // r0 - holds the untagged key on entry and holds the hash once computed.
3487  //
3488  // r1 - used to hold the capacity mask of the dictionary
3489  //
3490  // r2 - used for the index into the dictionary.
3491  //
3492  // result - holds the result on exit if the load succeeded.
3493  //          Allowed to be the same as 'key' or 'result'.
3494  //          Unchanged on bailout so 'key' or 'result' can be used
3495  //          in further computation.
3496
3497  Label done;
3498
3499  GetNumberHash(r0, r1);
3500
3501  // Compute capacity mask.
3502  SmiToInteger32(r1, FieldOperand(elements,
3503                                  SeededNumberDictionary::kCapacityOffset));
3504  decl(r1);
3505
3506  // Generate an unrolled loop that performs a few probes before giving up.
3507  const int kProbes = 4;
3508  for (int i = 0; i < kProbes; i++) {
3509    // Use r2 for index calculations and keep the hash intact in r0.
3510    movq(r2, r0);
3511    // Compute the masked index: (hash + i + i * i) & mask.
3512    if (i > 0) {
3513      addl(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
3514    }
3515    and_(r2, r1);
3516
3517    // Scale the index by multiplying by the entry size.
3518    ASSERT(SeededNumberDictionary::kEntrySize == 3);
3519    lea(r2, Operand(r2, r2, times_2, 0));  // r2 = r2 * 3
3520
3521    // Check if the key matches.
3522    cmpq(key, FieldOperand(elements,
3523                           r2,
3524                           times_pointer_size,
3525                           SeededNumberDictionary::kElementsStartOffset));
3526    if (i != (kProbes - 1)) {
3527      j(equal, &done);
3528    } else {
3529      j(not_equal, miss);
3530    }
3531  }
3532
3533  bind(&done);
3534  // Check that the value is a normal propety.
3535  const int kDetailsOffset =
3536      SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
3537  ASSERT_EQ(NORMAL, 0);
3538  Test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
3539       Smi::FromInt(PropertyDetails::TypeField::kMask));
3540  j(not_zero, miss);
3541
3542  // Get the value at the masked, scaled index.
3543  const int kValueOffset =
3544      SeededNumberDictionary::kElementsStartOffset + kPointerSize;
3545  movq(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
3546}
3547
3548
3549void MacroAssembler::LoadAllocationTopHelper(Register result,
3550                                             Register scratch,
3551                                             AllocationFlags flags) {
3552  ExternalReference new_space_allocation_top =
3553      ExternalReference::new_space_allocation_top_address(isolate());
3554
3555  // Just return if allocation top is already known.
3556  if ((flags & RESULT_CONTAINS_TOP) != 0) {
3557    // No use of scratch if allocation top is provided.
3558    ASSERT(!scratch.is_valid());
3559#ifdef DEBUG
3560    // Assert that result actually contains top on entry.
3561    Operand top_operand = ExternalOperand(new_space_allocation_top);
3562    cmpq(result, top_operand);
3563    Check(equal, "Unexpected allocation top");
3564#endif
3565    return;
3566  }
3567
3568  // Move address of new object to result. Use scratch register if available,
3569  // and keep address in scratch until call to UpdateAllocationTopHelper.
3570  if (scratch.is_valid()) {
3571    LoadAddress(scratch, new_space_allocation_top);
3572    movq(result, Operand(scratch, 0));
3573  } else {
3574    Load(result, new_space_allocation_top);
3575  }
3576}
3577
3578
3579void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
3580                                               Register scratch) {
3581  if (emit_debug_code()) {
3582    testq(result_end, Immediate(kObjectAlignmentMask));
3583    Check(zero, "Unaligned allocation in new space");
3584  }
3585
3586  ExternalReference new_space_allocation_top =
3587      ExternalReference::new_space_allocation_top_address(isolate());
3588
3589  // Update new top.
3590  if (scratch.is_valid()) {
3591    // Scratch already contains address of allocation top.
3592    movq(Operand(scratch, 0), result_end);
3593  } else {
3594    Store(new_space_allocation_top, result_end);
3595  }
3596}
3597
3598
3599void MacroAssembler::AllocateInNewSpace(int object_size,
3600                                        Register result,
3601                                        Register result_end,
3602                                        Register scratch,
3603                                        Label* gc_required,
3604                                        AllocationFlags flags) {
3605  if (!FLAG_inline_new) {
3606    if (emit_debug_code()) {
3607      // Trash the registers to simulate an allocation failure.
3608      movl(result, Immediate(0x7091));
3609      if (result_end.is_valid()) {
3610        movl(result_end, Immediate(0x7191));
3611      }
3612      if (scratch.is_valid()) {
3613        movl(scratch, Immediate(0x7291));
3614      }
3615    }
3616    jmp(gc_required);
3617    return;
3618  }
3619  ASSERT(!result.is(result_end));
3620
3621  // Load address of new object into result.
3622  LoadAllocationTopHelper(result, scratch, flags);
3623
3624  // Calculate new top and bail out if new space is exhausted.
3625  ExternalReference new_space_allocation_limit =
3626      ExternalReference::new_space_allocation_limit_address(isolate());
3627
3628  Register top_reg = result_end.is_valid() ? result_end : result;
3629
3630  if (!top_reg.is(result)) {
3631    movq(top_reg, result);
3632  }
3633  addq(top_reg, Immediate(object_size));
3634  j(carry, gc_required);
3635  Operand limit_operand = ExternalOperand(new_space_allocation_limit);
3636  cmpq(top_reg, limit_operand);
3637  j(above, gc_required);
3638
3639  // Update allocation top.
3640  UpdateAllocationTopHelper(top_reg, scratch);
3641
3642  if (top_reg.is(result)) {
3643    if ((flags & TAG_OBJECT) != 0) {
3644      subq(result, Immediate(object_size - kHeapObjectTag));
3645    } else {
3646      subq(result, Immediate(object_size));
3647    }
3648  } else if ((flags & TAG_OBJECT) != 0) {
3649    // Tag the result if requested.
3650    addq(result, Immediate(kHeapObjectTag));
3651  }
3652}
3653
3654
3655void MacroAssembler::AllocateInNewSpace(int header_size,
3656                                        ScaleFactor element_size,
3657                                        Register element_count,
3658                                        Register result,
3659                                        Register result_end,
3660                                        Register scratch,
3661                                        Label* gc_required,
3662                                        AllocationFlags flags) {
3663  if (!FLAG_inline_new) {
3664    if (emit_debug_code()) {
3665      // Trash the registers to simulate an allocation failure.
3666      movl(result, Immediate(0x7091));
3667      movl(result_end, Immediate(0x7191));
3668      if (scratch.is_valid()) {
3669        movl(scratch, Immediate(0x7291));
3670      }
3671      // Register element_count is not modified by the function.
3672    }
3673    jmp(gc_required);
3674    return;
3675  }
3676  ASSERT(!result.is(result_end));
3677
3678  // Load address of new object into result.
3679  LoadAllocationTopHelper(result, scratch, flags);
3680
3681  // Calculate new top and bail out if new space is exhausted.
3682  ExternalReference new_space_allocation_limit =
3683      ExternalReference::new_space_allocation_limit_address(isolate());
3684
3685  // We assume that element_count*element_size + header_size does not
3686  // overflow.
3687  lea(result_end, Operand(element_count, element_size, header_size));
3688  addq(result_end, result);
3689  j(carry, gc_required);
3690  Operand limit_operand = ExternalOperand(new_space_allocation_limit);
3691  cmpq(result_end, limit_operand);
3692  j(above, gc_required);
3693
3694  // Update allocation top.
3695  UpdateAllocationTopHelper(result_end, scratch);
3696
3697  // Tag the result if requested.
3698  if ((flags & TAG_OBJECT) != 0) {
3699    addq(result, Immediate(kHeapObjectTag));
3700  }
3701}
3702
3703
3704void MacroAssembler::AllocateInNewSpace(Register object_size,
3705                                        Register result,
3706                                        Register result_end,
3707                                        Register scratch,
3708                                        Label* gc_required,
3709                                        AllocationFlags flags) {
3710  if (!FLAG_inline_new) {
3711    if (emit_debug_code()) {
3712      // Trash the registers to simulate an allocation failure.
3713      movl(result, Immediate(0x7091));
3714      movl(result_end, Immediate(0x7191));
3715      if (scratch.is_valid()) {
3716        movl(scratch, Immediate(0x7291));
3717      }
3718      // object_size is left unchanged by this function.
3719    }
3720    jmp(gc_required);
3721    return;
3722  }
3723  ASSERT(!result.is(result_end));
3724
3725  // Load address of new object into result.
3726  LoadAllocationTopHelper(result, scratch, flags);
3727
3728  // Calculate new top and bail out if new space is exhausted.
3729  ExternalReference new_space_allocation_limit =
3730      ExternalReference::new_space_allocation_limit_address(isolate());
3731  if (!object_size.is(result_end)) {
3732    movq(result_end, object_size);
3733  }
3734  addq(result_end, result);
3735  j(carry, gc_required);
3736  Operand limit_operand = ExternalOperand(new_space_allocation_limit);
3737  cmpq(result_end, limit_operand);
3738  j(above, gc_required);
3739
3740  // Update allocation top.
3741  UpdateAllocationTopHelper(result_end, scratch);
3742
3743  // Tag the result if requested.
3744  if ((flags & TAG_OBJECT) != 0) {
3745    addq(result, Immediate(kHeapObjectTag));
3746  }
3747}
3748
3749
3750void MacroAssembler::UndoAllocationInNewSpace(Register object) {
3751  ExternalReference new_space_allocation_top =
3752      ExternalReference::new_space_allocation_top_address(isolate());
3753
3754  // Make sure the object has no tag before resetting top.
3755  and_(object, Immediate(~kHeapObjectTagMask));
3756  Operand top_operand = ExternalOperand(new_space_allocation_top);
3757#ifdef DEBUG
3758  cmpq(object, top_operand);
3759  Check(below, "Undo allocation of non allocated memory");
3760#endif
3761  movq(top_operand, object);
3762}
3763
3764
3765void MacroAssembler::AllocateHeapNumber(Register result,
3766                                        Register scratch,
3767                                        Label* gc_required) {
3768  // Allocate heap number in new space.
3769  AllocateInNewSpace(HeapNumber::kSize,
3770                     result,
3771                     scratch,
3772                     no_reg,
3773                     gc_required,
3774                     TAG_OBJECT);
3775
3776  // Set the map.
3777  LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex);
3778  movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3779}
3780
3781
3782void MacroAssembler::AllocateTwoByteString(Register result,
3783                                           Register length,
3784                                           Register scratch1,
3785                                           Register scratch2,
3786                                           Register scratch3,
3787                                           Label* gc_required) {
3788  // Calculate the number of bytes needed for the characters in the string while
3789  // observing object alignment.
3790  const int kHeaderAlignment = SeqTwoByteString::kHeaderSize &
3791                               kObjectAlignmentMask;
3792  ASSERT(kShortSize == 2);
3793  // scratch1 = length * 2 + kObjectAlignmentMask.
3794  lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask +
3795                kHeaderAlignment));
3796  and_(scratch1, Immediate(~kObjectAlignmentMask));
3797  if (kHeaderAlignment > 0) {
3798    subq(scratch1, Immediate(kHeaderAlignment));
3799  }
3800
3801  // Allocate two byte string in new space.
3802  AllocateInNewSpace(SeqTwoByteString::kHeaderSize,
3803                     times_1,
3804                     scratch1,
3805                     result,
3806                     scratch2,
3807                     scratch3,
3808                     gc_required,
3809                     TAG_OBJECT);
3810
3811  // Set the map, length and hash field.
3812  LoadRoot(kScratchRegister, Heap::kStringMapRootIndex);
3813  movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3814  Integer32ToSmi(scratch1, length);
3815  movq(FieldOperand(result, String::kLengthOffset), scratch1);
3816  movq(FieldOperand(result, String::kHashFieldOffset),
3817       Immediate(String::kEmptyHashField));
3818}
3819
3820
3821void MacroAssembler::AllocateAsciiString(Register result,
3822                                         Register length,
3823                                         Register scratch1,
3824                                         Register scratch2,
3825                                         Register scratch3,
3826                                         Label* gc_required) {
3827  // Calculate the number of bytes needed for the characters in the string while
3828  // observing object alignment.
3829  const int kHeaderAlignment = SeqAsciiString::kHeaderSize &
3830                               kObjectAlignmentMask;
3831  movl(scratch1, length);
3832  ASSERT(kCharSize == 1);
3833  addq(scratch1, Immediate(kObjectAlignmentMask + kHeaderAlignment));
3834  and_(scratch1, Immediate(~kObjectAlignmentMask));
3835  if (kHeaderAlignment > 0) {
3836    subq(scratch1, Immediate(kHeaderAlignment));
3837  }
3838
3839  // Allocate ASCII string in new space.
3840  AllocateInNewSpace(SeqAsciiString::kHeaderSize,
3841                     times_1,
3842                     scratch1,
3843                     result,
3844                     scratch2,
3845                     scratch3,
3846                     gc_required,
3847                     TAG_OBJECT);
3848
3849  // Set the map, length and hash field.
3850  LoadRoot(kScratchRegister, Heap::kAsciiStringMapRootIndex);
3851  movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3852  Integer32ToSmi(scratch1, length);
3853  movq(FieldOperand(result, String::kLengthOffset), scratch1);
3854  movq(FieldOperand(result, String::kHashFieldOffset),
3855       Immediate(String::kEmptyHashField));
3856}
3857
3858
3859void MacroAssembler::AllocateTwoByteConsString(Register result,
3860                                        Register scratch1,
3861                                        Register scratch2,
3862                                        Label* gc_required) {
3863  // Allocate heap number in new space.
3864  AllocateInNewSpace(ConsString::kSize,
3865                     result,
3866                     scratch1,
3867                     scratch2,
3868                     gc_required,
3869                     TAG_OBJECT);
3870
3871  // Set the map. The other fields are left uninitialized.
3872  LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex);
3873  movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3874}
3875
3876
3877void MacroAssembler::AllocateAsciiConsString(Register result,
3878                                             Register scratch1,
3879                                             Register scratch2,
3880                                             Label* gc_required) {
3881  // Allocate heap number in new space.
3882  AllocateInNewSpace(ConsString::kSize,
3883                     result,
3884                     scratch1,
3885                     scratch2,
3886                     gc_required,
3887                     TAG_OBJECT);
3888
3889  // Set the map. The other fields are left uninitialized.
3890  LoadRoot(kScratchRegister, Heap::kConsAsciiStringMapRootIndex);
3891  movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3892}
3893
3894
3895void MacroAssembler::AllocateTwoByteSlicedString(Register result,
3896                                          Register scratch1,
3897                                          Register scratch2,
3898                                          Label* gc_required) {
3899  // Allocate heap number in new space.
3900  AllocateInNewSpace(SlicedString::kSize,
3901                     result,
3902                     scratch1,
3903                     scratch2,
3904                     gc_required,
3905                     TAG_OBJECT);
3906
3907  // Set the map. The other fields are left uninitialized.
3908  LoadRoot(kScratchRegister, Heap::kSlicedStringMapRootIndex);
3909  movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3910}
3911
3912
3913void MacroAssembler::AllocateAsciiSlicedString(Register result,
3914                                               Register scratch1,
3915                                               Register scratch2,
3916                                               Label* gc_required) {
3917  // Allocate heap number in new space.
3918  AllocateInNewSpace(SlicedString::kSize,
3919                     result,
3920                     scratch1,
3921                     scratch2,
3922                     gc_required,
3923                     TAG_OBJECT);
3924
3925  // Set the map. The other fields are left uninitialized.
3926  LoadRoot(kScratchRegister, Heap::kSlicedAsciiStringMapRootIndex);
3927  movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3928}
3929
3930
3931// Copy memory, byte-by-byte, from source to destination.  Not optimized for
3932// long or aligned copies.  The contents of scratch and length are destroyed.
3933// Destination is incremented by length, source, length and scratch are
3934// clobbered.
3935// A simpler loop is faster on small copies, but slower on large ones.
3936// The cld() instruction must have been emitted, to set the direction flag(),
3937// before calling this function.
3938void MacroAssembler::CopyBytes(Register destination,
3939                               Register source,
3940                               Register length,
3941                               int min_length,
3942                               Register scratch) {
3943  ASSERT(min_length >= 0);
3944  if (FLAG_debug_code) {
3945    cmpl(length, Immediate(min_length));
3946    Assert(greater_equal, "Invalid min_length");
3947  }
3948  Label loop, done, short_string, short_loop;
3949
3950  const int kLongStringLimit = 20;
3951  if (min_length <= kLongStringLimit) {
3952    cmpl(length, Immediate(kLongStringLimit));
3953    j(less_equal, &short_string);
3954  }
3955
3956  ASSERT(source.is(rsi));
3957  ASSERT(destination.is(rdi));
3958  ASSERT(length.is(rcx));
3959
3960  // Because source is 8-byte aligned in our uses of this function,
3961  // we keep source aligned for the rep movs operation by copying the odd bytes
3962  // at the end of the ranges.
3963  movq(scratch, length);
3964  shrl(length, Immediate(3));
3965  repmovsq();
3966  // Move remaining bytes of length.
3967  andl(scratch, Immediate(0x7));
3968  movq(length, Operand(source, scratch, times_1, -8));
3969  movq(Operand(destination, scratch, times_1, -8), length);
3970  addq(destination, scratch);
3971
3972  if (min_length <= kLongStringLimit) {
3973    jmp(&done);
3974
3975    bind(&short_string);
3976    if (min_length == 0) {
3977      testl(length, length);
3978      j(zero, &done);
3979    }
3980    lea(scratch, Operand(destination, length, times_1, 0));
3981
3982    bind(&short_loop);
3983    movb(length, Operand(source, 0));
3984    movb(Operand(destination, 0), length);
3985    incq(source);
3986    incq(destination);
3987    cmpq(destination, scratch);
3988    j(not_equal, &short_loop);
3989
3990    bind(&done);
3991  }
3992}
3993
3994
3995void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
3996                                                Register end_offset,
3997                                                Register filler) {
3998  Label loop, entry;
3999  jmp(&entry);
4000  bind(&loop);
4001  movq(Operand(start_offset, 0), filler);
4002  addq(start_offset, Immediate(kPointerSize));
4003  bind(&entry);
4004  cmpq(start_offset, end_offset);
4005  j(less, &loop);
4006}
4007
4008
4009void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
4010  if (context_chain_length > 0) {
4011    // Move up the chain of contexts to the context containing the slot.
4012    movq(dst, Operand(rsi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
4013    for (int i = 1; i < context_chain_length; i++) {
4014      movq(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
4015    }
4016  } else {
4017    // Slot is in the current function context.  Move it into the
4018    // destination register in case we store into it (the write barrier
4019    // cannot be allowed to destroy the context in rsi).
4020    movq(dst, rsi);
4021  }
4022
4023  // We should not have found a with context by walking the context
4024  // chain (i.e., the static scope chain and runtime context chain do
4025  // not agree).  A variable occurring in such a scope should have
4026  // slot type LOOKUP and not CONTEXT.
4027  if (emit_debug_code()) {
4028    CompareRoot(FieldOperand(dst, HeapObject::kMapOffset),
4029                Heap::kWithContextMapRootIndex);
4030    Check(not_equal, "Variable resolved to with context.");
4031  }
4032}
4033
4034
4035void MacroAssembler::LoadTransitionedArrayMapConditional(
4036    ElementsKind expected_kind,
4037    ElementsKind transitioned_kind,
4038    Register map_in_out,
4039    Register scratch,
4040    Label* no_map_match) {
4041  // Load the global or builtins object from the current context.
4042  movq(scratch, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
4043  movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));
4044
4045  // Check that the function's map is the same as the expected cached map.
4046  int expected_index =
4047      Context::GetContextMapIndexFromElementsKind(expected_kind);
4048  cmpq(map_in_out, Operand(scratch, Context::SlotOffset(expected_index)));
4049  j(not_equal, no_map_match);
4050
4051  // Use the transitioned cached map.
4052  int trans_index =
4053      Context::GetContextMapIndexFromElementsKind(transitioned_kind);
4054  movq(map_in_out, Operand(scratch, Context::SlotOffset(trans_index)));
4055}
4056
4057
4058void MacroAssembler::LoadInitialArrayMap(
4059    Register function_in, Register scratch, Register map_out) {
4060  ASSERT(!function_in.is(map_out));
4061  Label done;
4062  movq(map_out, FieldOperand(function_in,
4063                             JSFunction::kPrototypeOrInitialMapOffset));
4064  if (!FLAG_smi_only_arrays) {
4065    LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS,
4066                                        FAST_ELEMENTS,
4067                                        map_out,
4068                                        scratch,
4069                                        &done);
4070  }
4071  bind(&done);
4072}
4073
4074#ifdef _WIN64
4075static const int kRegisterPassedArguments = 4;
4076#else
4077static const int kRegisterPassedArguments = 6;
4078#endif
4079
4080void MacroAssembler::LoadGlobalFunction(int index, Register function) {
4081  // Load the global or builtins object from the current context.
4082  movq(function, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
4083  // Load the global context from the global or builtins object.
4084  movq(function, FieldOperand(function, GlobalObject::kGlobalContextOffset));
4085  // Load the function from the global context.
4086  movq(function, Operand(function, Context::SlotOffset(index)));
4087}
4088
4089
4090void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4091                                                  Register map) {
4092  // Load the initial map.  The global functions all have initial maps.
4093  movq(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4094  if (emit_debug_code()) {
4095    Label ok, fail;
4096    CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
4097    jmp(&ok);
4098    bind(&fail);
4099    Abort("Global functions must have initial map");
4100    bind(&ok);
4101  }
4102}
4103
4104
4105int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) {
4106  // On Windows 64 stack slots are reserved by the caller for all arguments
4107  // including the ones passed in registers, and space is always allocated for
4108  // the four register arguments even if the function takes fewer than four
4109  // arguments.
4110  // On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers
4111  // and the caller does not reserve stack slots for them.
4112  ASSERT(num_arguments >= 0);
4113#ifdef _WIN64
4114  const int kMinimumStackSlots = kRegisterPassedArguments;
4115  if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots;
4116  return num_arguments;
4117#else
4118  if (num_arguments < kRegisterPassedArguments) return 0;
4119  return num_arguments - kRegisterPassedArguments;
4120#endif
4121}
4122
4123
4124void MacroAssembler::PrepareCallCFunction(int num_arguments) {
4125  int frame_alignment = OS::ActivationFrameAlignment();
4126  ASSERT(frame_alignment != 0);
4127  ASSERT(num_arguments >= 0);
4128
4129  // Make stack end at alignment and allocate space for arguments and old rsp.
4130  movq(kScratchRegister, rsp);
4131  ASSERT(IsPowerOf2(frame_alignment));
4132  int argument_slots_on_stack =
4133      ArgumentStackSlotsForCFunctionCall(num_arguments);
4134  subq(rsp, Immediate((argument_slots_on_stack + 1) * kPointerSize));
4135  and_(rsp, Immediate(-frame_alignment));
4136  movq(Operand(rsp, argument_slots_on_stack * kPointerSize), kScratchRegister);
4137}
4138
4139
4140void MacroAssembler::CallCFunction(ExternalReference function,
4141                                   int num_arguments) {
4142  LoadAddress(rax, function);
4143  CallCFunction(rax, num_arguments);
4144}
4145
4146
4147void MacroAssembler::CallCFunction(Register function, int num_arguments) {
4148  ASSERT(has_frame());
4149  // Check stack alignment.
4150  if (emit_debug_code()) {
4151    CheckStackAlignment();
4152  }
4153
4154  call(function);
4155  ASSERT(OS::ActivationFrameAlignment() != 0);
4156  ASSERT(num_arguments >= 0);
4157  int argument_slots_on_stack =
4158      ArgumentStackSlotsForCFunctionCall(num_arguments);
4159  movq(rsp, Operand(rsp, argument_slots_on_stack * kPointerSize));
4160}
4161
4162
4163bool AreAliased(Register r1, Register r2, Register r3, Register r4) {
4164  if (r1.is(r2)) return true;
4165  if (r1.is(r3)) return true;
4166  if (r1.is(r4)) return true;
4167  if (r2.is(r3)) return true;
4168  if (r2.is(r4)) return true;
4169  if (r3.is(r4)) return true;
4170  return false;
4171}
4172
4173
4174CodePatcher::CodePatcher(byte* address, int size)
4175    : address_(address),
4176      size_(size),
4177      masm_(Isolate::Current(), address, size + Assembler::kGap) {
4178  // Create a new macro assembler pointing to the address of the code to patch.
4179  // The size is adjusted with kGap on order for the assembler to generate size
4180  // bytes of instructions without failing with buffer size constraints.
4181  ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
4182}
4183
4184
4185CodePatcher::~CodePatcher() {
4186  // Indicate that code has changed.
4187  CPU::FlushICache(address_, size_);
4188
4189  // Check that the code was patched as expected.
4190  ASSERT(masm_.pc_ == address_ + size_);
4191  ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
4192}
4193
4194
4195void MacroAssembler::CheckPageFlag(
4196    Register object,
4197    Register scratch,
4198    int mask,
4199    Condition cc,
4200    Label* condition_met,
4201    Label::Distance condition_met_distance) {
4202  ASSERT(cc == zero || cc == not_zero);
4203  if (scratch.is(object)) {
4204    and_(scratch, Immediate(~Page::kPageAlignmentMask));
4205  } else {
4206    movq(scratch, Immediate(~Page::kPageAlignmentMask));
4207    and_(scratch, object);
4208  }
4209  if (mask < (1 << kBitsPerByte)) {
4210    testb(Operand(scratch, MemoryChunk::kFlagsOffset),
4211          Immediate(static_cast<uint8_t>(mask)));
4212  } else {
4213    testl(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
4214  }
4215  j(cc, condition_met, condition_met_distance);
4216}
4217
4218
4219void MacroAssembler::JumpIfBlack(Register object,
4220                                 Register bitmap_scratch,
4221                                 Register mask_scratch,
4222                                 Label* on_black,
4223                                 Label::Distance on_black_distance) {
4224  ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, rcx));
4225  GetMarkBits(object, bitmap_scratch, mask_scratch);
4226
4227  ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
4228  // The mask_scratch register contains a 1 at the position of the first bit
4229  // and a 0 at all other positions, including the position of the second bit.
4230  movq(rcx, mask_scratch);
4231  // Make rcx into a mask that covers both marking bits using the operation
4232  // rcx = mask | (mask << 1).
4233  lea(rcx, Operand(mask_scratch, mask_scratch, times_2, 0));
4234  // Note that we are using a 4-byte aligned 8-byte load.
4235  and_(rcx, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
4236  cmpq(mask_scratch, rcx);
4237  j(equal, on_black, on_black_distance);
4238}
4239
4240
4241// Detect some, but not all, common pointer-free objects.  This is used by the
4242// incremental write barrier which doesn't care about oddballs (they are always
4243// marked black immediately so this code is not hit).
4244void MacroAssembler::JumpIfDataObject(
4245    Register value,
4246    Register scratch,
4247    Label* not_data_object,
4248    Label::Distance not_data_object_distance) {
4249  Label is_data_object;
4250  movq(scratch, FieldOperand(value, HeapObject::kMapOffset));
4251  CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
4252  j(equal, &is_data_object, Label::kNear);
4253  ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
4254  ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
4255  // If it's a string and it's not a cons string then it's an object containing
4256  // no GC pointers.
4257  testb(FieldOperand(scratch, Map::kInstanceTypeOffset),
4258        Immediate(kIsIndirectStringMask | kIsNotStringMask));
4259  j(not_zero, not_data_object, not_data_object_distance);
4260  bind(&is_data_object);
4261}
4262
4263
4264void MacroAssembler::GetMarkBits(Register addr_reg,
4265                                 Register bitmap_reg,
4266                                 Register mask_reg) {
4267  ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, rcx));
4268  movq(bitmap_reg, addr_reg);
4269  // Sign extended 32 bit immediate.
4270  and_(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
4271  movq(rcx, addr_reg);
4272  int shift =
4273      Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
4274  shrl(rcx, Immediate(shift));
4275  and_(rcx,
4276       Immediate((Page::kPageAlignmentMask >> shift) &
4277                 ~(Bitmap::kBytesPerCell - 1)));
4278
4279  addq(bitmap_reg, rcx);
4280  movq(rcx, addr_reg);
4281  shrl(rcx, Immediate(kPointerSizeLog2));
4282  and_(rcx, Immediate((1 << Bitmap::kBitsPerCellLog2) - 1));
4283  movl(mask_reg, Immediate(1));
4284  shl_cl(mask_reg);
4285}
4286
4287
4288void MacroAssembler::EnsureNotWhite(
4289    Register value,
4290    Register bitmap_scratch,
4291    Register mask_scratch,
4292    Label* value_is_white_and_not_data,
4293    Label::Distance distance) {
4294  ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, rcx));
4295  GetMarkBits(value, bitmap_scratch, mask_scratch);
4296
4297  // If the value is black or grey we don't need to do anything.
4298  ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4299  ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
4300  ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
4301  ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
4302
4303  Label done;
4304
4305  // Since both black and grey have a 1 in the first position and white does
4306  // not have a 1 there we only need to check one bit.
4307  testq(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
4308  j(not_zero, &done, Label::kNear);
4309
4310  if (FLAG_debug_code) {
4311    // Check for impossible bit pattern.
4312    Label ok;
4313    push(mask_scratch);
4314    // shl.  May overflow making the check conservative.
4315    addq(mask_scratch, mask_scratch);
4316    testq(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
4317    j(zero, &ok, Label::kNear);
4318    int3();
4319    bind(&ok);
4320    pop(mask_scratch);
4321  }
4322
4323  // Value is white.  We check whether it is data that doesn't need scanning.
4324  // Currently only checks for HeapNumber and non-cons strings.
4325  Register map = rcx;  // Holds map while checking type.
4326  Register length = rcx;  // Holds length of object after checking type.
4327  Label not_heap_number;
4328  Label is_data_object;
4329
4330  // Check for heap-number
4331  movq(map, FieldOperand(value, HeapObject::kMapOffset));
4332  CompareRoot(map, Heap::kHeapNumberMapRootIndex);
4333  j(not_equal, &not_heap_number, Label::kNear);
4334  movq(length, Immediate(HeapNumber::kSize));
4335  jmp(&is_data_object, Label::kNear);
4336
4337  bind(&not_heap_number);
4338  // Check for strings.
4339  ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
4340  ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
4341  // If it's a string and it's not a cons string then it's an object containing
4342  // no GC pointers.
4343  Register instance_type = rcx;
4344  movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
4345  testb(instance_type, Immediate(kIsIndirectStringMask | kIsNotStringMask));
4346  j(not_zero, value_is_white_and_not_data);
4347  // It's a non-indirect (non-cons and non-slice) string.
4348  // If it's external, the length is just ExternalString::kSize.
4349  // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
4350  Label not_external;
4351  // External strings are the only ones with the kExternalStringTag bit
4352  // set.
4353  ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
4354  ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
4355  testb(instance_type, Immediate(kExternalStringTag));
4356  j(zero, &not_external, Label::kNear);
4357  movq(length, Immediate(ExternalString::kSize));
4358  jmp(&is_data_object, Label::kNear);
4359
4360  bind(&not_external);
4361  // Sequential string, either ASCII or UC16.
4362  ASSERT(kAsciiStringTag == 0x04);
4363  and_(length, Immediate(kStringEncodingMask));
4364  xor_(length, Immediate(kStringEncodingMask));
4365  addq(length, Immediate(0x04));
4366  // Value now either 4 (if ASCII) or 8 (if UC16), i.e. char-size shifted by 2.
4367  imul(length, FieldOperand(value, String::kLengthOffset));
4368  shr(length, Immediate(2 + kSmiTagSize + kSmiShiftSize));
4369  addq(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
4370  and_(length, Immediate(~kObjectAlignmentMask));
4371
4372  bind(&is_data_object);
4373  // Value is a data object, and it is white.  Mark it black.  Since we know
4374  // that the object is white we can make it black by flipping one bit.
4375  or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
4376
4377  and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
4378  addl(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset), length);
4379
4380  bind(&done);
4381}
4382
4383
4384void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
4385  Label next;
4386  Register empty_fixed_array_value = r8;
4387  LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
4388  Register empty_descriptor_array_value = r9;
4389  LoadRoot(empty_descriptor_array_value,
4390              Heap::kEmptyDescriptorArrayRootIndex);
4391  movq(rcx, rax);
4392  bind(&next);
4393
4394  // Check that there are no elements.  Register rcx contains the
4395  // current JS object we've reached through the prototype chain.
4396  cmpq(empty_fixed_array_value,
4397       FieldOperand(rcx, JSObject::kElementsOffset));
4398  j(not_equal, call_runtime);
4399
4400  // Check that instance descriptors are not empty so that we can
4401  // check for an enum cache.  Leave the map in rbx for the subsequent
4402  // prototype load.
4403  movq(rbx, FieldOperand(rcx, HeapObject::kMapOffset));
4404  movq(rdx, FieldOperand(rbx, Map::kInstanceDescriptorsOrBitField3Offset));
4405  JumpIfSmi(rdx, call_runtime);
4406
4407  // Check that there is an enum cache in the non-empty instance
4408  // descriptors (rdx).  This is the case if the next enumeration
4409  // index field does not contain a smi.
4410  movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumerationIndexOffset));
4411  JumpIfSmi(rdx, call_runtime);
4412
4413  // For all objects but the receiver, check that the cache is empty.
4414  Label check_prototype;
4415  cmpq(rcx, rax);
4416  j(equal, &check_prototype, Label::kNear);
4417  movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumCacheBridgeCacheOffset));
4418  cmpq(rdx, empty_fixed_array_value);
4419  j(not_equal, call_runtime);
4420
4421  // Load the prototype from the map and loop if non-null.
4422  bind(&check_prototype);
4423  movq(rcx, FieldOperand(rbx, Map::kPrototypeOffset));
4424  cmpq(rcx, null_value);
4425  j(not_equal, &next);
4426}
4427
4428
4429} }  // namespace v8::internal
4430
4431#endif  // V8_TARGET_ARCH_X64
4432