1/*
2 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11/* digital_agc.c
12 *
13 */
14
15#include "digital_agc.h"
16
17#include <assert.h>
18#include <string.h>
19#ifdef AGC_DEBUG
20#include <stdio.h>
21#endif
22
23#include "gain_control.h"
24
25// To generate the gaintable, copy&paste the following lines to a Matlab window:
26// MaxGain = 6; MinGain = 0; CompRatio = 3; Knee = 1;
27// zeros = 0:31; lvl = 2.^(1-zeros);
28// A = -10*log10(lvl) * (CompRatio - 1) / CompRatio;
29// B = MaxGain - MinGain;
30// gains = round(2^16*10.^(0.05 * (MinGain + B * ( log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) / log(1/(1+exp(Knee*B))))));
31// fprintf(1, '\t%i, %i, %i, %i,\n', gains);
32// % Matlab code for plotting the gain and input/output level characteristic (copy/paste the following 3 lines):
33// in = 10*log10(lvl); out = 20*log10(gains/65536);
34// subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input (dB)'); ylabel('Gain (dB)');
35// subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on; xlabel('Input (dB)'); ylabel('Output (dB)');
36// zoom on;
37
38// Generator table for y=log2(1+e^x) in Q8.
39enum { kGenFuncTableSize = 128 };
40static const WebRtc_UWord16 kGenFuncTable[kGenFuncTableSize] = {
41          256,   485,   786,  1126,  1484,  1849,  2217,  2586,
42         2955,  3324,  3693,  4063,  4432,  4801,  5171,  5540,
43         5909,  6279,  6648,  7017,  7387,  7756,  8125,  8495,
44         8864,  9233,  9603,  9972, 10341, 10711, 11080, 11449,
45        11819, 12188, 12557, 12927, 13296, 13665, 14035, 14404,
46        14773, 15143, 15512, 15881, 16251, 16620, 16989, 17359,
47        17728, 18097, 18466, 18836, 19205, 19574, 19944, 20313,
48        20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268,
49        23637, 24006, 24376, 24745, 25114, 25484, 25853, 26222,
50        26592, 26961, 27330, 27700, 28069, 28438, 28808, 29177,
51        29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132,
52        32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086,
53        35456, 35825, 36194, 36564, 36933, 37302, 37672, 38041,
54        38410, 38780, 39149, 39518, 39888, 40257, 40626, 40996,
55        41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950,
56        44320, 44689, 45058, 45428, 45797, 46166, 46536, 46905
57};
58
59static const WebRtc_Word16 kAvgDecayTime = 250; // frames; < 3000
60
61WebRtc_Word32 WebRtcAgc_CalculateGainTable(WebRtc_Word32 *gainTable, // Q16
62                                           WebRtc_Word16 digCompGaindB, // Q0
63                                           WebRtc_Word16 targetLevelDbfs,// Q0
64                                           WebRtc_UWord8 limiterEnable,
65                                           WebRtc_Word16 analogTarget) // Q0
66{
67    // This function generates the compressor gain table used in the fixed digital part.
68    WebRtc_UWord32 tmpU32no1, tmpU32no2, absInLevel, logApprox;
69    WebRtc_Word32 inLevel, limiterLvl;
70    WebRtc_Word32 tmp32, tmp32no1, tmp32no2, numFIX, den, y32;
71    const WebRtc_UWord16 kLog10 = 54426; // log2(10)     in Q14
72    const WebRtc_UWord16 kLog10_2 = 49321; // 10*log10(2)  in Q14
73    const WebRtc_UWord16 kLogE_1 = 23637; // log2(e)      in Q14
74    WebRtc_UWord16 constMaxGain;
75    WebRtc_UWord16 tmpU16, intPart, fracPart;
76    const WebRtc_Word16 kCompRatio = 3;
77    const WebRtc_Word16 kSoftLimiterLeft = 1;
78    WebRtc_Word16 limiterOffset = 0; // Limiter offset
79    WebRtc_Word16 limiterIdx, limiterLvlX;
80    WebRtc_Word16 constLinApprox, zeroGainLvl, maxGain, diffGain;
81    WebRtc_Word16 i, tmp16, tmp16no1;
82    int zeros, zerosScale;
83
84    // Constants
85//    kLogE_1 = 23637; // log2(e)      in Q14
86//    kLog10 = 54426; // log2(10)     in Q14
87//    kLog10_2 = 49321; // 10*log10(2)  in Q14
88
89    // Calculate maximum digital gain and zero gain level
90    tmp32no1 = WEBRTC_SPL_MUL_16_16(digCompGaindB - analogTarget, kCompRatio - 1);
91    tmp16no1 = analogTarget - targetLevelDbfs;
92    tmp16no1 += WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
93    maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs));
94    tmp32no1 = WEBRTC_SPL_MUL_16_16(maxGain, kCompRatio);
95    zeroGainLvl = digCompGaindB;
96    zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1),
97                                             kCompRatio - 1);
98    if ((digCompGaindB <= analogTarget) && (limiterEnable))
99    {
100        zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft);
101        limiterOffset = 0;
102    }
103
104    // Calculate the difference between maximum gain and gain at 0dB0v:
105    //  diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio
106    //           = (compRatio-1)*digCompGaindB/compRatio
107    tmp32no1 = WEBRTC_SPL_MUL_16_16(digCompGaindB, kCompRatio - 1);
108    diffGain = WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
109    if (diffGain < 0 || diffGain >= kGenFuncTableSize)
110    {
111        assert(0);
112        return -1;
113    }
114
115    // Calculate the limiter level and index:
116    //  limiterLvlX = analogTarget - limiterOffset
117    //  limiterLvl  = targetLevelDbfs + limiterOffset/compRatio
118    limiterLvlX = analogTarget - limiterOffset;
119    limiterIdx = 2
120            + WebRtcSpl_DivW32W16ResW16(WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)limiterLvlX, 13),
121                                        WEBRTC_SPL_RSHIFT_U16(kLog10_2, 1));
122    tmp16no1 = WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio);
123    limiterLvl = targetLevelDbfs + tmp16no1;
124
125    // Calculate (through table lookup):
126    //  constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8)
127    constMaxGain = kGenFuncTable[diffGain]; // in Q8
128
129    // Calculate a parameter used to approximate the fractional part of 2^x with a
130    // piecewise linear function in Q14:
131    //  constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14);
132    constLinApprox = 22817; // in Q14
133
134    // Calculate a denominator used in the exponential part to convert from dB to linear scale:
135    //  den = 20*constMaxGain (in Q8)
136    den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain); // in Q8
137
138    for (i = 0; i < 32; i++)
139    {
140        // Calculate scaled input level (compressor):
141        //  inLevel = fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio)
142        tmp16 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(kCompRatio - 1, i - 1); // Q0
143        tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1; // Q14
144        inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio); // Q14
145
146        // Calculate diffGain-inLevel, to map using the genFuncTable
147        inLevel = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)diffGain, 14) - inLevel; // Q14
148
149        // Make calculations on abs(inLevel) and compensate for the sign afterwards.
150        absInLevel = (WebRtc_UWord32)WEBRTC_SPL_ABS_W32(inLevel); // Q14
151
152        // LUT with interpolation
153        intPart = (WebRtc_UWord16)WEBRTC_SPL_RSHIFT_U32(absInLevel, 14);
154        fracPart = (WebRtc_UWord16)(absInLevel & 0x00003FFF); // extract the fractional part
155        tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart]; // Q8
156        tmpU32no1 = WEBRTC_SPL_UMUL_16_16(tmpU16, fracPart); // Q22
157        tmpU32no1 += WEBRTC_SPL_LSHIFT_U32((WebRtc_UWord32)kGenFuncTable[intPart], 14); // Q22
158        logApprox = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 8); // Q14
159        // Compensate for negative exponent using the relation:
160        //  log2(1 + 2^-x) = log2(1 + 2^x) - x
161        if (inLevel < 0)
162        {
163            zeros = WebRtcSpl_NormU32(absInLevel);
164            zerosScale = 0;
165            if (zeros < 15)
166            {
167                // Not enough space for multiplication
168                tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(absInLevel, 15 - zeros); // Q(zeros-1)
169                tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1); // Q(zeros+13)
170                if (zeros < 9)
171                {
172                    tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 9 - zeros); // Q(zeros+13)
173                    zerosScale = 9 - zeros;
174                } else
175                {
176                    tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(tmpU32no2, zeros - 9); // Q22
177                }
178            } else
179            {
180                tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1); // Q28
181                tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(tmpU32no2, 6); // Q22
182            }
183            logApprox = 0;
184            if (tmpU32no2 < tmpU32no1)
185            {
186                logApprox = WEBRTC_SPL_RSHIFT_U32(tmpU32no1 - tmpU32no2, 8 - zerosScale); //Q14
187            }
188        }
189        numFIX = WEBRTC_SPL_LSHIFT_W32(WEBRTC_SPL_MUL_16_U16(maxGain, constMaxGain), 6); // Q14
190        numFIX -= WEBRTC_SPL_MUL_32_16((WebRtc_Word32)logApprox, diffGain); // Q14
191
192        // Calculate ratio
193        // Shift |numFIX| as much as possible.
194        // Ensure we avoid wrap-around in |den| as well.
195        if (numFIX > (den >> 8))  // |den| is Q8.
196        {
197            zeros = WebRtcSpl_NormW32(numFIX);
198        } else
199        {
200            zeros = WebRtcSpl_NormW32(den) + 8;
201        }
202        numFIX = WEBRTC_SPL_LSHIFT_W32(numFIX, zeros); // Q(14+zeros)
203
204        // Shift den so we end up in Qy1
205        tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 8); // Q(zeros)
206        if (numFIX < 0)
207        {
208            numFIX -= WEBRTC_SPL_RSHIFT_W32(tmp32no1, 1);
209        } else
210        {
211            numFIX += WEBRTC_SPL_RSHIFT_W32(tmp32no1, 1);
212        }
213        y32 = WEBRTC_SPL_DIV(numFIX, tmp32no1); // in Q14
214        if (limiterEnable && (i < limiterIdx))
215        {
216            tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2); // Q14
217            tmp32 -= WEBRTC_SPL_LSHIFT_W32(limiterLvl, 14); // Q14
218            y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
219        }
220        if (y32 > 39000)
221        {
222            tmp32 = WEBRTC_SPL_MUL(y32 >> 1, kLog10) + 4096; // in Q27
223            tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 13); // in Q14
224        } else
225        {
226            tmp32 = WEBRTC_SPL_MUL(y32, kLog10) + 8192; // in Q28
227            tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 14); // in Q14
228        }
229        tmp32 += WEBRTC_SPL_LSHIFT_W32(16, 14); // in Q14 (Make sure final output is in Q16)
230
231        // Calculate power
232        if (tmp32 > 0)
233        {
234            intPart = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 14);
235            fracPart = (WebRtc_UWord16)(tmp32 & 0x00003FFF); // in Q14
236            if (WEBRTC_SPL_RSHIFT_W32(fracPart, 13))
237            {
238                tmp16 = WEBRTC_SPL_LSHIFT_W16(2, 14) - constLinApprox;
239                tmp32no2 = WEBRTC_SPL_LSHIFT_W32(1, 14) - fracPart;
240                tmp32no2 = WEBRTC_SPL_MUL_32_16(tmp32no2, tmp16);
241                tmp32no2 = WEBRTC_SPL_RSHIFT_W32(tmp32no2, 13);
242                tmp32no2 = WEBRTC_SPL_LSHIFT_W32(1, 14) - tmp32no2;
243            } else
244            {
245                tmp16 = constLinApprox - WEBRTC_SPL_LSHIFT_W16(1, 14);
246                tmp32no2 = WEBRTC_SPL_MUL_32_16(fracPart, tmp16);
247                tmp32no2 = WEBRTC_SPL_RSHIFT_W32(tmp32no2, 13);
248            }
249            fracPart = (WebRtc_UWord16)tmp32no2;
250            gainTable[i] = WEBRTC_SPL_LSHIFT_W32(1, intPart)
251                    + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
252        } else
253        {
254            gainTable[i] = 0;
255        }
256    }
257
258    return 0;
259}
260
261WebRtc_Word32 WebRtcAgc_InitDigital(DigitalAgc_t *stt, WebRtc_Word16 agcMode)
262{
263
264    if (agcMode == kAgcModeFixedDigital)
265    {
266        // start at minimum to find correct gain faster
267        stt->capacitorSlow = 0;
268    } else
269    {
270        // start out with 0 dB gain
271        stt->capacitorSlow = 134217728; // (WebRtc_Word32)(0.125f * 32768.0f * 32768.0f);
272    }
273    stt->capacitorFast = 0;
274    stt->gain = 65536;
275    stt->gatePrevious = 0;
276    stt->agcMode = agcMode;
277#ifdef AGC_DEBUG
278    stt->frameCounter = 0;
279#endif
280
281    // initialize VADs
282    WebRtcAgc_InitVad(&stt->vadNearend);
283    WebRtcAgc_InitVad(&stt->vadFarend);
284
285    return 0;
286}
287
288WebRtc_Word32 WebRtcAgc_AddFarendToDigital(DigitalAgc_t *stt, const WebRtc_Word16 *in_far,
289                                           WebRtc_Word16 nrSamples)
290{
291    // Check for valid pointer
292    if (&stt->vadFarend == NULL)
293    {
294        return -1;
295    }
296
297    // VAD for far end
298    WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples);
299
300    return 0;
301}
302
303WebRtc_Word32 WebRtcAgc_ProcessDigital(DigitalAgc_t *stt, const WebRtc_Word16 *in_near,
304                                       const WebRtc_Word16 *in_near_H, WebRtc_Word16 *out,
305                                       WebRtc_Word16 *out_H, WebRtc_UWord32 FS,
306                                       WebRtc_Word16 lowlevelSignal)
307{
308    // array for gains (one value per ms, incl start & end)
309    WebRtc_Word32 gains[11];
310
311    WebRtc_Word32 out_tmp, tmp32;
312    WebRtc_Word32 env[10];
313    WebRtc_Word32 nrg, max_nrg;
314    WebRtc_Word32 cur_level;
315    WebRtc_Word32 gain32, delta;
316    WebRtc_Word16 logratio;
317    WebRtc_Word16 lower_thr, upper_thr;
318    WebRtc_Word16 zeros, zeros_fast, frac;
319    WebRtc_Word16 decay;
320    WebRtc_Word16 gate, gain_adj;
321    WebRtc_Word16 k, n;
322    WebRtc_Word16 L, L2; // samples/subframe
323
324    // determine number of samples per ms
325    if (FS == 8000)
326    {
327        L = 8;
328        L2 = 3;
329    } else if (FS == 16000)
330    {
331        L = 16;
332        L2 = 4;
333    } else if (FS == 32000)
334    {
335        L = 16;
336        L2 = 4;
337    } else
338    {
339        return -1;
340    }
341
342    // TODO(andrew): again, we don't need input and output pointers...
343    if (in_near != out)
344    {
345        // Only needed if they don't already point to the same place.
346        memcpy(out, in_near, 10 * L * sizeof(WebRtc_Word16));
347    }
348    if (FS == 32000)
349    {
350        if (in_near_H != out_H)
351        {
352            memcpy(out_H, in_near_H, 10 * L * sizeof(WebRtc_Word16));
353        }
354    }
355    // VAD for near end
356    logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out, L * 10);
357
358    // Account for far end VAD
359    if (stt->vadFarend.counter > 10)
360    {
361        tmp32 = WEBRTC_SPL_MUL_16_16(3, logratio);
362        logratio = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 - stt->vadFarend.logRatio, 2);
363    }
364
365    // Determine decay factor depending on VAD
366    //  upper_thr = 1.0f;
367    //  lower_thr = 0.25f;
368    upper_thr = 1024; // Q10
369    lower_thr = 0; // Q10
370    if (logratio > upper_thr)
371    {
372        // decay = -2^17 / DecayTime;  ->  -65
373        decay = -65;
374    } else if (logratio < lower_thr)
375    {
376        decay = 0;
377    } else
378    {
379        // decay = (WebRtc_Word16)(((lower_thr - logratio)
380        //       * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10);
381        // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr))  ->  65
382        tmp32 = WEBRTC_SPL_MUL_16_16((lower_thr - logratio), 65);
383        decay = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 10);
384    }
385
386    // adjust decay factor for long silence (detected as low standard deviation)
387    // This is only done in the adaptive modes
388    if (stt->agcMode != kAgcModeFixedDigital)
389    {
390        if (stt->vadNearend.stdLongTerm < 4000)
391        {
392            decay = 0;
393        } else if (stt->vadNearend.stdLongTerm < 8096)
394        {
395            // decay = (WebRtc_Word16)(((stt->vadNearend.stdLongTerm - 4000) * decay) >> 12);
396            tmp32 = WEBRTC_SPL_MUL_16_16((stt->vadNearend.stdLongTerm - 4000), decay);
397            decay = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 12);
398        }
399
400        if (lowlevelSignal != 0)
401        {
402            decay = 0;
403        }
404    }
405#ifdef AGC_DEBUG
406    stt->frameCounter++;
407    fprintf(stt->logFile, "%5.2f\t%d\t%d\t%d\t", (float)(stt->frameCounter) / 100, logratio, decay, stt->vadNearend.stdLongTerm);
408#endif
409    // Find max amplitude per sub frame
410    // iterate over sub frames
411    for (k = 0; k < 10; k++)
412    {
413        // iterate over samples
414        max_nrg = 0;
415        for (n = 0; n < L; n++)
416        {
417            nrg = WEBRTC_SPL_MUL_16_16(out[k * L + n], out[k * L + n]);
418            if (nrg > max_nrg)
419            {
420                max_nrg = nrg;
421            }
422        }
423        env[k] = max_nrg;
424    }
425
426    // Calculate gain per sub frame
427    gains[0] = stt->gain;
428    for (k = 0; k < 10; k++)
429    {
430        // Fast envelope follower
431        //  decay time = -131000 / -1000 = 131 (ms)
432        stt->capacitorFast = AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast);
433        if (env[k] > stt->capacitorFast)
434        {
435            stt->capacitorFast = env[k];
436        }
437        // Slow envelope follower
438        if (env[k] > stt->capacitorSlow)
439        {
440            // increase capacitorSlow
441            stt->capacitorSlow
442                    = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow), stt->capacitorSlow);
443        } else
444        {
445            // decrease capacitorSlow
446            stt->capacitorSlow
447                    = AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow);
448        }
449
450        // use maximum of both capacitors as current level
451        if (stt->capacitorFast > stt->capacitorSlow)
452        {
453            cur_level = stt->capacitorFast;
454        } else
455        {
456            cur_level = stt->capacitorSlow;
457        }
458        // Translate signal level into gain, using a piecewise linear approximation
459        // find number of leading zeros
460        zeros = WebRtcSpl_NormU32((WebRtc_UWord32)cur_level);
461        if (cur_level == 0)
462        {
463            zeros = 31;
464        }
465        tmp32 = (WEBRTC_SPL_LSHIFT_W32(cur_level, zeros) & 0x7FFFFFFF);
466        frac = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 19); // Q12
467        tmp32 = WEBRTC_SPL_MUL((stt->gainTable[zeros-1] - stt->gainTable[zeros]), frac);
468        gains[k + 1] = stt->gainTable[zeros] + WEBRTC_SPL_RSHIFT_W32(tmp32, 12);
469#ifdef AGC_DEBUG
470        if (k == 0)
471        {
472            fprintf(stt->logFile, "%d\t%d\t%d\t%d\t%d\n", env[0], cur_level, stt->capacitorFast, stt->capacitorSlow, zeros);
473        }
474#endif
475    }
476
477    // Gate processing (lower gain during absence of speech)
478    zeros = WEBRTC_SPL_LSHIFT_W16(zeros, 9) - WEBRTC_SPL_RSHIFT_W16(frac, 3);
479    // find number of leading zeros
480    zeros_fast = WebRtcSpl_NormU32((WebRtc_UWord32)stt->capacitorFast);
481    if (stt->capacitorFast == 0)
482    {
483        zeros_fast = 31;
484    }
485    tmp32 = (WEBRTC_SPL_LSHIFT_W32(stt->capacitorFast, zeros_fast) & 0x7FFFFFFF);
486    zeros_fast = WEBRTC_SPL_LSHIFT_W16(zeros_fast, 9);
487    zeros_fast -= (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 22);
488
489    gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm;
490
491    if (gate < 0)
492    {
493        stt->gatePrevious = 0;
494    } else
495    {
496        tmp32 = WEBRTC_SPL_MUL_16_16(stt->gatePrevious, 7);
497        gate = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((WebRtc_Word32)gate + tmp32, 3);
498        stt->gatePrevious = gate;
499    }
500    // gate < 0     -> no gate
501    // gate > 2500  -> max gate
502    if (gate > 0)
503    {
504        if (gate < 2500)
505        {
506            gain_adj = WEBRTC_SPL_RSHIFT_W16(2500 - gate, 5);
507        } else
508        {
509            gain_adj = 0;
510        }
511        for (k = 0; k < 10; k++)
512        {
513            if ((gains[k + 1] - stt->gainTable[0]) > 8388608)
514            {
515                // To prevent wraparound
516                tmp32 = WEBRTC_SPL_RSHIFT_W32((gains[k+1] - stt->gainTable[0]), 8);
517                tmp32 = WEBRTC_SPL_MUL(tmp32, (178 + gain_adj));
518            } else
519            {
520                tmp32 = WEBRTC_SPL_MUL((gains[k+1] - stt->gainTable[0]), (178 + gain_adj));
521                tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 8);
522            }
523            gains[k + 1] = stt->gainTable[0] + tmp32;
524        }
525    }
526
527    // Limit gain to avoid overload distortion
528    for (k = 0; k < 10; k++)
529    {
530        // To prevent wrap around
531        zeros = 10;
532        if (gains[k + 1] > 47453132)
533        {
534            zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]);
535        }
536        gain32 = WEBRTC_SPL_RSHIFT_W32(gains[k+1], zeros) + 1;
537        gain32 = WEBRTC_SPL_MUL(gain32, gain32);
538        // check for overflow
539        while (AGC_MUL32(WEBRTC_SPL_RSHIFT_W32(env[k], 12) + 1, gain32)
540                > WEBRTC_SPL_SHIFT_W32((WebRtc_Word32)32767, 2 * (1 - zeros + 10)))
541        {
542            // multiply by 253/256 ==> -0.1 dB
543            if (gains[k + 1] > 8388607)
544            {
545                // Prevent wrap around
546                gains[k + 1] = WEBRTC_SPL_MUL(WEBRTC_SPL_RSHIFT_W32(gains[k+1], 8), 253);
547            } else
548            {
549                gains[k + 1] = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL(gains[k+1], 253), 8);
550            }
551            gain32 = WEBRTC_SPL_RSHIFT_W32(gains[k+1], zeros) + 1;
552            gain32 = WEBRTC_SPL_MUL(gain32, gain32);
553        }
554    }
555    // gain reductions should be done 1 ms earlier than gain increases
556    for (k = 1; k < 10; k++)
557    {
558        if (gains[k] > gains[k + 1])
559        {
560            gains[k] = gains[k + 1];
561        }
562    }
563    // save start gain for next frame
564    stt->gain = gains[10];
565
566    // Apply gain
567    // handle first sub frame separately
568    delta = WEBRTC_SPL_LSHIFT_W32(gains[1] - gains[0], (4 - L2));
569    gain32 = WEBRTC_SPL_LSHIFT_W32(gains[0], 4);
570    // iterate over samples
571    for (n = 0; n < L; n++)
572    {
573        // For lower band
574        tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out[n], WEBRTC_SPL_RSHIFT_W32(gain32 + 127, 7));
575        out_tmp = WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
576        if (out_tmp > 4095)
577        {
578            out[n] = (WebRtc_Word16)32767;
579        } else if (out_tmp < -4096)
580        {
581            out[n] = (WebRtc_Word16)-32768;
582        } else
583        {
584            tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out[n], WEBRTC_SPL_RSHIFT_W32(gain32, 4));
585            out[n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
586        }
587        // For higher band
588        if (FS == 32000)
589        {
590            tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out_H[n],
591                                   WEBRTC_SPL_RSHIFT_W32(gain32 + 127, 7));
592            out_tmp = WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
593            if (out_tmp > 4095)
594            {
595                out_H[n] = (WebRtc_Word16)32767;
596            } else if (out_tmp < -4096)
597            {
598                out_H[n] = (WebRtc_Word16)-32768;
599            } else
600            {
601                tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out_H[n],
602                                       WEBRTC_SPL_RSHIFT_W32(gain32, 4));
603                out_H[n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
604            }
605        }
606        //
607
608        gain32 += delta;
609    }
610    // iterate over subframes
611    for (k = 1; k < 10; k++)
612    {
613        delta = WEBRTC_SPL_LSHIFT_W32(gains[k+1] - gains[k], (4 - L2));
614        gain32 = WEBRTC_SPL_LSHIFT_W32(gains[k], 4);
615        // iterate over samples
616        for (n = 0; n < L; n++)
617        {
618            // For lower band
619            tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out[k * L + n],
620                                   WEBRTC_SPL_RSHIFT_W32(gain32, 4));
621            out[k * L + n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
622            // For higher band
623            if (FS == 32000)
624            {
625                tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out_H[k * L + n],
626                                       WEBRTC_SPL_RSHIFT_W32(gain32, 4));
627                out_H[k * L + n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
628            }
629            gain32 += delta;
630        }
631    }
632
633    return 0;
634}
635
636void WebRtcAgc_InitVad(AgcVad_t *state)
637{
638    WebRtc_Word16 k;
639
640    state->HPstate = 0; // state of high pass filter
641    state->logRatio = 0; // log( P(active) / P(inactive) )
642    // average input level (Q10)
643    state->meanLongTerm = WEBRTC_SPL_LSHIFT_W16(15, 10);
644
645    // variance of input level (Q8)
646    state->varianceLongTerm = WEBRTC_SPL_LSHIFT_W32(500, 8);
647
648    state->stdLongTerm = 0; // standard deviation of input level in dB
649    // short-term average input level (Q10)
650    state->meanShortTerm = WEBRTC_SPL_LSHIFT_W16(15, 10);
651
652    // short-term variance of input level (Q8)
653    state->varianceShortTerm = WEBRTC_SPL_LSHIFT_W32(500, 8);
654
655    state->stdShortTerm = 0; // short-term standard deviation of input level in dB
656    state->counter = 3; // counts updates
657    for (k = 0; k < 8; k++)
658    {
659        // downsampling filter
660        state->downState[k] = 0;
661    }
662}
663
664WebRtc_Word16 WebRtcAgc_ProcessVad(AgcVad_t *state, // (i) VAD state
665                                   const WebRtc_Word16 *in, // (i) Speech signal
666                                   WebRtc_Word16 nrSamples) // (i) number of samples
667{
668    WebRtc_Word32 out, nrg, tmp32, tmp32b;
669    WebRtc_UWord16 tmpU16;
670    WebRtc_Word16 k, subfr, tmp16;
671    WebRtc_Word16 buf1[8];
672    WebRtc_Word16 buf2[4];
673    WebRtc_Word16 HPstate;
674    WebRtc_Word16 zeros, dB;
675
676    // process in 10 sub frames of 1 ms (to save on memory)
677    nrg = 0;
678    HPstate = state->HPstate;
679    for (subfr = 0; subfr < 10; subfr++)
680    {
681        // downsample to 4 kHz
682        if (nrSamples == 160)
683        {
684            for (k = 0; k < 8; k++)
685            {
686                tmp32 = (WebRtc_Word32)in[2 * k] + (WebRtc_Word32)in[2 * k + 1];
687                tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 1);
688                buf1[k] = (WebRtc_Word16)tmp32;
689            }
690            in += 16;
691
692            WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState);
693        } else
694        {
695            WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState);
696            in += 8;
697        }
698
699        // high pass filter and compute energy
700        for (k = 0; k < 4; k++)
701        {
702            out = buf2[k] + HPstate;
703            tmp32 = WEBRTC_SPL_MUL(600, out);
704            HPstate = (WebRtc_Word16)(WEBRTC_SPL_RSHIFT_W32(tmp32, 10) - buf2[k]);
705            tmp32 = WEBRTC_SPL_MUL(out, out);
706            nrg += WEBRTC_SPL_RSHIFT_W32(tmp32, 6);
707        }
708    }
709    state->HPstate = HPstate;
710
711    // find number of leading zeros
712    if (!(0xFFFF0000 & nrg))
713    {
714        zeros = 16;
715    } else
716    {
717        zeros = 0;
718    }
719    if (!(0xFF000000 & (nrg << zeros)))
720    {
721        zeros += 8;
722    }
723    if (!(0xF0000000 & (nrg << zeros)))
724    {
725        zeros += 4;
726    }
727    if (!(0xC0000000 & (nrg << zeros)))
728    {
729        zeros += 2;
730    }
731    if (!(0x80000000 & (nrg << zeros)))
732    {
733        zeros += 1;
734    }
735
736    // energy level (range {-32..30}) (Q10)
737    dB = WEBRTC_SPL_LSHIFT_W16(15 - zeros, 11);
738
739    // Update statistics
740
741    if (state->counter < kAvgDecayTime)
742    {
743        // decay time = AvgDecTime * 10 ms
744        state->counter++;
745    }
746
747    // update short-term estimate of mean energy level (Q10)
748    tmp32 = (WEBRTC_SPL_MUL_16_16(state->meanShortTerm, 15) + (WebRtc_Word32)dB);
749    state->meanShortTerm = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 4);
750
751    // update short-term estimate of variance in energy level (Q8)
752    tmp32 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_16_16(dB, dB), 12);
753    tmp32 += WEBRTC_SPL_MUL(state->varianceShortTerm, 15);
754    state->varianceShortTerm = WEBRTC_SPL_RSHIFT_W32(tmp32, 4);
755
756    // update short-term estimate of standard deviation in energy level (Q10)
757    tmp32 = WEBRTC_SPL_MUL_16_16(state->meanShortTerm, state->meanShortTerm);
758    tmp32 = WEBRTC_SPL_LSHIFT_W32(state->varianceShortTerm, 12) - tmp32;
759    state->stdShortTerm = (WebRtc_Word16)WebRtcSpl_Sqrt(tmp32);
760
761    // update long-term estimate of mean energy level (Q10)
762    tmp32 = WEBRTC_SPL_MUL_16_16(state->meanLongTerm, state->counter) + (WebRtc_Word32)dB;
763    state->meanLongTerm = WebRtcSpl_DivW32W16ResW16(tmp32,
764                                                    WEBRTC_SPL_ADD_SAT_W16(state->counter, 1));
765
766    // update long-term estimate of variance in energy level (Q8)
767    tmp32 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_16_16(dB, dB), 12);
768    tmp32 += WEBRTC_SPL_MUL(state->varianceLongTerm, state->counter);
769    state->varianceLongTerm = WebRtcSpl_DivW32W16(tmp32,
770                                                  WEBRTC_SPL_ADD_SAT_W16(state->counter, 1));
771
772    // update long-term estimate of standard deviation in energy level (Q10)
773    tmp32 = WEBRTC_SPL_MUL_16_16(state->meanLongTerm, state->meanLongTerm);
774    tmp32 = WEBRTC_SPL_LSHIFT_W32(state->varianceLongTerm, 12) - tmp32;
775    state->stdLongTerm = (WebRtc_Word16)WebRtcSpl_Sqrt(tmp32);
776
777    // update voice activity measure (Q10)
778    tmp16 = WEBRTC_SPL_LSHIFT_W16(3, 12);
779    tmp32 = WEBRTC_SPL_MUL_16_16(tmp16, (dB - state->meanLongTerm));
780    tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm);
781    tmpU16 = WEBRTC_SPL_LSHIFT_U16((WebRtc_UWord16)13, 12);
782    tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16);
783    tmp32 += WEBRTC_SPL_RSHIFT_W32(tmp32b, 10);
784
785    state->logRatio = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 6);
786
787    // limit
788    if (state->logRatio > 2048)
789    {
790        state->logRatio = 2048;
791    }
792    if (state->logRatio < -2048)
793    {
794        state->logRatio = -2048;
795    }
796
797    return state->logRatio; // Q10
798}
799