1#include "llvm/DerivedTypes.h" 2#include "llvm/ExecutionEngine/ExecutionEngine.h" 3#include "llvm/ExecutionEngine/JIT.h" 4#include "llvm/IRBuilder.h" 5#include "llvm/LLVMContext.h" 6#include "llvm/Module.h" 7#include "llvm/PassManager.h" 8#include "llvm/Analysis/Verifier.h" 9#include "llvm/Analysis/Passes.h" 10#include "llvm/Target/TargetData.h" 11#include "llvm/Transforms/Scalar.h" 12#include "llvm/Support/TargetSelect.h" 13#include <cstdio> 14#include <string> 15#include <map> 16#include <vector> 17using namespace llvm; 18 19//===----------------------------------------------------------------------===// 20// Lexer 21//===----------------------------------------------------------------------===// 22 23// The lexer returns tokens [0-255] if it is an unknown character, otherwise one 24// of these for known things. 25enum Token { 26 tok_eof = -1, 27 28 // commands 29 tok_def = -2, tok_extern = -3, 30 31 // primary 32 tok_identifier = -4, tok_number = -5, 33 34 // control 35 tok_if = -6, tok_then = -7, tok_else = -8, 36 tok_for = -9, tok_in = -10, 37 38 // operators 39 tok_binary = -11, tok_unary = -12, 40 41 // var definition 42 tok_var = -13 43}; 44 45static std::string IdentifierStr; // Filled in if tok_identifier 46static double NumVal; // Filled in if tok_number 47 48/// gettok - Return the next token from standard input. 49static int gettok() { 50 static int LastChar = ' '; 51 52 // Skip any whitespace. 53 while (isspace(LastChar)) 54 LastChar = getchar(); 55 56 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 57 IdentifierStr = LastChar; 58 while (isalnum((LastChar = getchar()))) 59 IdentifierStr += LastChar; 60 61 if (IdentifierStr == "def") return tok_def; 62 if (IdentifierStr == "extern") return tok_extern; 63 if (IdentifierStr == "if") return tok_if; 64 if (IdentifierStr == "then") return tok_then; 65 if (IdentifierStr == "else") return tok_else; 66 if (IdentifierStr == "for") return tok_for; 67 if (IdentifierStr == "in") return tok_in; 68 if (IdentifierStr == "binary") return tok_binary; 69 if (IdentifierStr == "unary") return tok_unary; 70 if (IdentifierStr == "var") return tok_var; 71 return tok_identifier; 72 } 73 74 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 75 std::string NumStr; 76 do { 77 NumStr += LastChar; 78 LastChar = getchar(); 79 } while (isdigit(LastChar) || LastChar == '.'); 80 81 NumVal = strtod(NumStr.c_str(), 0); 82 return tok_number; 83 } 84 85 if (LastChar == '#') { 86 // Comment until end of line. 87 do LastChar = getchar(); 88 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 89 90 if (LastChar != EOF) 91 return gettok(); 92 } 93 94 // Check for end of file. Don't eat the EOF. 95 if (LastChar == EOF) 96 return tok_eof; 97 98 // Otherwise, just return the character as its ascii value. 99 int ThisChar = LastChar; 100 LastChar = getchar(); 101 return ThisChar; 102} 103 104//===----------------------------------------------------------------------===// 105// Abstract Syntax Tree (aka Parse Tree) 106//===----------------------------------------------------------------------===// 107 108/// ExprAST - Base class for all expression nodes. 109class ExprAST { 110public: 111 virtual ~ExprAST() {} 112 virtual Value *Codegen() = 0; 113}; 114 115/// NumberExprAST - Expression class for numeric literals like "1.0". 116class NumberExprAST : public ExprAST { 117 double Val; 118public: 119 NumberExprAST(double val) : Val(val) {} 120 virtual Value *Codegen(); 121}; 122 123/// VariableExprAST - Expression class for referencing a variable, like "a". 124class VariableExprAST : public ExprAST { 125 std::string Name; 126public: 127 VariableExprAST(const std::string &name) : Name(name) {} 128 const std::string &getName() const { return Name; } 129 virtual Value *Codegen(); 130}; 131 132/// UnaryExprAST - Expression class for a unary operator. 133class UnaryExprAST : public ExprAST { 134 char Opcode; 135 ExprAST *Operand; 136public: 137 UnaryExprAST(char opcode, ExprAST *operand) 138 : Opcode(opcode), Operand(operand) {} 139 virtual Value *Codegen(); 140}; 141 142/// BinaryExprAST - Expression class for a binary operator. 143class BinaryExprAST : public ExprAST { 144 char Op; 145 ExprAST *LHS, *RHS; 146public: 147 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 148 : Op(op), LHS(lhs), RHS(rhs) {} 149 virtual Value *Codegen(); 150}; 151 152/// CallExprAST - Expression class for function calls. 153class CallExprAST : public ExprAST { 154 std::string Callee; 155 std::vector<ExprAST*> Args; 156public: 157 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) 158 : Callee(callee), Args(args) {} 159 virtual Value *Codegen(); 160}; 161 162/// IfExprAST - Expression class for if/then/else. 163class IfExprAST : public ExprAST { 164 ExprAST *Cond, *Then, *Else; 165public: 166 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) 167 : Cond(cond), Then(then), Else(_else) {} 168 virtual Value *Codegen(); 169}; 170 171/// ForExprAST - Expression class for for/in. 172class ForExprAST : public ExprAST { 173 std::string VarName; 174 ExprAST *Start, *End, *Step, *Body; 175public: 176 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, 177 ExprAST *step, ExprAST *body) 178 : VarName(varname), Start(start), End(end), Step(step), Body(body) {} 179 virtual Value *Codegen(); 180}; 181 182/// VarExprAST - Expression class for var/in 183class VarExprAST : public ExprAST { 184 std::vector<std::pair<std::string, ExprAST*> > VarNames; 185 ExprAST *Body; 186public: 187 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, 188 ExprAST *body) 189 : VarNames(varnames), Body(body) {} 190 191 virtual Value *Codegen(); 192}; 193 194/// PrototypeAST - This class represents the "prototype" for a function, 195/// which captures its argument names as well as if it is an operator. 196class PrototypeAST { 197 std::string Name; 198 std::vector<std::string> Args; 199 bool isOperator; 200 unsigned Precedence; // Precedence if a binary op. 201public: 202 PrototypeAST(const std::string &name, const std::vector<std::string> &args, 203 bool isoperator = false, unsigned prec = 0) 204 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} 205 206 bool isUnaryOp() const { return isOperator && Args.size() == 1; } 207 bool isBinaryOp() const { return isOperator && Args.size() == 2; } 208 209 char getOperatorName() const { 210 assert(isUnaryOp() || isBinaryOp()); 211 return Name[Name.size()-1]; 212 } 213 214 unsigned getBinaryPrecedence() const { return Precedence; } 215 216 Function *Codegen(); 217 218 void CreateArgumentAllocas(Function *F); 219}; 220 221/// FunctionAST - This class represents a function definition itself. 222class FunctionAST { 223 PrototypeAST *Proto; 224 ExprAST *Body; 225public: 226 FunctionAST(PrototypeAST *proto, ExprAST *body) 227 : Proto(proto), Body(body) {} 228 229 Function *Codegen(); 230}; 231 232//===----------------------------------------------------------------------===// 233// Parser 234//===----------------------------------------------------------------------===// 235 236/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 237/// token the parser is looking at. getNextToken reads another token from the 238/// lexer and updates CurTok with its results. 239static int CurTok; 240static int getNextToken() { 241 return CurTok = gettok(); 242} 243 244/// BinopPrecedence - This holds the precedence for each binary operator that is 245/// defined. 246static std::map<char, int> BinopPrecedence; 247 248/// GetTokPrecedence - Get the precedence of the pending binary operator token. 249static int GetTokPrecedence() { 250 if (!isascii(CurTok)) 251 return -1; 252 253 // Make sure it's a declared binop. 254 int TokPrec = BinopPrecedence[CurTok]; 255 if (TokPrec <= 0) return -1; 256 return TokPrec; 257} 258 259/// Error* - These are little helper functions for error handling. 260ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} 261PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } 262FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } 263 264static ExprAST *ParseExpression(); 265 266/// identifierexpr 267/// ::= identifier 268/// ::= identifier '(' expression* ')' 269static ExprAST *ParseIdentifierExpr() { 270 std::string IdName = IdentifierStr; 271 272 getNextToken(); // eat identifier. 273 274 if (CurTok != '(') // Simple variable ref. 275 return new VariableExprAST(IdName); 276 277 // Call. 278 getNextToken(); // eat ( 279 std::vector<ExprAST*> Args; 280 if (CurTok != ')') { 281 while (1) { 282 ExprAST *Arg = ParseExpression(); 283 if (!Arg) return 0; 284 Args.push_back(Arg); 285 286 if (CurTok == ')') break; 287 288 if (CurTok != ',') 289 return Error("Expected ')' or ',' in argument list"); 290 getNextToken(); 291 } 292 } 293 294 // Eat the ')'. 295 getNextToken(); 296 297 return new CallExprAST(IdName, Args); 298} 299 300/// numberexpr ::= number 301static ExprAST *ParseNumberExpr() { 302 ExprAST *Result = new NumberExprAST(NumVal); 303 getNextToken(); // consume the number 304 return Result; 305} 306 307/// parenexpr ::= '(' expression ')' 308static ExprAST *ParseParenExpr() { 309 getNextToken(); // eat (. 310 ExprAST *V = ParseExpression(); 311 if (!V) return 0; 312 313 if (CurTok != ')') 314 return Error("expected ')'"); 315 getNextToken(); // eat ). 316 return V; 317} 318 319/// ifexpr ::= 'if' expression 'then' expression 'else' expression 320static ExprAST *ParseIfExpr() { 321 getNextToken(); // eat the if. 322 323 // condition. 324 ExprAST *Cond = ParseExpression(); 325 if (!Cond) return 0; 326 327 if (CurTok != tok_then) 328 return Error("expected then"); 329 getNextToken(); // eat the then 330 331 ExprAST *Then = ParseExpression(); 332 if (Then == 0) return 0; 333 334 if (CurTok != tok_else) 335 return Error("expected else"); 336 337 getNextToken(); 338 339 ExprAST *Else = ParseExpression(); 340 if (!Else) return 0; 341 342 return new IfExprAST(Cond, Then, Else); 343} 344 345/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression 346static ExprAST *ParseForExpr() { 347 getNextToken(); // eat the for. 348 349 if (CurTok != tok_identifier) 350 return Error("expected identifier after for"); 351 352 std::string IdName = IdentifierStr; 353 getNextToken(); // eat identifier. 354 355 if (CurTok != '=') 356 return Error("expected '=' after for"); 357 getNextToken(); // eat '='. 358 359 360 ExprAST *Start = ParseExpression(); 361 if (Start == 0) return 0; 362 if (CurTok != ',') 363 return Error("expected ',' after for start value"); 364 getNextToken(); 365 366 ExprAST *End = ParseExpression(); 367 if (End == 0) return 0; 368 369 // The step value is optional. 370 ExprAST *Step = 0; 371 if (CurTok == ',') { 372 getNextToken(); 373 Step = ParseExpression(); 374 if (Step == 0) return 0; 375 } 376 377 if (CurTok != tok_in) 378 return Error("expected 'in' after for"); 379 getNextToken(); // eat 'in'. 380 381 ExprAST *Body = ParseExpression(); 382 if (Body == 0) return 0; 383 384 return new ForExprAST(IdName, Start, End, Step, Body); 385} 386 387/// varexpr ::= 'var' identifier ('=' expression)? 388// (',' identifier ('=' expression)?)* 'in' expression 389static ExprAST *ParseVarExpr() { 390 getNextToken(); // eat the var. 391 392 std::vector<std::pair<std::string, ExprAST*> > VarNames; 393 394 // At least one variable name is required. 395 if (CurTok != tok_identifier) 396 return Error("expected identifier after var"); 397 398 while (1) { 399 std::string Name = IdentifierStr; 400 getNextToken(); // eat identifier. 401 402 // Read the optional initializer. 403 ExprAST *Init = 0; 404 if (CurTok == '=') { 405 getNextToken(); // eat the '='. 406 407 Init = ParseExpression(); 408 if (Init == 0) return 0; 409 } 410 411 VarNames.push_back(std::make_pair(Name, Init)); 412 413 // End of var list, exit loop. 414 if (CurTok != ',') break; 415 getNextToken(); // eat the ','. 416 417 if (CurTok != tok_identifier) 418 return Error("expected identifier list after var"); 419 } 420 421 // At this point, we have to have 'in'. 422 if (CurTok != tok_in) 423 return Error("expected 'in' keyword after 'var'"); 424 getNextToken(); // eat 'in'. 425 426 ExprAST *Body = ParseExpression(); 427 if (Body == 0) return 0; 428 429 return new VarExprAST(VarNames, Body); 430} 431 432/// primary 433/// ::= identifierexpr 434/// ::= numberexpr 435/// ::= parenexpr 436/// ::= ifexpr 437/// ::= forexpr 438/// ::= varexpr 439static ExprAST *ParsePrimary() { 440 switch (CurTok) { 441 default: return Error("unknown token when expecting an expression"); 442 case tok_identifier: return ParseIdentifierExpr(); 443 case tok_number: return ParseNumberExpr(); 444 case '(': return ParseParenExpr(); 445 case tok_if: return ParseIfExpr(); 446 case tok_for: return ParseForExpr(); 447 case tok_var: return ParseVarExpr(); 448 } 449} 450 451/// unary 452/// ::= primary 453/// ::= '!' unary 454static ExprAST *ParseUnary() { 455 // If the current token is not an operator, it must be a primary expr. 456 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') 457 return ParsePrimary(); 458 459 // If this is a unary operator, read it. 460 int Opc = CurTok; 461 getNextToken(); 462 if (ExprAST *Operand = ParseUnary()) 463 return new UnaryExprAST(Opc, Operand); 464 return 0; 465} 466 467/// binoprhs 468/// ::= ('+' unary)* 469static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { 470 // If this is a binop, find its precedence. 471 while (1) { 472 int TokPrec = GetTokPrecedence(); 473 474 // If this is a binop that binds at least as tightly as the current binop, 475 // consume it, otherwise we are done. 476 if (TokPrec < ExprPrec) 477 return LHS; 478 479 // Okay, we know this is a binop. 480 int BinOp = CurTok; 481 getNextToken(); // eat binop 482 483 // Parse the unary expression after the binary operator. 484 ExprAST *RHS = ParseUnary(); 485 if (!RHS) return 0; 486 487 // If BinOp binds less tightly with RHS than the operator after RHS, let 488 // the pending operator take RHS as its LHS. 489 int NextPrec = GetTokPrecedence(); 490 if (TokPrec < NextPrec) { 491 RHS = ParseBinOpRHS(TokPrec+1, RHS); 492 if (RHS == 0) return 0; 493 } 494 495 // Merge LHS/RHS. 496 LHS = new BinaryExprAST(BinOp, LHS, RHS); 497 } 498} 499 500/// expression 501/// ::= unary binoprhs 502/// 503static ExprAST *ParseExpression() { 504 ExprAST *LHS = ParseUnary(); 505 if (!LHS) return 0; 506 507 return ParseBinOpRHS(0, LHS); 508} 509 510/// prototype 511/// ::= id '(' id* ')' 512/// ::= binary LETTER number? (id, id) 513/// ::= unary LETTER (id) 514static PrototypeAST *ParsePrototype() { 515 std::string FnName; 516 517 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. 518 unsigned BinaryPrecedence = 30; 519 520 switch (CurTok) { 521 default: 522 return ErrorP("Expected function name in prototype"); 523 case tok_identifier: 524 FnName = IdentifierStr; 525 Kind = 0; 526 getNextToken(); 527 break; 528 case tok_unary: 529 getNextToken(); 530 if (!isascii(CurTok)) 531 return ErrorP("Expected unary operator"); 532 FnName = "unary"; 533 FnName += (char)CurTok; 534 Kind = 1; 535 getNextToken(); 536 break; 537 case tok_binary: 538 getNextToken(); 539 if (!isascii(CurTok)) 540 return ErrorP("Expected binary operator"); 541 FnName = "binary"; 542 FnName += (char)CurTok; 543 Kind = 2; 544 getNextToken(); 545 546 // Read the precedence if present. 547 if (CurTok == tok_number) { 548 if (NumVal < 1 || NumVal > 100) 549 return ErrorP("Invalid precedecnce: must be 1..100"); 550 BinaryPrecedence = (unsigned)NumVal; 551 getNextToken(); 552 } 553 break; 554 } 555 556 if (CurTok != '(') 557 return ErrorP("Expected '(' in prototype"); 558 559 std::vector<std::string> ArgNames; 560 while (getNextToken() == tok_identifier) 561 ArgNames.push_back(IdentifierStr); 562 if (CurTok != ')') 563 return ErrorP("Expected ')' in prototype"); 564 565 // success. 566 getNextToken(); // eat ')'. 567 568 // Verify right number of names for operator. 569 if (Kind && ArgNames.size() != Kind) 570 return ErrorP("Invalid number of operands for operator"); 571 572 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); 573} 574 575/// definition ::= 'def' prototype expression 576static FunctionAST *ParseDefinition() { 577 getNextToken(); // eat def. 578 PrototypeAST *Proto = ParsePrototype(); 579 if (Proto == 0) return 0; 580 581 if (ExprAST *E = ParseExpression()) 582 return new FunctionAST(Proto, E); 583 return 0; 584} 585 586/// toplevelexpr ::= expression 587static FunctionAST *ParseTopLevelExpr() { 588 if (ExprAST *E = ParseExpression()) { 589 // Make an anonymous proto. 590 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); 591 return new FunctionAST(Proto, E); 592 } 593 return 0; 594} 595 596/// external ::= 'extern' prototype 597static PrototypeAST *ParseExtern() { 598 getNextToken(); // eat extern. 599 return ParsePrototype(); 600} 601 602//===----------------------------------------------------------------------===// 603// Code Generation 604//===----------------------------------------------------------------------===// 605 606static Module *TheModule; 607static IRBuilder<> Builder(getGlobalContext()); 608static std::map<std::string, AllocaInst*> NamedValues; 609static FunctionPassManager *TheFPM; 610 611Value *ErrorV(const char *Str) { Error(Str); return 0; } 612 613/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of 614/// the function. This is used for mutable variables etc. 615static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, 616 const std::string &VarName) { 617 IRBuilder<> TmpB(&TheFunction->getEntryBlock(), 618 TheFunction->getEntryBlock().begin()); 619 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, 620 VarName.c_str()); 621} 622 623Value *NumberExprAST::Codegen() { 624 return ConstantFP::get(getGlobalContext(), APFloat(Val)); 625} 626 627Value *VariableExprAST::Codegen() { 628 // Look this variable up in the function. 629 Value *V = NamedValues[Name]; 630 if (V == 0) return ErrorV("Unknown variable name"); 631 632 // Load the value. 633 return Builder.CreateLoad(V, Name.c_str()); 634} 635 636Value *UnaryExprAST::Codegen() { 637 Value *OperandV = Operand->Codegen(); 638 if (OperandV == 0) return 0; 639 640 Function *F = TheModule->getFunction(std::string("unary")+Opcode); 641 if (F == 0) 642 return ErrorV("Unknown unary operator"); 643 644 return Builder.CreateCall(F, OperandV, "unop"); 645} 646 647Value *BinaryExprAST::Codegen() { 648 // Special case '=' because we don't want to emit the LHS as an expression. 649 if (Op == '=') { 650 // Assignment requires the LHS to be an identifier. 651 VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); 652 if (!LHSE) 653 return ErrorV("destination of '=' must be a variable"); 654 // Codegen the RHS. 655 Value *Val = RHS->Codegen(); 656 if (Val == 0) return 0; 657 658 // Look up the name. 659 Value *Variable = NamedValues[LHSE->getName()]; 660 if (Variable == 0) return ErrorV("Unknown variable name"); 661 662 Builder.CreateStore(Val, Variable); 663 return Val; 664 } 665 666 Value *L = LHS->Codegen(); 667 Value *R = RHS->Codegen(); 668 if (L == 0 || R == 0) return 0; 669 670 switch (Op) { 671 case '+': return Builder.CreateFAdd(L, R, "addtmp"); 672 case '-': return Builder.CreateFSub(L, R, "subtmp"); 673 case '*': return Builder.CreateFMul(L, R, "multmp"); 674 case '<': 675 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 676 // Convert bool 0/1 to double 0.0 or 1.0 677 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), 678 "booltmp"); 679 default: break; 680 } 681 682 // If it wasn't a builtin binary operator, it must be a user defined one. Emit 683 // a call to it. 684 Function *F = TheModule->getFunction(std::string("binary")+Op); 685 assert(F && "binary operator not found!"); 686 687 Value *Ops[] = { L, R }; 688 return Builder.CreateCall(F, Ops, "binop"); 689} 690 691Value *CallExprAST::Codegen() { 692 // Look up the name in the global module table. 693 Function *CalleeF = TheModule->getFunction(Callee); 694 if (CalleeF == 0) 695 return ErrorV("Unknown function referenced"); 696 697 // If argument mismatch error. 698 if (CalleeF->arg_size() != Args.size()) 699 return ErrorV("Incorrect # arguments passed"); 700 701 std::vector<Value*> ArgsV; 702 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 703 ArgsV.push_back(Args[i]->Codegen()); 704 if (ArgsV.back() == 0) return 0; 705 } 706 707 return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); 708} 709 710Value *IfExprAST::Codegen() { 711 Value *CondV = Cond->Codegen(); 712 if (CondV == 0) return 0; 713 714 // Convert condition to a bool by comparing equal to 0.0. 715 CondV = Builder.CreateFCmpONE(CondV, 716 ConstantFP::get(getGlobalContext(), APFloat(0.0)), 717 "ifcond"); 718 719 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 720 721 // Create blocks for the then and else cases. Insert the 'then' block at the 722 // end of the function. 723 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); 724 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); 725 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); 726 727 Builder.CreateCondBr(CondV, ThenBB, ElseBB); 728 729 // Emit then value. 730 Builder.SetInsertPoint(ThenBB); 731 732 Value *ThenV = Then->Codegen(); 733 if (ThenV == 0) return 0; 734 735 Builder.CreateBr(MergeBB); 736 // Codegen of 'Then' can change the current block, update ThenBB for the PHI. 737 ThenBB = Builder.GetInsertBlock(); 738 739 // Emit else block. 740 TheFunction->getBasicBlockList().push_back(ElseBB); 741 Builder.SetInsertPoint(ElseBB); 742 743 Value *ElseV = Else->Codegen(); 744 if (ElseV == 0) return 0; 745 746 Builder.CreateBr(MergeBB); 747 // Codegen of 'Else' can change the current block, update ElseBB for the PHI. 748 ElseBB = Builder.GetInsertBlock(); 749 750 // Emit merge block. 751 TheFunction->getBasicBlockList().push_back(MergeBB); 752 Builder.SetInsertPoint(MergeBB); 753 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, 754 "iftmp"); 755 756 PN->addIncoming(ThenV, ThenBB); 757 PN->addIncoming(ElseV, ElseBB); 758 return PN; 759} 760 761Value *ForExprAST::Codegen() { 762 // Output this as: 763 // var = alloca double 764 // ... 765 // start = startexpr 766 // store start -> var 767 // goto loop 768 // loop: 769 // ... 770 // bodyexpr 771 // ... 772 // loopend: 773 // step = stepexpr 774 // endcond = endexpr 775 // 776 // curvar = load var 777 // nextvar = curvar + step 778 // store nextvar -> var 779 // br endcond, loop, endloop 780 // outloop: 781 782 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 783 784 // Create an alloca for the variable in the entry block. 785 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 786 787 // Emit the start code first, without 'variable' in scope. 788 Value *StartVal = Start->Codegen(); 789 if (StartVal == 0) return 0; 790 791 // Store the value into the alloca. 792 Builder.CreateStore(StartVal, Alloca); 793 794 // Make the new basic block for the loop header, inserting after current 795 // block. 796 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); 797 798 // Insert an explicit fall through from the current block to the LoopBB. 799 Builder.CreateBr(LoopBB); 800 801 // Start insertion in LoopBB. 802 Builder.SetInsertPoint(LoopBB); 803 804 // Within the loop, the variable is defined equal to the PHI node. If it 805 // shadows an existing variable, we have to restore it, so save it now. 806 AllocaInst *OldVal = NamedValues[VarName]; 807 NamedValues[VarName] = Alloca; 808 809 // Emit the body of the loop. This, like any other expr, can change the 810 // current BB. Note that we ignore the value computed by the body, but don't 811 // allow an error. 812 if (Body->Codegen() == 0) 813 return 0; 814 815 // Emit the step value. 816 Value *StepVal; 817 if (Step) { 818 StepVal = Step->Codegen(); 819 if (StepVal == 0) return 0; 820 } else { 821 // If not specified, use 1.0. 822 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); 823 } 824 825 // Compute the end condition. 826 Value *EndCond = End->Codegen(); 827 if (EndCond == 0) return EndCond; 828 829 // Reload, increment, and restore the alloca. This handles the case where 830 // the body of the loop mutates the variable. 831 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); 832 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); 833 Builder.CreateStore(NextVar, Alloca); 834 835 // Convert condition to a bool by comparing equal to 0.0. 836 EndCond = Builder.CreateFCmpONE(EndCond, 837 ConstantFP::get(getGlobalContext(), APFloat(0.0)), 838 "loopcond"); 839 840 // Create the "after loop" block and insert it. 841 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); 842 843 // Insert the conditional branch into the end of LoopEndBB. 844 Builder.CreateCondBr(EndCond, LoopBB, AfterBB); 845 846 // Any new code will be inserted in AfterBB. 847 Builder.SetInsertPoint(AfterBB); 848 849 // Restore the unshadowed variable. 850 if (OldVal) 851 NamedValues[VarName] = OldVal; 852 else 853 NamedValues.erase(VarName); 854 855 856 // for expr always returns 0.0. 857 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); 858} 859 860Value *VarExprAST::Codegen() { 861 std::vector<AllocaInst *> OldBindings; 862 863 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 864 865 // Register all variables and emit their initializer. 866 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { 867 const std::string &VarName = VarNames[i].first; 868 ExprAST *Init = VarNames[i].second; 869 870 // Emit the initializer before adding the variable to scope, this prevents 871 // the initializer from referencing the variable itself, and permits stuff 872 // like this: 873 // var a = 1 in 874 // var a = a in ... # refers to outer 'a'. 875 Value *InitVal; 876 if (Init) { 877 InitVal = Init->Codegen(); 878 if (InitVal == 0) return 0; 879 } else { // If not specified, use 0.0. 880 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); 881 } 882 883 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 884 Builder.CreateStore(InitVal, Alloca); 885 886 // Remember the old variable binding so that we can restore the binding when 887 // we unrecurse. 888 OldBindings.push_back(NamedValues[VarName]); 889 890 // Remember this binding. 891 NamedValues[VarName] = Alloca; 892 } 893 894 // Codegen the body, now that all vars are in scope. 895 Value *BodyVal = Body->Codegen(); 896 if (BodyVal == 0) return 0; 897 898 // Pop all our variables from scope. 899 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) 900 NamedValues[VarNames[i].first] = OldBindings[i]; 901 902 // Return the body computation. 903 return BodyVal; 904} 905 906Function *PrototypeAST::Codegen() { 907 // Make the function type: double(double,double) etc. 908 std::vector<Type*> Doubles(Args.size(), 909 Type::getDoubleTy(getGlobalContext())); 910 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), 911 Doubles, false); 912 913 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); 914 915 // If F conflicted, there was already something named 'Name'. If it has a 916 // body, don't allow redefinition or reextern. 917 if (F->getName() != Name) { 918 // Delete the one we just made and get the existing one. 919 F->eraseFromParent(); 920 F = TheModule->getFunction(Name); 921 922 // If F already has a body, reject this. 923 if (!F->empty()) { 924 ErrorF("redefinition of function"); 925 return 0; 926 } 927 928 // If F took a different number of args, reject. 929 if (F->arg_size() != Args.size()) { 930 ErrorF("redefinition of function with different # args"); 931 return 0; 932 } 933 } 934 935 // Set names for all arguments. 936 unsigned Idx = 0; 937 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); 938 ++AI, ++Idx) 939 AI->setName(Args[Idx]); 940 941 return F; 942} 943 944/// CreateArgumentAllocas - Create an alloca for each argument and register the 945/// argument in the symbol table so that references to it will succeed. 946void PrototypeAST::CreateArgumentAllocas(Function *F) { 947 Function::arg_iterator AI = F->arg_begin(); 948 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { 949 // Create an alloca for this variable. 950 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); 951 952 // Store the initial value into the alloca. 953 Builder.CreateStore(AI, Alloca); 954 955 // Add arguments to variable symbol table. 956 NamedValues[Args[Idx]] = Alloca; 957 } 958} 959 960Function *FunctionAST::Codegen() { 961 NamedValues.clear(); 962 963 Function *TheFunction = Proto->Codegen(); 964 if (TheFunction == 0) 965 return 0; 966 967 // If this is an operator, install it. 968 if (Proto->isBinaryOp()) 969 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); 970 971 // Create a new basic block to start insertion into. 972 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); 973 Builder.SetInsertPoint(BB); 974 975 // Add all arguments to the symbol table and create their allocas. 976 Proto->CreateArgumentAllocas(TheFunction); 977 978 if (Value *RetVal = Body->Codegen()) { 979 // Finish off the function. 980 Builder.CreateRet(RetVal); 981 982 // Validate the generated code, checking for consistency. 983 verifyFunction(*TheFunction); 984 985 // Optimize the function. 986 TheFPM->run(*TheFunction); 987 988 return TheFunction; 989 } 990 991 // Error reading body, remove function. 992 TheFunction->eraseFromParent(); 993 994 if (Proto->isBinaryOp()) 995 BinopPrecedence.erase(Proto->getOperatorName()); 996 return 0; 997} 998 999//===----------------------------------------------------------------------===// 1000// Top-Level parsing and JIT Driver 1001//===----------------------------------------------------------------------===// 1002 1003static ExecutionEngine *TheExecutionEngine; 1004 1005static void HandleDefinition() { 1006 if (FunctionAST *F = ParseDefinition()) { 1007 if (Function *LF = F->Codegen()) { 1008 fprintf(stderr, "Read function definition:"); 1009 LF->dump(); 1010 } 1011 } else { 1012 // Skip token for error recovery. 1013 getNextToken(); 1014 } 1015} 1016 1017static void HandleExtern() { 1018 if (PrototypeAST *P = ParseExtern()) { 1019 if (Function *F = P->Codegen()) { 1020 fprintf(stderr, "Read extern: "); 1021 F->dump(); 1022 } 1023 } else { 1024 // Skip token for error recovery. 1025 getNextToken(); 1026 } 1027} 1028 1029static void HandleTopLevelExpression() { 1030 // Evaluate a top-level expression into an anonymous function. 1031 if (FunctionAST *F = ParseTopLevelExpr()) { 1032 if (Function *LF = F->Codegen()) { 1033 // JIT the function, returning a function pointer. 1034 void *FPtr = TheExecutionEngine->getPointerToFunction(LF); 1035 1036 // Cast it to the right type (takes no arguments, returns a double) so we 1037 // can call it as a native function. 1038 double (*FP)() = (double (*)())(intptr_t)FPtr; 1039 fprintf(stderr, "Evaluated to %f\n", FP()); 1040 } 1041 } else { 1042 // Skip token for error recovery. 1043 getNextToken(); 1044 } 1045} 1046 1047/// top ::= definition | external | expression | ';' 1048static void MainLoop() { 1049 while (1) { 1050 fprintf(stderr, "ready> "); 1051 switch (CurTok) { 1052 case tok_eof: return; 1053 case ';': getNextToken(); break; // ignore top-level semicolons. 1054 case tok_def: HandleDefinition(); break; 1055 case tok_extern: HandleExtern(); break; 1056 default: HandleTopLevelExpression(); break; 1057 } 1058 } 1059} 1060 1061//===----------------------------------------------------------------------===// 1062// "Library" functions that can be "extern'd" from user code. 1063//===----------------------------------------------------------------------===// 1064 1065/// putchard - putchar that takes a double and returns 0. 1066extern "C" 1067double putchard(double X) { 1068 putchar((char)X); 1069 return 0; 1070} 1071 1072/// printd - printf that takes a double prints it as "%f\n", returning 0. 1073extern "C" 1074double printd(double X) { 1075 printf("%f\n", X); 1076 return 0; 1077} 1078 1079//===----------------------------------------------------------------------===// 1080// Main driver code. 1081//===----------------------------------------------------------------------===// 1082 1083int main() { 1084 InitializeNativeTarget(); 1085 LLVMContext &Context = getGlobalContext(); 1086 1087 // Install standard binary operators. 1088 // 1 is lowest precedence. 1089 BinopPrecedence['='] = 2; 1090 BinopPrecedence['<'] = 10; 1091 BinopPrecedence['+'] = 20; 1092 BinopPrecedence['-'] = 20; 1093 BinopPrecedence['*'] = 40; // highest. 1094 1095 // Prime the first token. 1096 fprintf(stderr, "ready> "); 1097 getNextToken(); 1098 1099 // Make the module, which holds all the code. 1100 TheModule = new Module("my cool jit", Context); 1101 1102 // Create the JIT. This takes ownership of the module. 1103 std::string ErrStr; 1104 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); 1105 if (!TheExecutionEngine) { 1106 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); 1107 exit(1); 1108 } 1109 1110 FunctionPassManager OurFPM(TheModule); 1111 1112 // Set up the optimizer pipeline. Start with registering info about how the 1113 // target lays out data structures. 1114 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); 1115 // Provide basic AliasAnalysis support for GVN. 1116 OurFPM.add(createBasicAliasAnalysisPass()); 1117 // Promote allocas to registers. 1118 OurFPM.add(createPromoteMemoryToRegisterPass()); 1119 // Do simple "peephole" optimizations and bit-twiddling optzns. 1120 OurFPM.add(createInstructionCombiningPass()); 1121 // Reassociate expressions. 1122 OurFPM.add(createReassociatePass()); 1123 // Eliminate Common SubExpressions. 1124 OurFPM.add(createGVNPass()); 1125 // Simplify the control flow graph (deleting unreachable blocks, etc). 1126 OurFPM.add(createCFGSimplificationPass()); 1127 1128 OurFPM.doInitialization(); 1129 1130 // Set the global so the code gen can use this. 1131 TheFPM = &OurFPM; 1132 1133 // Run the main "interpreter loop" now. 1134 MainLoop(); 1135 1136 TheFPM = 0; 1137 1138 // Print out all of the generated code. 1139 TheModule->dump(); 1140 1141 return 0; 1142} 1143