1//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariables analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using a sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_CODEGEN_LIVEVARIABLES_H
30#define LLVM_CODEGEN_LIVEVARIABLES_H
31
32#include "llvm/CodeGen/MachineBasicBlock.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineInstr.h"
35#include "llvm/Target/TargetRegisterInfo.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/IndexedMap.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/SparseBitVector.h"
42
43namespace llvm {
44
45class MachineRegisterInfo;
46class TargetRegisterInfo;
47
48class LiveVariables : public MachineFunctionPass {
49public:
50  static char ID; // Pass identification, replacement for typeid
51  LiveVariables() : MachineFunctionPass(ID) {
52    initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
53  }
54
55  /// VarInfo - This represents the regions where a virtual register is live in
56  /// the program.  We represent this with three different pieces of
57  /// information: the set of blocks in which the instruction is live
58  /// throughout, the set of blocks in which the instruction is actually used,
59  /// and the set of non-phi instructions that are the last users of the value.
60  ///
61  /// In the common case where a value is defined and killed in the same block,
62  /// There is one killing instruction, and AliveBlocks is empty.
63  ///
64  /// Otherwise, the value is live out of the block.  If the value is live
65  /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
66  /// where the liveness range ends are not included in AliveBlocks, instead
67  /// being captured by the Kills set.  In these blocks, the value is live into
68  /// the block (unless the value is defined and killed in the same block) and
69  /// lives until the specified instruction.  Note that there cannot ever be a
70  /// value whose Kills set contains two instructions from the same basic block.
71  ///
72  /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
73  /// value in one of its predecessor blocks, it is not listed in the kills set,
74  /// but does include the predecessor block in the AliveBlocks set (unless that
75  /// block also defines the value).  This leads to the (perfectly sensical)
76  /// situation where a value is defined in a block, and the last use is a phi
77  /// node in the successor.  In this case, AliveBlocks is empty (the value is
78  /// not live across any  blocks) and Kills is empty (phi nodes are not
79  /// included). This is sensical because the value must be live to the end of
80  /// the block, but is not live in any successor blocks.
81  struct VarInfo {
82    /// AliveBlocks - Set of blocks in which this value is alive completely
83    /// through.  This is a bit set which uses the basic block number as an
84    /// index.
85    ///
86    SparseBitVector<> AliveBlocks;
87
88    /// Kills - List of MachineInstruction's which are the last use of this
89    /// virtual register (kill it) in their basic block.
90    ///
91    std::vector<MachineInstr*> Kills;
92
93    /// removeKill - Delete a kill corresponding to the specified
94    /// machine instruction. Returns true if there was a kill
95    /// corresponding to this instruction, false otherwise.
96    bool removeKill(MachineInstr *MI) {
97      std::vector<MachineInstr*>::iterator
98        I = std::find(Kills.begin(), Kills.end(), MI);
99      if (I == Kills.end())
100        return false;
101      Kills.erase(I);
102      return true;
103    }
104
105    /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
106    MachineInstr *findKill(const MachineBasicBlock *MBB) const;
107
108    /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
109    /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
110    /// MBB, it is not considered live in.
111    bool isLiveIn(const MachineBasicBlock &MBB,
112                  unsigned Reg,
113                  MachineRegisterInfo &MRI);
114
115    void dump() const;
116  };
117
118private:
119  /// VirtRegInfo - This list is a mapping from virtual register number to
120  /// variable information.
121  ///
122  IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
123
124  /// PHIJoins - list of virtual registers that are PHI joins. These registers
125  /// may have multiple definitions, and they require special handling when
126  /// building live intervals.
127  SparseBitVector<> PHIJoins;
128
129  /// ReservedRegisters - This vector keeps track of which registers
130  /// are reserved register which are not allocatable by the target machine.
131  /// We can not track liveness for values that are in this set.
132  ///
133  BitVector ReservedRegisters;
134
135private:   // Intermediate data structures
136  MachineFunction *MF;
137
138  MachineRegisterInfo* MRI;
139
140  const TargetRegisterInfo *TRI;
141
142  // PhysRegInfo - Keep track of which instruction was the last def of a
143  // physical register. This is a purely local property, because all physical
144  // register references are presumed dead across basic blocks.
145  MachineInstr **PhysRegDef;
146
147  // PhysRegInfo - Keep track of which instruction was the last use of a
148  // physical register. This is a purely local property, because all physical
149  // register references are presumed dead across basic blocks.
150  MachineInstr **PhysRegUse;
151
152  SmallVector<unsigned, 4> *PHIVarInfo;
153
154  // DistanceMap - Keep track the distance of a MI from the start of the
155  // current basic block.
156  DenseMap<MachineInstr*, unsigned> DistanceMap;
157
158  /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
159  /// uses. Pay special attention to the sub-register uses which may come below
160  /// the last use of the whole register.
161  bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
162
163  /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
164  void HandleRegMask(const MachineOperand&);
165
166  void HandlePhysRegUse(unsigned Reg, MachineInstr *MI);
167  void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
168                        SmallVector<unsigned, 4> &Defs);
169  void UpdatePhysRegDefs(MachineInstr *MI, SmallVector<unsigned, 4> &Defs);
170
171  /// FindLastRefOrPartRef - Return the last reference or partial reference of
172  /// the specified register.
173  MachineInstr *FindLastRefOrPartRef(unsigned Reg);
174
175  /// FindLastPartialDef - Return the last partial def of the specified
176  /// register. Also returns the sub-registers that're defined by the
177  /// instruction.
178  MachineInstr *FindLastPartialDef(unsigned Reg,
179                                   SmallSet<unsigned,4> &PartDefRegs);
180
181  /// analyzePHINodes - Gather information about the PHI nodes in here. In
182  /// particular, we want to map the variable information of a virtual
183  /// register which is used in a PHI node. We map that to the BB the vreg
184  /// is coming from.
185  void analyzePHINodes(const MachineFunction& Fn);
186public:
187
188  virtual bool runOnMachineFunction(MachineFunction &MF);
189
190  /// RegisterDefIsDead - Return true if the specified instruction defines the
191  /// specified register, but that definition is dead.
192  bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const;
193
194  //===--------------------------------------------------------------------===//
195  //  API to update live variable information
196
197  /// replaceKillInstruction - Update register kill info by replacing a kill
198  /// instruction with a new one.
199  void replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
200                              MachineInstr *NewMI);
201
202  /// addVirtualRegisterKilled - Add information about the fact that the
203  /// specified register is killed after being used by the specified
204  /// instruction. If AddIfNotFound is true, add a implicit operand if it's
205  /// not found.
206  void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
207                                bool AddIfNotFound = false) {
208    if (MI->addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
209      getVarInfo(IncomingReg).Kills.push_back(MI);
210  }
211
212  /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
213  /// register from the live variable information. Returns true if the
214  /// variable was marked as killed by the specified instruction,
215  /// false otherwise.
216  bool removeVirtualRegisterKilled(unsigned reg, MachineInstr *MI) {
217    if (!getVarInfo(reg).removeKill(MI))
218      return false;
219
220    bool Removed = false;
221    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
222      MachineOperand &MO = MI->getOperand(i);
223      if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
224        MO.setIsKill(false);
225        Removed = true;
226        break;
227      }
228    }
229
230    assert(Removed && "Register is not used by this instruction!");
231    (void)Removed;
232    return true;
233  }
234
235  /// removeVirtualRegistersKilled - Remove all killed info for the specified
236  /// instruction.
237  void removeVirtualRegistersKilled(MachineInstr *MI);
238
239  /// addVirtualRegisterDead - Add information about the fact that the specified
240  /// register is dead after being used by the specified instruction. If
241  /// AddIfNotFound is true, add a implicit operand if it's not found.
242  void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI,
243                              bool AddIfNotFound = false) {
244    if (MI->addRegisterDead(IncomingReg, TRI, AddIfNotFound))
245      getVarInfo(IncomingReg).Kills.push_back(MI);
246  }
247
248  /// removeVirtualRegisterDead - Remove the specified kill of the virtual
249  /// register from the live variable information. Returns true if the
250  /// variable was marked dead at the specified instruction, false
251  /// otherwise.
252  bool removeVirtualRegisterDead(unsigned reg, MachineInstr *MI) {
253    if (!getVarInfo(reg).removeKill(MI))
254      return false;
255
256    bool Removed = false;
257    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
258      MachineOperand &MO = MI->getOperand(i);
259      if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
260        MO.setIsDead(false);
261        Removed = true;
262        break;
263      }
264    }
265    assert(Removed && "Register is not defined by this instruction!");
266    (void)Removed;
267    return true;
268  }
269
270  void getAnalysisUsage(AnalysisUsage &AU) const;
271
272  virtual void releaseMemory() {
273    VirtRegInfo.clear();
274  }
275
276  /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
277  /// register.
278  VarInfo &getVarInfo(unsigned RegIdx);
279
280  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
281                               MachineBasicBlock *BB);
282  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
283                               MachineBasicBlock *BB,
284                               std::vector<MachineBasicBlock*> &WorkList);
285  void HandleVirtRegDef(unsigned reg, MachineInstr *MI);
286  void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
287                        MachineInstr *MI);
288
289  bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
290    return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
291  }
292
293  /// isLiveOut - Determine if Reg is live out from MBB, when not considering
294  /// PHI nodes. This means that Reg is either killed by a successor block or
295  /// passed through one.
296  bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
297
298  /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
299  /// variables that are live out of DomBB and live into SuccBB will be marked
300  /// as passing live through BB. This method assumes that the machine code is
301  /// still in SSA form.
302  void addNewBlock(MachineBasicBlock *BB,
303                   MachineBasicBlock *DomBB,
304                   MachineBasicBlock *SuccBB);
305
306  /// isPHIJoin - Return true if Reg is a phi join register.
307  bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
308
309  /// setPHIJoin - Mark Reg as a phi join register.
310  void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
311};
312
313} // End llvm namespace
314
315#endif
316