1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// Methods common to all machine instructions. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/MachineInstr.h" 15#include "llvm/Constants.h" 16#include "llvm/DebugInfo.h" 17#include "llvm/Function.h" 18#include "llvm/InlineAsm.h" 19#include "llvm/LLVMContext.h" 20#include "llvm/Metadata.h" 21#include "llvm/Module.h" 22#include "llvm/Type.h" 23#include "llvm/Value.h" 24#include "llvm/Assembly/Writer.h" 25#include "llvm/CodeGen/MachineConstantPool.h" 26#include "llvm/CodeGen/MachineFunction.h" 27#include "llvm/CodeGen/MachineMemOperand.h" 28#include "llvm/CodeGen/MachineModuleInfo.h" 29#include "llvm/CodeGen/MachineRegisterInfo.h" 30#include "llvm/CodeGen/PseudoSourceValue.h" 31#include "llvm/MC/MCInstrDesc.h" 32#include "llvm/MC/MCSymbol.h" 33#include "llvm/Target/TargetMachine.h" 34#include "llvm/Target/TargetInstrInfo.h" 35#include "llvm/Target/TargetRegisterInfo.h" 36#include "llvm/Analysis/AliasAnalysis.h" 37#include "llvm/Support/Debug.h" 38#include "llvm/Support/ErrorHandling.h" 39#include "llvm/Support/LeakDetector.h" 40#include "llvm/Support/MathExtras.h" 41#include "llvm/Support/raw_ostream.h" 42#include "llvm/ADT/FoldingSet.h" 43#include "llvm/ADT/Hashing.h" 44using namespace llvm; 45 46//===----------------------------------------------------------------------===// 47// MachineOperand Implementation 48//===----------------------------------------------------------------------===// 49 50void MachineOperand::setReg(unsigned Reg) { 51 if (getReg() == Reg) return; // No change. 52 53 // Otherwise, we have to change the register. If this operand is embedded 54 // into a machine function, we need to update the old and new register's 55 // use/def lists. 56 if (MachineInstr *MI = getParent()) 57 if (MachineBasicBlock *MBB = MI->getParent()) 58 if (MachineFunction *MF = MBB->getParent()) { 59 MachineRegisterInfo &MRI = MF->getRegInfo(); 60 MRI.removeRegOperandFromUseList(this); 61 SmallContents.RegNo = Reg; 62 MRI.addRegOperandToUseList(this); 63 return; 64 } 65 66 // Otherwise, just change the register, no problem. :) 67 SmallContents.RegNo = Reg; 68} 69 70void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 71 const TargetRegisterInfo &TRI) { 72 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 73 if (SubIdx && getSubReg()) 74 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 75 setReg(Reg); 76 if (SubIdx) 77 setSubReg(SubIdx); 78} 79 80void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 81 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 82 if (getSubReg()) { 83 Reg = TRI.getSubReg(Reg, getSubReg()); 84 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 85 // That won't happen in legal code. 86 setSubReg(0); 87 } 88 setReg(Reg); 89} 90 91/// Change a def to a use, or a use to a def. 92void MachineOperand::setIsDef(bool Val) { 93 assert(isReg() && "Wrong MachineOperand accessor"); 94 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 95 if (IsDef == Val) 96 return; 97 // MRI may keep uses and defs in different list positions. 98 if (MachineInstr *MI = getParent()) 99 if (MachineBasicBlock *MBB = MI->getParent()) 100 if (MachineFunction *MF = MBB->getParent()) { 101 MachineRegisterInfo &MRI = MF->getRegInfo(); 102 MRI.removeRegOperandFromUseList(this); 103 IsDef = Val; 104 MRI.addRegOperandToUseList(this); 105 return; 106 } 107 IsDef = Val; 108} 109 110/// ChangeToImmediate - Replace this operand with a new immediate operand of 111/// the specified value. If an operand is known to be an immediate already, 112/// the setImm method should be used. 113void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 114 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 115 // If this operand is currently a register operand, and if this is in a 116 // function, deregister the operand from the register's use/def list. 117 if (isReg() && isOnRegUseList()) 118 if (MachineInstr *MI = getParent()) 119 if (MachineBasicBlock *MBB = MI->getParent()) 120 if (MachineFunction *MF = MBB->getParent()) 121 MF->getRegInfo().removeRegOperandFromUseList(this); 122 123 OpKind = MO_Immediate; 124 Contents.ImmVal = ImmVal; 125} 126 127/// ChangeToRegister - Replace this operand with a new register operand of 128/// the specified value. If an operand is known to be an register already, 129/// the setReg method should be used. 130void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 131 bool isKill, bool isDead, bool isUndef, 132 bool isDebug) { 133 MachineRegisterInfo *RegInfo = 0; 134 if (MachineInstr *MI = getParent()) 135 if (MachineBasicBlock *MBB = MI->getParent()) 136 if (MachineFunction *MF = MBB->getParent()) 137 RegInfo = &MF->getRegInfo(); 138 // If this operand is already a register operand, remove it from the 139 // register's use/def lists. 140 bool WasReg = isReg(); 141 if (RegInfo && WasReg) 142 RegInfo->removeRegOperandFromUseList(this); 143 144 // Change this to a register and set the reg#. 145 OpKind = MO_Register; 146 SmallContents.RegNo = Reg; 147 SubReg = 0; 148 IsDef = isDef; 149 IsImp = isImp; 150 IsKill = isKill; 151 IsDead = isDead; 152 IsUndef = isUndef; 153 IsInternalRead = false; 154 IsEarlyClobber = false; 155 IsDebug = isDebug; 156 // Ensure isOnRegUseList() returns false. 157 Contents.Reg.Prev = 0; 158 // Preserve the tie when the operand was already a register. 159 if (!WasReg) 160 TiedTo = 0; 161 162 // If this operand is embedded in a function, add the operand to the 163 // register's use/def list. 164 if (RegInfo) 165 RegInfo->addRegOperandToUseList(this); 166} 167 168/// isIdenticalTo - Return true if this operand is identical to the specified 169/// operand. Note that this should stay in sync with the hash_value overload 170/// below. 171bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 172 if (getType() != Other.getType() || 173 getTargetFlags() != Other.getTargetFlags()) 174 return false; 175 176 switch (getType()) { 177 case MachineOperand::MO_Register: 178 return getReg() == Other.getReg() && isDef() == Other.isDef() && 179 getSubReg() == Other.getSubReg(); 180 case MachineOperand::MO_Immediate: 181 return getImm() == Other.getImm(); 182 case MachineOperand::MO_CImmediate: 183 return getCImm() == Other.getCImm(); 184 case MachineOperand::MO_FPImmediate: 185 return getFPImm() == Other.getFPImm(); 186 case MachineOperand::MO_MachineBasicBlock: 187 return getMBB() == Other.getMBB(); 188 case MachineOperand::MO_FrameIndex: 189 return getIndex() == Other.getIndex(); 190 case MachineOperand::MO_ConstantPoolIndex: 191 case MachineOperand::MO_TargetIndex: 192 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 193 case MachineOperand::MO_JumpTableIndex: 194 return getIndex() == Other.getIndex(); 195 case MachineOperand::MO_GlobalAddress: 196 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 197 case MachineOperand::MO_ExternalSymbol: 198 return !strcmp(getSymbolName(), Other.getSymbolName()) && 199 getOffset() == Other.getOffset(); 200 case MachineOperand::MO_BlockAddress: 201 return getBlockAddress() == Other.getBlockAddress(); 202 case MO_RegisterMask: 203 return getRegMask() == Other.getRegMask(); 204 case MachineOperand::MO_MCSymbol: 205 return getMCSymbol() == Other.getMCSymbol(); 206 case MachineOperand::MO_Metadata: 207 return getMetadata() == Other.getMetadata(); 208 } 209 llvm_unreachable("Invalid machine operand type"); 210} 211 212// Note: this must stay exactly in sync with isIdenticalTo above. 213hash_code llvm::hash_value(const MachineOperand &MO) { 214 switch (MO.getType()) { 215 case MachineOperand::MO_Register: 216 // Register operands don't have target flags. 217 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 218 case MachineOperand::MO_Immediate: 219 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 220 case MachineOperand::MO_CImmediate: 221 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 222 case MachineOperand::MO_FPImmediate: 223 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 224 case MachineOperand::MO_MachineBasicBlock: 225 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 226 case MachineOperand::MO_FrameIndex: 227 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 228 case MachineOperand::MO_ConstantPoolIndex: 229 case MachineOperand::MO_TargetIndex: 230 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 231 MO.getOffset()); 232 case MachineOperand::MO_JumpTableIndex: 233 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 234 case MachineOperand::MO_ExternalSymbol: 235 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 236 MO.getSymbolName()); 237 case MachineOperand::MO_GlobalAddress: 238 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 239 MO.getOffset()); 240 case MachineOperand::MO_BlockAddress: 241 return hash_combine(MO.getType(), MO.getTargetFlags(), 242 MO.getBlockAddress()); 243 case MachineOperand::MO_RegisterMask: 244 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 245 case MachineOperand::MO_Metadata: 246 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 247 case MachineOperand::MO_MCSymbol: 248 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 249 } 250 llvm_unreachable("Invalid machine operand type"); 251} 252 253/// print - Print the specified machine operand. 254/// 255void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 256 // If the instruction is embedded into a basic block, we can find the 257 // target info for the instruction. 258 if (!TM) 259 if (const MachineInstr *MI = getParent()) 260 if (const MachineBasicBlock *MBB = MI->getParent()) 261 if (const MachineFunction *MF = MBB->getParent()) 262 TM = &MF->getTarget(); 263 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 264 265 switch (getType()) { 266 case MachineOperand::MO_Register: 267 OS << PrintReg(getReg(), TRI, getSubReg()); 268 269 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 270 isInternalRead() || isEarlyClobber() || isTied()) { 271 OS << '<'; 272 bool NeedComma = false; 273 if (isDef()) { 274 if (NeedComma) OS << ','; 275 if (isEarlyClobber()) 276 OS << "earlyclobber,"; 277 if (isImplicit()) 278 OS << "imp-"; 279 OS << "def"; 280 NeedComma = true; 281 // <def,read-undef> only makes sense when getSubReg() is set. 282 // Don't clutter the output otherwise. 283 if (isUndef() && getSubReg()) 284 OS << ",read-undef"; 285 } else if (isImplicit()) { 286 OS << "imp-use"; 287 NeedComma = true; 288 } 289 290 if (isKill()) { 291 if (NeedComma) OS << ','; 292 OS << "kill"; 293 NeedComma = true; 294 } 295 if (isDead()) { 296 if (NeedComma) OS << ','; 297 OS << "dead"; 298 NeedComma = true; 299 } 300 if (isUndef() && isUse()) { 301 if (NeedComma) OS << ','; 302 OS << "undef"; 303 NeedComma = true; 304 } 305 if (isInternalRead()) { 306 if (NeedComma) OS << ','; 307 OS << "internal"; 308 NeedComma = true; 309 } 310 if (isTied()) { 311 if (NeedComma) OS << ','; 312 OS << "tied"; 313 if (TiedTo != 15) 314 OS << unsigned(TiedTo - 1); 315 NeedComma = true; 316 } 317 OS << '>'; 318 } 319 break; 320 case MachineOperand::MO_Immediate: 321 OS << getImm(); 322 break; 323 case MachineOperand::MO_CImmediate: 324 getCImm()->getValue().print(OS, false); 325 break; 326 case MachineOperand::MO_FPImmediate: 327 if (getFPImm()->getType()->isFloatTy()) 328 OS << getFPImm()->getValueAPF().convertToFloat(); 329 else 330 OS << getFPImm()->getValueAPF().convertToDouble(); 331 break; 332 case MachineOperand::MO_MachineBasicBlock: 333 OS << "<BB#" << getMBB()->getNumber() << ">"; 334 break; 335 case MachineOperand::MO_FrameIndex: 336 OS << "<fi#" << getIndex() << '>'; 337 break; 338 case MachineOperand::MO_ConstantPoolIndex: 339 OS << "<cp#" << getIndex(); 340 if (getOffset()) OS << "+" << getOffset(); 341 OS << '>'; 342 break; 343 case MachineOperand::MO_TargetIndex: 344 OS << "<ti#" << getIndex(); 345 if (getOffset()) OS << "+" << getOffset(); 346 OS << '>'; 347 break; 348 case MachineOperand::MO_JumpTableIndex: 349 OS << "<jt#" << getIndex() << '>'; 350 break; 351 case MachineOperand::MO_GlobalAddress: 352 OS << "<ga:"; 353 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 354 if (getOffset()) OS << "+" << getOffset(); 355 OS << '>'; 356 break; 357 case MachineOperand::MO_ExternalSymbol: 358 OS << "<es:" << getSymbolName(); 359 if (getOffset()) OS << "+" << getOffset(); 360 OS << '>'; 361 break; 362 case MachineOperand::MO_BlockAddress: 363 OS << '<'; 364 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 365 OS << '>'; 366 break; 367 case MachineOperand::MO_RegisterMask: 368 OS << "<regmask>"; 369 break; 370 case MachineOperand::MO_Metadata: 371 OS << '<'; 372 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 373 OS << '>'; 374 break; 375 case MachineOperand::MO_MCSymbol: 376 OS << "<MCSym=" << *getMCSymbol() << '>'; 377 break; 378 } 379 380 if (unsigned TF = getTargetFlags()) 381 OS << "[TF=" << TF << ']'; 382} 383 384//===----------------------------------------------------------------------===// 385// MachineMemOperand Implementation 386//===----------------------------------------------------------------------===// 387 388/// getAddrSpace - Return the LLVM IR address space number that this pointer 389/// points into. 390unsigned MachinePointerInfo::getAddrSpace() const { 391 if (V == 0) return 0; 392 return cast<PointerType>(V->getType())->getAddressSpace(); 393} 394 395/// getConstantPool - Return a MachinePointerInfo record that refers to the 396/// constant pool. 397MachinePointerInfo MachinePointerInfo::getConstantPool() { 398 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 399} 400 401/// getFixedStack - Return a MachinePointerInfo record that refers to the 402/// the specified FrameIndex. 403MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 404 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 405} 406 407MachinePointerInfo MachinePointerInfo::getJumpTable() { 408 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 409} 410 411MachinePointerInfo MachinePointerInfo::getGOT() { 412 return MachinePointerInfo(PseudoSourceValue::getGOT()); 413} 414 415MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 416 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 417} 418 419MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 420 uint64_t s, unsigned int a, 421 const MDNode *TBAAInfo, 422 const MDNode *Ranges) 423 : PtrInfo(ptrinfo), Size(s), 424 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 425 TBAAInfo(TBAAInfo), Ranges(Ranges) { 426 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 427 "invalid pointer value"); 428 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 429 assert((isLoad() || isStore()) && "Not a load/store!"); 430} 431 432/// Profile - Gather unique data for the object. 433/// 434void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 435 ID.AddInteger(getOffset()); 436 ID.AddInteger(Size); 437 ID.AddPointer(getValue()); 438 ID.AddInteger(Flags); 439} 440 441void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 442 // The Value and Offset may differ due to CSE. But the flags and size 443 // should be the same. 444 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 445 assert(MMO->getSize() == getSize() && "Size mismatch!"); 446 447 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 448 // Update the alignment value. 449 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 450 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 451 // Also update the base and offset, because the new alignment may 452 // not be applicable with the old ones. 453 PtrInfo = MMO->PtrInfo; 454 } 455} 456 457/// getAlignment - Return the minimum known alignment in bytes of the 458/// actual memory reference. 459uint64_t MachineMemOperand::getAlignment() const { 460 return MinAlign(getBaseAlignment(), getOffset()); 461} 462 463raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 464 assert((MMO.isLoad() || MMO.isStore()) && 465 "SV has to be a load, store or both."); 466 467 if (MMO.isVolatile()) 468 OS << "Volatile "; 469 470 if (MMO.isLoad()) 471 OS << "LD"; 472 if (MMO.isStore()) 473 OS << "ST"; 474 OS << MMO.getSize(); 475 476 // Print the address information. 477 OS << "["; 478 if (!MMO.getValue()) 479 OS << "<unknown>"; 480 else 481 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 482 483 // If the alignment of the memory reference itself differs from the alignment 484 // of the base pointer, print the base alignment explicitly, next to the base 485 // pointer. 486 if (MMO.getBaseAlignment() != MMO.getAlignment()) 487 OS << "(align=" << MMO.getBaseAlignment() << ")"; 488 489 if (MMO.getOffset() != 0) 490 OS << "+" << MMO.getOffset(); 491 OS << "]"; 492 493 // Print the alignment of the reference. 494 if (MMO.getBaseAlignment() != MMO.getAlignment() || 495 MMO.getBaseAlignment() != MMO.getSize()) 496 OS << "(align=" << MMO.getAlignment() << ")"; 497 498 // Print TBAA info. 499 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 500 OS << "(tbaa="; 501 if (TBAAInfo->getNumOperands() > 0) 502 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 503 else 504 OS << "<unknown>"; 505 OS << ")"; 506 } 507 508 // Print nontemporal info. 509 if (MMO.isNonTemporal()) 510 OS << "(nontemporal)"; 511 512 return OS; 513} 514 515//===----------------------------------------------------------------------===// 516// MachineInstr Implementation 517//===----------------------------------------------------------------------===// 518 519/// MachineInstr ctor - This constructor creates a dummy MachineInstr with 520/// MCID NULL and no operands. 521MachineInstr::MachineInstr() 522 : MCID(0), Flags(0), AsmPrinterFlags(0), 523 NumMemRefs(0), MemRefs(0), 524 Parent(0) { 525 // Make sure that we get added to a machine basicblock 526 LeakDetector::addGarbageObject(this); 527} 528 529void MachineInstr::addImplicitDefUseOperands() { 530 if (MCID->ImplicitDefs) 531 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 532 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 533 if (MCID->ImplicitUses) 534 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 535 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 536} 537 538/// MachineInstr ctor - This constructor creates a MachineInstr and adds the 539/// implicit operands. It reserves space for the number of operands specified by 540/// the MCInstrDesc. 541MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp) 542 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 543 NumMemRefs(0), MemRefs(0), Parent(0) { 544 unsigned NumImplicitOps = 0; 545 if (!NoImp) 546 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 547 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 548 if (!NoImp) 549 addImplicitDefUseOperands(); 550 // Make sure that we get added to a machine basicblock 551 LeakDetector::addGarbageObject(this); 552} 553 554/// MachineInstr ctor - As above, but with a DebugLoc. 555MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 556 bool NoImp) 557 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 558 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 559 unsigned NumImplicitOps = 0; 560 if (!NoImp) 561 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 562 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 563 if (!NoImp) 564 addImplicitDefUseOperands(); 565 // Make sure that we get added to a machine basicblock 566 LeakDetector::addGarbageObject(this); 567} 568 569/// MachineInstr ctor - Work exactly the same as the ctor two above, except 570/// that the MachineInstr is created and added to the end of the specified 571/// basic block. 572MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid) 573 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 574 NumMemRefs(0), MemRefs(0), Parent(0) { 575 assert(MBB && "Cannot use inserting ctor with null basic block!"); 576 unsigned NumImplicitOps = 577 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 578 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 579 addImplicitDefUseOperands(); 580 // Make sure that we get added to a machine basicblock 581 LeakDetector::addGarbageObject(this); 582 MBB->push_back(this); // Add instruction to end of basic block! 583} 584 585/// MachineInstr ctor - As above, but with a DebugLoc. 586/// 587MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 588 const MCInstrDesc &tid) 589 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 590 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { 591 assert(MBB && "Cannot use inserting ctor with null basic block!"); 592 unsigned NumImplicitOps = 593 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 594 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 595 addImplicitDefUseOperands(); 596 // Make sure that we get added to a machine basicblock 597 LeakDetector::addGarbageObject(this); 598 MBB->push_back(this); // Add instruction to end of basic block! 599} 600 601/// MachineInstr ctor - Copies MachineInstr arg exactly 602/// 603MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 604 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 605 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 606 Parent(0), debugLoc(MI.getDebugLoc()) { 607 Operands.reserve(MI.getNumOperands()); 608 609 // Add operands 610 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 611 addOperand(MI.getOperand(i)); 612 613 // Copy all the flags. 614 Flags = MI.Flags; 615 616 // Set parent to null. 617 Parent = 0; 618 619 LeakDetector::addGarbageObject(this); 620} 621 622MachineInstr::~MachineInstr() { 623 LeakDetector::removeGarbageObject(this); 624#ifndef NDEBUG 625 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 626 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 627 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 628 "Reg operand def/use list corrupted"); 629 } 630#endif 631} 632 633/// getRegInfo - If this instruction is embedded into a MachineFunction, 634/// return the MachineRegisterInfo object for the current function, otherwise 635/// return null. 636MachineRegisterInfo *MachineInstr::getRegInfo() { 637 if (MachineBasicBlock *MBB = getParent()) 638 return &MBB->getParent()->getRegInfo(); 639 return 0; 640} 641 642/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 643/// this instruction from their respective use lists. This requires that the 644/// operands already be on their use lists. 645void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 646 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 647 if (Operands[i].isReg()) 648 MRI.removeRegOperandFromUseList(&Operands[i]); 649} 650 651/// AddRegOperandsToUseLists - Add all of the register operands in 652/// this instruction from their respective use lists. This requires that the 653/// operands not be on their use lists yet. 654void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 655 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 656 if (Operands[i].isReg()) 657 MRI.addRegOperandToUseList(&Operands[i]); 658} 659 660/// addOperand - Add the specified operand to the instruction. If it is an 661/// implicit operand, it is added to the end of the operand list. If it is 662/// an explicit operand it is added at the end of the explicit operand list 663/// (before the first implicit operand). 664void MachineInstr::addOperand(const MachineOperand &Op) { 665 assert(MCID && "Cannot add operands before providing an instr descriptor"); 666 bool isImpReg = Op.isReg() && Op.isImplicit(); 667 MachineRegisterInfo *RegInfo = getRegInfo(); 668 669 // If the Operands backing store is reallocated, all register operands must 670 // be removed and re-added to RegInfo. It is storing pointers to operands. 671 bool Reallocate = RegInfo && 672 !Operands.empty() && Operands.size() == Operands.capacity(); 673 674 // Find the insert location for the new operand. Implicit registers go at 675 // the end, everything goes before the implicit regs. 676 unsigned OpNo = Operands.size(); 677 678 // Remove all the implicit operands from RegInfo if they need to be shifted. 679 // FIXME: Allow mixed explicit and implicit operands on inline asm. 680 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 681 // implicit-defs, but they must not be moved around. See the FIXME in 682 // InstrEmitter.cpp. 683 if (!isImpReg && !isInlineAsm()) { 684 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 685 --OpNo; 686 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 687 if (RegInfo) 688 RegInfo->removeRegOperandFromUseList(&Operands[OpNo]); 689 } 690 } 691 692 // OpNo now points as the desired insertion point. Unless this is a variadic 693 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 694 // RegMask operands go between the explicit and implicit operands. 695 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 696 OpNo < MCID->getNumOperands()) && 697 "Trying to add an operand to a machine instr that is already done!"); 698 699 // All operands from OpNo have been removed from RegInfo. If the Operands 700 // backing store needs to be reallocated, we also need to remove any other 701 // register operands. 702 if (Reallocate) 703 for (unsigned i = 0; i != OpNo; ++i) 704 if (Operands[i].isReg()) 705 RegInfo->removeRegOperandFromUseList(&Operands[i]); 706 707 // Insert the new operand at OpNo. 708 Operands.insert(Operands.begin() + OpNo, Op); 709 Operands[OpNo].ParentMI = this; 710 711 // The Operands backing store has now been reallocated, so we can re-add the 712 // operands before OpNo. 713 if (Reallocate) 714 for (unsigned i = 0; i != OpNo; ++i) 715 if (Operands[i].isReg()) 716 RegInfo->addRegOperandToUseList(&Operands[i]); 717 718 // When adding a register operand, tell RegInfo about it. 719 if (Operands[OpNo].isReg()) { 720 // Ensure isOnRegUseList() returns false, regardless of Op's status. 721 Operands[OpNo].Contents.Reg.Prev = 0; 722 // Ignore existing ties. This is not a property that can be copied. 723 Operands[OpNo].TiedTo = 0; 724 // Add the new operand to RegInfo. 725 if (RegInfo) 726 RegInfo->addRegOperandToUseList(&Operands[OpNo]); 727 // The MCID operand information isn't accurate until we start adding 728 // explicit operands. The implicit operands are added first, then the 729 // explicits are inserted before them. 730 if (!isImpReg) { 731 // Tie uses to defs as indicated in MCInstrDesc. 732 if (Operands[OpNo].isUse()) { 733 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 734 if (DefIdx != -1) 735 tieOperands(DefIdx, OpNo); 736 } 737 // If the register operand is flagged as early, mark the operand as such. 738 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 739 Operands[OpNo].setIsEarlyClobber(true); 740 } 741 } 742 743 // Re-add all the implicit ops. 744 if (RegInfo) { 745 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { 746 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 747 RegInfo->addRegOperandToUseList(&Operands[i]); 748 } 749 } 750} 751 752/// RemoveOperand - Erase an operand from an instruction, leaving it with one 753/// fewer operand than it started with. 754/// 755void MachineInstr::RemoveOperand(unsigned OpNo) { 756 assert(OpNo < Operands.size() && "Invalid operand number"); 757 untieRegOperand(OpNo); 758 MachineRegisterInfo *RegInfo = getRegInfo(); 759 760 // Special case removing the last one. 761 if (OpNo == Operands.size()-1) { 762 // If needed, remove from the reg def/use list. 763 if (RegInfo && Operands.back().isReg() && Operands.back().isOnRegUseList()) 764 RegInfo->removeRegOperandFromUseList(&Operands.back()); 765 766 Operands.pop_back(); 767 return; 768 } 769 770 // Otherwise, we are removing an interior operand. If we have reginfo to 771 // update, remove all operands that will be shifted down from their reg lists, 772 // move everything down, then re-add them. 773 if (RegInfo) { 774 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 775 if (Operands[i].isReg()) 776 RegInfo->removeRegOperandFromUseList(&Operands[i]); 777 } 778 } 779 780#ifndef NDEBUG 781 // Moving tied operands would break the ties. 782 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) 783 if (Operands[i].isReg()) 784 assert(!Operands[i].isTied() && "Cannot move tied operands"); 785#endif 786 787 Operands.erase(Operands.begin()+OpNo); 788 789 if (RegInfo) { 790 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 791 if (Operands[i].isReg()) 792 RegInfo->addRegOperandToUseList(&Operands[i]); 793 } 794 } 795} 796 797/// addMemOperand - Add a MachineMemOperand to the machine instruction. 798/// This function should be used only occasionally. The setMemRefs function 799/// is the primary method for setting up a MachineInstr's MemRefs list. 800void MachineInstr::addMemOperand(MachineFunction &MF, 801 MachineMemOperand *MO) { 802 mmo_iterator OldMemRefs = MemRefs; 803 uint16_t OldNumMemRefs = NumMemRefs; 804 805 uint16_t NewNum = NumMemRefs + 1; 806 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 807 808 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 809 NewMemRefs[NewNum - 1] = MO; 810 811 MemRefs = NewMemRefs; 812 NumMemRefs = NewNum; 813} 814 815bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 816 const MachineBasicBlock *MBB = getParent(); 817 MachineBasicBlock::const_instr_iterator MII = *this; ++MII; 818 while (MII != MBB->end() && MII->isInsideBundle()) { 819 if (MII->getDesc().getFlags() & Mask) { 820 if (Type == AnyInBundle) 821 return true; 822 } else { 823 if (Type == AllInBundle) 824 return false; 825 } 826 ++MII; 827 } 828 829 return Type == AllInBundle; 830} 831 832bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 833 MICheckType Check) const { 834 // If opcodes or number of operands are not the same then the two 835 // instructions are obviously not identical. 836 if (Other->getOpcode() != getOpcode() || 837 Other->getNumOperands() != getNumOperands()) 838 return false; 839 840 if (isBundle()) { 841 // Both instructions are bundles, compare MIs inside the bundle. 842 MachineBasicBlock::const_instr_iterator I1 = *this; 843 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 844 MachineBasicBlock::const_instr_iterator I2 = *Other; 845 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 846 while (++I1 != E1 && I1->isInsideBundle()) { 847 ++I2; 848 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 849 return false; 850 } 851 } 852 853 // Check operands to make sure they match. 854 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 855 const MachineOperand &MO = getOperand(i); 856 const MachineOperand &OMO = Other->getOperand(i); 857 if (!MO.isReg()) { 858 if (!MO.isIdenticalTo(OMO)) 859 return false; 860 continue; 861 } 862 863 // Clients may or may not want to ignore defs when testing for equality. 864 // For example, machine CSE pass only cares about finding common 865 // subexpressions, so it's safe to ignore virtual register defs. 866 if (MO.isDef()) { 867 if (Check == IgnoreDefs) 868 continue; 869 else if (Check == IgnoreVRegDefs) { 870 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 871 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 872 if (MO.getReg() != OMO.getReg()) 873 return false; 874 } else { 875 if (!MO.isIdenticalTo(OMO)) 876 return false; 877 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 878 return false; 879 } 880 } else { 881 if (!MO.isIdenticalTo(OMO)) 882 return false; 883 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 884 return false; 885 } 886 } 887 // If DebugLoc does not match then two dbg.values are not identical. 888 if (isDebugValue()) 889 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 890 && getDebugLoc() != Other->getDebugLoc()) 891 return false; 892 return true; 893} 894 895/// removeFromParent - This method unlinks 'this' from the containing basic 896/// block, and returns it, but does not delete it. 897MachineInstr *MachineInstr::removeFromParent() { 898 assert(getParent() && "Not embedded in a basic block!"); 899 900 // If it's a bundle then remove the MIs inside the bundle as well. 901 if (isBundle()) { 902 MachineBasicBlock *MBB = getParent(); 903 MachineBasicBlock::instr_iterator MII = *this; ++MII; 904 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 905 while (MII != E && MII->isInsideBundle()) { 906 MachineInstr *MI = &*MII; 907 ++MII; 908 MBB->remove(MI); 909 } 910 } 911 getParent()->remove(this); 912 return this; 913} 914 915 916/// eraseFromParent - This method unlinks 'this' from the containing basic 917/// block, and deletes it. 918void MachineInstr::eraseFromParent() { 919 assert(getParent() && "Not embedded in a basic block!"); 920 // If it's a bundle then remove the MIs inside the bundle as well. 921 if (isBundle()) { 922 MachineBasicBlock *MBB = getParent(); 923 MachineBasicBlock::instr_iterator MII = *this; ++MII; 924 MachineBasicBlock::instr_iterator E = MBB->instr_end(); 925 while (MII != E && MII->isInsideBundle()) { 926 MachineInstr *MI = &*MII; 927 ++MII; 928 MBB->erase(MI); 929 } 930 } 931 // Erase the individual instruction, which may itself be inside a bundle. 932 getParent()->erase_instr(this); 933} 934 935 936/// getNumExplicitOperands - Returns the number of non-implicit operands. 937/// 938unsigned MachineInstr::getNumExplicitOperands() const { 939 unsigned NumOperands = MCID->getNumOperands(); 940 if (!MCID->isVariadic()) 941 return NumOperands; 942 943 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 944 const MachineOperand &MO = getOperand(i); 945 if (!MO.isReg() || !MO.isImplicit()) 946 NumOperands++; 947 } 948 return NumOperands; 949} 950 951/// isBundled - Return true if this instruction part of a bundle. This is true 952/// if either itself or its following instruction is marked "InsideBundle". 953bool MachineInstr::isBundled() const { 954 if (isInsideBundle()) 955 return true; 956 MachineBasicBlock::const_instr_iterator nextMI = this; 957 ++nextMI; 958 return nextMI != Parent->instr_end() && nextMI->isInsideBundle(); 959} 960 961bool MachineInstr::isStackAligningInlineAsm() const { 962 if (isInlineAsm()) { 963 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 964 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 965 return true; 966 } 967 return false; 968} 969 970InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 971 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 972 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 973 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 974} 975 976int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 977 unsigned *GroupNo) const { 978 assert(isInlineAsm() && "Expected an inline asm instruction"); 979 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 980 981 // Ignore queries about the initial operands. 982 if (OpIdx < InlineAsm::MIOp_FirstOperand) 983 return -1; 984 985 unsigned Group = 0; 986 unsigned NumOps; 987 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 988 i += NumOps) { 989 const MachineOperand &FlagMO = getOperand(i); 990 // If we reach the implicit register operands, stop looking. 991 if (!FlagMO.isImm()) 992 return -1; 993 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 994 if (i + NumOps > OpIdx) { 995 if (GroupNo) 996 *GroupNo = Group; 997 return i; 998 } 999 ++Group; 1000 } 1001 return -1; 1002} 1003 1004const TargetRegisterClass* 1005MachineInstr::getRegClassConstraint(unsigned OpIdx, 1006 const TargetInstrInfo *TII, 1007 const TargetRegisterInfo *TRI) const { 1008 assert(getParent() && "Can't have an MBB reference here!"); 1009 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1010 const MachineFunction &MF = *getParent()->getParent(); 1011 1012 // Most opcodes have fixed constraints in their MCInstrDesc. 1013 if (!isInlineAsm()) 1014 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1015 1016 if (!getOperand(OpIdx).isReg()) 1017 return NULL; 1018 1019 // For tied uses on inline asm, get the constraint from the def. 1020 unsigned DefIdx; 1021 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1022 OpIdx = DefIdx; 1023 1024 // Inline asm stores register class constraints in the flag word. 1025 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1026 if (FlagIdx < 0) 1027 return NULL; 1028 1029 unsigned Flag = getOperand(FlagIdx).getImm(); 1030 unsigned RCID; 1031 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1032 return TRI->getRegClass(RCID); 1033 1034 // Assume that all registers in a memory operand are pointers. 1035 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1036 return TRI->getPointerRegClass(MF); 1037 1038 return NULL; 1039} 1040 1041/// getBundleSize - Return the number of instructions inside the MI bundle. 1042unsigned MachineInstr::getBundleSize() const { 1043 assert(isBundle() && "Expecting a bundle"); 1044 1045 MachineBasicBlock::const_instr_iterator I = *this; 1046 unsigned Size = 0; 1047 while ((++I)->isInsideBundle()) { 1048 ++Size; 1049 } 1050 assert(Size > 1 && "Malformed bundle"); 1051 1052 return Size; 1053} 1054 1055/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1056/// the specific register or -1 if it is not found. It further tightens 1057/// the search criteria to a use that kills the register if isKill is true. 1058int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1059 const TargetRegisterInfo *TRI) const { 1060 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1061 const MachineOperand &MO = getOperand(i); 1062 if (!MO.isReg() || !MO.isUse()) 1063 continue; 1064 unsigned MOReg = MO.getReg(); 1065 if (!MOReg) 1066 continue; 1067 if (MOReg == Reg || 1068 (TRI && 1069 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1070 TargetRegisterInfo::isPhysicalRegister(Reg) && 1071 TRI->isSubRegister(MOReg, Reg))) 1072 if (!isKill || MO.isKill()) 1073 return i; 1074 } 1075 return -1; 1076} 1077 1078/// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1079/// indicating if this instruction reads or writes Reg. This also considers 1080/// partial defines. 1081std::pair<bool,bool> 1082MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1083 SmallVectorImpl<unsigned> *Ops) const { 1084 bool PartDef = false; // Partial redefine. 1085 bool FullDef = false; // Full define. 1086 bool Use = false; 1087 1088 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1089 const MachineOperand &MO = getOperand(i); 1090 if (!MO.isReg() || MO.getReg() != Reg) 1091 continue; 1092 if (Ops) 1093 Ops->push_back(i); 1094 if (MO.isUse()) 1095 Use |= !MO.isUndef(); 1096 else if (MO.getSubReg() && !MO.isUndef()) 1097 // A partial <def,undef> doesn't count as reading the register. 1098 PartDef = true; 1099 else 1100 FullDef = true; 1101 } 1102 // A partial redefine uses Reg unless there is also a full define. 1103 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1104} 1105 1106/// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1107/// the specified register or -1 if it is not found. If isDead is true, defs 1108/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1109/// also checks if there is a def of a super-register. 1110int 1111MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1112 const TargetRegisterInfo *TRI) const { 1113 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1114 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1115 const MachineOperand &MO = getOperand(i); 1116 // Accept regmask operands when Overlap is set. 1117 // Ignore them when looking for a specific def operand (Overlap == false). 1118 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1119 return i; 1120 if (!MO.isReg() || !MO.isDef()) 1121 continue; 1122 unsigned MOReg = MO.getReg(); 1123 bool Found = (MOReg == Reg); 1124 if (!Found && TRI && isPhys && 1125 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1126 if (Overlap) 1127 Found = TRI->regsOverlap(MOReg, Reg); 1128 else 1129 Found = TRI->isSubRegister(MOReg, Reg); 1130 } 1131 if (Found && (!isDead || MO.isDead())) 1132 return i; 1133 } 1134 return -1; 1135} 1136 1137/// findFirstPredOperandIdx() - Find the index of the first operand in the 1138/// operand list that is used to represent the predicate. It returns -1 if 1139/// none is found. 1140int MachineInstr::findFirstPredOperandIdx() const { 1141 // Don't call MCID.findFirstPredOperandIdx() because this variant 1142 // is sometimes called on an instruction that's not yet complete, and 1143 // so the number of operands is less than the MCID indicates. In 1144 // particular, the PTX target does this. 1145 const MCInstrDesc &MCID = getDesc(); 1146 if (MCID.isPredicable()) { 1147 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1148 if (MCID.OpInfo[i].isPredicate()) 1149 return i; 1150 } 1151 1152 return -1; 1153} 1154 1155// MachineOperand::TiedTo is 4 bits wide. 1156const unsigned TiedMax = 15; 1157 1158/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1159/// 1160/// Use and def operands can be tied together, indicated by a non-zero TiedTo 1161/// field. TiedTo can have these values: 1162/// 1163/// 0: Operand is not tied to anything. 1164/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1165/// TiedMax: Tied to an operand >= TiedMax-1. 1166/// 1167/// The tied def must be one of the first TiedMax operands on a normal 1168/// instruction. INLINEASM instructions allow more tied defs. 1169/// 1170void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1171 MachineOperand &DefMO = getOperand(DefIdx); 1172 MachineOperand &UseMO = getOperand(UseIdx); 1173 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1174 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1175 assert(!DefMO.isTied() && "Def is already tied to another use"); 1176 assert(!UseMO.isTied() && "Use is already tied to another def"); 1177 1178 if (DefIdx < TiedMax) 1179 UseMO.TiedTo = DefIdx + 1; 1180 else { 1181 // Inline asm can use the group descriptors to find tied operands, but on 1182 // normal instruction, the tied def must be within the first TiedMax 1183 // operands. 1184 assert(isInlineAsm() && "DefIdx out of range"); 1185 UseMO.TiedTo = TiedMax; 1186 } 1187 1188 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1189 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1190} 1191 1192/// Given the index of a tied register operand, find the operand it is tied to. 1193/// Defs are tied to uses and vice versa. Returns the index of the tied operand 1194/// which must exist. 1195unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1196 const MachineOperand &MO = getOperand(OpIdx); 1197 assert(MO.isTied() && "Operand isn't tied"); 1198 1199 // Normally TiedTo is in range. 1200 if (MO.TiedTo < TiedMax) 1201 return MO.TiedTo - 1; 1202 1203 // Uses on normal instructions can be out of range. 1204 if (!isInlineAsm()) { 1205 // Normal tied defs must be in the 0..TiedMax-1 range. 1206 if (MO.isUse()) 1207 return TiedMax - 1; 1208 // MO is a def. Search for the tied use. 1209 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1210 const MachineOperand &UseMO = getOperand(i); 1211 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1212 return i; 1213 } 1214 llvm_unreachable("Can't find tied use"); 1215 } 1216 1217 // Now deal with inline asm by parsing the operand group descriptor flags. 1218 // Find the beginning of each operand group. 1219 SmallVector<unsigned, 8> GroupIdx; 1220 unsigned OpIdxGroup = ~0u; 1221 unsigned NumOps; 1222 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1223 i += NumOps) { 1224 const MachineOperand &FlagMO = getOperand(i); 1225 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1226 unsigned CurGroup = GroupIdx.size(); 1227 GroupIdx.push_back(i); 1228 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1229 // OpIdx belongs to this operand group. 1230 if (OpIdx > i && OpIdx < i + NumOps) 1231 OpIdxGroup = CurGroup; 1232 unsigned TiedGroup; 1233 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1234 continue; 1235 // Operands in this group are tied to operands in TiedGroup which must be 1236 // earlier. Find the number of operands between the two groups. 1237 unsigned Delta = i - GroupIdx[TiedGroup]; 1238 1239 // OpIdx is a use tied to TiedGroup. 1240 if (OpIdxGroup == CurGroup) 1241 return OpIdx - Delta; 1242 1243 // OpIdx is a def tied to this use group. 1244 if (OpIdxGroup == TiedGroup) 1245 return OpIdx + Delta; 1246 } 1247 llvm_unreachable("Invalid tied operand on inline asm"); 1248} 1249 1250/// clearKillInfo - Clears kill flags on all operands. 1251/// 1252void MachineInstr::clearKillInfo() { 1253 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1254 MachineOperand &MO = getOperand(i); 1255 if (MO.isReg() && MO.isUse()) 1256 MO.setIsKill(false); 1257 } 1258} 1259 1260/// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1261/// 1262void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1263 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1264 const MachineOperand &MO = MI->getOperand(i); 1265 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1266 continue; 1267 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1268 MachineOperand &MOp = getOperand(j); 1269 if (!MOp.isIdenticalTo(MO)) 1270 continue; 1271 if (MO.isKill()) 1272 MOp.setIsKill(); 1273 else 1274 MOp.setIsDead(); 1275 break; 1276 } 1277 } 1278} 1279 1280/// copyPredicates - Copies predicate operand(s) from MI. 1281void MachineInstr::copyPredicates(const MachineInstr *MI) { 1282 assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles"); 1283 1284 const MCInstrDesc &MCID = MI->getDesc(); 1285 if (!MCID.isPredicable()) 1286 return; 1287 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1288 if (MCID.OpInfo[i].isPredicate()) { 1289 // Predicated operands must be last operands. 1290 addOperand(MI->getOperand(i)); 1291 } 1292 } 1293} 1294 1295void MachineInstr::substituteRegister(unsigned FromReg, 1296 unsigned ToReg, 1297 unsigned SubIdx, 1298 const TargetRegisterInfo &RegInfo) { 1299 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1300 if (SubIdx) 1301 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1302 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1303 MachineOperand &MO = getOperand(i); 1304 if (!MO.isReg() || MO.getReg() != FromReg) 1305 continue; 1306 MO.substPhysReg(ToReg, RegInfo); 1307 } 1308 } else { 1309 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1310 MachineOperand &MO = getOperand(i); 1311 if (!MO.isReg() || MO.getReg() != FromReg) 1312 continue; 1313 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1314 } 1315 } 1316} 1317 1318/// isSafeToMove - Return true if it is safe to move this instruction. If 1319/// SawStore is set to true, it means that there is a store (or call) between 1320/// the instruction's location and its intended destination. 1321bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1322 AliasAnalysis *AA, 1323 bool &SawStore) const { 1324 // Ignore stuff that we obviously can't move. 1325 // 1326 // Treat volatile loads as stores. This is not strictly necessary for 1327 // volatiles, but it is required for atomic loads. It is not allowed to move 1328 // a load across an atomic load with Ordering > Monotonic. 1329 if (mayStore() || isCall() || 1330 (mayLoad() && hasOrderedMemoryRef())) { 1331 SawStore = true; 1332 return false; 1333 } 1334 1335 if (isLabel() || isDebugValue() || 1336 isTerminator() || hasUnmodeledSideEffects()) 1337 return false; 1338 1339 // See if this instruction does a load. If so, we have to guarantee that the 1340 // loaded value doesn't change between the load and the its intended 1341 // destination. The check for isInvariantLoad gives the targe the chance to 1342 // classify the load as always returning a constant, e.g. a constant pool 1343 // load. 1344 if (mayLoad() && !isInvariantLoad(AA)) 1345 // Otherwise, this is a real load. If there is a store between the load and 1346 // end of block, we can't move it. 1347 return !SawStore; 1348 1349 return true; 1350} 1351 1352/// isSafeToReMat - Return true if it's safe to rematerialize the specified 1353/// instruction which defined the specified register instead of copying it. 1354bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1355 AliasAnalysis *AA, 1356 unsigned DstReg) const { 1357 bool SawStore = false; 1358 if (!TII->isTriviallyReMaterializable(this, AA) || 1359 !isSafeToMove(TII, AA, SawStore)) 1360 return false; 1361 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1362 const MachineOperand &MO = getOperand(i); 1363 if (!MO.isReg()) 1364 continue; 1365 // FIXME: For now, do not remat any instruction with register operands. 1366 // Later on, we can loosen the restriction is the register operands have 1367 // not been modified between the def and use. Note, this is different from 1368 // MachineSink because the code is no longer in two-address form (at least 1369 // partially). 1370 if (MO.isUse()) 1371 return false; 1372 else if (!MO.isDead() && MO.getReg() != DstReg) 1373 return false; 1374 } 1375 return true; 1376} 1377 1378/// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1379/// or volatile memory reference, or if the information describing the memory 1380/// reference is not available. Return false if it is known to have no ordered 1381/// memory references. 1382bool MachineInstr::hasOrderedMemoryRef() const { 1383 // An instruction known never to access memory won't have a volatile access. 1384 if (!mayStore() && 1385 !mayLoad() && 1386 !isCall() && 1387 !hasUnmodeledSideEffects()) 1388 return false; 1389 1390 // Otherwise, if the instruction has no memory reference information, 1391 // conservatively assume it wasn't preserved. 1392 if (memoperands_empty()) 1393 return true; 1394 1395 // Check the memory reference information for ordered references. 1396 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1397 if (!(*I)->isUnordered()) 1398 return true; 1399 1400 return false; 1401} 1402 1403/// isInvariantLoad - Return true if this instruction is loading from a 1404/// location whose value is invariant across the function. For example, 1405/// loading a value from the constant pool or from the argument area 1406/// of a function if it does not change. This should only return true of 1407/// *all* loads the instruction does are invariant (if it does multiple loads). 1408bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1409 // If the instruction doesn't load at all, it isn't an invariant load. 1410 if (!mayLoad()) 1411 return false; 1412 1413 // If the instruction has lost its memoperands, conservatively assume that 1414 // it may not be an invariant load. 1415 if (memoperands_empty()) 1416 return false; 1417 1418 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1419 1420 for (mmo_iterator I = memoperands_begin(), 1421 E = memoperands_end(); I != E; ++I) { 1422 if ((*I)->isVolatile()) return false; 1423 if ((*I)->isStore()) return false; 1424 if ((*I)->isInvariant()) return true; 1425 1426 if (const Value *V = (*I)->getValue()) { 1427 // A load from a constant PseudoSourceValue is invariant. 1428 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1429 if (PSV->isConstant(MFI)) 1430 continue; 1431 // If we have an AliasAnalysis, ask it whether the memory is constant. 1432 if (AA && AA->pointsToConstantMemory( 1433 AliasAnalysis::Location(V, (*I)->getSize(), 1434 (*I)->getTBAAInfo()))) 1435 continue; 1436 } 1437 1438 // Otherwise assume conservatively. 1439 return false; 1440 } 1441 1442 // Everything checks out. 1443 return true; 1444} 1445 1446/// isConstantValuePHI - If the specified instruction is a PHI that always 1447/// merges together the same virtual register, return the register, otherwise 1448/// return 0. 1449unsigned MachineInstr::isConstantValuePHI() const { 1450 if (!isPHI()) 1451 return 0; 1452 assert(getNumOperands() >= 3 && 1453 "It's illegal to have a PHI without source operands"); 1454 1455 unsigned Reg = getOperand(1).getReg(); 1456 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1457 if (getOperand(i).getReg() != Reg) 1458 return 0; 1459 return Reg; 1460} 1461 1462bool MachineInstr::hasUnmodeledSideEffects() const { 1463 if (hasProperty(MCID::UnmodeledSideEffects)) 1464 return true; 1465 if (isInlineAsm()) { 1466 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1467 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1468 return true; 1469 } 1470 1471 return false; 1472} 1473 1474/// allDefsAreDead - Return true if all the defs of this instruction are dead. 1475/// 1476bool MachineInstr::allDefsAreDead() const { 1477 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1478 const MachineOperand &MO = getOperand(i); 1479 if (!MO.isReg() || MO.isUse()) 1480 continue; 1481 if (!MO.isDead()) 1482 return false; 1483 } 1484 return true; 1485} 1486 1487/// copyImplicitOps - Copy implicit register operands from specified 1488/// instruction to this instruction. 1489void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1490 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1491 i != e; ++i) { 1492 const MachineOperand &MO = MI->getOperand(i); 1493 if (MO.isReg() && MO.isImplicit()) 1494 addOperand(MO); 1495 } 1496} 1497 1498void MachineInstr::dump() const { 1499#ifndef NDEBUG 1500 dbgs() << " " << *this; 1501#endif 1502} 1503 1504static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1505 raw_ostream &CommentOS) { 1506 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1507 if (!DL.isUnknown()) { // Print source line info. 1508 DIScope Scope(DL.getScope(Ctx)); 1509 // Omit the directory, because it's likely to be long and uninteresting. 1510 if (Scope.Verify()) 1511 CommentOS << Scope.getFilename(); 1512 else 1513 CommentOS << "<unknown>"; 1514 CommentOS << ':' << DL.getLine(); 1515 if (DL.getCol() != 0) 1516 CommentOS << ':' << DL.getCol(); 1517 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1518 if (!InlinedAtDL.isUnknown()) { 1519 CommentOS << " @[ "; 1520 printDebugLoc(InlinedAtDL, MF, CommentOS); 1521 CommentOS << " ]"; 1522 } 1523 } 1524} 1525 1526void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1527 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1528 const MachineFunction *MF = 0; 1529 const MachineRegisterInfo *MRI = 0; 1530 if (const MachineBasicBlock *MBB = getParent()) { 1531 MF = MBB->getParent(); 1532 if (!TM && MF) 1533 TM = &MF->getTarget(); 1534 if (MF) 1535 MRI = &MF->getRegInfo(); 1536 } 1537 1538 // Save a list of virtual registers. 1539 SmallVector<unsigned, 8> VirtRegs; 1540 1541 // Print explicitly defined operands on the left of an assignment syntax. 1542 unsigned StartOp = 0, e = getNumOperands(); 1543 for (; StartOp < e && getOperand(StartOp).isReg() && 1544 getOperand(StartOp).isDef() && 1545 !getOperand(StartOp).isImplicit(); 1546 ++StartOp) { 1547 if (StartOp != 0) OS << ", "; 1548 getOperand(StartOp).print(OS, TM); 1549 unsigned Reg = getOperand(StartOp).getReg(); 1550 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1551 VirtRegs.push_back(Reg); 1552 } 1553 1554 if (StartOp != 0) 1555 OS << " = "; 1556 1557 // Print the opcode name. 1558 if (TM && TM->getInstrInfo()) 1559 OS << TM->getInstrInfo()->getName(getOpcode()); 1560 else 1561 OS << "UNKNOWN"; 1562 1563 // Print the rest of the operands. 1564 bool OmittedAnyCallClobbers = false; 1565 bool FirstOp = true; 1566 unsigned AsmDescOp = ~0u; 1567 unsigned AsmOpCount = 0; 1568 1569 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1570 // Print asm string. 1571 OS << " "; 1572 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1573 1574 // Print HasSideEffects, IsAlignStack 1575 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1576 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1577 OS << " [sideeffect]"; 1578 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1579 OS << " [alignstack]"; 1580 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1581 OS << " [attdialect]"; 1582 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1583 OS << " [inteldialect]"; 1584 1585 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1586 FirstOp = false; 1587 } 1588 1589 1590 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1591 const MachineOperand &MO = getOperand(i); 1592 1593 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1594 VirtRegs.push_back(MO.getReg()); 1595 1596 // Omit call-clobbered registers which aren't used anywhere. This makes 1597 // call instructions much less noisy on targets where calls clobber lots 1598 // of registers. Don't rely on MO.isDead() because we may be called before 1599 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1600 if (MF && isCall() && 1601 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1602 unsigned Reg = MO.getReg(); 1603 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1604 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1605 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1606 bool HasAliasLive = false; 1607 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1608 AI.isValid(); ++AI) { 1609 unsigned AliasReg = *AI; 1610 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1611 HasAliasLive = true; 1612 break; 1613 } 1614 } 1615 if (!HasAliasLive) { 1616 OmittedAnyCallClobbers = true; 1617 continue; 1618 } 1619 } 1620 } 1621 } 1622 1623 if (FirstOp) FirstOp = false; else OS << ","; 1624 OS << " "; 1625 if (i < getDesc().NumOperands) { 1626 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1627 if (MCOI.isPredicate()) 1628 OS << "pred:"; 1629 if (MCOI.isOptionalDef()) 1630 OS << "opt:"; 1631 } 1632 if (isDebugValue() && MO.isMetadata()) { 1633 // Pretty print DBG_VALUE instructions. 1634 const MDNode *MD = MO.getMetadata(); 1635 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1636 OS << "!\"" << MDS->getString() << '\"'; 1637 else 1638 MO.print(OS, TM); 1639 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1640 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1641 } else if (i == AsmDescOp && MO.isImm()) { 1642 // Pretty print the inline asm operand descriptor. 1643 OS << '$' << AsmOpCount++; 1644 unsigned Flag = MO.getImm(); 1645 switch (InlineAsm::getKind(Flag)) { 1646 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1647 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1648 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1649 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1650 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1651 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1652 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1653 } 1654 1655 unsigned RCID = 0; 1656 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1657 if (TM) 1658 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1659 else 1660 OS << ":RC" << RCID; 1661 } 1662 1663 unsigned TiedTo = 0; 1664 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1665 OS << " tiedto:$" << TiedTo; 1666 1667 OS << ']'; 1668 1669 // Compute the index of the next operand descriptor. 1670 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1671 } else 1672 MO.print(OS, TM); 1673 } 1674 1675 // Briefly indicate whether any call clobbers were omitted. 1676 if (OmittedAnyCallClobbers) { 1677 if (!FirstOp) OS << ","; 1678 OS << " ..."; 1679 } 1680 1681 bool HaveSemi = false; 1682 if (Flags) { 1683 if (!HaveSemi) OS << ";"; HaveSemi = true; 1684 OS << " flags: "; 1685 1686 if (Flags & FrameSetup) 1687 OS << "FrameSetup"; 1688 } 1689 1690 if (!memoperands_empty()) { 1691 if (!HaveSemi) OS << ";"; HaveSemi = true; 1692 1693 OS << " mem:"; 1694 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1695 i != e; ++i) { 1696 OS << **i; 1697 if (llvm::next(i) != e) 1698 OS << " "; 1699 } 1700 } 1701 1702 // Print the regclass of any virtual registers encountered. 1703 if (MRI && !VirtRegs.empty()) { 1704 if (!HaveSemi) OS << ";"; HaveSemi = true; 1705 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1706 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1707 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1708 for (unsigned j = i+1; j != VirtRegs.size();) { 1709 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1710 ++j; 1711 continue; 1712 } 1713 if (VirtRegs[i] != VirtRegs[j]) 1714 OS << "," << PrintReg(VirtRegs[j]); 1715 VirtRegs.erase(VirtRegs.begin()+j); 1716 } 1717 } 1718 } 1719 1720 // Print debug location information. 1721 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1722 if (!HaveSemi) OS << ";"; HaveSemi = true; 1723 DIVariable DV(getOperand(e - 1).getMetadata()); 1724 OS << " line no:" << DV.getLineNumber(); 1725 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1726 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1727 if (!InlinedAtDL.isUnknown()) { 1728 OS << " inlined @[ "; 1729 printDebugLoc(InlinedAtDL, MF, OS); 1730 OS << " ]"; 1731 } 1732 } 1733 } else if (!debugLoc.isUnknown() && MF) { 1734 if (!HaveSemi) OS << ";"; HaveSemi = true; 1735 OS << " dbg:"; 1736 printDebugLoc(debugLoc, MF, OS); 1737 } 1738 1739 OS << '\n'; 1740} 1741 1742bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1743 const TargetRegisterInfo *RegInfo, 1744 bool AddIfNotFound) { 1745 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1746 bool hasAliases = isPhysReg && 1747 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1748 bool Found = false; 1749 SmallVector<unsigned,4> DeadOps; 1750 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1751 MachineOperand &MO = getOperand(i); 1752 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1753 continue; 1754 unsigned Reg = MO.getReg(); 1755 if (!Reg) 1756 continue; 1757 1758 if (Reg == IncomingReg) { 1759 if (!Found) { 1760 if (MO.isKill()) 1761 // The register is already marked kill. 1762 return true; 1763 if (isPhysReg && isRegTiedToDefOperand(i)) 1764 // Two-address uses of physregs must not be marked kill. 1765 return true; 1766 MO.setIsKill(); 1767 Found = true; 1768 } 1769 } else if (hasAliases && MO.isKill() && 1770 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1771 // A super-register kill already exists. 1772 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1773 return true; 1774 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1775 DeadOps.push_back(i); 1776 } 1777 } 1778 1779 // Trim unneeded kill operands. 1780 while (!DeadOps.empty()) { 1781 unsigned OpIdx = DeadOps.back(); 1782 if (getOperand(OpIdx).isImplicit()) 1783 RemoveOperand(OpIdx); 1784 else 1785 getOperand(OpIdx).setIsKill(false); 1786 DeadOps.pop_back(); 1787 } 1788 1789 // If not found, this means an alias of one of the operands is killed. Add a 1790 // new implicit operand if required. 1791 if (!Found && AddIfNotFound) { 1792 addOperand(MachineOperand::CreateReg(IncomingReg, 1793 false /*IsDef*/, 1794 true /*IsImp*/, 1795 true /*IsKill*/)); 1796 return true; 1797 } 1798 return Found; 1799} 1800 1801void MachineInstr::clearRegisterKills(unsigned Reg, 1802 const TargetRegisterInfo *RegInfo) { 1803 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1804 RegInfo = 0; 1805 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1806 MachineOperand &MO = getOperand(i); 1807 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1808 continue; 1809 unsigned OpReg = MO.getReg(); 1810 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1811 MO.setIsKill(false); 1812 } 1813} 1814 1815bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1816 const TargetRegisterInfo *RegInfo, 1817 bool AddIfNotFound) { 1818 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1819 bool hasAliases = isPhysReg && 1820 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1821 bool Found = false; 1822 SmallVector<unsigned,4> DeadOps; 1823 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1824 MachineOperand &MO = getOperand(i); 1825 if (!MO.isReg() || !MO.isDef()) 1826 continue; 1827 unsigned Reg = MO.getReg(); 1828 if (!Reg) 1829 continue; 1830 1831 if (Reg == IncomingReg) { 1832 MO.setIsDead(); 1833 Found = true; 1834 } else if (hasAliases && MO.isDead() && 1835 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1836 // There exists a super-register that's marked dead. 1837 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1838 return true; 1839 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1840 DeadOps.push_back(i); 1841 } 1842 } 1843 1844 // Trim unneeded dead operands. 1845 while (!DeadOps.empty()) { 1846 unsigned OpIdx = DeadOps.back(); 1847 if (getOperand(OpIdx).isImplicit()) 1848 RemoveOperand(OpIdx); 1849 else 1850 getOperand(OpIdx).setIsDead(false); 1851 DeadOps.pop_back(); 1852 } 1853 1854 // If not found, this means an alias of one of the operands is dead. Add a 1855 // new implicit operand if required. 1856 if (Found || !AddIfNotFound) 1857 return Found; 1858 1859 addOperand(MachineOperand::CreateReg(IncomingReg, 1860 true /*IsDef*/, 1861 true /*IsImp*/, 1862 false /*IsKill*/, 1863 true /*IsDead*/)); 1864 return true; 1865} 1866 1867void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1868 const TargetRegisterInfo *RegInfo) { 1869 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1870 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1871 if (MO) 1872 return; 1873 } else { 1874 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1875 const MachineOperand &MO = getOperand(i); 1876 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1877 MO.getSubReg() == 0) 1878 return; 1879 } 1880 } 1881 addOperand(MachineOperand::CreateReg(IncomingReg, 1882 true /*IsDef*/, 1883 true /*IsImp*/)); 1884} 1885 1886void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1887 const TargetRegisterInfo &TRI) { 1888 bool HasRegMask = false; 1889 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1890 MachineOperand &MO = getOperand(i); 1891 if (MO.isRegMask()) { 1892 HasRegMask = true; 1893 continue; 1894 } 1895 if (!MO.isReg() || !MO.isDef()) continue; 1896 unsigned Reg = MO.getReg(); 1897 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1898 bool Dead = true; 1899 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1900 I != E; ++I) 1901 if (TRI.regsOverlap(*I, Reg)) { 1902 Dead = false; 1903 break; 1904 } 1905 // If there are no uses, including partial uses, the def is dead. 1906 if (Dead) MO.setIsDead(); 1907 } 1908 1909 // This is a call with a register mask operand. 1910 // Mask clobbers are always dead, so add defs for the non-dead defines. 1911 if (HasRegMask) 1912 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1913 I != E; ++I) 1914 addRegisterDefined(*I, &TRI); 1915} 1916 1917unsigned 1918MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1919 // Build up a buffer of hash code components. 1920 SmallVector<size_t, 8> HashComponents; 1921 HashComponents.reserve(MI->getNumOperands() + 1); 1922 HashComponents.push_back(MI->getOpcode()); 1923 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1924 const MachineOperand &MO = MI->getOperand(i); 1925 if (MO.isReg() && MO.isDef() && 1926 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1927 continue; // Skip virtual register defs. 1928 1929 HashComponents.push_back(hash_value(MO)); 1930 } 1931 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1932} 1933 1934void MachineInstr::emitError(StringRef Msg) const { 1935 // Find the source location cookie. 1936 unsigned LocCookie = 0; 1937 const MDNode *LocMD = 0; 1938 for (unsigned i = getNumOperands(); i != 0; --i) { 1939 if (getOperand(i-1).isMetadata() && 1940 (LocMD = getOperand(i-1).getMetadata()) && 1941 LocMD->getNumOperands() != 0) { 1942 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1943 LocCookie = CI->getZExtValue(); 1944 break; 1945 } 1946 } 1947 } 1948 1949 if (const MachineBasicBlock *MBB = getParent()) 1950 if (const MachineFunction *MF = MBB->getParent()) 1951 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1952 report_fatal_error(Msg); 1953} 1954