1/*===-- X86DisassemblerDecoder.c - Disassembler decoder ------------*- C -*-===*
2 *
3 *                     The LLVM Compiler Infrastructure
4 *
5 * This file is distributed under the University of Illinois Open Source
6 * License. See LICENSE.TXT for details.
7 *
8 *===----------------------------------------------------------------------===*
9 *
10 * This file is part of the X86 Disassembler.
11 * It contains the implementation of the instruction decoder.
12 * Documentation for the disassembler can be found in X86Disassembler.h.
13 *
14 *===----------------------------------------------------------------------===*/
15
16#include <stdarg.h>   /* for va_*()       */
17#include <stdio.h>    /* for vsnprintf()  */
18#include <stdlib.h>   /* for exit()       */
19#include <string.h>   /* for memset()     */
20
21#include "X86DisassemblerDecoder.h"
22
23#include "X86GenDisassemblerTables.inc"
24
25#define TRUE  1
26#define FALSE 0
27
28typedef int8_t bool;
29
30#ifndef NDEBUG
31#define debug(s) do { x86DisassemblerDebug(__FILE__, __LINE__, s); } while (0)
32#else
33#define debug(s) do { } while (0)
34#endif
35
36
37/*
38 * contextForAttrs - Client for the instruction context table.  Takes a set of
39 *   attributes and returns the appropriate decode context.
40 *
41 * @param attrMask  - Attributes, from the enumeration attributeBits.
42 * @return          - The InstructionContext to use when looking up an
43 *                    an instruction with these attributes.
44 */
45static InstructionContext contextForAttrs(uint8_t attrMask) {
46  return CONTEXTS_SYM[attrMask];
47}
48
49/*
50 * modRMRequired - Reads the appropriate instruction table to determine whether
51 *   the ModR/M byte is required to decode a particular instruction.
52 *
53 * @param type        - The opcode type (i.e., how many bytes it has).
54 * @param insnContext - The context for the instruction, as returned by
55 *                      contextForAttrs.
56 * @param opcode      - The last byte of the instruction's opcode, not counting
57 *                      ModR/M extensions and escapes.
58 * @return            - TRUE if the ModR/M byte is required, FALSE otherwise.
59 */
60static int modRMRequired(OpcodeType type,
61                         InstructionContext insnContext,
62                         uint8_t opcode) {
63  const struct ContextDecision* decision = 0;
64
65  switch (type) {
66  case ONEBYTE:
67    decision = &ONEBYTE_SYM;
68    break;
69  case TWOBYTE:
70    decision = &TWOBYTE_SYM;
71    break;
72  case THREEBYTE_38:
73    decision = &THREEBYTE38_SYM;
74    break;
75  case THREEBYTE_3A:
76    decision = &THREEBYTE3A_SYM;
77    break;
78  case THREEBYTE_A6:
79    decision = &THREEBYTEA6_SYM;
80    break;
81  case THREEBYTE_A7:
82    decision = &THREEBYTEA7_SYM;
83    break;
84  }
85
86  return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
87    modrm_type != MODRM_ONEENTRY;
88}
89
90/*
91 * decode - Reads the appropriate instruction table to obtain the unique ID of
92 *   an instruction.
93 *
94 * @param type        - See modRMRequired().
95 * @param insnContext - See modRMRequired().
96 * @param opcode      - See modRMRequired().
97 * @param modRM       - The ModR/M byte if required, or any value if not.
98 * @return            - The UID of the instruction, or 0 on failure.
99 */
100static InstrUID decode(OpcodeType type,
101                       InstructionContext insnContext,
102                       uint8_t opcode,
103                       uint8_t modRM) {
104  const struct ModRMDecision* dec = 0;
105
106  switch (type) {
107  case ONEBYTE:
108    dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
109    break;
110  case TWOBYTE:
111    dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
112    break;
113  case THREEBYTE_38:
114    dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
115    break;
116  case THREEBYTE_3A:
117    dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
118    break;
119  case THREEBYTE_A6:
120    dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
121    break;
122  case THREEBYTE_A7:
123    dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
124    break;
125  }
126
127  switch (dec->modrm_type) {
128  default:
129    debug("Corrupt table!  Unknown modrm_type");
130    return 0;
131  case MODRM_ONEENTRY:
132    return modRMTable[dec->instructionIDs];
133  case MODRM_SPLITRM:
134    if (modFromModRM(modRM) == 0x3)
135      return modRMTable[dec->instructionIDs+1];
136    return modRMTable[dec->instructionIDs];
137  case MODRM_SPLITREG:
138    if (modFromModRM(modRM) == 0x3)
139      return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
140    return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
141  case MODRM_FULL:
142    return modRMTable[dec->instructionIDs+modRM];
143  }
144}
145
146/*
147 * specifierForUID - Given a UID, returns the name and operand specification for
148 *   that instruction.
149 *
150 * @param uid - The unique ID for the instruction.  This should be returned by
151 *              decode(); specifierForUID will not check bounds.
152 * @return    - A pointer to the specification for that instruction.
153 */
154static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
155  return &INSTRUCTIONS_SYM[uid];
156}
157
158/*
159 * consumeByte - Uses the reader function provided by the user to consume one
160 *   byte from the instruction's memory and advance the cursor.
161 *
162 * @param insn  - The instruction with the reader function to use.  The cursor
163 *                for this instruction is advanced.
164 * @param byte  - A pointer to a pre-allocated memory buffer to be populated
165 *                with the data read.
166 * @return      - 0 if the read was successful; nonzero otherwise.
167 */
168static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
169  int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
170
171  if (!ret)
172    ++(insn->readerCursor);
173
174  return ret;
175}
176
177/*
178 * lookAtByte - Like consumeByte, but does not advance the cursor.
179 *
180 * @param insn  - See consumeByte().
181 * @param byte  - See consumeByte().
182 * @return      - See consumeByte().
183 */
184static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
185  return insn->reader(insn->readerArg, byte, insn->readerCursor);
186}
187
188static void unconsumeByte(struct InternalInstruction* insn) {
189  insn->readerCursor--;
190}
191
192#define CONSUME_FUNC(name, type)                                  \
193  static int name(struct InternalInstruction* insn, type* ptr) {  \
194    type combined = 0;                                            \
195    unsigned offset;                                              \
196    for (offset = 0; offset < sizeof(type); ++offset) {           \
197      uint8_t byte;                                               \
198      int ret = insn->reader(insn->readerArg,                     \
199                             &byte,                               \
200                             insn->readerCursor + offset);        \
201      if (ret)                                                    \
202        return ret;                                               \
203      combined = combined | ((uint64_t)byte << (offset * 8));     \
204    }                                                             \
205    *ptr = combined;                                              \
206    insn->readerCursor += sizeof(type);                           \
207    return 0;                                                     \
208  }
209
210/*
211 * consume* - Use the reader function provided by the user to consume data
212 *   values of various sizes from the instruction's memory and advance the
213 *   cursor appropriately.  These readers perform endian conversion.
214 *
215 * @param insn    - See consumeByte().
216 * @param ptr     - A pointer to a pre-allocated memory of appropriate size to
217 *                  be populated with the data read.
218 * @return        - See consumeByte().
219 */
220CONSUME_FUNC(consumeInt8, int8_t)
221CONSUME_FUNC(consumeInt16, int16_t)
222CONSUME_FUNC(consumeInt32, int32_t)
223CONSUME_FUNC(consumeUInt16, uint16_t)
224CONSUME_FUNC(consumeUInt32, uint32_t)
225CONSUME_FUNC(consumeUInt64, uint64_t)
226
227/*
228 * dbgprintf - Uses the logging function provided by the user to log a single
229 *   message, typically without a carriage-return.
230 *
231 * @param insn    - The instruction containing the logging function.
232 * @param format  - See printf().
233 * @param ...     - See printf().
234 */
235static void dbgprintf(struct InternalInstruction* insn,
236                      const char* format,
237                      ...) {
238  char buffer[256];
239  va_list ap;
240
241  if (!insn->dlog)
242    return;
243
244  va_start(ap, format);
245  (void)vsnprintf(buffer, sizeof(buffer), format, ap);
246  va_end(ap);
247
248  insn->dlog(insn->dlogArg, buffer);
249
250  return;
251}
252
253/*
254 * setPrefixPresent - Marks that a particular prefix is present at a particular
255 *   location.
256 *
257 * @param insn      - The instruction to be marked as having the prefix.
258 * @param prefix    - The prefix that is present.
259 * @param location  - The location where the prefix is located (in the address
260 *                    space of the instruction's reader).
261 */
262static void setPrefixPresent(struct InternalInstruction* insn,
263                                    uint8_t prefix,
264                                    uint64_t location)
265{
266  insn->prefixPresent[prefix] = 1;
267  insn->prefixLocations[prefix] = location;
268}
269
270/*
271 * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
272 *   present at a given location.
273 *
274 * @param insn      - The instruction to be queried.
275 * @param prefix    - The prefix.
276 * @param location  - The location to query.
277 * @return          - Whether the prefix is at that location.
278 */
279static BOOL isPrefixAtLocation(struct InternalInstruction* insn,
280                               uint8_t prefix,
281                               uint64_t location)
282{
283  if (insn->prefixPresent[prefix] == 1 &&
284     insn->prefixLocations[prefix] == location)
285    return TRUE;
286  else
287    return FALSE;
288}
289
290/*
291 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
292 *   instruction as having them.  Also sets the instruction's default operand,
293 *   address, and other relevant data sizes to report operands correctly.
294 *
295 * @param insn  - The instruction whose prefixes are to be read.
296 * @return      - 0 if the instruction could be read until the end of the prefix
297 *                bytes, and no prefixes conflicted; nonzero otherwise.
298 */
299static int readPrefixes(struct InternalInstruction* insn) {
300  BOOL isPrefix = TRUE;
301  BOOL prefixGroups[4] = { FALSE };
302  uint64_t prefixLocation;
303  uint8_t byte = 0;
304
305  BOOL hasAdSize = FALSE;
306  BOOL hasOpSize = FALSE;
307
308  dbgprintf(insn, "readPrefixes()");
309
310  while (isPrefix) {
311    prefixLocation = insn->readerCursor;
312
313    if (consumeByte(insn, &byte))
314      return -1;
315
316    /*
317     * If the first byte is a LOCK prefix break and let it be disassembled
318     * as a lock "instruction", by creating an <MCInst #xxxx LOCK_PREFIX>.
319     * FIXME there is currently no way to get the disassembler to print the
320     * lock prefix if it is not the first byte.
321     */
322    if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
323      break;
324
325    switch (byte) {
326    case 0xf0:  /* LOCK */
327    case 0xf2:  /* REPNE/REPNZ */
328    case 0xf3:  /* REP or REPE/REPZ */
329      if (prefixGroups[0])
330        dbgprintf(insn, "Redundant Group 1 prefix");
331      prefixGroups[0] = TRUE;
332      setPrefixPresent(insn, byte, prefixLocation);
333      break;
334    case 0x2e:  /* CS segment override -OR- Branch not taken */
335    case 0x36:  /* SS segment override -OR- Branch taken */
336    case 0x3e:  /* DS segment override */
337    case 0x26:  /* ES segment override */
338    case 0x64:  /* FS segment override */
339    case 0x65:  /* GS segment override */
340      switch (byte) {
341      case 0x2e:
342        insn->segmentOverride = SEG_OVERRIDE_CS;
343        break;
344      case 0x36:
345        insn->segmentOverride = SEG_OVERRIDE_SS;
346        break;
347      case 0x3e:
348        insn->segmentOverride = SEG_OVERRIDE_DS;
349        break;
350      case 0x26:
351        insn->segmentOverride = SEG_OVERRIDE_ES;
352        break;
353      case 0x64:
354        insn->segmentOverride = SEG_OVERRIDE_FS;
355        break;
356      case 0x65:
357        insn->segmentOverride = SEG_OVERRIDE_GS;
358        break;
359      default:
360        debug("Unhandled override");
361        return -1;
362      }
363      if (prefixGroups[1])
364        dbgprintf(insn, "Redundant Group 2 prefix");
365      prefixGroups[1] = TRUE;
366      setPrefixPresent(insn, byte, prefixLocation);
367      break;
368    case 0x66:  /* Operand-size override */
369      if (prefixGroups[2])
370        dbgprintf(insn, "Redundant Group 3 prefix");
371      prefixGroups[2] = TRUE;
372      hasOpSize = TRUE;
373      setPrefixPresent(insn, byte, prefixLocation);
374      break;
375    case 0x67:  /* Address-size override */
376      if (prefixGroups[3])
377        dbgprintf(insn, "Redundant Group 4 prefix");
378      prefixGroups[3] = TRUE;
379      hasAdSize = TRUE;
380      setPrefixPresent(insn, byte, prefixLocation);
381      break;
382    default:    /* Not a prefix byte */
383      isPrefix = FALSE;
384      break;
385    }
386
387    if (isPrefix)
388      dbgprintf(insn, "Found prefix 0x%hhx", byte);
389  }
390
391  insn->vexSize = 0;
392
393  if (byte == 0xc4) {
394    uint8_t byte1;
395
396    if (lookAtByte(insn, &byte1)) {
397      dbgprintf(insn, "Couldn't read second byte of VEX");
398      return -1;
399    }
400
401    if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
402      insn->vexSize = 3;
403      insn->necessaryPrefixLocation = insn->readerCursor - 1;
404    }
405    else {
406      unconsumeByte(insn);
407      insn->necessaryPrefixLocation = insn->readerCursor - 1;
408    }
409
410    if (insn->vexSize == 3) {
411      insn->vexPrefix[0] = byte;
412      consumeByte(insn, &insn->vexPrefix[1]);
413      consumeByte(insn, &insn->vexPrefix[2]);
414
415      /* We simulate the REX prefix for simplicity's sake */
416
417      if (insn->mode == MODE_64BIT) {
418        insn->rexPrefix = 0x40
419                        | (wFromVEX3of3(insn->vexPrefix[2]) << 3)
420                        | (rFromVEX2of3(insn->vexPrefix[1]) << 2)
421                        | (xFromVEX2of3(insn->vexPrefix[1]) << 1)
422                        | (bFromVEX2of3(insn->vexPrefix[1]) << 0);
423      }
424
425      switch (ppFromVEX3of3(insn->vexPrefix[2]))
426      {
427      default:
428        break;
429      case VEX_PREFIX_66:
430        hasOpSize = TRUE;
431        break;
432      }
433
434      dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1], insn->vexPrefix[2]);
435    }
436  }
437  else if (byte == 0xc5) {
438    uint8_t byte1;
439
440    if (lookAtByte(insn, &byte1)) {
441      dbgprintf(insn, "Couldn't read second byte of VEX");
442      return -1;
443    }
444
445    if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
446      insn->vexSize = 2;
447    }
448    else {
449      unconsumeByte(insn);
450    }
451
452    if (insn->vexSize == 2) {
453      insn->vexPrefix[0] = byte;
454      consumeByte(insn, &insn->vexPrefix[1]);
455
456      if (insn->mode == MODE_64BIT) {
457        insn->rexPrefix = 0x40
458                        | (rFromVEX2of2(insn->vexPrefix[1]) << 2);
459      }
460
461      switch (ppFromVEX2of2(insn->vexPrefix[1]))
462      {
463      default:
464        break;
465      case VEX_PREFIX_66:
466        hasOpSize = TRUE;
467        break;
468      }
469
470      dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1]);
471    }
472  }
473  else {
474    if (insn->mode == MODE_64BIT) {
475      if ((byte & 0xf0) == 0x40) {
476        uint8_t opcodeByte;
477
478        if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
479          dbgprintf(insn, "Redundant REX prefix");
480          return -1;
481        }
482
483        insn->rexPrefix = byte;
484        insn->necessaryPrefixLocation = insn->readerCursor - 2;
485
486        dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
487      } else {
488        unconsumeByte(insn);
489        insn->necessaryPrefixLocation = insn->readerCursor - 1;
490      }
491    } else {
492      unconsumeByte(insn);
493      insn->necessaryPrefixLocation = insn->readerCursor - 1;
494    }
495  }
496
497  if (insn->mode == MODE_16BIT) {
498    insn->registerSize       = (hasOpSize ? 4 : 2);
499    insn->addressSize        = (hasAdSize ? 4 : 2);
500    insn->displacementSize   = (hasAdSize ? 4 : 2);
501    insn->immediateSize      = (hasOpSize ? 4 : 2);
502  } else if (insn->mode == MODE_32BIT) {
503    insn->registerSize       = (hasOpSize ? 2 : 4);
504    insn->addressSize        = (hasAdSize ? 2 : 4);
505    insn->displacementSize   = (hasAdSize ? 2 : 4);
506    insn->immediateSize      = (hasOpSize ? 2 : 4);
507  } else if (insn->mode == MODE_64BIT) {
508    if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
509      insn->registerSize       = 8;
510      insn->addressSize        = (hasAdSize ? 4 : 8);
511      insn->displacementSize   = 4;
512      insn->immediateSize      = 4;
513    } else if (insn->rexPrefix) {
514      insn->registerSize       = (hasOpSize ? 2 : 4);
515      insn->addressSize        = (hasAdSize ? 4 : 8);
516      insn->displacementSize   = (hasOpSize ? 2 : 4);
517      insn->immediateSize      = (hasOpSize ? 2 : 4);
518    } else {
519      insn->registerSize       = (hasOpSize ? 2 : 4);
520      insn->addressSize        = (hasAdSize ? 4 : 8);
521      insn->displacementSize   = (hasOpSize ? 2 : 4);
522      insn->immediateSize      = (hasOpSize ? 2 : 4);
523    }
524  }
525
526  return 0;
527}
528
529/*
530 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
531 *   extended or escape opcodes).
532 *
533 * @param insn  - The instruction whose opcode is to be read.
534 * @return      - 0 if the opcode could be read successfully; nonzero otherwise.
535 */
536static int readOpcode(struct InternalInstruction* insn) {
537  /* Determine the length of the primary opcode */
538
539  uint8_t current;
540
541  dbgprintf(insn, "readOpcode()");
542
543  insn->opcodeType = ONEBYTE;
544
545  if (insn->vexSize == 3)
546  {
547    switch (mmmmmFromVEX2of3(insn->vexPrefix[1]))
548    {
549    default:
550      dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", mmmmmFromVEX2of3(insn->vexPrefix[1]));
551      return -1;
552    case 0:
553      break;
554    case VEX_LOB_0F:
555      insn->twoByteEscape = 0x0f;
556      insn->opcodeType = TWOBYTE;
557      return consumeByte(insn, &insn->opcode);
558    case VEX_LOB_0F38:
559      insn->twoByteEscape = 0x0f;
560      insn->threeByteEscape = 0x38;
561      insn->opcodeType = THREEBYTE_38;
562      return consumeByte(insn, &insn->opcode);
563    case VEX_LOB_0F3A:
564      insn->twoByteEscape = 0x0f;
565      insn->threeByteEscape = 0x3a;
566      insn->opcodeType = THREEBYTE_3A;
567      return consumeByte(insn, &insn->opcode);
568    }
569  }
570  else if (insn->vexSize == 2)
571  {
572    insn->twoByteEscape = 0x0f;
573    insn->opcodeType = TWOBYTE;
574    return consumeByte(insn, &insn->opcode);
575  }
576
577  if (consumeByte(insn, &current))
578    return -1;
579
580  if (current == 0x0f) {
581    dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
582
583    insn->twoByteEscape = current;
584
585    if (consumeByte(insn, &current))
586      return -1;
587
588    if (current == 0x38) {
589      dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
590
591      insn->threeByteEscape = current;
592
593      if (consumeByte(insn, &current))
594        return -1;
595
596      insn->opcodeType = THREEBYTE_38;
597    } else if (current == 0x3a) {
598      dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
599
600      insn->threeByteEscape = current;
601
602      if (consumeByte(insn, &current))
603        return -1;
604
605      insn->opcodeType = THREEBYTE_3A;
606    } else if (current == 0xa6) {
607      dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
608
609      insn->threeByteEscape = current;
610
611      if (consumeByte(insn, &current))
612        return -1;
613
614      insn->opcodeType = THREEBYTE_A6;
615    } else if (current == 0xa7) {
616      dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
617
618      insn->threeByteEscape = current;
619
620      if (consumeByte(insn, &current))
621        return -1;
622
623      insn->opcodeType = THREEBYTE_A7;
624    } else {
625      dbgprintf(insn, "Didn't find a three-byte escape prefix");
626
627      insn->opcodeType = TWOBYTE;
628    }
629  }
630
631  /*
632   * At this point we have consumed the full opcode.
633   * Anything we consume from here on must be unconsumed.
634   */
635
636  insn->opcode = current;
637
638  return 0;
639}
640
641static int readModRM(struct InternalInstruction* insn);
642
643/*
644 * getIDWithAttrMask - Determines the ID of an instruction, consuming
645 *   the ModR/M byte as appropriate for extended and escape opcodes,
646 *   and using a supplied attribute mask.
647 *
648 * @param instructionID - A pointer whose target is filled in with the ID of the
649 *                        instruction.
650 * @param insn          - The instruction whose ID is to be determined.
651 * @param attrMask      - The attribute mask to search.
652 * @return              - 0 if the ModR/M could be read when needed or was not
653 *                        needed; nonzero otherwise.
654 */
655static int getIDWithAttrMask(uint16_t* instructionID,
656                             struct InternalInstruction* insn,
657                             uint8_t attrMask) {
658  BOOL hasModRMExtension;
659
660  uint8_t instructionClass;
661
662  instructionClass = contextForAttrs(attrMask);
663
664  hasModRMExtension = modRMRequired(insn->opcodeType,
665                                    instructionClass,
666                                    insn->opcode);
667
668  if (hasModRMExtension) {
669    if (readModRM(insn))
670      return -1;
671
672    *instructionID = decode(insn->opcodeType,
673                            instructionClass,
674                            insn->opcode,
675                            insn->modRM);
676  } else {
677    *instructionID = decode(insn->opcodeType,
678                            instructionClass,
679                            insn->opcode,
680                            0);
681  }
682
683  return 0;
684}
685
686/*
687 * is16BitEquivalent - Determines whether two instruction names refer to
688 * equivalent instructions but one is 16-bit whereas the other is not.
689 *
690 * @param orig  - The instruction that is not 16-bit
691 * @param equiv - The instruction that is 16-bit
692 */
693static BOOL is16BitEquvalent(const char* orig, const char* equiv) {
694  off_t i;
695
696  for (i = 0;; i++) {
697    if (orig[i] == '\0' && equiv[i] == '\0')
698      return TRUE;
699    if (orig[i] == '\0' || equiv[i] == '\0')
700      return FALSE;
701    if (orig[i] != equiv[i]) {
702      if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
703        continue;
704      if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
705        continue;
706      if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
707        continue;
708      return FALSE;
709    }
710  }
711}
712
713/*
714 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
715 *   appropriate for extended and escape opcodes.  Determines the attributes and
716 *   context for the instruction before doing so.
717 *
718 * @param insn  - The instruction whose ID is to be determined.
719 * @return      - 0 if the ModR/M could be read when needed or was not needed;
720 *                nonzero otherwise.
721 */
722static int getID(struct InternalInstruction* insn, const void *miiArg) {
723  uint8_t attrMask;
724  uint16_t instructionID;
725
726  dbgprintf(insn, "getID()");
727
728  attrMask = ATTR_NONE;
729
730  if (insn->mode == MODE_64BIT)
731    attrMask |= ATTR_64BIT;
732
733  if (insn->vexSize) {
734    attrMask |= ATTR_VEX;
735
736    if (insn->vexSize == 3) {
737      switch (ppFromVEX3of3(insn->vexPrefix[2])) {
738      case VEX_PREFIX_66:
739        attrMask |= ATTR_OPSIZE;
740        break;
741      case VEX_PREFIX_F3:
742        attrMask |= ATTR_XS;
743        break;
744      case VEX_PREFIX_F2:
745        attrMask |= ATTR_XD;
746        break;
747      }
748
749      if (lFromVEX3of3(insn->vexPrefix[2]))
750        attrMask |= ATTR_VEXL;
751    }
752    else if (insn->vexSize == 2) {
753      switch (ppFromVEX2of2(insn->vexPrefix[1])) {
754      case VEX_PREFIX_66:
755        attrMask |= ATTR_OPSIZE;
756        break;
757      case VEX_PREFIX_F3:
758        attrMask |= ATTR_XS;
759        break;
760      case VEX_PREFIX_F2:
761        attrMask |= ATTR_XD;
762        break;
763      }
764
765      if (lFromVEX2of2(insn->vexPrefix[1]))
766        attrMask |= ATTR_VEXL;
767    }
768    else {
769      return -1;
770    }
771  }
772  else {
773    if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
774      attrMask |= ATTR_OPSIZE;
775    else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
776      attrMask |= ATTR_ADSIZE;
777    else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
778      attrMask |= ATTR_XS;
779    else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
780      attrMask |= ATTR_XD;
781  }
782
783  if (insn->rexPrefix & 0x08)
784    attrMask |= ATTR_REXW;
785
786  if (getIDWithAttrMask(&instructionID, insn, attrMask))
787    return -1;
788
789  /* The following clauses compensate for limitations of the tables. */
790
791  if ((attrMask & ATTR_VEXL) && (attrMask & ATTR_REXW) &&
792      !(attrMask & ATTR_OPSIZE)) {
793    /*
794     * Some VEX instructions ignore the L-bit, but use the W-bit. Normally L-bit
795     * has precedence since there are no L-bit with W-bit entries in the tables.
796     * So if the L-bit isn't significant we should use the W-bit instead.
797     * We only need to do this if the instruction doesn't specify OpSize since
798     * there is a VEX_L_W_OPSIZE table.
799     */
800
801    const struct InstructionSpecifier *spec;
802    uint16_t instructionIDWithWBit;
803    const struct InstructionSpecifier *specWithWBit;
804
805    spec = specifierForUID(instructionID);
806
807    if (getIDWithAttrMask(&instructionIDWithWBit,
808                          insn,
809                          (attrMask & (~ATTR_VEXL)) | ATTR_REXW)) {
810      insn->instructionID = instructionID;
811      insn->spec = spec;
812      return 0;
813    }
814
815    specWithWBit = specifierForUID(instructionIDWithWBit);
816
817    if (instructionID != instructionIDWithWBit) {
818      insn->instructionID = instructionIDWithWBit;
819      insn->spec = specWithWBit;
820    } else {
821      insn->instructionID = instructionID;
822      insn->spec = spec;
823    }
824    return 0;
825  }
826
827  if (insn->prefixPresent[0x66] && !(attrMask & ATTR_OPSIZE)) {
828    /*
829     * The instruction tables make no distinction between instructions that
830     * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
831     * particular spot (i.e., many MMX operations).  In general we're
832     * conservative, but in the specific case where OpSize is present but not
833     * in the right place we check if there's a 16-bit operation.
834     */
835
836    const struct InstructionSpecifier *spec;
837    uint16_t instructionIDWithOpsize;
838    const char *specName, *specWithOpSizeName;
839
840    spec = specifierForUID(instructionID);
841
842    if (getIDWithAttrMask(&instructionIDWithOpsize,
843                          insn,
844                          attrMask | ATTR_OPSIZE)) {
845      /*
846       * ModRM required with OpSize but not present; give up and return version
847       * without OpSize set
848       */
849
850      insn->instructionID = instructionID;
851      insn->spec = spec;
852      return 0;
853    }
854
855    specName = x86DisassemblerGetInstrName(instructionID, miiArg);
856    specWithOpSizeName =
857      x86DisassemblerGetInstrName(instructionIDWithOpsize, miiArg);
858
859    if (is16BitEquvalent(specName, specWithOpSizeName)) {
860      insn->instructionID = instructionIDWithOpsize;
861      insn->spec = specifierForUID(instructionIDWithOpsize);
862    } else {
863      insn->instructionID = instructionID;
864      insn->spec = spec;
865    }
866    return 0;
867  }
868
869  if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
870      insn->rexPrefix & 0x01) {
871    /*
872     * NOOP shouldn't decode as NOOP if REX.b is set. Instead
873     * it should decode as XCHG %r8, %eax.
874     */
875
876    const struct InstructionSpecifier *spec;
877    uint16_t instructionIDWithNewOpcode;
878    const struct InstructionSpecifier *specWithNewOpcode;
879
880    spec = specifierForUID(instructionID);
881
882    /* Borrow opcode from one of the other XCHGar opcodes */
883    insn->opcode = 0x91;
884
885    if (getIDWithAttrMask(&instructionIDWithNewOpcode,
886                          insn,
887                          attrMask)) {
888      insn->opcode = 0x90;
889
890      insn->instructionID = instructionID;
891      insn->spec = spec;
892      return 0;
893    }
894
895    specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
896
897    /* Change back */
898    insn->opcode = 0x90;
899
900    insn->instructionID = instructionIDWithNewOpcode;
901    insn->spec = specWithNewOpcode;
902
903    return 0;
904  }
905
906  insn->instructionID = instructionID;
907  insn->spec = specifierForUID(insn->instructionID);
908
909  return 0;
910}
911
912/*
913 * readSIB - Consumes the SIB byte to determine addressing information for an
914 *   instruction.
915 *
916 * @param insn  - The instruction whose SIB byte is to be read.
917 * @return      - 0 if the SIB byte was successfully read; nonzero otherwise.
918 */
919static int readSIB(struct InternalInstruction* insn) {
920  SIBIndex sibIndexBase = 0;
921  SIBBase sibBaseBase = 0;
922  uint8_t index, base;
923
924  dbgprintf(insn, "readSIB()");
925
926  if (insn->consumedSIB)
927    return 0;
928
929  insn->consumedSIB = TRUE;
930
931  switch (insn->addressSize) {
932  case 2:
933    dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
934    return -1;
935    break;
936  case 4:
937    sibIndexBase = SIB_INDEX_EAX;
938    sibBaseBase = SIB_BASE_EAX;
939    break;
940  case 8:
941    sibIndexBase = SIB_INDEX_RAX;
942    sibBaseBase = SIB_BASE_RAX;
943    break;
944  }
945
946  if (consumeByte(insn, &insn->sib))
947    return -1;
948
949  index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
950
951  switch (index) {
952  case 0x4:
953    insn->sibIndex = SIB_INDEX_NONE;
954    break;
955  default:
956    insn->sibIndex = (SIBIndex)(sibIndexBase + index);
957    if (insn->sibIndex == SIB_INDEX_sib ||
958        insn->sibIndex == SIB_INDEX_sib64)
959      insn->sibIndex = SIB_INDEX_NONE;
960    break;
961  }
962
963  switch (scaleFromSIB(insn->sib)) {
964  case 0:
965    insn->sibScale = 1;
966    break;
967  case 1:
968    insn->sibScale = 2;
969    break;
970  case 2:
971    insn->sibScale = 4;
972    break;
973  case 3:
974    insn->sibScale = 8;
975    break;
976  }
977
978  base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
979
980  switch (base) {
981  case 0x5:
982    switch (modFromModRM(insn->modRM)) {
983    case 0x0:
984      insn->eaDisplacement = EA_DISP_32;
985      insn->sibBase = SIB_BASE_NONE;
986      break;
987    case 0x1:
988      insn->eaDisplacement = EA_DISP_8;
989      insn->sibBase = (insn->addressSize == 4 ?
990                       SIB_BASE_EBP : SIB_BASE_RBP);
991      break;
992    case 0x2:
993      insn->eaDisplacement = EA_DISP_32;
994      insn->sibBase = (insn->addressSize == 4 ?
995                       SIB_BASE_EBP : SIB_BASE_RBP);
996      break;
997    case 0x3:
998      debug("Cannot have Mod = 0b11 and a SIB byte");
999      return -1;
1000    }
1001    break;
1002  default:
1003    insn->sibBase = (SIBBase)(sibBaseBase + base);
1004    break;
1005  }
1006
1007  return 0;
1008}
1009
1010/*
1011 * readDisplacement - Consumes the displacement of an instruction.
1012 *
1013 * @param insn  - The instruction whose displacement is to be read.
1014 * @return      - 0 if the displacement byte was successfully read; nonzero
1015 *                otherwise.
1016 */
1017static int readDisplacement(struct InternalInstruction* insn) {
1018  int8_t d8;
1019  int16_t d16;
1020  int32_t d32;
1021
1022  dbgprintf(insn, "readDisplacement()");
1023
1024  if (insn->consumedDisplacement)
1025    return 0;
1026
1027  insn->consumedDisplacement = TRUE;
1028  insn->displacementOffset = insn->readerCursor - insn->startLocation;
1029
1030  switch (insn->eaDisplacement) {
1031  case EA_DISP_NONE:
1032    insn->consumedDisplacement = FALSE;
1033    break;
1034  case EA_DISP_8:
1035    if (consumeInt8(insn, &d8))
1036      return -1;
1037    insn->displacement = d8;
1038    break;
1039  case EA_DISP_16:
1040    if (consumeInt16(insn, &d16))
1041      return -1;
1042    insn->displacement = d16;
1043    break;
1044  case EA_DISP_32:
1045    if (consumeInt32(insn, &d32))
1046      return -1;
1047    insn->displacement = d32;
1048    break;
1049  }
1050
1051  insn->consumedDisplacement = TRUE;
1052  return 0;
1053}
1054
1055/*
1056 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1057 *   displacement) for an instruction and interprets it.
1058 *
1059 * @param insn  - The instruction whose addressing information is to be read.
1060 * @return      - 0 if the information was successfully read; nonzero otherwise.
1061 */
1062static int readModRM(struct InternalInstruction* insn) {
1063  uint8_t mod, rm, reg;
1064
1065  dbgprintf(insn, "readModRM()");
1066
1067  if (insn->consumedModRM)
1068    return 0;
1069
1070  if (consumeByte(insn, &insn->modRM))
1071    return -1;
1072  insn->consumedModRM = TRUE;
1073
1074  mod     = modFromModRM(insn->modRM);
1075  rm      = rmFromModRM(insn->modRM);
1076  reg     = regFromModRM(insn->modRM);
1077
1078  /*
1079   * This goes by insn->registerSize to pick the correct register, which messes
1080   * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in
1081   * fixupReg().
1082   */
1083  switch (insn->registerSize) {
1084  case 2:
1085    insn->regBase = MODRM_REG_AX;
1086    insn->eaRegBase = EA_REG_AX;
1087    break;
1088  case 4:
1089    insn->regBase = MODRM_REG_EAX;
1090    insn->eaRegBase = EA_REG_EAX;
1091    break;
1092  case 8:
1093    insn->regBase = MODRM_REG_RAX;
1094    insn->eaRegBase = EA_REG_RAX;
1095    break;
1096  }
1097
1098  reg |= rFromREX(insn->rexPrefix) << 3;
1099  rm  |= bFromREX(insn->rexPrefix) << 3;
1100
1101  insn->reg = (Reg)(insn->regBase + reg);
1102
1103  switch (insn->addressSize) {
1104  case 2:
1105    insn->eaBaseBase = EA_BASE_BX_SI;
1106
1107    switch (mod) {
1108    case 0x0:
1109      if (rm == 0x6) {
1110        insn->eaBase = EA_BASE_NONE;
1111        insn->eaDisplacement = EA_DISP_16;
1112        if (readDisplacement(insn))
1113          return -1;
1114      } else {
1115        insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1116        insn->eaDisplacement = EA_DISP_NONE;
1117      }
1118      break;
1119    case 0x1:
1120      insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1121      insn->eaDisplacement = EA_DISP_8;
1122      if (readDisplacement(insn))
1123        return -1;
1124      break;
1125    case 0x2:
1126      insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1127      insn->eaDisplacement = EA_DISP_16;
1128      if (readDisplacement(insn))
1129        return -1;
1130      break;
1131    case 0x3:
1132      insn->eaBase = (EABase)(insn->eaRegBase + rm);
1133      if (readDisplacement(insn))
1134        return -1;
1135      break;
1136    }
1137    break;
1138  case 4:
1139  case 8:
1140    insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1141
1142    switch (mod) {
1143    case 0x0:
1144      insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1145      switch (rm) {
1146      case 0x4:
1147      case 0xc:   /* in case REXW.b is set */
1148        insn->eaBase = (insn->addressSize == 4 ?
1149                        EA_BASE_sib : EA_BASE_sib64);
1150        readSIB(insn);
1151        if (readDisplacement(insn))
1152          return -1;
1153        break;
1154      case 0x5:
1155        insn->eaBase = EA_BASE_NONE;
1156        insn->eaDisplacement = EA_DISP_32;
1157        if (readDisplacement(insn))
1158          return -1;
1159        break;
1160      default:
1161        insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1162        break;
1163      }
1164      break;
1165    case 0x1:
1166    case 0x2:
1167      insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1168      switch (rm) {
1169      case 0x4:
1170      case 0xc:   /* in case REXW.b is set */
1171        insn->eaBase = EA_BASE_sib;
1172        readSIB(insn);
1173        if (readDisplacement(insn))
1174          return -1;
1175        break;
1176      default:
1177        insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1178        if (readDisplacement(insn))
1179          return -1;
1180        break;
1181      }
1182      break;
1183    case 0x3:
1184      insn->eaDisplacement = EA_DISP_NONE;
1185      insn->eaBase = (EABase)(insn->eaRegBase + rm);
1186      break;
1187    }
1188    break;
1189  } /* switch (insn->addressSize) */
1190
1191  return 0;
1192}
1193
1194#define GENERIC_FIXUP_FUNC(name, base, prefix)            \
1195  static uint8_t name(struct InternalInstruction *insn,   \
1196                      OperandType type,                   \
1197                      uint8_t index,                      \
1198                      uint8_t *valid) {                   \
1199    *valid = 1;                                           \
1200    switch (type) {                                       \
1201    default:                                              \
1202      debug("Unhandled register type");                   \
1203      *valid = 0;                                         \
1204      return 0;                                           \
1205    case TYPE_Rv:                                         \
1206      return base + index;                                \
1207    case TYPE_R8:                                         \
1208      if (insn->rexPrefix &&                              \
1209         index >= 4 && index <= 7) {                      \
1210        return prefix##_SPL + (index - 4);                \
1211      } else {                                            \
1212        return prefix##_AL + index;                       \
1213      }                                                   \
1214    case TYPE_R16:                                        \
1215      return prefix##_AX + index;                         \
1216    case TYPE_R32:                                        \
1217      return prefix##_EAX + index;                        \
1218    case TYPE_R64:                                        \
1219      return prefix##_RAX + index;                        \
1220    case TYPE_XMM256:                                     \
1221      return prefix##_YMM0 + index;                       \
1222    case TYPE_XMM128:                                     \
1223    case TYPE_XMM64:                                      \
1224    case TYPE_XMM32:                                      \
1225    case TYPE_XMM:                                        \
1226      return prefix##_XMM0 + index;                       \
1227    case TYPE_MM64:                                       \
1228    case TYPE_MM32:                                       \
1229    case TYPE_MM:                                         \
1230      if (index > 7)                                      \
1231        *valid = 0;                                       \
1232      return prefix##_MM0 + index;                        \
1233    case TYPE_SEGMENTREG:                                 \
1234      if (index > 5)                                      \
1235        *valid = 0;                                       \
1236      return prefix##_ES + index;                         \
1237    case TYPE_DEBUGREG:                                   \
1238      if (index > 7)                                      \
1239        *valid = 0;                                       \
1240      return prefix##_DR0 + index;                        \
1241    case TYPE_CONTROLREG:                                 \
1242      if (index > 8)                                      \
1243        *valid = 0;                                       \
1244      return prefix##_CR0 + index;                        \
1245    }                                                     \
1246  }
1247
1248/*
1249 * fixup*Value - Consults an operand type to determine the meaning of the
1250 *   reg or R/M field.  If the operand is an XMM operand, for example, an
1251 *   operand would be XMM0 instead of AX, which readModRM() would otherwise
1252 *   misinterpret it as.
1253 *
1254 * @param insn  - The instruction containing the operand.
1255 * @param type  - The operand type.
1256 * @param index - The existing value of the field as reported by readModRM().
1257 * @param valid - The address of a uint8_t.  The target is set to 1 if the
1258 *                field is valid for the register class; 0 if not.
1259 * @return      - The proper value.
1260 */
1261GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG)
1262GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG)
1263
1264/*
1265 * fixupReg - Consults an operand specifier to determine which of the
1266 *   fixup*Value functions to use in correcting readModRM()'ss interpretation.
1267 *
1268 * @param insn  - See fixup*Value().
1269 * @param op    - The operand specifier.
1270 * @return      - 0 if fixup was successful; -1 if the register returned was
1271 *                invalid for its class.
1272 */
1273static int fixupReg(struct InternalInstruction *insn,
1274                    const struct OperandSpecifier *op) {
1275  uint8_t valid;
1276
1277  dbgprintf(insn, "fixupReg()");
1278
1279  switch ((OperandEncoding)op->encoding) {
1280  default:
1281    debug("Expected a REG or R/M encoding in fixupReg");
1282    return -1;
1283  case ENCODING_VVVV:
1284    insn->vvvv = (Reg)fixupRegValue(insn,
1285                                    (OperandType)op->type,
1286                                    insn->vvvv,
1287                                    &valid);
1288    if (!valid)
1289      return -1;
1290    break;
1291  case ENCODING_REG:
1292    insn->reg = (Reg)fixupRegValue(insn,
1293                                   (OperandType)op->type,
1294                                   insn->reg - insn->regBase,
1295                                   &valid);
1296    if (!valid)
1297      return -1;
1298    break;
1299  case ENCODING_RM:
1300    if (insn->eaBase >= insn->eaRegBase) {
1301      insn->eaBase = (EABase)fixupRMValue(insn,
1302                                          (OperandType)op->type,
1303                                          insn->eaBase - insn->eaRegBase,
1304                                          &valid);
1305      if (!valid)
1306        return -1;
1307    }
1308    break;
1309  }
1310
1311  return 0;
1312}
1313
1314/*
1315 * readOpcodeModifier - Reads an operand from the opcode field of an
1316 *   instruction.  Handles AddRegFrm instructions.
1317 *
1318 * @param insn    - The instruction whose opcode field is to be read.
1319 * @param inModRM - Indicates that the opcode field is to be read from the
1320 *                  ModR/M extension; useful for escape opcodes
1321 * @return        - 0 on success; nonzero otherwise.
1322 */
1323static int readOpcodeModifier(struct InternalInstruction* insn) {
1324  dbgprintf(insn, "readOpcodeModifier()");
1325
1326  if (insn->consumedOpcodeModifier)
1327    return 0;
1328
1329  insn->consumedOpcodeModifier = TRUE;
1330
1331  switch (insn->spec->modifierType) {
1332  default:
1333    debug("Unknown modifier type.");
1334    return -1;
1335  case MODIFIER_NONE:
1336    debug("No modifier but an operand expects one.");
1337    return -1;
1338  case MODIFIER_OPCODE:
1339    insn->opcodeModifier = insn->opcode - insn->spec->modifierBase;
1340    return 0;
1341  case MODIFIER_MODRM:
1342    insn->opcodeModifier = insn->modRM - insn->spec->modifierBase;
1343    return 0;
1344  }
1345}
1346
1347/*
1348 * readOpcodeRegister - Reads an operand from the opcode field of an
1349 *   instruction and interprets it appropriately given the operand width.
1350 *   Handles AddRegFrm instructions.
1351 *
1352 * @param insn  - See readOpcodeModifier().
1353 * @param size  - The width (in bytes) of the register being specified.
1354 *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1355 *                RAX.
1356 * @return      - 0 on success; nonzero otherwise.
1357 */
1358static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1359  dbgprintf(insn, "readOpcodeRegister()");
1360
1361  if (readOpcodeModifier(insn))
1362    return -1;
1363
1364  if (size == 0)
1365    size = insn->registerSize;
1366
1367  switch (size) {
1368  case 1:
1369    insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1370                                                  | insn->opcodeModifier));
1371    if (insn->rexPrefix &&
1372        insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1373        insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1374      insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1375                                   + (insn->opcodeRegister - MODRM_REG_AL - 4));
1376    }
1377
1378    break;
1379  case 2:
1380    insn->opcodeRegister = (Reg)(MODRM_REG_AX
1381                                 + ((bFromREX(insn->rexPrefix) << 3)
1382                                    | insn->opcodeModifier));
1383    break;
1384  case 4:
1385    insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1386                                 + ((bFromREX(insn->rexPrefix) << 3)
1387                                    | insn->opcodeModifier));
1388    break;
1389  case 8:
1390    insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1391                                 + ((bFromREX(insn->rexPrefix) << 3)
1392                                    | insn->opcodeModifier));
1393    break;
1394  }
1395
1396  return 0;
1397}
1398
1399/*
1400 * readImmediate - Consumes an immediate operand from an instruction, given the
1401 *   desired operand size.
1402 *
1403 * @param insn  - The instruction whose operand is to be read.
1404 * @param size  - The width (in bytes) of the operand.
1405 * @return      - 0 if the immediate was successfully consumed; nonzero
1406 *                otherwise.
1407 */
1408static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1409  uint8_t imm8;
1410  uint16_t imm16;
1411  uint32_t imm32;
1412  uint64_t imm64;
1413
1414  dbgprintf(insn, "readImmediate()");
1415
1416  if (insn->numImmediatesConsumed == 2) {
1417    debug("Already consumed two immediates");
1418    return -1;
1419  }
1420
1421  if (size == 0)
1422    size = insn->immediateSize;
1423  else
1424    insn->immediateSize = size;
1425  insn->immediateOffset = insn->readerCursor - insn->startLocation;
1426
1427  switch (size) {
1428  case 1:
1429    if (consumeByte(insn, &imm8))
1430      return -1;
1431    insn->immediates[insn->numImmediatesConsumed] = imm8;
1432    break;
1433  case 2:
1434    if (consumeUInt16(insn, &imm16))
1435      return -1;
1436    insn->immediates[insn->numImmediatesConsumed] = imm16;
1437    break;
1438  case 4:
1439    if (consumeUInt32(insn, &imm32))
1440      return -1;
1441    insn->immediates[insn->numImmediatesConsumed] = imm32;
1442    break;
1443  case 8:
1444    if (consumeUInt64(insn, &imm64))
1445      return -1;
1446    insn->immediates[insn->numImmediatesConsumed] = imm64;
1447    break;
1448  }
1449
1450  insn->numImmediatesConsumed++;
1451
1452  return 0;
1453}
1454
1455/*
1456 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1457 *
1458 * @param insn  - The instruction whose operand is to be read.
1459 * @return      - 0 if the vvvv was successfully consumed; nonzero
1460 *                otherwise.
1461 */
1462static int readVVVV(struct InternalInstruction* insn) {
1463  dbgprintf(insn, "readVVVV()");
1464
1465  if (insn->vexSize == 3)
1466    insn->vvvv = vvvvFromVEX3of3(insn->vexPrefix[2]);
1467  else if (insn->vexSize == 2)
1468    insn->vvvv = vvvvFromVEX2of2(insn->vexPrefix[1]);
1469  else
1470    return -1;
1471
1472  if (insn->mode != MODE_64BIT)
1473    insn->vvvv &= 0x7;
1474
1475  return 0;
1476}
1477
1478/*
1479 * readOperands - Consults the specifier for an instruction and consumes all
1480 *   operands for that instruction, interpreting them as it goes.
1481 *
1482 * @param insn  - The instruction whose operands are to be read and interpreted.
1483 * @return      - 0 if all operands could be read; nonzero otherwise.
1484 */
1485static int readOperands(struct InternalInstruction* insn) {
1486  int index;
1487  int hasVVVV, needVVVV;
1488  int sawRegImm = 0;
1489
1490  dbgprintf(insn, "readOperands()");
1491
1492  /* If non-zero vvvv specified, need to make sure one of the operands
1493     uses it. */
1494  hasVVVV = !readVVVV(insn);
1495  needVVVV = hasVVVV && (insn->vvvv != 0);
1496
1497  for (index = 0; index < X86_MAX_OPERANDS; ++index) {
1498    switch (x86OperandSets[insn->spec->operands][index].encoding) {
1499    case ENCODING_NONE:
1500      break;
1501    case ENCODING_REG:
1502    case ENCODING_RM:
1503      if (readModRM(insn))
1504        return -1;
1505      if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
1506        return -1;
1507      break;
1508    case ENCODING_CB:
1509    case ENCODING_CW:
1510    case ENCODING_CD:
1511    case ENCODING_CP:
1512    case ENCODING_CO:
1513    case ENCODING_CT:
1514      dbgprintf(insn, "We currently don't hande code-offset encodings");
1515      return -1;
1516    case ENCODING_IB:
1517      if (sawRegImm) {
1518        /* Saw a register immediate so don't read again and instead split the
1519           previous immediate.  FIXME: This is a hack. */
1520        insn->immediates[insn->numImmediatesConsumed] =
1521          insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1522        ++insn->numImmediatesConsumed;
1523        break;
1524      }
1525      if (readImmediate(insn, 1))
1526        return -1;
1527      if (x86OperandSets[insn->spec->operands][index].type == TYPE_IMM3 &&
1528          insn->immediates[insn->numImmediatesConsumed - 1] > 7)
1529        return -1;
1530      if (x86OperandSets[insn->spec->operands][index].type == TYPE_IMM5 &&
1531          insn->immediates[insn->numImmediatesConsumed - 1] > 31)
1532        return -1;
1533      if (x86OperandSets[insn->spec->operands][index].type == TYPE_XMM128 ||
1534          x86OperandSets[insn->spec->operands][index].type == TYPE_XMM256)
1535        sawRegImm = 1;
1536      break;
1537    case ENCODING_IW:
1538      if (readImmediate(insn, 2))
1539        return -1;
1540      break;
1541    case ENCODING_ID:
1542      if (readImmediate(insn, 4))
1543        return -1;
1544      break;
1545    case ENCODING_IO:
1546      if (readImmediate(insn, 8))
1547        return -1;
1548      break;
1549    case ENCODING_Iv:
1550      if (readImmediate(insn, insn->immediateSize))
1551        return -1;
1552      break;
1553    case ENCODING_Ia:
1554      if (readImmediate(insn, insn->addressSize))
1555        return -1;
1556      break;
1557    case ENCODING_RB:
1558      if (readOpcodeRegister(insn, 1))
1559        return -1;
1560      break;
1561    case ENCODING_RW:
1562      if (readOpcodeRegister(insn, 2))
1563        return -1;
1564      break;
1565    case ENCODING_RD:
1566      if (readOpcodeRegister(insn, 4))
1567        return -1;
1568      break;
1569    case ENCODING_RO:
1570      if (readOpcodeRegister(insn, 8))
1571        return -1;
1572      break;
1573    case ENCODING_Rv:
1574      if (readOpcodeRegister(insn, 0))
1575        return -1;
1576      break;
1577    case ENCODING_I:
1578      if (readOpcodeModifier(insn))
1579        return -1;
1580      break;
1581    case ENCODING_VVVV:
1582      needVVVV = 0; /* Mark that we have found a VVVV operand. */
1583      if (!hasVVVV)
1584        return -1;
1585      if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
1586        return -1;
1587      break;
1588    case ENCODING_DUP:
1589      break;
1590    default:
1591      dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1592      return -1;
1593    }
1594  }
1595
1596  /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1597  if (needVVVV) return -1;
1598
1599  return 0;
1600}
1601
1602/*
1603 * decodeInstruction - Reads and interprets a full instruction provided by the
1604 *   user.
1605 *
1606 * @param insn      - A pointer to the instruction to be populated.  Must be
1607 *                    pre-allocated.
1608 * @param reader    - The function to be used to read the instruction's bytes.
1609 * @param readerArg - A generic argument to be passed to the reader to store
1610 *                    any internal state.
1611 * @param logger    - If non-NULL, the function to be used to write log messages
1612 *                    and warnings.
1613 * @param loggerArg - A generic argument to be passed to the logger to store
1614 *                    any internal state.
1615 * @param startLoc  - The address (in the reader's address space) of the first
1616 *                    byte in the instruction.
1617 * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1618 *                    decode the instruction in.
1619 * @return          - 0 if the instruction's memory could be read; nonzero if
1620 *                    not.
1621 */
1622int decodeInstruction(struct InternalInstruction* insn,
1623                      byteReader_t reader,
1624                      const void* readerArg,
1625                      dlog_t logger,
1626                      void* loggerArg,
1627                      const void* miiArg,
1628                      uint64_t startLoc,
1629                      DisassemblerMode mode) {
1630  memset(insn, 0, sizeof(struct InternalInstruction));
1631
1632  insn->reader = reader;
1633  insn->readerArg = readerArg;
1634  insn->dlog = logger;
1635  insn->dlogArg = loggerArg;
1636  insn->startLocation = startLoc;
1637  insn->readerCursor = startLoc;
1638  insn->mode = mode;
1639  insn->numImmediatesConsumed = 0;
1640
1641  if (readPrefixes(insn)       ||
1642      readOpcode(insn)         ||
1643      getID(insn, miiArg)      ||
1644      insn->instructionID == 0 ||
1645      readOperands(insn))
1646    return -1;
1647
1648  insn->operands = &x86OperandSets[insn->spec->operands][0];
1649
1650  insn->length = insn->readerCursor - insn->startLocation;
1651
1652  dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1653            startLoc, insn->readerCursor, insn->length);
1654
1655  if (insn->length > 15)
1656    dbgprintf(insn, "Instruction exceeds 15-byte limit");
1657
1658  return 0;
1659}
1660