1//===- InstCombineShifts.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitShl, visitLShr, and visitAShr functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/ConstantFolding.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
23  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
24  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
25
26  // See if we can fold away this shift.
27  if (SimplifyDemandedInstructionBits(I))
28    return &I;
29
30  // Try to fold constant and into select arguments.
31  if (isa<Constant>(Op0))
32    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
33      if (Instruction *R = FoldOpIntoSelect(I, SI))
34        return R;
35
36  if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
37    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
38      return Res;
39
40  // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
41  // Because shifts by negative values (which could occur if A were negative)
42  // are undefined.
43  Value *A; const APInt *B;
44  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
45    // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
46    // demand the sign bit (and many others) here??
47    Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
48                                    Op1->getName());
49    I.setOperand(1, Rem);
50    return &I;
51  }
52
53  return 0;
54}
55
56/// CanEvaluateShifted - See if we can compute the specified value, but shifted
57/// logically to the left or right by some number of bits.  This should return
58/// true if the expression can be computed for the same cost as the current
59/// expression tree.  This is used to eliminate extraneous shifting from things
60/// like:
61///      %C = shl i128 %A, 64
62///      %D = shl i128 %B, 96
63///      %E = or i128 %C, %D
64///      %F = lshr i128 %E, 64
65/// where the client will ask if E can be computed shifted right by 64-bits.  If
66/// this succeeds, the GetShiftedValue function will be called to produce the
67/// value.
68static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
69                               InstCombiner &IC) {
70  // We can always evaluate constants shifted.
71  if (isa<Constant>(V))
72    return true;
73
74  Instruction *I = dyn_cast<Instruction>(V);
75  if (!I) return false;
76
77  // If this is the opposite shift, we can directly reuse the input of the shift
78  // if the needed bits are already zero in the input.  This allows us to reuse
79  // the value which means that we don't care if the shift has multiple uses.
80  //  TODO:  Handle opposite shift by exact value.
81  ConstantInt *CI = 0;
82  if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
83      (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
84    if (CI->getZExtValue() == NumBits) {
85      // TODO: Check that the input bits are already zero with MaskedValueIsZero
86#if 0
87      // If this is a truncate of a logical shr, we can truncate it to a smaller
88      // lshr iff we know that the bits we would otherwise be shifting in are
89      // already zeros.
90      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
91      uint32_t BitWidth = Ty->getScalarSizeInBits();
92      if (MaskedValueIsZero(I->getOperand(0),
93            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
94          CI->getLimitedValue(BitWidth) < BitWidth) {
95        return CanEvaluateTruncated(I->getOperand(0), Ty);
96      }
97#endif
98
99    }
100  }
101
102  // We can't mutate something that has multiple uses: doing so would
103  // require duplicating the instruction in general, which isn't profitable.
104  if (!I->hasOneUse()) return false;
105
106  switch (I->getOpcode()) {
107  default: return false;
108  case Instruction::And:
109  case Instruction::Or:
110  case Instruction::Xor:
111    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
112    return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
113           CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
114
115  case Instruction::Shl: {
116    // We can often fold the shift into shifts-by-a-constant.
117    CI = dyn_cast<ConstantInt>(I->getOperand(1));
118    if (CI == 0) return false;
119
120    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
121    if (isLeftShift) return true;
122
123    // We can always turn shl(c)+shr(c) -> and(c2).
124    if (CI->getValue() == NumBits) return true;
125
126    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
127
128    // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
129    // profitable unless we know the and'd out bits are already zero.
130    if (CI->getZExtValue() > NumBits) {
131      unsigned LowBits = TypeWidth - CI->getZExtValue();
132      if (MaskedValueIsZero(I->getOperand(0),
133                       APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
134        return true;
135    }
136
137    return false;
138  }
139  case Instruction::LShr: {
140    // We can often fold the shift into shifts-by-a-constant.
141    CI = dyn_cast<ConstantInt>(I->getOperand(1));
142    if (CI == 0) return false;
143
144    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
145    if (!isLeftShift) return true;
146
147    // We can always turn lshr(c)+shl(c) -> and(c2).
148    if (CI->getValue() == NumBits) return true;
149
150    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
151
152    // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
153    // profitable unless we know the and'd out bits are already zero.
154    if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) {
155      unsigned LowBits = CI->getZExtValue() - NumBits;
156      if (MaskedValueIsZero(I->getOperand(0),
157                          APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
158        return true;
159    }
160
161    return false;
162  }
163  case Instruction::Select: {
164    SelectInst *SI = cast<SelectInst>(I);
165    return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
166           CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
167  }
168  case Instruction::PHI: {
169    // We can change a phi if we can change all operands.  Note that we never
170    // get into trouble with cyclic PHIs here because we only consider
171    // instructions with a single use.
172    PHINode *PN = cast<PHINode>(I);
173    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
174      if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
175        return false;
176    return true;
177  }
178  }
179}
180
181/// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
182/// this value inserts the new computation that produces the shifted value.
183static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
184                              InstCombiner &IC) {
185  // We can always evaluate constants shifted.
186  if (Constant *C = dyn_cast<Constant>(V)) {
187    if (isLeftShift)
188      V = IC.Builder->CreateShl(C, NumBits);
189    else
190      V = IC.Builder->CreateLShr(C, NumBits);
191    // If we got a constantexpr back, try to simplify it with TD info.
192    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
193      V = ConstantFoldConstantExpression(CE, IC.getTargetData(),
194                                         IC.getTargetLibraryInfo());
195    return V;
196  }
197
198  Instruction *I = cast<Instruction>(V);
199  IC.Worklist.Add(I);
200
201  switch (I->getOpcode()) {
202  default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
203  case Instruction::And:
204  case Instruction::Or:
205  case Instruction::Xor:
206    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
207    I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
208    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
209    return I;
210
211  case Instruction::Shl: {
212    BinaryOperator *BO = cast<BinaryOperator>(I);
213    unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
214
215    // We only accept shifts-by-a-constant in CanEvaluateShifted.
216    ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
217
218    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
219    if (isLeftShift) {
220      // If this is oversized composite shift, then unsigned shifts get 0.
221      unsigned NewShAmt = NumBits+CI->getZExtValue();
222      if (NewShAmt >= TypeWidth)
223        return Constant::getNullValue(I->getType());
224
225      BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
226      BO->setHasNoUnsignedWrap(false);
227      BO->setHasNoSignedWrap(false);
228      return I;
229    }
230
231    // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
232    // zeros.
233    if (CI->getValue() == NumBits) {
234      APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
235      V = IC.Builder->CreateAnd(BO->getOperand(0),
236                                ConstantInt::get(BO->getContext(), Mask));
237      if (Instruction *VI = dyn_cast<Instruction>(V)) {
238        VI->moveBefore(BO);
239        VI->takeName(BO);
240      }
241      return V;
242    }
243
244    // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
245    // the and won't be needed.
246    assert(CI->getZExtValue() > NumBits);
247    BO->setOperand(1, ConstantInt::get(BO->getType(),
248                                       CI->getZExtValue() - NumBits));
249    BO->setHasNoUnsignedWrap(false);
250    BO->setHasNoSignedWrap(false);
251    return BO;
252  }
253  case Instruction::LShr: {
254    BinaryOperator *BO = cast<BinaryOperator>(I);
255    unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
256    // We only accept shifts-by-a-constant in CanEvaluateShifted.
257    ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
258
259    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
260    if (!isLeftShift) {
261      // If this is oversized composite shift, then unsigned shifts get 0.
262      unsigned NewShAmt = NumBits+CI->getZExtValue();
263      if (NewShAmt >= TypeWidth)
264        return Constant::getNullValue(BO->getType());
265
266      BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
267      BO->setIsExact(false);
268      return I;
269    }
270
271    // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
272    // zeros.
273    if (CI->getValue() == NumBits) {
274      APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
275      V = IC.Builder->CreateAnd(I->getOperand(0),
276                                ConstantInt::get(BO->getContext(), Mask));
277      if (Instruction *VI = dyn_cast<Instruction>(V)) {
278        VI->moveBefore(I);
279        VI->takeName(I);
280      }
281      return V;
282    }
283
284    // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
285    // the and won't be needed.
286    assert(CI->getZExtValue() > NumBits);
287    BO->setOperand(1, ConstantInt::get(BO->getType(),
288                                       CI->getZExtValue() - NumBits));
289    BO->setIsExact(false);
290    return BO;
291  }
292
293  case Instruction::Select:
294    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
295    I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
296    return I;
297  case Instruction::PHI: {
298    // We can change a phi if we can change all operands.  Note that we never
299    // get into trouble with cyclic PHIs here because we only consider
300    // instructions with a single use.
301    PHINode *PN = cast<PHINode>(I);
302    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
303      PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
304                                              NumBits, isLeftShift, IC));
305    return PN;
306  }
307  }
308}
309
310
311
312Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
313                                               BinaryOperator &I) {
314  bool isLeftShift = I.getOpcode() == Instruction::Shl;
315
316
317  // See if we can propagate this shift into the input, this covers the trivial
318  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
319  if (I.getOpcode() != Instruction::AShr &&
320      CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
321    DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
322              " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
323
324    return ReplaceInstUsesWith(I,
325                 GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
326  }
327
328
329  // See if we can simplify any instructions used by the instruction whose sole
330  // purpose is to compute bits we don't care about.
331  uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
332
333  // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
334  // a signed shift.
335  //
336  if (Op1->uge(TypeBits)) {
337    if (I.getOpcode() != Instruction::AShr)
338      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
339    // ashr i32 X, 32 --> ashr i32 X, 31
340    I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
341    return &I;
342  }
343
344  // ((X*C1) << C2) == (X * (C1 << C2))
345  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
346    if (BO->getOpcode() == Instruction::Mul && isLeftShift)
347      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
348        return BinaryOperator::CreateMul(BO->getOperand(0),
349                                        ConstantExpr::getShl(BOOp, Op1));
350
351  // Try to fold constant and into select arguments.
352  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
353    if (Instruction *R = FoldOpIntoSelect(I, SI))
354      return R;
355  if (isa<PHINode>(Op0))
356    if (Instruction *NV = FoldOpIntoPhi(I))
357      return NV;
358
359  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
360  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
361    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
362    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
363    // place.  Don't try to do this transformation in this case.  Also, we
364    // require that the input operand is a shift-by-constant so that we have
365    // confidence that the shifts will get folded together.  We could do this
366    // xform in more cases, but it is unlikely to be profitable.
367    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
368        isa<ConstantInt>(TrOp->getOperand(1))) {
369      // Okay, we'll do this xform.  Make the shift of shift.
370      Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
371      // (shift2 (shift1 & 0x00FF), c2)
372      Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
373
374      // For logical shifts, the truncation has the effect of making the high
375      // part of the register be zeros.  Emulate this by inserting an AND to
376      // clear the top bits as needed.  This 'and' will usually be zapped by
377      // other xforms later if dead.
378      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
379      unsigned DstSize = TI->getType()->getScalarSizeInBits();
380      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
381
382      // The mask we constructed says what the trunc would do if occurring
383      // between the shifts.  We want to know the effect *after* the second
384      // shift.  We know that it is a logical shift by a constant, so adjust the
385      // mask as appropriate.
386      if (I.getOpcode() == Instruction::Shl)
387        MaskV <<= Op1->getZExtValue();
388      else {
389        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
390        MaskV = MaskV.lshr(Op1->getZExtValue());
391      }
392
393      // shift1 & 0x00FF
394      Value *And = Builder->CreateAnd(NSh,
395                                      ConstantInt::get(I.getContext(), MaskV),
396                                      TI->getName());
397
398      // Return the value truncated to the interesting size.
399      return new TruncInst(And, I.getType());
400    }
401  }
402
403  if (Op0->hasOneUse()) {
404    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
405      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
406      Value *V1, *V2;
407      ConstantInt *CC;
408      switch (Op0BO->getOpcode()) {
409      default: break;
410      case Instruction::Add:
411      case Instruction::And:
412      case Instruction::Or:
413      case Instruction::Xor: {
414        // These operators commute.
415        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
416        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
417            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
418                  m_Specific(Op1)))) {
419          Value *YS =         // (Y << C)
420            Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
421          // (X + (Y << C))
422          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
423                                          Op0BO->getOperand(1)->getName());
424          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
425          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
426                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
427        }
428
429        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
430        Value *Op0BOOp1 = Op0BO->getOperand(1);
431        if (isLeftShift && Op0BOOp1->hasOneUse() &&
432            match(Op0BOOp1,
433                  m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
434                        m_ConstantInt(CC))) &&
435            cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
436          Value *YS =   // (Y << C)
437            Builder->CreateShl(Op0BO->getOperand(0), Op1,
438                                         Op0BO->getName());
439          // X & (CC << C)
440          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
441                                         V1->getName()+".mask");
442          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
443        }
444      }
445
446      // FALL THROUGH.
447      case Instruction::Sub: {
448        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
449        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
450            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
451                  m_Specific(Op1)))) {
452          Value *YS =  // (Y << C)
453            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
454          // (X + (Y << C))
455          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
456                                          Op0BO->getOperand(0)->getName());
457          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
458          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
459                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
460        }
461
462        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
463        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
464            match(Op0BO->getOperand(0),
465                  m_And(m_Shr(m_Value(V1), m_Value(V2)),
466                        m_ConstantInt(CC))) && V2 == Op1 &&
467            cast<BinaryOperator>(Op0BO->getOperand(0))
468                ->getOperand(0)->hasOneUse()) {
469          Value *YS = // (Y << C)
470            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
471          // X & (CC << C)
472          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
473                                         V1->getName()+".mask");
474
475          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
476        }
477
478        break;
479      }
480      }
481
482
483      // If the operand is an bitwise operator with a constant RHS, and the
484      // shift is the only use, we can pull it out of the shift.
485      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
486        bool isValid = true;     // Valid only for And, Or, Xor
487        bool highBitSet = false; // Transform if high bit of constant set?
488
489        switch (Op0BO->getOpcode()) {
490        default: isValid = false; break;   // Do not perform transform!
491        case Instruction::Add:
492          isValid = isLeftShift;
493          break;
494        case Instruction::Or:
495        case Instruction::Xor:
496          highBitSet = false;
497          break;
498        case Instruction::And:
499          highBitSet = true;
500          break;
501        }
502
503        // If this is a signed shift right, and the high bit is modified
504        // by the logical operation, do not perform the transformation.
505        // The highBitSet boolean indicates the value of the high bit of
506        // the constant which would cause it to be modified for this
507        // operation.
508        //
509        if (isValid && I.getOpcode() == Instruction::AShr)
510          isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
511
512        if (isValid) {
513          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
514
515          Value *NewShift =
516            Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
517          NewShift->takeName(Op0BO);
518
519          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
520                                        NewRHS);
521        }
522      }
523    }
524  }
525
526  // Find out if this is a shift of a shift by a constant.
527  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
528  if (ShiftOp && !ShiftOp->isShift())
529    ShiftOp = 0;
530
531  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
532
533    // This is a constant shift of a constant shift. Be careful about hiding
534    // shl instructions behind bit masks. They are used to represent multiplies
535    // by a constant, and it is important that simple arithmetic expressions
536    // are still recognizable by scalar evolution.
537    //
538    // The transforms applied to shl are very similar to the transforms applied
539    // to mul by constant. We can be more aggressive about optimizing right
540    // shifts.
541    //
542    // Combinations of right and left shifts will still be optimized in
543    // DAGCombine where scalar evolution no longer applies.
544
545    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
546    uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
547    uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
548    assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
549    if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
550    Value *X = ShiftOp->getOperand(0);
551
552    IntegerType *Ty = cast<IntegerType>(I.getType());
553
554    // Check for (X << c1) << c2  and  (X >> c1) >> c2
555    if (I.getOpcode() == ShiftOp->getOpcode()) {
556      uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
557      // If this is oversized composite shift, then unsigned shifts get 0, ashr
558      // saturates.
559      if (AmtSum >= TypeBits) {
560        if (I.getOpcode() != Instruction::AShr)
561          return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
562        AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
563      }
564
565      return BinaryOperator::Create(I.getOpcode(), X,
566                                    ConstantInt::get(Ty, AmtSum));
567    }
568
569    if (ShiftAmt1 == ShiftAmt2) {
570      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
571      if (I.getOpcode() == Instruction::LShr &&
572          ShiftOp->getOpcode() == Instruction::Shl) {
573        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
574        return BinaryOperator::CreateAnd(X,
575                                        ConstantInt::get(I.getContext(), Mask));
576      }
577    } else if (ShiftAmt1 < ShiftAmt2) {
578      uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
579
580      // (X >>?,exact C1) << C2 --> X << (C2-C1)
581      // The inexact version is deferred to DAGCombine so we don't hide shl
582      // behind a bit mask.
583      if (I.getOpcode() == Instruction::Shl &&
584          ShiftOp->getOpcode() != Instruction::Shl &&
585          ShiftOp->isExact()) {
586        assert(ShiftOp->getOpcode() == Instruction::LShr ||
587               ShiftOp->getOpcode() == Instruction::AShr);
588        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
589        BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
590                                                        X, ShiftDiffCst);
591        NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
592        NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
593        return NewShl;
594      }
595
596      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
597      if (I.getOpcode() == Instruction::LShr &&
598          ShiftOp->getOpcode() == Instruction::Shl) {
599        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
600        // (X <<nuw C1) >>u C2 --> X >>u (C2-C1)
601        if (ShiftOp->hasNoUnsignedWrap()) {
602          BinaryOperator *NewLShr = BinaryOperator::Create(Instruction::LShr,
603                                                           X, ShiftDiffCst);
604          NewLShr->setIsExact(I.isExact());
605          return NewLShr;
606        }
607        Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
608
609        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
610        return BinaryOperator::CreateAnd(Shift,
611                                         ConstantInt::get(I.getContext(),Mask));
612      }
613
614      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
615      // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
616      if (I.getOpcode() == Instruction::AShr &&
617          ShiftOp->getOpcode() == Instruction::Shl) {
618        if (ShiftOp->hasNoSignedWrap()) {
619          // (X <<nsw C1) >>s C2 --> X >>s (C2-C1)
620          ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
621          BinaryOperator *NewAShr = BinaryOperator::Create(Instruction::AShr,
622                                                           X, ShiftDiffCst);
623          NewAShr->setIsExact(I.isExact());
624          return NewAShr;
625        }
626      }
627    } else {
628      assert(ShiftAmt2 < ShiftAmt1);
629      uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
630
631      // (X >>?exact C1) << C2 --> X >>?exact (C1-C2)
632      // The inexact version is deferred to DAGCombine so we don't hide shl
633      // behind a bit mask.
634      if (I.getOpcode() == Instruction::Shl &&
635          ShiftOp->getOpcode() != Instruction::Shl &&
636          ShiftOp->isExact()) {
637        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
638        BinaryOperator *NewShr = BinaryOperator::Create(ShiftOp->getOpcode(),
639                                                        X, ShiftDiffCst);
640        NewShr->setIsExact(true);
641        return NewShr;
642      }
643
644      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
645      if (I.getOpcode() == Instruction::LShr &&
646          ShiftOp->getOpcode() == Instruction::Shl) {
647        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
648        if (ShiftOp->hasNoUnsignedWrap()) {
649          // (X <<nuw C1) >>u C2 --> X <<nuw (C1-C2)
650          BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
651                                                          X, ShiftDiffCst);
652          NewShl->setHasNoUnsignedWrap(true);
653          return NewShl;
654        }
655        Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
656
657        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
658        return BinaryOperator::CreateAnd(Shift,
659                                         ConstantInt::get(I.getContext(),Mask));
660      }
661
662      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
663      // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
664      if (I.getOpcode() == Instruction::AShr &&
665          ShiftOp->getOpcode() == Instruction::Shl) {
666        if (ShiftOp->hasNoSignedWrap()) {
667          // (X <<nsw C1) >>s C2 --> X <<nsw (C1-C2)
668          ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
669          BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
670                                                          X, ShiftDiffCst);
671          NewShl->setHasNoSignedWrap(true);
672          return NewShl;
673        }
674      }
675    }
676  }
677  return 0;
678}
679
680Instruction *InstCombiner::visitShl(BinaryOperator &I) {
681  if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
682                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
683                                 TD))
684    return ReplaceInstUsesWith(I, V);
685
686  if (Instruction *V = commonShiftTransforms(I))
687    return V;
688
689  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
690    unsigned ShAmt = Op1C->getZExtValue();
691
692    // If the shifted-out value is known-zero, then this is a NUW shift.
693    if (!I.hasNoUnsignedWrap() &&
694        MaskedValueIsZero(I.getOperand(0),
695                          APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
696          I.setHasNoUnsignedWrap();
697          return &I;
698        }
699
700    // If the shifted out value is all signbits, this is a NSW shift.
701    if (!I.hasNoSignedWrap() &&
702        ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
703      I.setHasNoSignedWrap();
704      return &I;
705    }
706  }
707
708  // (C1 << A) << C2 -> (C1 << C2) << A
709  Constant *C1, *C2;
710  Value *A;
711  if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
712      match(I.getOperand(1), m_Constant(C2)))
713    return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
714
715  return 0;
716}
717
718Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
719  if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
720                                  I.isExact(), TD))
721    return ReplaceInstUsesWith(I, V);
722
723  if (Instruction *R = commonShiftTransforms(I))
724    return R;
725
726  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
727
728  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
729    unsigned ShAmt = Op1C->getZExtValue();
730
731    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
732      unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
733      // ctlz.i32(x)>>5  --> zext(x == 0)
734      // cttz.i32(x)>>5  --> zext(x == 0)
735      // ctpop.i32(x)>>5 --> zext(x == -1)
736      if ((II->getIntrinsicID() == Intrinsic::ctlz ||
737           II->getIntrinsicID() == Intrinsic::cttz ||
738           II->getIntrinsicID() == Intrinsic::ctpop) &&
739          isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
740        bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
741        Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
742        Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
743        return new ZExtInst(Cmp, II->getType());
744      }
745    }
746
747    // If the shifted-out value is known-zero, then this is an exact shift.
748    if (!I.isExact() &&
749        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
750      I.setIsExact();
751      return &I;
752    }
753  }
754
755  return 0;
756}
757
758Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
759  if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
760                                  I.isExact(), TD))
761    return ReplaceInstUsesWith(I, V);
762
763  if (Instruction *R = commonShiftTransforms(I))
764    return R;
765
766  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
767
768  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
769    unsigned ShAmt = Op1C->getZExtValue();
770
771    // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
772    // have a sign-extend idiom.
773    Value *X;
774    if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
775      // If the left shift is just shifting out partial signbits, delete the
776      // extension.
777      if (cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
778        return ReplaceInstUsesWith(I, X);
779
780      // If the input is an extension from the shifted amount value, e.g.
781      //   %x = zext i8 %A to i32
782      //   %y = shl i32 %x, 24
783      //   %z = ashr %y, 24
784      // then turn this into "z = sext i8 A to i32".
785      if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
786        uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
787        uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
788        if (Op1C->getZExtValue() == DestBits-SrcBits)
789          return new SExtInst(ZI->getOperand(0), ZI->getType());
790      }
791    }
792
793    // If the shifted-out value is known-zero, then this is an exact shift.
794    if (!I.isExact() &&
795        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
796      I.setIsExact();
797      return &I;
798    }
799  }
800
801  // See if we can turn a signed shr into an unsigned shr.
802  if (MaskedValueIsZero(Op0,
803                        APInt::getSignBit(I.getType()->getScalarSizeInBits())))
804    return BinaryOperator::CreateLShr(Op0, Op1);
805
806  // Arithmetic shifting an all-sign-bit value is a no-op.
807  unsigned NumSignBits = ComputeNumSignBits(Op0);
808  if (NumSignBits == Op0->getType()->getScalarSizeInBits())
809    return ReplaceInstUsesWith(I, Op0);
810
811  return 0;
812}
813
814