1//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a trivial dead store elimination that only considers
11// basic-block local redundant stores.
12//
13// FIXME: This should eventually be extended to be a post-dominator tree
14// traversal.  Doing so would be pretty trivial.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "dse"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/Constants.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/CaptureTracking.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/MemoryDependenceAnalysis.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/ADT/STLExtras.h"
38using namespace llvm;
39
40STATISTIC(NumFastStores, "Number of stores deleted");
41STATISTIC(NumFastOther , "Number of other instrs removed");
42
43namespace {
44  struct DSE : public FunctionPass {
45    AliasAnalysis *AA;
46    MemoryDependenceAnalysis *MD;
47    DominatorTree *DT;
48
49    static char ID; // Pass identification, replacement for typeid
50    DSE() : FunctionPass(ID), AA(0), MD(0), DT(0) {
51      initializeDSEPass(*PassRegistry::getPassRegistry());
52    }
53
54    virtual bool runOnFunction(Function &F) {
55      AA = &getAnalysis<AliasAnalysis>();
56      MD = &getAnalysis<MemoryDependenceAnalysis>();
57      DT = &getAnalysis<DominatorTree>();
58
59      bool Changed = false;
60      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
61        // Only check non-dead blocks.  Dead blocks may have strange pointer
62        // cycles that will confuse alias analysis.
63        if (DT->isReachableFromEntry(I))
64          Changed |= runOnBasicBlock(*I);
65
66      AA = 0; MD = 0; DT = 0;
67      return Changed;
68    }
69
70    bool runOnBasicBlock(BasicBlock &BB);
71    bool HandleFree(CallInst *F);
72    bool handleEndBlock(BasicBlock &BB);
73    void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
74                               SmallSetVector<Value*, 16> &DeadStackObjects);
75
76    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
77      AU.setPreservesCFG();
78      AU.addRequired<DominatorTree>();
79      AU.addRequired<AliasAnalysis>();
80      AU.addRequired<MemoryDependenceAnalysis>();
81      AU.addPreserved<AliasAnalysis>();
82      AU.addPreserved<DominatorTree>();
83      AU.addPreserved<MemoryDependenceAnalysis>();
84    }
85  };
86}
87
88char DSE::ID = 0;
89INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
90INITIALIZE_PASS_DEPENDENCY(DominatorTree)
91INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
92INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
93INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
94
95FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
96
97//===----------------------------------------------------------------------===//
98// Helper functions
99//===----------------------------------------------------------------------===//
100
101/// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
102/// and zero out all the operands of this instruction.  If any of them become
103/// dead, delete them and the computation tree that feeds them.
104///
105/// If ValueSet is non-null, remove any deleted instructions from it as well.
106///
107static void DeleteDeadInstruction(Instruction *I,
108                                  MemoryDependenceAnalysis &MD,
109                                  const TargetLibraryInfo *TLI,
110                                  SmallSetVector<Value*, 16> *ValueSet = 0) {
111  SmallVector<Instruction*, 32> NowDeadInsts;
112
113  NowDeadInsts.push_back(I);
114  --NumFastOther;
115
116  // Before we touch this instruction, remove it from memdep!
117  do {
118    Instruction *DeadInst = NowDeadInsts.pop_back_val();
119    ++NumFastOther;
120
121    // This instruction is dead, zap it, in stages.  Start by removing it from
122    // MemDep, which needs to know the operands and needs it to be in the
123    // function.
124    MD.removeInstruction(DeadInst);
125
126    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
127      Value *Op = DeadInst->getOperand(op);
128      DeadInst->setOperand(op, 0);
129
130      // If this operand just became dead, add it to the NowDeadInsts list.
131      if (!Op->use_empty()) continue;
132
133      if (Instruction *OpI = dyn_cast<Instruction>(Op))
134        if (isInstructionTriviallyDead(OpI, TLI))
135          NowDeadInsts.push_back(OpI);
136    }
137
138    DeadInst->eraseFromParent();
139
140    if (ValueSet) ValueSet->remove(DeadInst);
141  } while (!NowDeadInsts.empty());
142}
143
144
145/// hasMemoryWrite - Does this instruction write some memory?  This only returns
146/// true for things that we can analyze with other helpers below.
147static bool hasMemoryWrite(Instruction *I) {
148  if (isa<StoreInst>(I))
149    return true;
150  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
151    switch (II->getIntrinsicID()) {
152    default:
153      return false;
154    case Intrinsic::memset:
155    case Intrinsic::memmove:
156    case Intrinsic::memcpy:
157    case Intrinsic::init_trampoline:
158    case Intrinsic::lifetime_end:
159      return true;
160    }
161  }
162  return false;
163}
164
165/// getLocForWrite - Return a Location stored to by the specified instruction.
166/// If isRemovable returns true, this function and getLocForRead completely
167/// describe the memory operations for this instruction.
168static AliasAnalysis::Location
169getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
170  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
171    return AA.getLocation(SI);
172
173  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
174    // memcpy/memmove/memset.
175    AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
176    // If we don't have target data around, an unknown size in Location means
177    // that we should use the size of the pointee type.  This isn't valid for
178    // memset/memcpy, which writes more than an i8.
179    if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
180      return AliasAnalysis::Location();
181    return Loc;
182  }
183
184  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
185  if (II == 0) return AliasAnalysis::Location();
186
187  switch (II->getIntrinsicID()) {
188  default: return AliasAnalysis::Location(); // Unhandled intrinsic.
189  case Intrinsic::init_trampoline:
190    // If we don't have target data around, an unknown size in Location means
191    // that we should use the size of the pointee type.  This isn't valid for
192    // init.trampoline, which writes more than an i8.
193    if (AA.getTargetData() == 0) return AliasAnalysis::Location();
194
195    // FIXME: We don't know the size of the trampoline, so we can't really
196    // handle it here.
197    return AliasAnalysis::Location(II->getArgOperand(0));
198  case Intrinsic::lifetime_end: {
199    uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
200    return AliasAnalysis::Location(II->getArgOperand(1), Len);
201  }
202  }
203}
204
205/// getLocForRead - Return the location read by the specified "hasMemoryWrite"
206/// instruction if any.
207static AliasAnalysis::Location
208getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
209  assert(hasMemoryWrite(Inst) && "Unknown instruction case");
210
211  // The only instructions that both read and write are the mem transfer
212  // instructions (memcpy/memmove).
213  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
214    return AA.getLocationForSource(MTI);
215  return AliasAnalysis::Location();
216}
217
218
219/// isRemovable - If the value of this instruction and the memory it writes to
220/// is unused, may we delete this instruction?
221static bool isRemovable(Instruction *I) {
222  // Don't remove volatile/atomic stores.
223  if (StoreInst *SI = dyn_cast<StoreInst>(I))
224    return SI->isUnordered();
225
226  IntrinsicInst *II = cast<IntrinsicInst>(I);
227  switch (II->getIntrinsicID()) {
228  default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
229  case Intrinsic::lifetime_end:
230    // Never remove dead lifetime_end's, e.g. because it is followed by a
231    // free.
232    return false;
233  case Intrinsic::init_trampoline:
234    // Always safe to remove init_trampoline.
235    return true;
236
237  case Intrinsic::memset:
238  case Intrinsic::memmove:
239  case Intrinsic::memcpy:
240    // Don't remove volatile memory intrinsics.
241    return !cast<MemIntrinsic>(II)->isVolatile();
242  }
243}
244
245
246/// isShortenable - Returns true if this instruction can be safely shortened in
247/// length.
248static bool isShortenable(Instruction *I) {
249  // Don't shorten stores for now
250  if (isa<StoreInst>(I))
251    return false;
252
253  IntrinsicInst *II = cast<IntrinsicInst>(I);
254  switch (II->getIntrinsicID()) {
255    default: return false;
256    case Intrinsic::memset:
257    case Intrinsic::memcpy:
258      // Do shorten memory intrinsics.
259      return true;
260  }
261}
262
263/// getStoredPointerOperand - Return the pointer that is being written to.
264static Value *getStoredPointerOperand(Instruction *I) {
265  if (StoreInst *SI = dyn_cast<StoreInst>(I))
266    return SI->getPointerOperand();
267  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
268    return MI->getDest();
269
270  IntrinsicInst *II = cast<IntrinsicInst>(I);
271  switch (II->getIntrinsicID()) {
272  default: llvm_unreachable("Unexpected intrinsic!");
273  case Intrinsic::init_trampoline:
274    return II->getArgOperand(0);
275  }
276}
277
278static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) {
279  uint64_t Size;
280  if (getObjectSize(V, Size, AA.getTargetData(), AA.getTargetLibraryInfo()))
281    return Size;
282  return AliasAnalysis::UnknownSize;
283}
284
285namespace {
286  enum OverwriteResult
287  {
288    OverwriteComplete,
289    OverwriteEnd,
290    OverwriteUnknown
291  };
292}
293
294/// isOverwrite - Return 'OverwriteComplete' if a store to the 'Later' location
295/// completely overwrites a store to the 'Earlier' location.
296/// 'OverwriteEnd' if the end of the 'Earlier' location is completely
297/// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined
298static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
299                                   const AliasAnalysis::Location &Earlier,
300                                   AliasAnalysis &AA,
301                                   int64_t &EarlierOff,
302                                   int64_t &LaterOff) {
303  const Value *P1 = Earlier.Ptr->stripPointerCasts();
304  const Value *P2 = Later.Ptr->stripPointerCasts();
305
306  // If the start pointers are the same, we just have to compare sizes to see if
307  // the later store was larger than the earlier store.
308  if (P1 == P2) {
309    // If we don't know the sizes of either access, then we can't do a
310    // comparison.
311    if (Later.Size == AliasAnalysis::UnknownSize ||
312        Earlier.Size == AliasAnalysis::UnknownSize) {
313      // If we have no TargetData information around, then the size of the store
314      // is inferrable from the pointee type.  If they are the same type, then
315      // we know that the store is safe.
316      if (AA.getTargetData() == 0 &&
317          Later.Ptr->getType() == Earlier.Ptr->getType())
318        return OverwriteComplete;
319
320      return OverwriteUnknown;
321    }
322
323    // Make sure that the Later size is >= the Earlier size.
324    if (Later.Size >= Earlier.Size)
325      return OverwriteComplete;
326  }
327
328  // Otherwise, we have to have size information, and the later store has to be
329  // larger than the earlier one.
330  if (Later.Size == AliasAnalysis::UnknownSize ||
331      Earlier.Size == AliasAnalysis::UnknownSize ||
332      AA.getTargetData() == 0)
333    return OverwriteUnknown;
334
335  // Check to see if the later store is to the entire object (either a global,
336  // an alloca, or a byval argument).  If so, then it clearly overwrites any
337  // other store to the same object.
338  const TargetData &TD = *AA.getTargetData();
339
340  const Value *UO1 = GetUnderlyingObject(P1, &TD),
341              *UO2 = GetUnderlyingObject(P2, &TD);
342
343  // If we can't resolve the same pointers to the same object, then we can't
344  // analyze them at all.
345  if (UO1 != UO2)
346    return OverwriteUnknown;
347
348  // If the "Later" store is to a recognizable object, get its size.
349  uint64_t ObjectSize = getPointerSize(UO2, AA);
350  if (ObjectSize != AliasAnalysis::UnknownSize)
351    if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
352      return OverwriteComplete;
353
354  // Okay, we have stores to two completely different pointers.  Try to
355  // decompose the pointer into a "base + constant_offset" form.  If the base
356  // pointers are equal, then we can reason about the two stores.
357  EarlierOff = 0;
358  LaterOff = 0;
359  const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
360  const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
361
362  // If the base pointers still differ, we have two completely different stores.
363  if (BP1 != BP2)
364    return OverwriteUnknown;
365
366  // The later store completely overlaps the earlier store if:
367  //
368  // 1. Both start at the same offset and the later one's size is greater than
369  //    or equal to the earlier one's, or
370  //
371  //      |--earlier--|
372  //      |--   later   --|
373  //
374  // 2. The earlier store has an offset greater than the later offset, but which
375  //    still lies completely within the later store.
376  //
377  //        |--earlier--|
378  //    |-----  later  ------|
379  //
380  // We have to be careful here as *Off is signed while *.Size is unsigned.
381  if (EarlierOff >= LaterOff &&
382      Later.Size >= Earlier.Size &&
383      uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
384    return OverwriteComplete;
385
386  // The other interesting case is if the later store overwrites the end of
387  // the earlier store
388  //
389  //      |--earlier--|
390  //                |--   later   --|
391  //
392  // In this case we may want to trim the size of earlier to avoid generating
393  // writes to addresses which will definitely be overwritten later
394  if (LaterOff > EarlierOff &&
395      LaterOff < int64_t(EarlierOff + Earlier.Size) &&
396      int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))
397    return OverwriteEnd;
398
399  // Otherwise, they don't completely overlap.
400  return OverwriteUnknown;
401}
402
403/// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
404/// memory region into an identical pointer) then it doesn't actually make its
405/// input dead in the traditional sense.  Consider this case:
406///
407///   memcpy(A <- B)
408///   memcpy(A <- A)
409///
410/// In this case, the second store to A does not make the first store to A dead.
411/// The usual situation isn't an explicit A<-A store like this (which can be
412/// trivially removed) but a case where two pointers may alias.
413///
414/// This function detects when it is unsafe to remove a dependent instruction
415/// because the DSE inducing instruction may be a self-read.
416static bool isPossibleSelfRead(Instruction *Inst,
417                               const AliasAnalysis::Location &InstStoreLoc,
418                               Instruction *DepWrite, AliasAnalysis &AA) {
419  // Self reads can only happen for instructions that read memory.  Get the
420  // location read.
421  AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
422  if (InstReadLoc.Ptr == 0) return false;  // Not a reading instruction.
423
424  // If the read and written loc obviously don't alias, it isn't a read.
425  if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
426
427  // Okay, 'Inst' may copy over itself.  However, we can still remove a the
428  // DepWrite instruction if we can prove that it reads from the same location
429  // as Inst.  This handles useful cases like:
430  //   memcpy(A <- B)
431  //   memcpy(A <- B)
432  // Here we don't know if A/B may alias, but we do know that B/B are must
433  // aliases, so removing the first memcpy is safe (assuming it writes <= #
434  // bytes as the second one.
435  AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
436
437  if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
438    return false;
439
440  // If DepWrite doesn't read memory or if we can't prove it is a must alias,
441  // then it can't be considered dead.
442  return true;
443}
444
445
446//===----------------------------------------------------------------------===//
447// DSE Pass
448//===----------------------------------------------------------------------===//
449
450bool DSE::runOnBasicBlock(BasicBlock &BB) {
451  bool MadeChange = false;
452
453  // Do a top-down walk on the BB.
454  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
455    Instruction *Inst = BBI++;
456
457    // Handle 'free' calls specially.
458    if (CallInst *F = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
459      MadeChange |= HandleFree(F);
460      continue;
461    }
462
463    // If we find something that writes memory, get its memory dependence.
464    if (!hasMemoryWrite(Inst))
465      continue;
466
467    MemDepResult InstDep = MD->getDependency(Inst);
468
469    // Ignore any store where we can't find a local dependence.
470    // FIXME: cross-block DSE would be fun. :)
471    if (!InstDep.isDef() && !InstDep.isClobber())
472      continue;
473
474    // If we're storing the same value back to a pointer that we just
475    // loaded from, then the store can be removed.
476    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
477      if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
478        if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
479            SI->getOperand(0) == DepLoad && isRemovable(SI)) {
480          DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
481                       << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
482
483          // DeleteDeadInstruction can delete the current instruction.  Save BBI
484          // in case we need it.
485          WeakVH NextInst(BBI);
486
487          DeleteDeadInstruction(SI, *MD, AA->getTargetLibraryInfo());
488
489          if (NextInst == 0)  // Next instruction deleted.
490            BBI = BB.begin();
491          else if (BBI != BB.begin())  // Revisit this instruction if possible.
492            --BBI;
493          ++NumFastStores;
494          MadeChange = true;
495          continue;
496        }
497      }
498    }
499
500    // Figure out what location is being stored to.
501    AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
502
503    // If we didn't get a useful location, fail.
504    if (Loc.Ptr == 0)
505      continue;
506
507    while (InstDep.isDef() || InstDep.isClobber()) {
508      // Get the memory clobbered by the instruction we depend on.  MemDep will
509      // skip any instructions that 'Loc' clearly doesn't interact with.  If we
510      // end up depending on a may- or must-aliased load, then we can't optimize
511      // away the store and we bail out.  However, if we depend on on something
512      // that overwrites the memory location we *can* potentially optimize it.
513      //
514      // Find out what memory location the dependent instruction stores.
515      Instruction *DepWrite = InstDep.getInst();
516      AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
517      // If we didn't get a useful location, or if it isn't a size, bail out.
518      if (DepLoc.Ptr == 0)
519        break;
520
521      // If we find a write that is a) removable (i.e., non-volatile), b) is
522      // completely obliterated by the store to 'Loc', and c) which we know that
523      // 'Inst' doesn't load from, then we can remove it.
524      if (isRemovable(DepWrite) &&
525          !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
526        int64_t InstWriteOffset, DepWriteOffset;
527        OverwriteResult OR = isOverwrite(Loc, DepLoc, *AA,
528                                         DepWriteOffset, InstWriteOffset);
529        if (OR == OverwriteComplete) {
530          DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
531                << *DepWrite << "\n  KILLER: " << *Inst << '\n');
532
533          // Delete the store and now-dead instructions that feed it.
534          DeleteDeadInstruction(DepWrite, *MD, AA->getTargetLibraryInfo());
535          ++NumFastStores;
536          MadeChange = true;
537
538          // DeleteDeadInstruction can delete the current instruction in loop
539          // cases, reset BBI.
540          BBI = Inst;
541          if (BBI != BB.begin())
542            --BBI;
543          break;
544        } else if (OR == OverwriteEnd && isShortenable(DepWrite)) {
545          // TODO: base this on the target vector size so that if the earlier
546          // store was too small to get vector writes anyway then its likely
547          // a good idea to shorten it
548          // Power of 2 vector writes are probably always a bad idea to optimize
549          // as any store/memset/memcpy is likely using vector instructions so
550          // shortening it to not vector size is likely to be slower
551          MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite);
552          unsigned DepWriteAlign = DepIntrinsic->getAlignment();
553          if (llvm::isPowerOf2_64(InstWriteOffset) ||
554              ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) {
555
556            DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW END: "
557                  << *DepWrite << "\n  KILLER (offset "
558                  << InstWriteOffset << ", "
559                  << DepLoc.Size << ")"
560                  << *Inst << '\n');
561
562            Value* DepWriteLength = DepIntrinsic->getLength();
563            Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(),
564                                                    InstWriteOffset -
565                                                    DepWriteOffset);
566            DepIntrinsic->setLength(TrimmedLength);
567            MadeChange = true;
568          }
569        }
570      }
571
572      // If this is a may-aliased store that is clobbering the store value, we
573      // can keep searching past it for another must-aliased pointer that stores
574      // to the same location.  For example, in:
575      //   store -> P
576      //   store -> Q
577      //   store -> P
578      // we can remove the first store to P even though we don't know if P and Q
579      // alias.
580      if (DepWrite == &BB.front()) break;
581
582      // Can't look past this instruction if it might read 'Loc'.
583      if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
584        break;
585
586      InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
587    }
588  }
589
590  // If this block ends in a return, unwind, or unreachable, all allocas are
591  // dead at its end, which means stores to them are also dead.
592  if (BB.getTerminator()->getNumSuccessors() == 0)
593    MadeChange |= handleEndBlock(BB);
594
595  return MadeChange;
596}
597
598/// Find all blocks that will unconditionally lead to the block BB and append
599/// them to F.
600static void FindUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
601                                   BasicBlock *BB, DominatorTree *DT) {
602  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
603    BasicBlock *Pred = *I;
604    if (Pred == BB) continue;
605    TerminatorInst *PredTI = Pred->getTerminator();
606    if (PredTI->getNumSuccessors() != 1)
607      continue;
608
609    if (DT->isReachableFromEntry(Pred))
610      Blocks.push_back(Pred);
611  }
612}
613
614/// HandleFree - Handle frees of entire structures whose dependency is a store
615/// to a field of that structure.
616bool DSE::HandleFree(CallInst *F) {
617  bool MadeChange = false;
618
619  AliasAnalysis::Location Loc = AliasAnalysis::Location(F->getOperand(0));
620  SmallVector<BasicBlock *, 16> Blocks;
621  Blocks.push_back(F->getParent());
622
623  while (!Blocks.empty()) {
624    BasicBlock *BB = Blocks.pop_back_val();
625    Instruction *InstPt = BB->getTerminator();
626    if (BB == F->getParent()) InstPt = F;
627
628    MemDepResult Dep = MD->getPointerDependencyFrom(Loc, false, InstPt, BB);
629    while (Dep.isDef() || Dep.isClobber()) {
630      Instruction *Dependency = Dep.getInst();
631      if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
632        break;
633
634      Value *DepPointer =
635        GetUnderlyingObject(getStoredPointerOperand(Dependency));
636
637      // Check for aliasing.
638      if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
639        break;
640
641      Instruction *Next = llvm::next(BasicBlock::iterator(Dependency));
642
643      // DCE instructions only used to calculate that store
644      DeleteDeadInstruction(Dependency, *MD, AA->getTargetLibraryInfo());
645      ++NumFastStores;
646      MadeChange = true;
647
648      // Inst's old Dependency is now deleted. Compute the next dependency,
649      // which may also be dead, as in
650      //    s[0] = 0;
651      //    s[1] = 0; // This has just been deleted.
652      //    free(s);
653      Dep = MD->getPointerDependencyFrom(Loc, false, Next, BB);
654    }
655
656    if (Dep.isNonLocal())
657      FindUnconditionalPreds(Blocks, BB, DT);
658  }
659
660  return MadeChange;
661}
662
663/// handleEndBlock - Remove dead stores to stack-allocated locations in the
664/// function end block.  Ex:
665/// %A = alloca i32
666/// ...
667/// store i32 1, i32* %A
668/// ret void
669bool DSE::handleEndBlock(BasicBlock &BB) {
670  bool MadeChange = false;
671
672  // Keep track of all of the stack objects that are dead at the end of the
673  // function.
674  SmallSetVector<Value*, 16> DeadStackObjects;
675
676  // Find all of the alloca'd pointers in the entry block.
677  BasicBlock *Entry = BB.getParent()->begin();
678  for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) {
679    if (isa<AllocaInst>(I))
680      DeadStackObjects.insert(I);
681
682    // Okay, so these are dead heap objects, but if the pointer never escapes
683    // then it's leaked by this function anyways.
684    else if (isAllocLikeFn(I, AA->getTargetLibraryInfo()) &&
685             !PointerMayBeCaptured(I, true, true))
686      DeadStackObjects.insert(I);
687  }
688
689  // Treat byval arguments the same, stores to them are dead at the end of the
690  // function.
691  for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
692       AE = BB.getParent()->arg_end(); AI != AE; ++AI)
693    if (AI->hasByValAttr())
694      DeadStackObjects.insert(AI);
695
696  // Scan the basic block backwards
697  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
698    --BBI;
699
700    // If we find a store, check to see if it points into a dead stack value.
701    if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
702      // See through pointer-to-pointer bitcasts
703      SmallVector<Value *, 4> Pointers;
704      GetUnderlyingObjects(getStoredPointerOperand(BBI), Pointers);
705
706      // Stores to stack values are valid candidates for removal.
707      bool AllDead = true;
708      for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
709           E = Pointers.end(); I != E; ++I)
710        if (!DeadStackObjects.count(*I)) {
711          AllDead = false;
712          break;
713        }
714
715      if (AllDead) {
716        Instruction *Dead = BBI++;
717
718        DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
719                     << *Dead << "\n  Objects: ";
720              for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
721                   E = Pointers.end(); I != E; ++I) {
722                dbgs() << **I;
723                if (llvm::next(I) != E)
724                  dbgs() << ", ";
725              }
726              dbgs() << '\n');
727
728        // DCE instructions only used to calculate that store.
729        DeleteDeadInstruction(Dead, *MD, AA->getTargetLibraryInfo(),
730                              &DeadStackObjects);
731        ++NumFastStores;
732        MadeChange = true;
733        continue;
734      }
735    }
736
737    // Remove any dead non-memory-mutating instructions.
738    if (isInstructionTriviallyDead(BBI, AA->getTargetLibraryInfo())) {
739      Instruction *Inst = BBI++;
740      DeleteDeadInstruction(Inst, *MD, AA->getTargetLibraryInfo(),
741                            &DeadStackObjects);
742      ++NumFastOther;
743      MadeChange = true;
744      continue;
745    }
746
747    if (isa<AllocaInst>(BBI)) {
748      // Remove allocas from the list of dead stack objects; there can't be
749      // any references before the definition.
750      DeadStackObjects.remove(BBI);
751      continue;
752    }
753
754    if (CallSite CS = cast<Value>(BBI)) {
755      // Remove allocation function calls from the list of dead stack objects;
756      // there can't be any references before the definition.
757      if (isAllocLikeFn(BBI, AA->getTargetLibraryInfo()))
758        DeadStackObjects.remove(BBI);
759
760      // If this call does not access memory, it can't be loading any of our
761      // pointers.
762      if (AA->doesNotAccessMemory(CS))
763        continue;
764
765      // If the call might load from any of our allocas, then any store above
766      // the call is live.
767      SmallVector<Value*, 8> LiveAllocas;
768      for (SmallSetVector<Value*, 16>::iterator I = DeadStackObjects.begin(),
769           E = DeadStackObjects.end(); I != E; ++I) {
770        // See if the call site touches it.
771        AliasAnalysis::ModRefResult A =
772          AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
773
774        if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
775          LiveAllocas.push_back(*I);
776      }
777
778      // If all of the allocas were clobbered by the call then we're not going
779      // to find anything else to process.
780      if (DeadStackObjects.size() == LiveAllocas.size())
781        break;
782
783      for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
784           E = LiveAllocas.end(); I != E; ++I)
785        DeadStackObjects.remove(*I);
786
787      continue;
788    }
789
790    AliasAnalysis::Location LoadedLoc;
791
792    // If we encounter a use of the pointer, it is no longer considered dead
793    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
794      if (!L->isUnordered()) // Be conservative with atomic/volatile load
795        break;
796      LoadedLoc = AA->getLocation(L);
797    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
798      LoadedLoc = AA->getLocation(V);
799    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
800      LoadedLoc = AA->getLocationForSource(MTI);
801    } else if (!BBI->mayReadFromMemory()) {
802      // Instruction doesn't read memory.  Note that stores that weren't removed
803      // above will hit this case.
804      continue;
805    } else {
806      // Unknown inst; assume it clobbers everything.
807      break;
808    }
809
810    // Remove any allocas from the DeadPointer set that are loaded, as this
811    // makes any stores above the access live.
812    RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
813
814    // If all of the allocas were clobbered by the access then we're not going
815    // to find anything else to process.
816    if (DeadStackObjects.empty())
817      break;
818  }
819
820  return MadeChange;
821}
822
823/// RemoveAccessedObjects - Check to see if the specified location may alias any
824/// of the stack objects in the DeadStackObjects set.  If so, they become live
825/// because the location is being loaded.
826void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
827                                SmallSetVector<Value*, 16> &DeadStackObjects) {
828  const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
829
830  // A constant can't be in the dead pointer set.
831  if (isa<Constant>(UnderlyingPointer))
832    return;
833
834  // If the kill pointer can be easily reduced to an alloca, don't bother doing
835  // extraneous AA queries.
836  if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
837    DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
838    return;
839  }
840
841  SmallVector<Value*, 16> NowLive;
842  for (SmallSetVector<Value*, 16>::iterator I = DeadStackObjects.begin(),
843       E = DeadStackObjects.end(); I != E; ++I) {
844    // See if the loaded location could alias the stack location.
845    AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
846    if (!AA->isNoAlias(StackLoc, LoadedLoc))
847      NowLive.push_back(*I);
848  }
849
850  for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
851       I != E; ++I)
852    DeadStackObjects.remove(*I);
853}
854