1//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Dead Loop Deletion Pass. This pass is responsible
11// for eliminating loops with non-infinite computable trip counts that have no
12// side effects or volatile instructions, and do not contribute to the
13// computation of the function's return value.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "loop-delete"
18#include "llvm/Transforms/Scalar.h"
19#include "llvm/Analysis/LoopPass.h"
20#include "llvm/Analysis/Dominators.h"
21#include "llvm/Analysis/ScalarEvolution.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/ADT/SmallVector.h"
24using namespace llvm;
25
26STATISTIC(NumDeleted, "Number of loops deleted");
27
28namespace {
29  class LoopDeletion : public LoopPass {
30  public:
31    static char ID; // Pass ID, replacement for typeid
32    LoopDeletion() : LoopPass(ID) {
33      initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
34    }
35
36    // Possibly eliminate loop L if it is dead.
37    bool runOnLoop(Loop* L, LPPassManager& LPM);
38
39    bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
40                    SmallVector<BasicBlock*, 4>& exitBlocks,
41                    bool &Changed, BasicBlock *Preheader);
42
43    virtual void getAnalysisUsage(AnalysisUsage& AU) const {
44      AU.addRequired<DominatorTree>();
45      AU.addRequired<LoopInfo>();
46      AU.addRequired<ScalarEvolution>();
47      AU.addRequiredID(LoopSimplifyID);
48      AU.addRequiredID(LCSSAID);
49
50      AU.addPreserved<ScalarEvolution>();
51      AU.addPreserved<DominatorTree>();
52      AU.addPreserved<LoopInfo>();
53      AU.addPreservedID(LoopSimplifyID);
54      AU.addPreservedID(LCSSAID);
55    }
56  };
57}
58
59char LoopDeletion::ID = 0;
60INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
61                "Delete dead loops", false, false)
62INITIALIZE_PASS_DEPENDENCY(DominatorTree)
63INITIALIZE_PASS_DEPENDENCY(LoopInfo)
64INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
65INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
66INITIALIZE_PASS_DEPENDENCY(LCSSA)
67INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
68                "Delete dead loops", false, false)
69
70Pass* llvm::createLoopDeletionPass() {
71  return new LoopDeletion();
72}
73
74/// IsLoopDead - Determined if a loop is dead.  This assumes that we've already
75/// checked for unique exit and exiting blocks, and that the code is in LCSSA
76/// form.
77bool LoopDeletion::IsLoopDead(Loop* L,
78                              SmallVector<BasicBlock*, 4>& exitingBlocks,
79                              SmallVector<BasicBlock*, 4>& exitBlocks,
80                              bool &Changed, BasicBlock *Preheader) {
81  BasicBlock* exitBlock = exitBlocks[0];
82
83  // Make sure that all PHI entries coming from the loop are loop invariant.
84  // Because the code is in LCSSA form, any values used outside of the loop
85  // must pass through a PHI in the exit block, meaning that this check is
86  // sufficient to guarantee that no loop-variant values are used outside
87  // of the loop.
88  BasicBlock::iterator BI = exitBlock->begin();
89  while (PHINode* P = dyn_cast<PHINode>(BI)) {
90    Value* incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
91
92    // Make sure all exiting blocks produce the same incoming value for the exit
93    // block.  If there are different incoming values for different exiting
94    // blocks, then it is impossible to statically determine which value should
95    // be used.
96    for (unsigned i = 1; i < exitingBlocks.size(); ++i) {
97      if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
98        return false;
99    }
100
101    if (Instruction* I = dyn_cast<Instruction>(incoming))
102      if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
103        return false;
104
105    ++BI;
106  }
107
108  // Make sure that no instructions in the block have potential side-effects.
109  // This includes instructions that could write to memory, and loads that are
110  // marked volatile.  This could be made more aggressive by using aliasing
111  // information to identify readonly and readnone calls.
112  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
113       LI != LE; ++LI) {
114    for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
115         BI != BE; ++BI) {
116      if (BI->mayHaveSideEffects())
117        return false;
118    }
119  }
120
121  return true;
122}
123
124/// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
125/// observable behavior of the program other than finite running time.  Note
126/// we do ensure that this never remove a loop that might be infinite, as doing
127/// so could change the halting/non-halting nature of a program.
128/// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
129/// in order to make various safety checks work.
130bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
131  // We can only remove the loop if there is a preheader that we can
132  // branch from after removing it.
133  BasicBlock* preheader = L->getLoopPreheader();
134  if (!preheader)
135    return false;
136
137  // If LoopSimplify form is not available, stay out of trouble.
138  if (!L->hasDedicatedExits())
139    return false;
140
141  // We can't remove loops that contain subloops.  If the subloops were dead,
142  // they would already have been removed in earlier executions of this pass.
143  if (L->begin() != L->end())
144    return false;
145
146  SmallVector<BasicBlock*, 4> exitingBlocks;
147  L->getExitingBlocks(exitingBlocks);
148
149  SmallVector<BasicBlock*, 4> exitBlocks;
150  L->getUniqueExitBlocks(exitBlocks);
151
152  // We require that the loop only have a single exit block.  Otherwise, we'd
153  // be in the situation of needing to be able to solve statically which exit
154  // block will be branched to, or trying to preserve the branching logic in
155  // a loop invariant manner.
156  if (exitBlocks.size() != 1)
157    return false;
158
159  // Finally, we have to check that the loop really is dead.
160  bool Changed = false;
161  if (!IsLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
162    return Changed;
163
164  // Don't remove loops for which we can't solve the trip count.
165  // They could be infinite, in which case we'd be changing program behavior.
166  ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
167  const SCEV *S = SE.getMaxBackedgeTakenCount(L);
168  if (isa<SCEVCouldNotCompute>(S))
169    return Changed;
170
171  // Now that we know the removal is safe, remove the loop by changing the
172  // branch from the preheader to go to the single exit block.
173  BasicBlock* exitBlock = exitBlocks[0];
174
175  // Because we're deleting a large chunk of code at once, the sequence in which
176  // we remove things is very important to avoid invalidation issues.  Don't
177  // mess with this unless you have good reason and know what you're doing.
178
179  // Tell ScalarEvolution that the loop is deleted. Do this before
180  // deleting the loop so that ScalarEvolution can look at the loop
181  // to determine what it needs to clean up.
182  SE.forgetLoop(L);
183
184  // Connect the preheader directly to the exit block.
185  TerminatorInst* TI = preheader->getTerminator();
186  TI->replaceUsesOfWith(L->getHeader(), exitBlock);
187
188  // Rewrite phis in the exit block to get their inputs from
189  // the preheader instead of the exiting block.
190  BasicBlock* exitingBlock = exitingBlocks[0];
191  BasicBlock::iterator BI = exitBlock->begin();
192  while (PHINode* P = dyn_cast<PHINode>(BI)) {
193    int j = P->getBasicBlockIndex(exitingBlock);
194    assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
195    P->setIncomingBlock(j, preheader);
196    for (unsigned i = 1; i < exitingBlocks.size(); ++i)
197      P->removeIncomingValue(exitingBlocks[i]);
198    ++BI;
199  }
200
201  // Update the dominator tree and remove the instructions and blocks that will
202  // be deleted from the reference counting scheme.
203  DominatorTree& DT = getAnalysis<DominatorTree>();
204  SmallVector<DomTreeNode*, 8> ChildNodes;
205  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
206       LI != LE; ++LI) {
207    // Move all of the block's children to be children of the preheader, which
208    // allows us to remove the domtree entry for the block.
209    ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
210    for (SmallVector<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
211         DE = ChildNodes.end(); DI != DE; ++DI) {
212      DT.changeImmediateDominator(*DI, DT[preheader]);
213    }
214
215    ChildNodes.clear();
216    DT.eraseNode(*LI);
217
218    // Remove the block from the reference counting scheme, so that we can
219    // delete it freely later.
220    (*LI)->dropAllReferences();
221  }
222
223  // Erase the instructions and the blocks without having to worry
224  // about ordering because we already dropped the references.
225  // NOTE: This iteration is safe because erasing the block does not remove its
226  // entry from the loop's block list.  We do that in the next section.
227  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
228       LI != LE; ++LI)
229    (*LI)->eraseFromParent();
230
231  // Finally, the blocks from loopinfo.  This has to happen late because
232  // otherwise our loop iterators won't work.
233  LoopInfo& loopInfo = getAnalysis<LoopInfo>();
234  SmallPtrSet<BasicBlock*, 8> blocks;
235  blocks.insert(L->block_begin(), L->block_end());
236  for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
237       E = blocks.end(); I != E; ++I)
238    loopInfo.removeBlock(*I);
239
240  // The last step is to inform the loop pass manager that we've
241  // eliminated this loop.
242  LPM.deleteLoopFromQueue(L);
243  Changed = true;
244
245  ++NumDeleted;
246
247  return Changed;
248}
249