1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass performs several transformations to transform natural loops into a 11// simpler form, which makes subsequent analyses and transformations simpler and 12// more effective. 13// 14// Loop pre-header insertion guarantees that there is a single, non-critical 15// entry edge from outside of the loop to the loop header. This simplifies a 16// number of analyses and transformations, such as LICM. 17// 18// Loop exit-block insertion guarantees that all exit blocks from the loop 19// (blocks which are outside of the loop that have predecessors inside of the 20// loop) only have predecessors from inside of the loop (and are thus dominated 21// by the loop header). This simplifies transformations such as store-sinking 22// that are built into LICM. 23// 24// This pass also guarantees that loops will have exactly one backedge. 25// 26// Indirectbr instructions introduce several complications. If the loop 27// contains or is entered by an indirectbr instruction, it may not be possible 28// to transform the loop and make these guarantees. Client code should check 29// that these conditions are true before relying on them. 30// 31// Note that the simplifycfg pass will clean up blocks which are split out but 32// end up being unnecessary, so usage of this pass should not pessimize 33// generated code. 34// 35// This pass obviously modifies the CFG, but updates loop information and 36// dominator information. 37// 38//===----------------------------------------------------------------------===// 39 40#define DEBUG_TYPE "loop-simplify" 41#include "llvm/Transforms/Scalar.h" 42#include "llvm/Constants.h" 43#include "llvm/Instructions.h" 44#include "llvm/IntrinsicInst.h" 45#include "llvm/Function.h" 46#include "llvm/LLVMContext.h" 47#include "llvm/Type.h" 48#include "llvm/Analysis/AliasAnalysis.h" 49#include "llvm/Analysis/Dominators.h" 50#include "llvm/Analysis/InstructionSimplify.h" 51#include "llvm/Analysis/LoopPass.h" 52#include "llvm/Analysis/ScalarEvolution.h" 53#include "llvm/Transforms/Utils/BasicBlockUtils.h" 54#include "llvm/Transforms/Utils/Local.h" 55#include "llvm/Support/CFG.h" 56#include "llvm/Support/Debug.h" 57#include "llvm/ADT/SetOperations.h" 58#include "llvm/ADT/SetVector.h" 59#include "llvm/ADT/Statistic.h" 60#include "llvm/ADT/DepthFirstIterator.h" 61using namespace llvm; 62 63STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 64STATISTIC(NumNested , "Number of nested loops split out"); 65 66namespace { 67 struct LoopSimplify : public LoopPass { 68 static char ID; // Pass identification, replacement for typeid 69 LoopSimplify() : LoopPass(ID) { 70 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 71 } 72 73 // AA - If we have an alias analysis object to update, this is it, otherwise 74 // this is null. 75 AliasAnalysis *AA; 76 LoopInfo *LI; 77 DominatorTree *DT; 78 ScalarEvolution *SE; 79 Loop *L; 80 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 81 82 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 83 // We need loop information to identify the loops... 84 AU.addRequired<DominatorTree>(); 85 AU.addPreserved<DominatorTree>(); 86 87 AU.addRequired<LoopInfo>(); 88 AU.addPreserved<LoopInfo>(); 89 90 AU.addPreserved<AliasAnalysis>(); 91 AU.addPreserved<ScalarEvolution>(); 92 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 93 } 94 95 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 96 void verifyAnalysis() const; 97 98 private: 99 bool ProcessLoop(Loop *L, LPPassManager &LPM); 100 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 101 BasicBlock *InsertPreheaderForLoop(Loop *L); 102 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM, 103 BasicBlock *Preheader); 104 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 105 void PlaceSplitBlockCarefully(BasicBlock *NewBB, 106 SmallVectorImpl<BasicBlock*> &SplitPreds, 107 Loop *L); 108 }; 109} 110 111char LoopSimplify::ID = 0; 112INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 113 "Canonicalize natural loops", true, false) 114INITIALIZE_PASS_DEPENDENCY(DominatorTree) 115INITIALIZE_PASS_DEPENDENCY(LoopInfo) 116INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 117 "Canonicalize natural loops", true, false) 118 119// Publicly exposed interface to pass... 120char &llvm::LoopSimplifyID = LoopSimplify::ID; 121Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 122 123/// runOnLoop - Run down all loops in the CFG (recursively, but we could do 124/// it in any convenient order) inserting preheaders... 125/// 126bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { 127 L = l; 128 bool Changed = false; 129 LI = &getAnalysis<LoopInfo>(); 130 AA = getAnalysisIfAvailable<AliasAnalysis>(); 131 DT = &getAnalysis<DominatorTree>(); 132 SE = getAnalysisIfAvailable<ScalarEvolution>(); 133 134 Changed |= ProcessLoop(L, LPM); 135 136 return Changed; 137} 138 139/// ProcessLoop - Walk the loop structure in depth first order, ensuring that 140/// all loops have preheaders. 141/// 142bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { 143 bool Changed = false; 144ReprocessLoop: 145 146 // Check to see that no blocks (other than the header) in this loop have 147 // predecessors that are not in the loop. This is not valid for natural 148 // loops, but can occur if the blocks are unreachable. Since they are 149 // unreachable we can just shamelessly delete those CFG edges! 150 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 151 BB != E; ++BB) { 152 if (*BB == L->getHeader()) continue; 153 154 SmallPtrSet<BasicBlock*, 4> BadPreds; 155 for (pred_iterator PI = pred_begin(*BB), 156 PE = pred_end(*BB); PI != PE; ++PI) { 157 BasicBlock *P = *PI; 158 if (!L->contains(P)) 159 BadPreds.insert(P); 160 } 161 162 // Delete each unique out-of-loop (and thus dead) predecessor. 163 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(), 164 E = BadPreds.end(); I != E; ++I) { 165 166 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 167 << (*I)->getName() << "\n"); 168 169 // Inform each successor of each dead pred. 170 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 171 (*SI)->removePredecessor(*I); 172 // Zap the dead pred's terminator and replace it with unreachable. 173 TerminatorInst *TI = (*I)->getTerminator(); 174 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 175 (*I)->getTerminator()->eraseFromParent(); 176 new UnreachableInst((*I)->getContext(), *I); 177 Changed = true; 178 } 179 } 180 181 // If there are exiting blocks with branches on undef, resolve the undef in 182 // the direction which will exit the loop. This will help simplify loop 183 // trip count computations. 184 SmallVector<BasicBlock*, 8> ExitingBlocks; 185 L->getExitingBlocks(ExitingBlocks); 186 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 187 E = ExitingBlocks.end(); I != E; ++I) 188 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 189 if (BI->isConditional()) { 190 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 191 192 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 193 << (*I)->getName() << "\n"); 194 195 BI->setCondition(ConstantInt::get(Cond->getType(), 196 !L->contains(BI->getSuccessor(0)))); 197 Changed = true; 198 } 199 } 200 201 // Does the loop already have a preheader? If so, don't insert one. 202 BasicBlock *Preheader = L->getLoopPreheader(); 203 if (!Preheader) { 204 Preheader = InsertPreheaderForLoop(L); 205 if (Preheader) { 206 ++NumInserted; 207 Changed = true; 208 } 209 } 210 211 // Next, check to make sure that all exit nodes of the loop only have 212 // predecessors that are inside of the loop. This check guarantees that the 213 // loop preheader/header will dominate the exit blocks. If the exit block has 214 // predecessors from outside of the loop, split the edge now. 215 SmallVector<BasicBlock*, 8> ExitBlocks; 216 L->getExitBlocks(ExitBlocks); 217 218 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 219 ExitBlocks.end()); 220 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 221 E = ExitBlockSet.end(); I != E; ++I) { 222 BasicBlock *ExitBlock = *I; 223 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 224 PI != PE; ++PI) 225 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 226 // allowed. 227 if (!L->contains(*PI)) { 228 if (RewriteLoopExitBlock(L, ExitBlock)) { 229 ++NumInserted; 230 Changed = true; 231 } 232 break; 233 } 234 } 235 236 // If the header has more than two predecessors at this point (from the 237 // preheader and from multiple backedges), we must adjust the loop. 238 BasicBlock *LoopLatch = L->getLoopLatch(); 239 if (!LoopLatch) { 240 // If this is really a nested loop, rip it out into a child loop. Don't do 241 // this for loops with a giant number of backedges, just factor them into a 242 // common backedge instead. 243 if (L->getNumBackEdges() < 8) { 244 if (SeparateNestedLoop(L, LPM, Preheader)) { 245 ++NumNested; 246 // This is a big restructuring change, reprocess the whole loop. 247 Changed = true; 248 // GCC doesn't tail recursion eliminate this. 249 goto ReprocessLoop; 250 } 251 } 252 253 // If we either couldn't, or didn't want to, identify nesting of the loops, 254 // insert a new block that all backedges target, then make it jump to the 255 // loop header. 256 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); 257 if (LoopLatch) { 258 ++NumInserted; 259 Changed = true; 260 } 261 } 262 263 // Scan over the PHI nodes in the loop header. Since they now have only two 264 // incoming values (the loop is canonicalized), we may have simplified the PHI 265 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 266 PHINode *PN; 267 for (BasicBlock::iterator I = L->getHeader()->begin(); 268 (PN = dyn_cast<PHINode>(I++)); ) 269 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { 270 if (AA) AA->deleteValue(PN); 271 if (SE) SE->forgetValue(PN); 272 PN->replaceAllUsesWith(V); 273 PN->eraseFromParent(); 274 } 275 276 // If this loop has multiple exits and the exits all go to the same 277 // block, attempt to merge the exits. This helps several passes, such 278 // as LoopRotation, which do not support loops with multiple exits. 279 // SimplifyCFG also does this (and this code uses the same utility 280 // function), however this code is loop-aware, where SimplifyCFG is 281 // not. That gives it the advantage of being able to hoist 282 // loop-invariant instructions out of the way to open up more 283 // opportunities, and the disadvantage of having the responsibility 284 // to preserve dominator information. 285 bool UniqueExit = true; 286 if (!ExitBlocks.empty()) 287 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 288 if (ExitBlocks[i] != ExitBlocks[0]) { 289 UniqueExit = false; 290 break; 291 } 292 if (UniqueExit) { 293 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 294 BasicBlock *ExitingBlock = ExitingBlocks[i]; 295 if (!ExitingBlock->getSinglePredecessor()) continue; 296 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 297 if (!BI || !BI->isConditional()) continue; 298 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 299 if (!CI || CI->getParent() != ExitingBlock) continue; 300 301 // Attempt to hoist out all instructions except for the 302 // comparison and the branch. 303 bool AllInvariant = true; 304 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 305 Instruction *Inst = I++; 306 // Skip debug info intrinsics. 307 if (isa<DbgInfoIntrinsic>(Inst)) 308 continue; 309 if (Inst == CI) 310 continue; 311 if (!L->makeLoopInvariant(Inst, Changed, 312 Preheader ? Preheader->getTerminator() : 0)) { 313 AllInvariant = false; 314 break; 315 } 316 } 317 if (!AllInvariant) continue; 318 319 // The block has now been cleared of all instructions except for 320 // a comparison and a conditional branch. SimplifyCFG may be able 321 // to fold it now. 322 if (!FoldBranchToCommonDest(BI)) continue; 323 324 // Success. The block is now dead, so remove it from the loop, 325 // update the dominator tree and delete it. 326 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 327 << ExitingBlock->getName() << "\n"); 328 329 // If any reachable control flow within this loop has changed, notify 330 // ScalarEvolution. Currently assume the parent loop doesn't change 331 // (spliting edges doesn't count). If blocks, CFG edges, or other values 332 // in the parent loop change, then we need call to forgetLoop() for the 333 // parent instead. 334 if (SE) 335 SE->forgetLoop(L); 336 337 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 338 Changed = true; 339 LI->removeBlock(ExitingBlock); 340 341 DomTreeNode *Node = DT->getNode(ExitingBlock); 342 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 343 Node->getChildren(); 344 while (!Children.empty()) { 345 DomTreeNode *Child = Children.front(); 346 DT->changeImmediateDominator(Child, Node->getIDom()); 347 } 348 DT->eraseNode(ExitingBlock); 349 350 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 351 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 352 ExitingBlock->eraseFromParent(); 353 } 354 } 355 356 return Changed; 357} 358 359/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 360/// preheader, this method is called to insert one. This method has two phases: 361/// preheader insertion and analysis updating. 362/// 363BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) { 364 BasicBlock *Header = L->getHeader(); 365 366 // Compute the set of predecessors of the loop that are not in the loop. 367 SmallVector<BasicBlock*, 8> OutsideBlocks; 368 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 369 PI != PE; ++PI) { 370 BasicBlock *P = *PI; 371 if (!L->contains(P)) { // Coming in from outside the loop? 372 // If the loop is branched to from an indirect branch, we won't 373 // be able to fully transform the loop, because it prohibits 374 // edge splitting. 375 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 376 377 // Keep track of it. 378 OutsideBlocks.push_back(P); 379 } 380 } 381 382 // Split out the loop pre-header. 383 BasicBlock *PreheaderBB; 384 if (!Header->isLandingPad()) { 385 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", 386 this); 387 } else { 388 SmallVector<BasicBlock*, 2> NewBBs; 389 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader", 390 ".split-lp", this, NewBBs); 391 PreheaderBB = NewBBs[0]; 392 } 393 394 PreheaderBB->getTerminator()->setDebugLoc( 395 Header->getFirstNonPHI()->getDebugLoc()); 396 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 397 << PreheaderBB->getName() << "\n"); 398 399 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 400 // code layout too horribly. 401 PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 402 403 return PreheaderBB; 404} 405 406/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit 407/// blocks. This method is used to split exit blocks that have predecessors 408/// outside of the loop. 409BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { 410 SmallVector<BasicBlock*, 8> LoopBlocks; 411 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 412 BasicBlock *P = *I; 413 if (L->contains(P)) { 414 // Don't do this if the loop is exited via an indirect branch. 415 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 416 417 LoopBlocks.push_back(P); 418 } 419 } 420 421 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 422 BasicBlock *NewExitBB = 0; 423 424 if (Exit->isLandingPad()) { 425 SmallVector<BasicBlock*, 2> NewBBs; 426 SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0], 427 LoopBlocks.size()), 428 ".loopexit", ".nonloopexit", 429 this, NewBBs); 430 NewExitBB = NewBBs[0]; 431 } else { 432 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this); 433 } 434 435 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 436 << NewExitBB->getName() << "\n"); 437 return NewExitBB; 438} 439 440/// AddBlockAndPredsToSet - Add the specified block, and all of its 441/// predecessors, to the specified set, if it's not already in there. Stop 442/// predecessor traversal when we reach StopBlock. 443static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 444 std::set<BasicBlock*> &Blocks) { 445 std::vector<BasicBlock *> WorkList; 446 WorkList.push_back(InputBB); 447 do { 448 BasicBlock *BB = WorkList.back(); WorkList.pop_back(); 449 if (Blocks.insert(BB).second && BB != StopBlock) 450 // If BB is not already processed and it is not a stop block then 451 // insert its predecessor in the work list 452 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 453 BasicBlock *WBB = *I; 454 WorkList.push_back(WBB); 455 } 456 } while(!WorkList.empty()); 457} 458 459/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a 460/// PHI node that tells us how to partition the loops. 461static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, 462 AliasAnalysis *AA, LoopInfo *LI) { 463 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 464 PHINode *PN = cast<PHINode>(I); 465 ++I; 466 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { 467 // This is a degenerate PHI already, don't modify it! 468 PN->replaceAllUsesWith(V); 469 if (AA) AA->deleteValue(PN); 470 PN->eraseFromParent(); 471 continue; 472 } 473 474 // Scan this PHI node looking for a use of the PHI node by itself. 475 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 476 if (PN->getIncomingValue(i) == PN && 477 L->contains(PN->getIncomingBlock(i))) 478 // We found something tasty to remove. 479 return PN; 480 } 481 return 0; 482} 483 484// PlaceSplitBlockCarefully - If the block isn't already, move the new block to 485// right after some 'outside block' block. This prevents the preheader from 486// being placed inside the loop body, e.g. when the loop hasn't been rotated. 487void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, 488 SmallVectorImpl<BasicBlock*> &SplitPreds, 489 Loop *L) { 490 // Check to see if NewBB is already well placed. 491 Function::iterator BBI = NewBB; --BBI; 492 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 493 if (&*BBI == SplitPreds[i]) 494 return; 495 } 496 497 // If it isn't already after an outside block, move it after one. This is 498 // always good as it makes the uncond branch from the outside block into a 499 // fall-through. 500 501 // Figure out *which* outside block to put this after. Prefer an outside 502 // block that neighbors a BB actually in the loop. 503 BasicBlock *FoundBB = 0; 504 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 505 Function::iterator BBI = SplitPreds[i]; 506 if (++BBI != NewBB->getParent()->end() && 507 L->contains(BBI)) { 508 FoundBB = SplitPreds[i]; 509 break; 510 } 511 } 512 513 // If our heuristic for a *good* bb to place this after doesn't find 514 // anything, just pick something. It's likely better than leaving it within 515 // the loop. 516 if (!FoundBB) 517 FoundBB = SplitPreds[0]; 518 NewBB->moveAfter(FoundBB); 519} 520 521 522/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of 523/// them out into a nested loop. This is important for code that looks like 524/// this: 525/// 526/// Loop: 527/// ... 528/// br cond, Loop, Next 529/// ... 530/// br cond2, Loop, Out 531/// 532/// To identify this common case, we look at the PHI nodes in the header of the 533/// loop. PHI nodes with unchanging values on one backedge correspond to values 534/// that change in the "outer" loop, but not in the "inner" loop. 535/// 536/// If we are able to separate out a loop, return the new outer loop that was 537/// created. 538/// 539Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM, 540 BasicBlock *Preheader) { 541 // Don't try to separate loops without a preheader. 542 if (!Preheader) 543 return 0; 544 545 // The header is not a landing pad; preheader insertion should ensure this. 546 assert(!L->getHeader()->isLandingPad() && 547 "Can't insert backedge to landing pad"); 548 549 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI); 550 if (PN == 0) return 0; // No known way to partition. 551 552 // Pull out all predecessors that have varying values in the loop. This 553 // handles the case when a PHI node has multiple instances of itself as 554 // arguments. 555 SmallVector<BasicBlock*, 8> OuterLoopPreds; 556 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 557 if (PN->getIncomingValue(i) != PN || 558 !L->contains(PN->getIncomingBlock(i))) { 559 // We can't split indirectbr edges. 560 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 561 return 0; 562 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 563 } 564 } 565 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 566 567 // If ScalarEvolution is around and knows anything about values in 568 // this loop, tell it to forget them, because we're about to 569 // substantially change it. 570 if (SE) 571 SE->forgetLoop(L); 572 573 BasicBlock *Header = L->getHeader(); 574 BasicBlock *NewBB = 575 SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", this); 576 577 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 578 // code layout too horribly. 579 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); 580 581 // Create the new outer loop. 582 Loop *NewOuter = new Loop(); 583 584 // Change the parent loop to use the outer loop as its child now. 585 if (Loop *Parent = L->getParentLoop()) 586 Parent->replaceChildLoopWith(L, NewOuter); 587 else 588 LI->changeTopLevelLoop(L, NewOuter); 589 590 // L is now a subloop of our outer loop. 591 NewOuter->addChildLoop(L); 592 593 // Add the new loop to the pass manager queue. 594 LPM.insertLoopIntoQueue(NewOuter); 595 596 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 597 I != E; ++I) 598 NewOuter->addBlockEntry(*I); 599 600 // Now reset the header in L, which had been moved by 601 // SplitBlockPredecessors for the outer loop. 602 L->moveToHeader(Header); 603 604 // Determine which blocks should stay in L and which should be moved out to 605 // the Outer loop now. 606 std::set<BasicBlock*> BlocksInL; 607 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 608 BasicBlock *P = *PI; 609 if (DT->dominates(Header, P)) 610 AddBlockAndPredsToSet(P, Header, BlocksInL); 611 } 612 613 // Scan all of the loop children of L, moving them to OuterLoop if they are 614 // not part of the inner loop. 615 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 616 for (size_t I = 0; I != SubLoops.size(); ) 617 if (BlocksInL.count(SubLoops[I]->getHeader())) 618 ++I; // Loop remains in L 619 else 620 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 621 622 // Now that we know which blocks are in L and which need to be moved to 623 // OuterLoop, move any blocks that need it. 624 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 625 BasicBlock *BB = L->getBlocks()[i]; 626 if (!BlocksInL.count(BB)) { 627 // Move this block to the parent, updating the exit blocks sets 628 L->removeBlockFromLoop(BB); 629 if ((*LI)[BB] == L) 630 LI->changeLoopFor(BB, NewOuter); 631 --i; 632 } 633 } 634 635 return NewOuter; 636} 637 638 639 640/// InsertUniqueBackedgeBlock - This method is called when the specified loop 641/// has more than one backedge in it. If this occurs, revector all of these 642/// backedges to target a new basic block and have that block branch to the loop 643/// header. This ensures that loops have exactly one backedge. 644/// 645BasicBlock * 646LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { 647 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 648 649 // Get information about the loop 650 BasicBlock *Header = L->getHeader(); 651 Function *F = Header->getParent(); 652 653 // Unique backedge insertion currently depends on having a preheader. 654 if (!Preheader) 655 return 0; 656 657 // The header is not a landing pad; preheader insertion should ensure this. 658 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); 659 660 // Figure out which basic blocks contain back-edges to the loop header. 661 std::vector<BasicBlock*> BackedgeBlocks; 662 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 663 BasicBlock *P = *I; 664 665 // Indirectbr edges cannot be split, so we must fail if we find one. 666 if (isa<IndirectBrInst>(P->getTerminator())) 667 return 0; 668 669 if (P != Preheader) BackedgeBlocks.push_back(P); 670 } 671 672 // Create and insert the new backedge block... 673 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 674 Header->getName()+".backedge", F); 675 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 676 677 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 678 << BEBlock->getName() << "\n"); 679 680 // Move the new backedge block to right after the last backedge block. 681 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 682 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 683 684 // Now that the block has been inserted into the function, create PHI nodes in 685 // the backedge block which correspond to any PHI nodes in the header block. 686 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 687 PHINode *PN = cast<PHINode>(I); 688 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 689 PN->getName()+".be", BETerminator); 690 if (AA) AA->copyValue(PN, NewPN); 691 692 // Loop over the PHI node, moving all entries except the one for the 693 // preheader over to the new PHI node. 694 unsigned PreheaderIdx = ~0U; 695 bool HasUniqueIncomingValue = true; 696 Value *UniqueValue = 0; 697 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 698 BasicBlock *IBB = PN->getIncomingBlock(i); 699 Value *IV = PN->getIncomingValue(i); 700 if (IBB == Preheader) { 701 PreheaderIdx = i; 702 } else { 703 NewPN->addIncoming(IV, IBB); 704 if (HasUniqueIncomingValue) { 705 if (UniqueValue == 0) 706 UniqueValue = IV; 707 else if (UniqueValue != IV) 708 HasUniqueIncomingValue = false; 709 } 710 } 711 } 712 713 // Delete all of the incoming values from the old PN except the preheader's 714 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 715 if (PreheaderIdx != 0) { 716 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 717 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 718 } 719 // Nuke all entries except the zero'th. 720 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 721 PN->removeIncomingValue(e-i, false); 722 723 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 724 PN->addIncoming(NewPN, BEBlock); 725 726 // As an optimization, if all incoming values in the new PhiNode (which is a 727 // subset of the incoming values of the old PHI node) have the same value, 728 // eliminate the PHI Node. 729 if (HasUniqueIncomingValue) { 730 NewPN->replaceAllUsesWith(UniqueValue); 731 if (AA) AA->deleteValue(NewPN); 732 BEBlock->getInstList().erase(NewPN); 733 } 734 } 735 736 // Now that all of the PHI nodes have been inserted and adjusted, modify the 737 // backedge blocks to just to the BEBlock instead of the header. 738 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 739 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 740 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 741 if (TI->getSuccessor(Op) == Header) 742 TI->setSuccessor(Op, BEBlock); 743 } 744 745 //===--- Update all analyses which we must preserve now -----------------===// 746 747 // Update Loop Information - we know that this block is now in the current 748 // loop and all parent loops. 749 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 750 751 // Update dominator information 752 DT->splitBlock(BEBlock); 753 754 return BEBlock; 755} 756 757void LoopSimplify::verifyAnalysis() const { 758 // It used to be possible to just assert L->isLoopSimplifyForm(), however 759 // with the introduction of indirectbr, there are now cases where it's 760 // not possible to transform a loop as necessary. We can at least check 761 // that there is an indirectbr near any time there's trouble. 762 763 // Indirectbr can interfere with preheader and unique backedge insertion. 764 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 765 bool HasIndBrPred = false; 766 for (pred_iterator PI = pred_begin(L->getHeader()), 767 PE = pred_end(L->getHeader()); PI != PE; ++PI) 768 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 769 HasIndBrPred = true; 770 break; 771 } 772 assert(HasIndBrPred && 773 "LoopSimplify has no excuse for missing loop header info!"); 774 (void)HasIndBrPred; 775 } 776 777 // Indirectbr can interfere with exit block canonicalization. 778 if (!L->hasDedicatedExits()) { 779 bool HasIndBrExiting = false; 780 SmallVector<BasicBlock*, 8> ExitingBlocks; 781 L->getExitingBlocks(ExitingBlocks); 782 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 783 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 784 HasIndBrExiting = true; 785 break; 786 } 787 } 788 789 assert(HasIndBrExiting && 790 "LoopSimplify has no excuse for missing exit block info!"); 791 (void)HasIndBrExiting; 792 } 793} 794