1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the CodeGenDAGPatterns class, which is used to read and 11// represent the patterns present in a .td file for instructions. 12// 13//===----------------------------------------------------------------------===// 14 15#include "CodeGenDAGPatterns.h" 16#include "llvm/TableGen/Error.h" 17#include "llvm/TableGen/Record.h" 18#include "llvm/ADT/StringExtras.h" 19#include "llvm/ADT/STLExtras.h" 20#include "llvm/ADT/Twine.h" 21#include "llvm/Support/Debug.h" 22#include "llvm/Support/ErrorHandling.h" 23#include <algorithm> 24#include <cstdio> 25#include <set> 26using namespace llvm; 27 28//===----------------------------------------------------------------------===// 29// EEVT::TypeSet Implementation 30//===----------------------------------------------------------------------===// 31 32static inline bool isInteger(MVT::SimpleValueType VT) { 33 return EVT(VT).isInteger(); 34} 35static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 36 return EVT(VT).isFloatingPoint(); 37} 38static inline bool isVector(MVT::SimpleValueType VT) { 39 return EVT(VT).isVector(); 40} 41static inline bool isScalar(MVT::SimpleValueType VT) { 42 return !EVT(VT).isVector(); 43} 44 45EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 46 if (VT == MVT::iAny) 47 EnforceInteger(TP); 48 else if (VT == MVT::fAny) 49 EnforceFloatingPoint(TP); 50 else if (VT == MVT::vAny) 51 EnforceVector(TP); 52 else { 53 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 54 VT == MVT::iPTRAny) && "Not a concrete type!"); 55 TypeVec.push_back(VT); 56 } 57} 58 59 60EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { 61 assert(!VTList.empty() && "empty list?"); 62 TypeVec.append(VTList.begin(), VTList.end()); 63 64 if (!VTList.empty()) 65 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 66 VTList[0] != MVT::fAny); 67 68 // Verify no duplicates. 69 array_pod_sort(TypeVec.begin(), TypeVec.end()); 70 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 71} 72 73/// FillWithPossibleTypes - Set to all legal types and return true, only valid 74/// on completely unknown type sets. 75bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 76 bool (*Pred)(MVT::SimpleValueType), 77 const char *PredicateName) { 78 assert(isCompletelyUnknown()); 79 const std::vector<MVT::SimpleValueType> &LegalTypes = 80 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 81 82 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) 83 if (Pred == 0 || Pred(LegalTypes[i])) 84 TypeVec.push_back(LegalTypes[i]); 85 86 // If we have nothing that matches the predicate, bail out. 87 if (TypeVec.empty()) 88 TP.error("Type inference contradiction found, no " + 89 std::string(PredicateName) + " types found"); 90 // No need to sort with one element. 91 if (TypeVec.size() == 1) return true; 92 93 // Remove duplicates. 94 array_pod_sort(TypeVec.begin(), TypeVec.end()); 95 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 96 97 return true; 98} 99 100/// hasIntegerTypes - Return true if this TypeSet contains iAny or an 101/// integer value type. 102bool EEVT::TypeSet::hasIntegerTypes() const { 103 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 104 if (isInteger(TypeVec[i])) 105 return true; 106 return false; 107} 108 109/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 110/// a floating point value type. 111bool EEVT::TypeSet::hasFloatingPointTypes() const { 112 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 113 if (isFloatingPoint(TypeVec[i])) 114 return true; 115 return false; 116} 117 118/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 119/// value type. 120bool EEVT::TypeSet::hasVectorTypes() const { 121 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 122 if (isVector(TypeVec[i])) 123 return true; 124 return false; 125} 126 127 128std::string EEVT::TypeSet::getName() const { 129 if (TypeVec.empty()) return "<empty>"; 130 131 std::string Result; 132 133 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 134 std::string VTName = llvm::getEnumName(TypeVec[i]); 135 // Strip off MVT:: prefix if present. 136 if (VTName.substr(0,5) == "MVT::") 137 VTName = VTName.substr(5); 138 if (i) Result += ':'; 139 Result += VTName; 140 } 141 142 if (TypeVec.size() == 1) 143 return Result; 144 return "{" + Result + "}"; 145} 146 147/// MergeInTypeInfo - This merges in type information from the specified 148/// argument. If 'this' changes, it returns true. If the two types are 149/// contradictory (e.g. merge f32 into i32) then this throws an exception. 150bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 151 if (InVT.isCompletelyUnknown() || *this == InVT) 152 return false; 153 154 if (isCompletelyUnknown()) { 155 *this = InVT; 156 return true; 157 } 158 159 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); 160 161 // Handle the abstract cases, seeing if we can resolve them better. 162 switch (TypeVec[0]) { 163 default: break; 164 case MVT::iPTR: 165 case MVT::iPTRAny: 166 if (InVT.hasIntegerTypes()) { 167 EEVT::TypeSet InCopy(InVT); 168 InCopy.EnforceInteger(TP); 169 InCopy.EnforceScalar(TP); 170 171 if (InCopy.isConcrete()) { 172 // If the RHS has one integer type, upgrade iPTR to i32. 173 TypeVec[0] = InVT.TypeVec[0]; 174 return true; 175 } 176 177 // If the input has multiple scalar integers, this doesn't add any info. 178 if (!InCopy.isCompletelyUnknown()) 179 return false; 180 } 181 break; 182 } 183 184 // If the input constraint is iAny/iPTR and this is an integer type list, 185 // remove non-integer types from the list. 186 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 187 hasIntegerTypes()) { 188 bool MadeChange = EnforceInteger(TP); 189 190 // If we're merging in iPTR/iPTRAny and the node currently has a list of 191 // multiple different integer types, replace them with a single iPTR. 192 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 193 TypeVec.size() != 1) { 194 TypeVec.resize(1); 195 TypeVec[0] = InVT.TypeVec[0]; 196 MadeChange = true; 197 } 198 199 return MadeChange; 200 } 201 202 // If this is a type list and the RHS is a typelist as well, eliminate entries 203 // from this list that aren't in the other one. 204 bool MadeChange = false; 205 TypeSet InputSet(*this); 206 207 for (unsigned i = 0; i != TypeVec.size(); ++i) { 208 bool InInVT = false; 209 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) 210 if (TypeVec[i] == InVT.TypeVec[j]) { 211 InInVT = true; 212 break; 213 } 214 215 if (InInVT) continue; 216 TypeVec.erase(TypeVec.begin()+i--); 217 MadeChange = true; 218 } 219 220 // If we removed all of our types, we have a type contradiction. 221 if (!TypeVec.empty()) 222 return MadeChange; 223 224 // FIXME: Really want an SMLoc here! 225 TP.error("Type inference contradiction found, merging '" + 226 InVT.getName() + "' into '" + InputSet.getName() + "'"); 227 return true; // unreachable 228} 229 230/// EnforceInteger - Remove all non-integer types from this set. 231bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 232 // If we know nothing, then get the full set. 233 if (TypeVec.empty()) 234 return FillWithPossibleTypes(TP, isInteger, "integer"); 235 if (!hasFloatingPointTypes()) 236 return false; 237 238 TypeSet InputSet(*this); 239 240 // Filter out all the fp types. 241 for (unsigned i = 0; i != TypeVec.size(); ++i) 242 if (!isInteger(TypeVec[i])) 243 TypeVec.erase(TypeVec.begin()+i--); 244 245 if (TypeVec.empty()) 246 TP.error("Type inference contradiction found, '" + 247 InputSet.getName() + "' needs to be integer"); 248 return true; 249} 250 251/// EnforceFloatingPoint - Remove all integer types from this set. 252bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 253 // If we know nothing, then get the full set. 254 if (TypeVec.empty()) 255 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 256 257 if (!hasIntegerTypes()) 258 return false; 259 260 TypeSet InputSet(*this); 261 262 // Filter out all the fp types. 263 for (unsigned i = 0; i != TypeVec.size(); ++i) 264 if (!isFloatingPoint(TypeVec[i])) 265 TypeVec.erase(TypeVec.begin()+i--); 266 267 if (TypeVec.empty()) 268 TP.error("Type inference contradiction found, '" + 269 InputSet.getName() + "' needs to be floating point"); 270 return true; 271} 272 273/// EnforceScalar - Remove all vector types from this. 274bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 275 // If we know nothing, then get the full set. 276 if (TypeVec.empty()) 277 return FillWithPossibleTypes(TP, isScalar, "scalar"); 278 279 if (!hasVectorTypes()) 280 return false; 281 282 TypeSet InputSet(*this); 283 284 // Filter out all the vector types. 285 for (unsigned i = 0; i != TypeVec.size(); ++i) 286 if (!isScalar(TypeVec[i])) 287 TypeVec.erase(TypeVec.begin()+i--); 288 289 if (TypeVec.empty()) 290 TP.error("Type inference contradiction found, '" + 291 InputSet.getName() + "' needs to be scalar"); 292 return true; 293} 294 295/// EnforceVector - Remove all vector types from this. 296bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 297 // If we know nothing, then get the full set. 298 if (TypeVec.empty()) 299 return FillWithPossibleTypes(TP, isVector, "vector"); 300 301 TypeSet InputSet(*this); 302 bool MadeChange = false; 303 304 // Filter out all the scalar types. 305 for (unsigned i = 0; i != TypeVec.size(); ++i) 306 if (!isVector(TypeVec[i])) { 307 TypeVec.erase(TypeVec.begin()+i--); 308 MadeChange = true; 309 } 310 311 if (TypeVec.empty()) 312 TP.error("Type inference contradiction found, '" + 313 InputSet.getName() + "' needs to be a vector"); 314 return MadeChange; 315} 316 317 318 319/// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 320/// this an other based on this information. 321bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 322 // Both operands must be integer or FP, but we don't care which. 323 bool MadeChange = false; 324 325 if (isCompletelyUnknown()) 326 MadeChange = FillWithPossibleTypes(TP); 327 328 if (Other.isCompletelyUnknown()) 329 MadeChange = Other.FillWithPossibleTypes(TP); 330 331 // If one side is known to be integer or known to be FP but the other side has 332 // no information, get at least the type integrality info in there. 333 if (!hasFloatingPointTypes()) 334 MadeChange |= Other.EnforceInteger(TP); 335 else if (!hasIntegerTypes()) 336 MadeChange |= Other.EnforceFloatingPoint(TP); 337 if (!Other.hasFloatingPointTypes()) 338 MadeChange |= EnforceInteger(TP); 339 else if (!Other.hasIntegerTypes()) 340 MadeChange |= EnforceFloatingPoint(TP); 341 342 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 343 "Should have a type list now"); 344 345 // If one contains vectors but the other doesn't pull vectors out. 346 if (!hasVectorTypes()) 347 MadeChange |= Other.EnforceScalar(TP); 348 if (!hasVectorTypes()) 349 MadeChange |= EnforceScalar(TP); 350 351 if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) { 352 // If we are down to concrete types, this code does not currently 353 // handle nodes which have multiple types, where some types are 354 // integer, and some are fp. Assert that this is not the case. 355 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 356 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 357 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 358 359 // Otherwise, if these are both vector types, either this vector 360 // must have a larger bitsize than the other, or this element type 361 // must be larger than the other. 362 EVT Type(TypeVec[0]); 363 EVT OtherType(Other.TypeVec[0]); 364 365 if (hasVectorTypes() && Other.hasVectorTypes()) { 366 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 367 if (Type.getVectorElementType().getSizeInBits() 368 >= OtherType.getVectorElementType().getSizeInBits()) 369 TP.error("Type inference contradiction found, '" + 370 getName() + "' element type not smaller than '" + 371 Other.getName() +"'!"); 372 } 373 else 374 // For scalar types, the bitsize of this type must be larger 375 // than that of the other. 376 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 377 TP.error("Type inference contradiction found, '" + 378 getName() + "' is not smaller than '" + 379 Other.getName() +"'!"); 380 381 } 382 383 384 // Handle int and fp as disjoint sets. This won't work for patterns 385 // that have mixed fp/int types but those are likely rare and would 386 // not have been accepted by this code previously. 387 388 // Okay, find the smallest type from the current set and remove it from the 389 // largest set. 390 MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE; 391 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 392 if (isInteger(TypeVec[i])) { 393 SmallestInt = TypeVec[i]; 394 break; 395 } 396 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 397 if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt) 398 SmallestInt = TypeVec[i]; 399 400 MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE; 401 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 402 if (isFloatingPoint(TypeVec[i])) { 403 SmallestFP = TypeVec[i]; 404 break; 405 } 406 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 407 if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP) 408 SmallestFP = TypeVec[i]; 409 410 int OtherIntSize = 0; 411 int OtherFPSize = 0; 412 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 413 Other.TypeVec.begin(); 414 TVI != Other.TypeVec.end(); 415 /* NULL */) { 416 if (isInteger(*TVI)) { 417 ++OtherIntSize; 418 if (*TVI == SmallestInt) { 419 TVI = Other.TypeVec.erase(TVI); 420 --OtherIntSize; 421 MadeChange = true; 422 continue; 423 } 424 } 425 else if (isFloatingPoint(*TVI)) { 426 ++OtherFPSize; 427 if (*TVI == SmallestFP) { 428 TVI = Other.TypeVec.erase(TVI); 429 --OtherFPSize; 430 MadeChange = true; 431 continue; 432 } 433 } 434 ++TVI; 435 } 436 437 // If this is the only type in the large set, the constraint can never be 438 // satisfied. 439 if ((Other.hasIntegerTypes() && OtherIntSize == 0) 440 || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) 441 TP.error("Type inference contradiction found, '" + 442 Other.getName() + "' has nothing larger than '" + getName() +"'!"); 443 444 // Okay, find the largest type in the Other set and remove it from the 445 // current set. 446 MVT::SimpleValueType LargestInt = MVT::Other; 447 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 448 if (isInteger(Other.TypeVec[i])) { 449 LargestInt = Other.TypeVec[i]; 450 break; 451 } 452 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 453 if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt) 454 LargestInt = Other.TypeVec[i]; 455 456 MVT::SimpleValueType LargestFP = MVT::Other; 457 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 458 if (isFloatingPoint(Other.TypeVec[i])) { 459 LargestFP = Other.TypeVec[i]; 460 break; 461 } 462 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 463 if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP) 464 LargestFP = Other.TypeVec[i]; 465 466 int IntSize = 0; 467 int FPSize = 0; 468 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 469 TypeVec.begin(); 470 TVI != TypeVec.end(); 471 /* NULL */) { 472 if (isInteger(*TVI)) { 473 ++IntSize; 474 if (*TVI == LargestInt) { 475 TVI = TypeVec.erase(TVI); 476 --IntSize; 477 MadeChange = true; 478 continue; 479 } 480 } 481 else if (isFloatingPoint(*TVI)) { 482 ++FPSize; 483 if (*TVI == LargestFP) { 484 TVI = TypeVec.erase(TVI); 485 --FPSize; 486 MadeChange = true; 487 continue; 488 } 489 } 490 ++TVI; 491 } 492 493 // If this is the only type in the small set, the constraint can never be 494 // satisfied. 495 if ((hasIntegerTypes() && IntSize == 0) 496 || (hasFloatingPointTypes() && FPSize == 0)) 497 TP.error("Type inference contradiction found, '" + 498 getName() + "' has nothing smaller than '" + Other.getName()+"'!"); 499 500 return MadeChange; 501} 502 503/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 504/// whose element is specified by VTOperand. 505bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 506 TreePattern &TP) { 507 // "This" must be a vector and "VTOperand" must be a scalar. 508 bool MadeChange = false; 509 MadeChange |= EnforceVector(TP); 510 MadeChange |= VTOperand.EnforceScalar(TP); 511 512 // If we know the vector type, it forces the scalar to agree. 513 if (isConcrete()) { 514 EVT IVT = getConcrete(); 515 IVT = IVT.getVectorElementType(); 516 return MadeChange | 517 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); 518 } 519 520 // If the scalar type is known, filter out vector types whose element types 521 // disagree. 522 if (!VTOperand.isConcrete()) 523 return MadeChange; 524 525 MVT::SimpleValueType VT = VTOperand.getConcrete(); 526 527 TypeSet InputSet(*this); 528 529 // Filter out all the types which don't have the right element type. 530 for (unsigned i = 0; i != TypeVec.size(); ++i) { 531 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 532 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { 533 TypeVec.erase(TypeVec.begin()+i--); 534 MadeChange = true; 535 } 536 } 537 538 if (TypeVec.empty()) // FIXME: Really want an SMLoc here! 539 TP.error("Type inference contradiction found, forcing '" + 540 InputSet.getName() + "' to have a vector element"); 541 return MadeChange; 542} 543 544/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a 545/// vector type specified by VTOperand. 546bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 547 TreePattern &TP) { 548 // "This" must be a vector and "VTOperand" must be a vector. 549 bool MadeChange = false; 550 MadeChange |= EnforceVector(TP); 551 MadeChange |= VTOperand.EnforceVector(TP); 552 553 // "This" must be larger than "VTOperand." 554 MadeChange |= VTOperand.EnforceSmallerThan(*this, TP); 555 556 // If we know the vector type, it forces the scalar types to agree. 557 if (isConcrete()) { 558 EVT IVT = getConcrete(); 559 IVT = IVT.getVectorElementType(); 560 561 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 562 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 563 } else if (VTOperand.isConcrete()) { 564 EVT IVT = VTOperand.getConcrete(); 565 IVT = IVT.getVectorElementType(); 566 567 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 568 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 569 } 570 571 return MadeChange; 572} 573 574//===----------------------------------------------------------------------===// 575// Helpers for working with extended types. 576 577bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { 578 return LHS->getID() < RHS->getID(); 579} 580 581/// Dependent variable map for CodeGenDAGPattern variant generation 582typedef std::map<std::string, int> DepVarMap; 583 584/// Const iterator shorthand for DepVarMap 585typedef DepVarMap::const_iterator DepVarMap_citer; 586 587static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 588 if (N->isLeaf()) { 589 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) 590 DepMap[N->getName()]++; 591 } else { 592 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 593 FindDepVarsOf(N->getChild(i), DepMap); 594 } 595} 596 597/// Find dependent variables within child patterns 598static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 599 DepVarMap depcounts; 600 FindDepVarsOf(N, depcounts); 601 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 602 if (i->second > 1) // std::pair<std::string, int> 603 DepVars.insert(i->first); 604 } 605} 606 607#ifndef NDEBUG 608/// Dump the dependent variable set: 609static void DumpDepVars(MultipleUseVarSet &DepVars) { 610 if (DepVars.empty()) { 611 DEBUG(errs() << "<empty set>"); 612 } else { 613 DEBUG(errs() << "[ "); 614 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), 615 e = DepVars.end(); i != e; ++i) { 616 DEBUG(errs() << (*i) << " "); 617 } 618 DEBUG(errs() << "]"); 619 } 620} 621#endif 622 623 624//===----------------------------------------------------------------------===// 625// TreePredicateFn Implementation 626//===----------------------------------------------------------------------===// 627 628/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 629TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 630 assert((getPredCode().empty() || getImmCode().empty()) && 631 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 632} 633 634std::string TreePredicateFn::getPredCode() const { 635 return PatFragRec->getRecord()->getValueAsString("PredicateCode"); 636} 637 638std::string TreePredicateFn::getImmCode() const { 639 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 640} 641 642 643/// isAlwaysTrue - Return true if this is a noop predicate. 644bool TreePredicateFn::isAlwaysTrue() const { 645 return getPredCode().empty() && getImmCode().empty(); 646} 647 648/// Return the name to use in the generated code to reference this, this is 649/// "Predicate_foo" if from a pattern fragment "foo". 650std::string TreePredicateFn::getFnName() const { 651 return "Predicate_" + PatFragRec->getRecord()->getName(); 652} 653 654/// getCodeToRunOnSDNode - Return the code for the function body that 655/// evaluates this predicate. The argument is expected to be in "Node", 656/// not N. This handles casting and conversion to a concrete node type as 657/// appropriate. 658std::string TreePredicateFn::getCodeToRunOnSDNode() const { 659 // Handle immediate predicates first. 660 std::string ImmCode = getImmCode(); 661 if (!ImmCode.empty()) { 662 std::string Result = 663 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 664 return Result + ImmCode; 665 } 666 667 // Handle arbitrary node predicates. 668 assert(!getPredCode().empty() && "Don't have any predicate code!"); 669 std::string ClassName; 670 if (PatFragRec->getOnlyTree()->isLeaf()) 671 ClassName = "SDNode"; 672 else { 673 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 674 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 675 } 676 std::string Result; 677 if (ClassName == "SDNode") 678 Result = " SDNode *N = Node;\n"; 679 else 680 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n"; 681 682 return Result + getPredCode(); 683} 684 685//===----------------------------------------------------------------------===// 686// PatternToMatch implementation 687// 688 689 690/// getPatternSize - Return the 'size' of this pattern. We want to match large 691/// patterns before small ones. This is used to determine the size of a 692/// pattern. 693static unsigned getPatternSize(const TreePatternNode *P, 694 const CodeGenDAGPatterns &CGP) { 695 unsigned Size = 3; // The node itself. 696 // If the root node is a ConstantSDNode, increases its size. 697 // e.g. (set R32:$dst, 0). 698 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) 699 Size += 2; 700 701 // FIXME: This is a hack to statically increase the priority of patterns 702 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 703 // Later we can allow complexity / cost for each pattern to be (optionally) 704 // specified. To get best possible pattern match we'll need to dynamically 705 // calculate the complexity of all patterns a dag can potentially map to. 706 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 707 if (AM) 708 Size += AM->getNumOperands() * 3; 709 710 // If this node has some predicate function that must match, it adds to the 711 // complexity of this node. 712 if (!P->getPredicateFns().empty()) 713 ++Size; 714 715 // Count children in the count if they are also nodes. 716 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 717 TreePatternNode *Child = P->getChild(i); 718 if (!Child->isLeaf() && Child->getNumTypes() && 719 Child->getType(0) != MVT::Other) 720 Size += getPatternSize(Child, CGP); 721 else if (Child->isLeaf()) { 722 if (dynamic_cast<IntInit*>(Child->getLeafValue())) 723 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 724 else if (Child->getComplexPatternInfo(CGP)) 725 Size += getPatternSize(Child, CGP); 726 else if (!Child->getPredicateFns().empty()) 727 ++Size; 728 } 729 } 730 731 return Size; 732} 733 734/// Compute the complexity metric for the input pattern. This roughly 735/// corresponds to the number of nodes that are covered. 736unsigned PatternToMatch:: 737getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 738 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 739} 740 741 742/// getPredicateCheck - Return a single string containing all of this 743/// pattern's predicates concatenated with "&&" operators. 744/// 745std::string PatternToMatch::getPredicateCheck() const { 746 std::string PredicateCheck; 747 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 748 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { 749 Record *Def = Pred->getDef(); 750 if (!Def->isSubClassOf("Predicate")) { 751#ifndef NDEBUG 752 Def->dump(); 753#endif 754 llvm_unreachable("Unknown predicate type!"); 755 } 756 if (!PredicateCheck.empty()) 757 PredicateCheck += " && "; 758 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 759 } 760 } 761 762 return PredicateCheck; 763} 764 765//===----------------------------------------------------------------------===// 766// SDTypeConstraint implementation 767// 768 769SDTypeConstraint::SDTypeConstraint(Record *R) { 770 OperandNo = R->getValueAsInt("OperandNum"); 771 772 if (R->isSubClassOf("SDTCisVT")) { 773 ConstraintType = SDTCisVT; 774 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 775 if (x.SDTCisVT_Info.VT == MVT::isVoid) 776 throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 777 778 } else if (R->isSubClassOf("SDTCisPtrTy")) { 779 ConstraintType = SDTCisPtrTy; 780 } else if (R->isSubClassOf("SDTCisInt")) { 781 ConstraintType = SDTCisInt; 782 } else if (R->isSubClassOf("SDTCisFP")) { 783 ConstraintType = SDTCisFP; 784 } else if (R->isSubClassOf("SDTCisVec")) { 785 ConstraintType = SDTCisVec; 786 } else if (R->isSubClassOf("SDTCisSameAs")) { 787 ConstraintType = SDTCisSameAs; 788 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 789 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 790 ConstraintType = SDTCisVTSmallerThanOp; 791 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 792 R->getValueAsInt("OtherOperandNum"); 793 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 794 ConstraintType = SDTCisOpSmallerThanOp; 795 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 796 R->getValueAsInt("BigOperandNum"); 797 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 798 ConstraintType = SDTCisEltOfVec; 799 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 800 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 801 ConstraintType = SDTCisSubVecOfVec; 802 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 803 R->getValueAsInt("OtherOpNum"); 804 } else { 805 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 806 exit(1); 807 } 808} 809 810/// getOperandNum - Return the node corresponding to operand #OpNo in tree 811/// N, and the result number in ResNo. 812static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 813 const SDNodeInfo &NodeInfo, 814 unsigned &ResNo) { 815 unsigned NumResults = NodeInfo.getNumResults(); 816 if (OpNo < NumResults) { 817 ResNo = OpNo; 818 return N; 819 } 820 821 OpNo -= NumResults; 822 823 if (OpNo >= N->getNumChildren()) { 824 errs() << "Invalid operand number in type constraint " 825 << (OpNo+NumResults) << " "; 826 N->dump(); 827 errs() << '\n'; 828 exit(1); 829 } 830 831 return N->getChild(OpNo); 832} 833 834/// ApplyTypeConstraint - Given a node in a pattern, apply this type 835/// constraint to the nodes operands. This returns true if it makes a 836/// change, false otherwise. If a type contradiction is found, throw an 837/// exception. 838bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 839 const SDNodeInfo &NodeInfo, 840 TreePattern &TP) const { 841 unsigned ResNo = 0; // The result number being referenced. 842 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 843 844 switch (ConstraintType) { 845 case SDTCisVT: 846 // Operand must be a particular type. 847 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 848 case SDTCisPtrTy: 849 // Operand must be same as target pointer type. 850 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 851 case SDTCisInt: 852 // Require it to be one of the legal integer VTs. 853 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 854 case SDTCisFP: 855 // Require it to be one of the legal fp VTs. 856 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 857 case SDTCisVec: 858 // Require it to be one of the legal vector VTs. 859 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 860 case SDTCisSameAs: { 861 unsigned OResNo = 0; 862 TreePatternNode *OtherNode = 863 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 864 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| 865 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); 866 } 867 case SDTCisVTSmallerThanOp: { 868 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 869 // have an integer type that is smaller than the VT. 870 if (!NodeToApply->isLeaf() || 871 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || 872 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 873 ->isSubClassOf("ValueType")) 874 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 875 MVT::SimpleValueType VT = 876 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 877 878 EEVT::TypeSet TypeListTmp(VT, TP); 879 880 unsigned OResNo = 0; 881 TreePatternNode *OtherNode = 882 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 883 OResNo); 884 885 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 886 } 887 case SDTCisOpSmallerThanOp: { 888 unsigned BResNo = 0; 889 TreePatternNode *BigOperand = 890 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 891 BResNo); 892 return NodeToApply->getExtType(ResNo). 893 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 894 } 895 case SDTCisEltOfVec: { 896 unsigned VResNo = 0; 897 TreePatternNode *VecOperand = 898 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 899 VResNo); 900 901 // Filter vector types out of VecOperand that don't have the right element 902 // type. 903 return VecOperand->getExtType(VResNo). 904 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 905 } 906 case SDTCisSubVecOfVec: { 907 unsigned VResNo = 0; 908 TreePatternNode *BigVecOperand = 909 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 910 VResNo); 911 912 // Filter vector types out of BigVecOperand that don't have the 913 // right subvector type. 914 return BigVecOperand->getExtType(VResNo). 915 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 916 } 917 } 918 llvm_unreachable("Invalid ConstraintType!"); 919} 920 921//===----------------------------------------------------------------------===// 922// SDNodeInfo implementation 923// 924SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 925 EnumName = R->getValueAsString("Opcode"); 926 SDClassName = R->getValueAsString("SDClass"); 927 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 928 NumResults = TypeProfile->getValueAsInt("NumResults"); 929 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 930 931 // Parse the properties. 932 Properties = 0; 933 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 934 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 935 if (PropList[i]->getName() == "SDNPCommutative") { 936 Properties |= 1 << SDNPCommutative; 937 } else if (PropList[i]->getName() == "SDNPAssociative") { 938 Properties |= 1 << SDNPAssociative; 939 } else if (PropList[i]->getName() == "SDNPHasChain") { 940 Properties |= 1 << SDNPHasChain; 941 } else if (PropList[i]->getName() == "SDNPOutGlue") { 942 Properties |= 1 << SDNPOutGlue; 943 } else if (PropList[i]->getName() == "SDNPInGlue") { 944 Properties |= 1 << SDNPInGlue; 945 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 946 Properties |= 1 << SDNPOptInGlue; 947 } else if (PropList[i]->getName() == "SDNPMayStore") { 948 Properties |= 1 << SDNPMayStore; 949 } else if (PropList[i]->getName() == "SDNPMayLoad") { 950 Properties |= 1 << SDNPMayLoad; 951 } else if (PropList[i]->getName() == "SDNPSideEffect") { 952 Properties |= 1 << SDNPSideEffect; 953 } else if (PropList[i]->getName() == "SDNPMemOperand") { 954 Properties |= 1 << SDNPMemOperand; 955 } else if (PropList[i]->getName() == "SDNPVariadic") { 956 Properties |= 1 << SDNPVariadic; 957 } else { 958 errs() << "Unknown SD Node property '" << PropList[i]->getName() 959 << "' on node '" << R->getName() << "'!\n"; 960 exit(1); 961 } 962 } 963 964 965 // Parse the type constraints. 966 std::vector<Record*> ConstraintList = 967 TypeProfile->getValueAsListOfDefs("Constraints"); 968 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 969} 970 971/// getKnownType - If the type constraints on this node imply a fixed type 972/// (e.g. all stores return void, etc), then return it as an 973/// MVT::SimpleValueType. Otherwise, return EEVT::Other. 974MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 975 unsigned NumResults = getNumResults(); 976 assert(NumResults <= 1 && 977 "We only work with nodes with zero or one result so far!"); 978 assert(ResNo == 0 && "Only handles single result nodes so far"); 979 980 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { 981 // Make sure that this applies to the correct node result. 982 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # 983 continue; 984 985 switch (TypeConstraints[i].ConstraintType) { 986 default: break; 987 case SDTypeConstraint::SDTCisVT: 988 return TypeConstraints[i].x.SDTCisVT_Info.VT; 989 case SDTypeConstraint::SDTCisPtrTy: 990 return MVT::iPTR; 991 } 992 } 993 return MVT::Other; 994} 995 996//===----------------------------------------------------------------------===// 997// TreePatternNode implementation 998// 999 1000TreePatternNode::~TreePatternNode() { 1001#if 0 // FIXME: implement refcounted tree nodes! 1002 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1003 delete getChild(i); 1004#endif 1005} 1006 1007static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1008 if (Operator->getName() == "set" || 1009 Operator->getName() == "implicit") 1010 return 0; // All return nothing. 1011 1012 if (Operator->isSubClassOf("Intrinsic")) 1013 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1014 1015 if (Operator->isSubClassOf("SDNode")) 1016 return CDP.getSDNodeInfo(Operator).getNumResults(); 1017 1018 if (Operator->isSubClassOf("PatFrag")) { 1019 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1020 // the forward reference case where one pattern fragment references another 1021 // before it is processed. 1022 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1023 return PFRec->getOnlyTree()->getNumTypes(); 1024 1025 // Get the result tree. 1026 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1027 Record *Op = 0; 1028 if (Tree && dynamic_cast<DefInit*>(Tree->getOperator())) 1029 Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef(); 1030 assert(Op && "Invalid Fragment"); 1031 return GetNumNodeResults(Op, CDP); 1032 } 1033 1034 if (Operator->isSubClassOf("Instruction")) { 1035 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1036 1037 // FIXME: Should allow access to all the results here. 1038 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1039 1040 // Add on one implicit def if it has a resolvable type. 1041 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1042 ++NumDefsToAdd; 1043 return NumDefsToAdd; 1044 } 1045 1046 if (Operator->isSubClassOf("SDNodeXForm")) 1047 return 1; // FIXME: Generalize SDNodeXForm 1048 1049 Operator->dump(); 1050 errs() << "Unhandled node in GetNumNodeResults\n"; 1051 exit(1); 1052} 1053 1054void TreePatternNode::print(raw_ostream &OS) const { 1055 if (isLeaf()) 1056 OS << *getLeafValue(); 1057 else 1058 OS << '(' << getOperator()->getName(); 1059 1060 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1061 OS << ':' << getExtType(i).getName(); 1062 1063 if (!isLeaf()) { 1064 if (getNumChildren() != 0) { 1065 OS << " "; 1066 getChild(0)->print(OS); 1067 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1068 OS << ", "; 1069 getChild(i)->print(OS); 1070 } 1071 } 1072 OS << ")"; 1073 } 1074 1075 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 1076 OS << "<<P:" << PredicateFns[i].getFnName() << ">>"; 1077 if (TransformFn) 1078 OS << "<<X:" << TransformFn->getName() << ">>"; 1079 if (!getName().empty()) 1080 OS << ":$" << getName(); 1081 1082} 1083void TreePatternNode::dump() const { 1084 print(errs()); 1085} 1086 1087/// isIsomorphicTo - Return true if this node is recursively 1088/// isomorphic to the specified node. For this comparison, the node's 1089/// entire state is considered. The assigned name is ignored, since 1090/// nodes with differing names are considered isomorphic. However, if 1091/// the assigned name is present in the dependent variable set, then 1092/// the assigned name is considered significant and the node is 1093/// isomorphic if the names match. 1094bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1095 const MultipleUseVarSet &DepVars) const { 1096 if (N == this) return true; 1097 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1098 getPredicateFns() != N->getPredicateFns() || 1099 getTransformFn() != N->getTransformFn()) 1100 return false; 1101 1102 if (isLeaf()) { 1103 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1104 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { 1105 return ((DI->getDef() == NDI->getDef()) 1106 && (DepVars.find(getName()) == DepVars.end() 1107 || getName() == N->getName())); 1108 } 1109 } 1110 return getLeafValue() == N->getLeafValue(); 1111 } 1112 1113 if (N->getOperator() != getOperator() || 1114 N->getNumChildren() != getNumChildren()) return false; 1115 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1116 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1117 return false; 1118 return true; 1119} 1120 1121/// clone - Make a copy of this tree and all of its children. 1122/// 1123TreePatternNode *TreePatternNode::clone() const { 1124 TreePatternNode *New; 1125 if (isLeaf()) { 1126 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1127 } else { 1128 std::vector<TreePatternNode*> CChildren; 1129 CChildren.reserve(Children.size()); 1130 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1131 CChildren.push_back(getChild(i)->clone()); 1132 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1133 } 1134 New->setName(getName()); 1135 New->Types = Types; 1136 New->setPredicateFns(getPredicateFns()); 1137 New->setTransformFn(getTransformFn()); 1138 return New; 1139} 1140 1141/// RemoveAllTypes - Recursively strip all the types of this tree. 1142void TreePatternNode::RemoveAllTypes() { 1143 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1144 Types[i] = EEVT::TypeSet(); // Reset to unknown type. 1145 if (isLeaf()) return; 1146 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1147 getChild(i)->RemoveAllTypes(); 1148} 1149 1150 1151/// SubstituteFormalArguments - Replace the formal arguments in this tree 1152/// with actual values specified by ArgMap. 1153void TreePatternNode:: 1154SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1155 if (isLeaf()) return; 1156 1157 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1158 TreePatternNode *Child = getChild(i); 1159 if (Child->isLeaf()) { 1160 Init *Val = Child->getLeafValue(); 1161 if (dynamic_cast<DefInit*>(Val) && 1162 static_cast<DefInit*>(Val)->getDef()->getName() == "node") { 1163 // We found a use of a formal argument, replace it with its value. 1164 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1165 assert(NewChild && "Couldn't find formal argument!"); 1166 assert((Child->getPredicateFns().empty() || 1167 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1168 "Non-empty child predicate clobbered!"); 1169 setChild(i, NewChild); 1170 } 1171 } else { 1172 getChild(i)->SubstituteFormalArguments(ArgMap); 1173 } 1174 } 1175} 1176 1177 1178/// InlinePatternFragments - If this pattern refers to any pattern 1179/// fragments, inline them into place, giving us a pattern without any 1180/// PatFrag references. 1181TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1182 if (isLeaf()) return this; // nothing to do. 1183 Record *Op = getOperator(); 1184 1185 if (!Op->isSubClassOf("PatFrag")) { 1186 // Just recursively inline children nodes. 1187 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1188 TreePatternNode *Child = getChild(i); 1189 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1190 1191 assert((Child->getPredicateFns().empty() || 1192 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1193 "Non-empty child predicate clobbered!"); 1194 1195 setChild(i, NewChild); 1196 } 1197 return this; 1198 } 1199 1200 // Otherwise, we found a reference to a fragment. First, look up its 1201 // TreePattern record. 1202 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1203 1204 // Verify that we are passing the right number of operands. 1205 if (Frag->getNumArgs() != Children.size()) 1206 TP.error("'" + Op->getName() + "' fragment requires " + 1207 utostr(Frag->getNumArgs()) + " operands!"); 1208 1209 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1210 1211 TreePredicateFn PredFn(Frag); 1212 if (!PredFn.isAlwaysTrue()) 1213 FragTree->addPredicateFn(PredFn); 1214 1215 // Resolve formal arguments to their actual value. 1216 if (Frag->getNumArgs()) { 1217 // Compute the map of formal to actual arguments. 1218 std::map<std::string, TreePatternNode*> ArgMap; 1219 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1220 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1221 1222 FragTree->SubstituteFormalArguments(ArgMap); 1223 } 1224 1225 FragTree->setName(getName()); 1226 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1227 FragTree->UpdateNodeType(i, getExtType(i), TP); 1228 1229 // Transfer in the old predicates. 1230 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 1231 FragTree->addPredicateFn(getPredicateFns()[i]); 1232 1233 // Get a new copy of this fragment to stitch into here. 1234 //delete this; // FIXME: implement refcounting! 1235 1236 // The fragment we inlined could have recursive inlining that is needed. See 1237 // if there are any pattern fragments in it and inline them as needed. 1238 return FragTree->InlinePatternFragments(TP); 1239} 1240 1241/// getImplicitType - Check to see if the specified record has an implicit 1242/// type which should be applied to it. This will infer the type of register 1243/// references from the register file information, for example. 1244/// 1245static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1246 bool NotRegisters, TreePattern &TP) { 1247 // Check to see if this is a register operand. 1248 if (R->isSubClassOf("RegisterOperand")) { 1249 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1250 if (NotRegisters) 1251 return EEVT::TypeSet(); // Unknown. 1252 Record *RegClass = R->getValueAsDef("RegClass"); 1253 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1254 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); 1255 } 1256 1257 // Check to see if this is a register or a register class. 1258 if (R->isSubClassOf("RegisterClass")) { 1259 assert(ResNo == 0 && "Regclass ref only has one result!"); 1260 if (NotRegisters) 1261 return EEVT::TypeSet(); // Unknown. 1262 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1263 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1264 } 1265 1266 if (R->isSubClassOf("PatFrag")) { 1267 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1268 // Pattern fragment types will be resolved when they are inlined. 1269 return EEVT::TypeSet(); // Unknown. 1270 } 1271 1272 if (R->isSubClassOf("Register")) { 1273 assert(ResNo == 0 && "Registers only produce one result!"); 1274 if (NotRegisters) 1275 return EEVT::TypeSet(); // Unknown. 1276 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1277 return EEVT::TypeSet(T.getRegisterVTs(R)); 1278 } 1279 1280 if (R->isSubClassOf("SubRegIndex")) { 1281 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1282 return EEVT::TypeSet(); 1283 } 1284 1285 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 1286 assert(ResNo == 0 && "This node only has one result!"); 1287 // Using a VTSDNode or CondCodeSDNode. 1288 return EEVT::TypeSet(MVT::Other, TP); 1289 } 1290 1291 if (R->isSubClassOf("ComplexPattern")) { 1292 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1293 if (NotRegisters) 1294 return EEVT::TypeSet(); // Unknown. 1295 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1296 TP); 1297 } 1298 if (R->isSubClassOf("PointerLikeRegClass")) { 1299 assert(ResNo == 0 && "Regclass can only have one result!"); 1300 return EEVT::TypeSet(MVT::iPTR, TP); 1301 } 1302 1303 if (R->getName() == "node" || R->getName() == "srcvalue" || 1304 R->getName() == "zero_reg") { 1305 // Placeholder. 1306 return EEVT::TypeSet(); // Unknown. 1307 } 1308 1309 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1310 return EEVT::TypeSet(MVT::Other, TP); 1311} 1312 1313 1314/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1315/// CodeGenIntrinsic information for it, otherwise return a null pointer. 1316const CodeGenIntrinsic *TreePatternNode:: 1317getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1318 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1319 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1320 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1321 return 0; 1322 1323 unsigned IID = 1324 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); 1325 return &CDP.getIntrinsicInfo(IID); 1326} 1327 1328/// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1329/// return the ComplexPattern information, otherwise return null. 1330const ComplexPattern * 1331TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1332 if (!isLeaf()) return 0; 1333 1334 DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); 1335 if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) 1336 return &CGP.getComplexPattern(DI->getDef()); 1337 return 0; 1338} 1339 1340/// NodeHasProperty - Return true if this node has the specified property. 1341bool TreePatternNode::NodeHasProperty(SDNP Property, 1342 const CodeGenDAGPatterns &CGP) const { 1343 if (isLeaf()) { 1344 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1345 return CP->hasProperty(Property); 1346 return false; 1347 } 1348 1349 Record *Operator = getOperator(); 1350 if (!Operator->isSubClassOf("SDNode")) return false; 1351 1352 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1353} 1354 1355 1356 1357 1358/// TreeHasProperty - Return true if any node in this tree has the specified 1359/// property. 1360bool TreePatternNode::TreeHasProperty(SDNP Property, 1361 const CodeGenDAGPatterns &CGP) const { 1362 if (NodeHasProperty(Property, CGP)) 1363 return true; 1364 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1365 if (getChild(i)->TreeHasProperty(Property, CGP)) 1366 return true; 1367 return false; 1368} 1369 1370/// isCommutativeIntrinsic - Return true if the node corresponds to a 1371/// commutative intrinsic. 1372bool 1373TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1374 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1375 return Int->isCommutative; 1376 return false; 1377} 1378 1379 1380/// ApplyTypeConstraints - Apply all of the type constraints relevant to 1381/// this node and its children in the tree. This returns true if it makes a 1382/// change, false otherwise. If a type contradiction is found, throw an 1383/// exception. 1384bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1385 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1386 if (isLeaf()) { 1387 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1388 // If it's a regclass or something else known, include the type. 1389 bool MadeChange = false; 1390 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1391 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1392 NotRegisters, TP), TP); 1393 return MadeChange; 1394 } 1395 1396 if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { 1397 assert(Types.size() == 1 && "Invalid IntInit"); 1398 1399 // Int inits are always integers. :) 1400 bool MadeChange = Types[0].EnforceInteger(TP); 1401 1402 if (!Types[0].isConcrete()) 1403 return MadeChange; 1404 1405 MVT::SimpleValueType VT = getType(0); 1406 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1407 return MadeChange; 1408 1409 unsigned Size = EVT(VT).getSizeInBits(); 1410 // Make sure that the value is representable for this type. 1411 if (Size >= 32) return MadeChange; 1412 1413 // Check that the value doesn't use more bits than we have. It must either 1414 // be a sign- or zero-extended equivalent of the original. 1415 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 1416 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) 1417 return MadeChange; 1418 1419 TP.error("Integer value '" + itostr(II->getValue()) + 1420 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1421 return MadeChange; 1422 } 1423 return false; 1424 } 1425 1426 // special handling for set, which isn't really an SDNode. 1427 if (getOperator()->getName() == "set") { 1428 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1429 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1430 unsigned NC = getNumChildren(); 1431 1432 TreePatternNode *SetVal = getChild(NC-1); 1433 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1434 1435 for (unsigned i = 0; i < NC-1; ++i) { 1436 TreePatternNode *Child = getChild(i); 1437 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1438 1439 // Types of operands must match. 1440 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1441 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1442 } 1443 return MadeChange; 1444 } 1445 1446 if (getOperator()->getName() == "implicit") { 1447 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1448 1449 bool MadeChange = false; 1450 for (unsigned i = 0; i < getNumChildren(); ++i) 1451 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1452 return MadeChange; 1453 } 1454 1455 if (getOperator()->getName() == "COPY_TO_REGCLASS") { 1456 bool MadeChange = false; 1457 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1458 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 1459 1460 assert(getChild(0)->getNumTypes() == 1 && 1461 getChild(1)->getNumTypes() == 1 && "Unhandled case"); 1462 1463 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care 1464 // what type it gets, so if it didn't get a concrete type just give it the 1465 // first viable type from the reg class. 1466 if (!getChild(1)->hasTypeSet(0) && 1467 !getChild(1)->getExtType(0).isCompletelyUnknown()) { 1468 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; 1469 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); 1470 } 1471 return MadeChange; 1472 } 1473 1474 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1475 bool MadeChange = false; 1476 1477 // Apply the result type to the node. 1478 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1479 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1480 1481 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1482 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1483 1484 if (getNumChildren() != NumParamVTs + 1) 1485 TP.error("Intrinsic '" + Int->Name + "' expects " + 1486 utostr(NumParamVTs) + " operands, not " + 1487 utostr(getNumChildren() - 1) + " operands!"); 1488 1489 // Apply type info to the intrinsic ID. 1490 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1491 1492 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1493 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1494 1495 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1496 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1497 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1498 } 1499 return MadeChange; 1500 } 1501 1502 if (getOperator()->isSubClassOf("SDNode")) { 1503 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1504 1505 // Check that the number of operands is sane. Negative operands -> varargs. 1506 if (NI.getNumOperands() >= 0 && 1507 getNumChildren() != (unsigned)NI.getNumOperands()) 1508 TP.error(getOperator()->getName() + " node requires exactly " + 1509 itostr(NI.getNumOperands()) + " operands!"); 1510 1511 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1512 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1513 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1514 return MadeChange; 1515 } 1516 1517 if (getOperator()->isSubClassOf("Instruction")) { 1518 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1519 CodeGenInstruction &InstInfo = 1520 CDP.getTargetInfo().getInstruction(getOperator()); 1521 1522 bool MadeChange = false; 1523 1524 // Apply the result types to the node, these come from the things in the 1525 // (outs) list of the instruction. 1526 // FIXME: Cap at one result so far. 1527 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1528 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { 1529 Record *ResultNode = Inst.getResult(ResNo); 1530 1531 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 1532 MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); 1533 } else if (ResultNode->isSubClassOf("RegisterOperand")) { 1534 Record *RegClass = ResultNode->getValueAsDef("RegClass"); 1535 const CodeGenRegisterClass &RC = 1536 CDP.getTargetInfo().getRegisterClass(RegClass); 1537 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1538 } else if (ResultNode->getName() == "unknown") { 1539 // Nothing to do. 1540 } else { 1541 assert(ResultNode->isSubClassOf("RegisterClass") && 1542 "Operands should be register classes!"); 1543 const CodeGenRegisterClass &RC = 1544 CDP.getTargetInfo().getRegisterClass(ResultNode); 1545 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1546 } 1547 } 1548 1549 // If the instruction has implicit defs, we apply the first one as a result. 1550 // FIXME: This sucks, it should apply all implicit defs. 1551 if (!InstInfo.ImplicitDefs.empty()) { 1552 unsigned ResNo = NumResultsToAdd; 1553 1554 // FIXME: Generalize to multiple possible types and multiple possible 1555 // ImplicitDefs. 1556 MVT::SimpleValueType VT = 1557 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1558 1559 if (VT != MVT::Other) 1560 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1561 } 1562 1563 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1564 // be the same. 1565 if (getOperator()->getName() == "INSERT_SUBREG") { 1566 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1567 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1568 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1569 } 1570 1571 unsigned ChildNo = 0; 1572 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1573 Record *OperandNode = Inst.getOperand(i); 1574 1575 // If the instruction expects a predicate or optional def operand, we 1576 // codegen this by setting the operand to it's default value if it has a 1577 // non-empty DefaultOps field. 1578 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1579 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1580 continue; 1581 1582 // Verify that we didn't run out of provided operands. 1583 if (ChildNo >= getNumChildren()) 1584 TP.error("Instruction '" + getOperator()->getName() + 1585 "' expects more operands than were provided."); 1586 1587 MVT::SimpleValueType VT; 1588 TreePatternNode *Child = getChild(ChildNo++); 1589 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1590 1591 if (OperandNode->isSubClassOf("RegisterClass")) { 1592 const CodeGenRegisterClass &RC = 1593 CDP.getTargetInfo().getRegisterClass(OperandNode); 1594 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1595 } else if (OperandNode->isSubClassOf("RegisterOperand")) { 1596 Record *RegClass = OperandNode->getValueAsDef("RegClass"); 1597 const CodeGenRegisterClass &RC = 1598 CDP.getTargetInfo().getRegisterClass(RegClass); 1599 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1600 } else if (OperandNode->isSubClassOf("Operand")) { 1601 VT = getValueType(OperandNode->getValueAsDef("Type")); 1602 MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); 1603 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1604 MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); 1605 } else if (OperandNode->getName() == "unknown") { 1606 // Nothing to do. 1607 } else 1608 llvm_unreachable("Unknown operand type!"); 1609 1610 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1611 } 1612 1613 if (ChildNo != getNumChildren()) 1614 TP.error("Instruction '" + getOperator()->getName() + 1615 "' was provided too many operands!"); 1616 1617 return MadeChange; 1618 } 1619 1620 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1621 1622 // Node transforms always take one operand. 1623 if (getNumChildren() != 1) 1624 TP.error("Node transform '" + getOperator()->getName() + 1625 "' requires one operand!"); 1626 1627 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1628 1629 1630 // If either the output or input of the xform does not have exact 1631 // type info. We assume they must be the same. Otherwise, it is perfectly 1632 // legal to transform from one type to a completely different type. 1633#if 0 1634 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1635 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1636 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1637 return MadeChange; 1638 } 1639#endif 1640 return MadeChange; 1641} 1642 1643/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1644/// RHS of a commutative operation, not the on LHS. 1645static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1646 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1647 return true; 1648 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) 1649 return true; 1650 return false; 1651} 1652 1653 1654/// canPatternMatch - If it is impossible for this pattern to match on this 1655/// target, fill in Reason and return false. Otherwise, return true. This is 1656/// used as a sanity check for .td files (to prevent people from writing stuff 1657/// that can never possibly work), and to prevent the pattern permuter from 1658/// generating stuff that is useless. 1659bool TreePatternNode::canPatternMatch(std::string &Reason, 1660 const CodeGenDAGPatterns &CDP) { 1661 if (isLeaf()) return true; 1662 1663 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1664 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1665 return false; 1666 1667 // If this is an intrinsic, handle cases that would make it not match. For 1668 // example, if an operand is required to be an immediate. 1669 if (getOperator()->isSubClassOf("Intrinsic")) { 1670 // TODO: 1671 return true; 1672 } 1673 1674 // If this node is a commutative operator, check that the LHS isn't an 1675 // immediate. 1676 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1677 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1678 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1679 // Scan all of the operands of the node and make sure that only the last one 1680 // is a constant node, unless the RHS also is. 1681 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1682 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1683 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1684 if (OnlyOnRHSOfCommutative(getChild(i))) { 1685 Reason="Immediate value must be on the RHS of commutative operators!"; 1686 return false; 1687 } 1688 } 1689 } 1690 1691 return true; 1692} 1693 1694//===----------------------------------------------------------------------===// 1695// TreePattern implementation 1696// 1697 1698TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1699 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1700 isInputPattern = isInput; 1701 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1702 Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); 1703} 1704 1705TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1706 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1707 isInputPattern = isInput; 1708 Trees.push_back(ParseTreePattern(Pat, "")); 1709} 1710 1711TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1712 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1713 isInputPattern = isInput; 1714 Trees.push_back(Pat); 1715} 1716 1717void TreePattern::error(const std::string &Msg) const { 1718 dump(); 1719 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1720} 1721 1722void TreePattern::ComputeNamedNodes() { 1723 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1724 ComputeNamedNodes(Trees[i]); 1725} 1726 1727void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1728 if (!N->getName().empty()) 1729 NamedNodes[N->getName()].push_back(N); 1730 1731 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1732 ComputeNamedNodes(N->getChild(i)); 1733} 1734 1735 1736TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 1737 if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) { 1738 Record *R = DI->getDef(); 1739 1740 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1741 // TreePatternNode of its own. For example: 1742 /// (foo GPR, imm) -> (foo GPR, (imm)) 1743 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 1744 return ParseTreePattern( 1745 DagInit::get(DI, "", 1746 std::vector<std::pair<Init*, std::string> >()), 1747 OpName); 1748 1749 // Input argument? 1750 TreePatternNode *Res = new TreePatternNode(DI, 1); 1751 if (R->getName() == "node" && !OpName.empty()) { 1752 if (OpName.empty()) 1753 error("'node' argument requires a name to match with operand list"); 1754 Args.push_back(OpName); 1755 } 1756 1757 Res->setName(OpName); 1758 return Res; 1759 } 1760 1761 if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) { 1762 if (!OpName.empty()) 1763 error("Constant int argument should not have a name!"); 1764 return new TreePatternNode(II, 1); 1765 } 1766 1767 if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) { 1768 // Turn this into an IntInit. 1769 Init *II = BI->convertInitializerTo(IntRecTy::get()); 1770 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1771 error("Bits value must be constants!"); 1772 return ParseTreePattern(II, OpName); 1773 } 1774 1775 DagInit *Dag = dynamic_cast<DagInit*>(TheInit); 1776 if (!Dag) { 1777 TheInit->dump(); 1778 error("Pattern has unexpected init kind!"); 1779 } 1780 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); 1781 if (!OpDef) error("Pattern has unexpected operator type!"); 1782 Record *Operator = OpDef->getDef(); 1783 1784 if (Operator->isSubClassOf("ValueType")) { 1785 // If the operator is a ValueType, then this must be "type cast" of a leaf 1786 // node. 1787 if (Dag->getNumArgs() != 1) 1788 error("Type cast only takes one operand!"); 1789 1790 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 1791 1792 // Apply the type cast. 1793 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 1794 New->UpdateNodeType(0, getValueType(Operator), *this); 1795 1796 if (!OpName.empty()) 1797 error("ValueType cast should not have a name!"); 1798 return New; 1799 } 1800 1801 // Verify that this is something that makes sense for an operator. 1802 if (!Operator->isSubClassOf("PatFrag") && 1803 !Operator->isSubClassOf("SDNode") && 1804 !Operator->isSubClassOf("Instruction") && 1805 !Operator->isSubClassOf("SDNodeXForm") && 1806 !Operator->isSubClassOf("Intrinsic") && 1807 Operator->getName() != "set" && 1808 Operator->getName() != "implicit") 1809 error("Unrecognized node '" + Operator->getName() + "'!"); 1810 1811 // Check to see if this is something that is illegal in an input pattern. 1812 if (isInputPattern) { 1813 if (Operator->isSubClassOf("Instruction") || 1814 Operator->isSubClassOf("SDNodeXForm")) 1815 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1816 } else { 1817 if (Operator->isSubClassOf("Intrinsic")) 1818 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1819 1820 if (Operator->isSubClassOf("SDNode") && 1821 Operator->getName() != "imm" && 1822 Operator->getName() != "fpimm" && 1823 Operator->getName() != "tglobaltlsaddr" && 1824 Operator->getName() != "tconstpool" && 1825 Operator->getName() != "tjumptable" && 1826 Operator->getName() != "tframeindex" && 1827 Operator->getName() != "texternalsym" && 1828 Operator->getName() != "tblockaddress" && 1829 Operator->getName() != "tglobaladdr" && 1830 Operator->getName() != "bb" && 1831 Operator->getName() != "vt") 1832 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1833 } 1834 1835 std::vector<TreePatternNode*> Children; 1836 1837 // Parse all the operands. 1838 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 1839 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 1840 1841 // If the operator is an intrinsic, then this is just syntactic sugar for for 1842 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1843 // convert the intrinsic name to a number. 1844 if (Operator->isSubClassOf("Intrinsic")) { 1845 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1846 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1847 1848 // If this intrinsic returns void, it must have side-effects and thus a 1849 // chain. 1850 if (Int.IS.RetVTs.empty()) 1851 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1852 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 1853 // Has side-effects, requires chain. 1854 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1855 else // Otherwise, no chain. 1856 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1857 1858 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 1859 Children.insert(Children.begin(), IIDNode); 1860 } 1861 1862 unsigned NumResults = GetNumNodeResults(Operator, CDP); 1863 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 1864 Result->setName(OpName); 1865 1866 if (!Dag->getName().empty()) { 1867 assert(Result->getName().empty()); 1868 Result->setName(Dag->getName()); 1869 } 1870 return Result; 1871} 1872 1873/// SimplifyTree - See if we can simplify this tree to eliminate something that 1874/// will never match in favor of something obvious that will. This is here 1875/// strictly as a convenience to target authors because it allows them to write 1876/// more type generic things and have useless type casts fold away. 1877/// 1878/// This returns true if any change is made. 1879static bool SimplifyTree(TreePatternNode *&N) { 1880 if (N->isLeaf()) 1881 return false; 1882 1883 // If we have a bitconvert with a resolved type and if the source and 1884 // destination types are the same, then the bitconvert is useless, remove it. 1885 if (N->getOperator()->getName() == "bitconvert" && 1886 N->getExtType(0).isConcrete() && 1887 N->getExtType(0) == N->getChild(0)->getExtType(0) && 1888 N->getName().empty()) { 1889 N = N->getChild(0); 1890 SimplifyTree(N); 1891 return true; 1892 } 1893 1894 // Walk all children. 1895 bool MadeChange = false; 1896 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 1897 TreePatternNode *Child = N->getChild(i); 1898 MadeChange |= SimplifyTree(Child); 1899 N->setChild(i, Child); 1900 } 1901 return MadeChange; 1902} 1903 1904 1905 1906/// InferAllTypes - Infer/propagate as many types throughout the expression 1907/// patterns as possible. Return true if all types are inferred, false 1908/// otherwise. Throw an exception if a type contradiction is found. 1909bool TreePattern:: 1910InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 1911 if (NamedNodes.empty()) 1912 ComputeNamedNodes(); 1913 1914 bool MadeChange = true; 1915 while (MadeChange) { 1916 MadeChange = false; 1917 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1918 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1919 MadeChange |= SimplifyTree(Trees[i]); 1920 } 1921 1922 // If there are constraints on our named nodes, apply them. 1923 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator 1924 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { 1925 SmallVectorImpl<TreePatternNode*> &Nodes = I->second; 1926 1927 // If we have input named node types, propagate their types to the named 1928 // values here. 1929 if (InNamedTypes) { 1930 // FIXME: Should be error? 1931 assert(InNamedTypes->count(I->getKey()) && 1932 "Named node in output pattern but not input pattern?"); 1933 1934 const SmallVectorImpl<TreePatternNode*> &InNodes = 1935 InNamedTypes->find(I->getKey())->second; 1936 1937 // The input types should be fully resolved by now. 1938 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 1939 // If this node is a register class, and it is the root of the pattern 1940 // then we're mapping something onto an input register. We allow 1941 // changing the type of the input register in this case. This allows 1942 // us to match things like: 1943 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 1944 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { 1945 DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue()); 1946 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 1947 DI->getDef()->isSubClassOf("RegisterOperand"))) 1948 continue; 1949 } 1950 1951 assert(Nodes[i]->getNumTypes() == 1 && 1952 InNodes[0]->getNumTypes() == 1 && 1953 "FIXME: cannot name multiple result nodes yet"); 1954 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), 1955 *this); 1956 } 1957 } 1958 1959 // If there are multiple nodes with the same name, they must all have the 1960 // same type. 1961 if (I->second.size() > 1) { 1962 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 1963 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 1964 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 1965 "FIXME: cannot name multiple result nodes yet"); 1966 1967 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 1968 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 1969 } 1970 } 1971 } 1972 } 1973 1974 bool HasUnresolvedTypes = false; 1975 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1976 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 1977 return !HasUnresolvedTypes; 1978} 1979 1980void TreePattern::print(raw_ostream &OS) const { 1981 OS << getRecord()->getName(); 1982 if (!Args.empty()) { 1983 OS << "(" << Args[0]; 1984 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1985 OS << ", " << Args[i]; 1986 OS << ")"; 1987 } 1988 OS << ": "; 1989 1990 if (Trees.size() > 1) 1991 OS << "[\n"; 1992 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1993 OS << "\t"; 1994 Trees[i]->print(OS); 1995 OS << "\n"; 1996 } 1997 1998 if (Trees.size() > 1) 1999 OS << "]\n"; 2000} 2001 2002void TreePattern::dump() const { print(errs()); } 2003 2004//===----------------------------------------------------------------------===// 2005// CodeGenDAGPatterns implementation 2006// 2007 2008CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2009 Records(R), Target(R) { 2010 2011 Intrinsics = LoadIntrinsics(Records, false); 2012 TgtIntrinsics = LoadIntrinsics(Records, true); 2013 ParseNodeInfo(); 2014 ParseNodeTransforms(); 2015 ParseComplexPatterns(); 2016 ParsePatternFragments(); 2017 ParseDefaultOperands(); 2018 ParseInstructions(); 2019 ParsePatterns(); 2020 2021 // Generate variants. For example, commutative patterns can match 2022 // multiple ways. Add them to PatternsToMatch as well. 2023 GenerateVariants(); 2024 2025 // Infer instruction flags. For example, we can detect loads, 2026 // stores, and side effects in many cases by examining an 2027 // instruction's pattern. 2028 InferInstructionFlags(); 2029 2030 // Verify that instruction flags match the patterns. 2031 VerifyInstructionFlags(); 2032} 2033 2034CodeGenDAGPatterns::~CodeGenDAGPatterns() { 2035 for (pf_iterator I = PatternFragments.begin(), 2036 E = PatternFragments.end(); I != E; ++I) 2037 delete I->second; 2038} 2039 2040 2041Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2042 Record *N = Records.getDef(Name); 2043 if (!N || !N->isSubClassOf("SDNode")) { 2044 errs() << "Error getting SDNode '" << Name << "'!\n"; 2045 exit(1); 2046 } 2047 return N; 2048} 2049 2050// Parse all of the SDNode definitions for the target, populating SDNodes. 2051void CodeGenDAGPatterns::ParseNodeInfo() { 2052 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2053 while (!Nodes.empty()) { 2054 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2055 Nodes.pop_back(); 2056 } 2057 2058 // Get the builtin intrinsic nodes. 2059 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2060 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2061 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2062} 2063 2064/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2065/// map, and emit them to the file as functions. 2066void CodeGenDAGPatterns::ParseNodeTransforms() { 2067 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2068 while (!Xforms.empty()) { 2069 Record *XFormNode = Xforms.back(); 2070 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2071 std::string Code = XFormNode->getValueAsString("XFormFunction"); 2072 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2073 2074 Xforms.pop_back(); 2075 } 2076} 2077 2078void CodeGenDAGPatterns::ParseComplexPatterns() { 2079 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2080 while (!AMs.empty()) { 2081 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2082 AMs.pop_back(); 2083 } 2084} 2085 2086 2087/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2088/// file, building up the PatternFragments map. After we've collected them all, 2089/// inline fragments together as necessary, so that there are no references left 2090/// inside a pattern fragment to a pattern fragment. 2091/// 2092void CodeGenDAGPatterns::ParsePatternFragments() { 2093 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2094 2095 // First step, parse all of the fragments. 2096 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2097 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 2098 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 2099 PatternFragments[Fragments[i]] = P; 2100 2101 // Validate the argument list, converting it to set, to discard duplicates. 2102 std::vector<std::string> &Args = P->getArgList(); 2103 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2104 2105 if (OperandsSet.count("")) 2106 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2107 2108 // Parse the operands list. 2109 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 2110 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); 2111 // Special cases: ops == outs == ins. Different names are used to 2112 // improve readability. 2113 if (!OpsOp || 2114 (OpsOp->getDef()->getName() != "ops" && 2115 OpsOp->getDef()->getName() != "outs" && 2116 OpsOp->getDef()->getName() != "ins")) 2117 P->error("Operands list should start with '(ops ... '!"); 2118 2119 // Copy over the arguments. 2120 Args.clear(); 2121 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2122 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || 2123 static_cast<DefInit*>(OpsList->getArg(j))-> 2124 getDef()->getName() != "node") 2125 P->error("Operands list should all be 'node' values."); 2126 if (OpsList->getArgName(j).empty()) 2127 P->error("Operands list should have names for each operand!"); 2128 if (!OperandsSet.count(OpsList->getArgName(j))) 2129 P->error("'" + OpsList->getArgName(j) + 2130 "' does not occur in pattern or was multiply specified!"); 2131 OperandsSet.erase(OpsList->getArgName(j)); 2132 Args.push_back(OpsList->getArgName(j)); 2133 } 2134 2135 if (!OperandsSet.empty()) 2136 P->error("Operands list does not contain an entry for operand '" + 2137 *OperandsSet.begin() + "'!"); 2138 2139 // If there is a code init for this fragment, keep track of the fact that 2140 // this fragment uses it. 2141 TreePredicateFn PredFn(P); 2142 if (!PredFn.isAlwaysTrue()) 2143 P->getOnlyTree()->addPredicateFn(PredFn); 2144 2145 // If there is a node transformation corresponding to this, keep track of 2146 // it. 2147 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 2148 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2149 P->getOnlyTree()->setTransformFn(Transform); 2150 } 2151 2152 // Now that we've parsed all of the tree fragments, do a closure on them so 2153 // that there are not references to PatFrags left inside of them. 2154 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2155 TreePattern *ThePat = PatternFragments[Fragments[i]]; 2156 ThePat->InlinePatternFragments(); 2157 2158 // Infer as many types as possible. Don't worry about it if we don't infer 2159 // all of them, some may depend on the inputs of the pattern. 2160 try { 2161 ThePat->InferAllTypes(); 2162 } catch (...) { 2163 // If this pattern fragment is not supported by this target (no types can 2164 // satisfy its constraints), just ignore it. If the bogus pattern is 2165 // actually used by instructions, the type consistency error will be 2166 // reported there. 2167 } 2168 2169 // If debugging, print out the pattern fragment result. 2170 DEBUG(ThePat->dump()); 2171 } 2172} 2173 2174void CodeGenDAGPatterns::ParseDefaultOperands() { 2175 std::vector<Record*> DefaultOps; 2176 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 2177 2178 // Find some SDNode. 2179 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2180 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2181 2182 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 2183 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 2184 2185 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2186 // SomeSDnode so that we can parse this. 2187 std::vector<std::pair<Init*, std::string> > Ops; 2188 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2189 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2190 DefaultInfo->getArgName(op))); 2191 DagInit *DI = DagInit::get(SomeSDNode, "", Ops); 2192 2193 // Create a TreePattern to parse this. 2194 TreePattern P(DefaultOps[i], DI, false, *this); 2195 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2196 2197 // Copy the operands over into a DAGDefaultOperand. 2198 DAGDefaultOperand DefaultOpInfo; 2199 2200 TreePatternNode *T = P.getTree(0); 2201 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2202 TreePatternNode *TPN = T->getChild(op); 2203 while (TPN->ApplyTypeConstraints(P, false)) 2204 /* Resolve all types */; 2205 2206 if (TPN->ContainsUnresolvedType()) { 2207 throw "Value #" + utostr(i) + " of OperandWithDefaultOps '" + 2208 DefaultOps[i]->getName() +"' doesn't have a concrete type!"; 2209 } 2210 DefaultOpInfo.DefaultOps.push_back(TPN); 2211 } 2212 2213 // Insert it into the DefaultOperands map so we can find it later. 2214 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 2215 } 2216} 2217 2218/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2219/// instruction input. Return true if this is a real use. 2220static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2221 std::map<std::string, TreePatternNode*> &InstInputs) { 2222 // No name -> not interesting. 2223 if (Pat->getName().empty()) { 2224 if (Pat->isLeaf()) { 2225 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2226 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2227 DI->getDef()->isSubClassOf("RegisterOperand"))) 2228 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2229 } 2230 return false; 2231 } 2232 2233 Record *Rec; 2234 if (Pat->isLeaf()) { 2235 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2236 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2237 Rec = DI->getDef(); 2238 } else { 2239 Rec = Pat->getOperator(); 2240 } 2241 2242 // SRCVALUE nodes are ignored. 2243 if (Rec->getName() == "srcvalue") 2244 return false; 2245 2246 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2247 if (!Slot) { 2248 Slot = Pat; 2249 return true; 2250 } 2251 Record *SlotRec; 2252 if (Slot->isLeaf()) { 2253 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); 2254 } else { 2255 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2256 SlotRec = Slot->getOperator(); 2257 } 2258 2259 // Ensure that the inputs agree if we've already seen this input. 2260 if (Rec != SlotRec) 2261 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2262 if (Slot->getExtTypes() != Pat->getExtTypes()) 2263 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2264 return true; 2265} 2266 2267/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2268/// part of "I", the instruction), computing the set of inputs and outputs of 2269/// the pattern. Report errors if we see anything naughty. 2270void CodeGenDAGPatterns:: 2271FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2272 std::map<std::string, TreePatternNode*> &InstInputs, 2273 std::map<std::string, TreePatternNode*>&InstResults, 2274 std::vector<Record*> &InstImpResults) { 2275 if (Pat->isLeaf()) { 2276 bool isUse = HandleUse(I, Pat, InstInputs); 2277 if (!isUse && Pat->getTransformFn()) 2278 I->error("Cannot specify a transform function for a non-input value!"); 2279 return; 2280 } 2281 2282 if (Pat->getOperator()->getName() == "implicit") { 2283 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2284 TreePatternNode *Dest = Pat->getChild(i); 2285 if (!Dest->isLeaf()) 2286 I->error("implicitly defined value should be a register!"); 2287 2288 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2289 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2290 I->error("implicitly defined value should be a register!"); 2291 InstImpResults.push_back(Val->getDef()); 2292 } 2293 return; 2294 } 2295 2296 if (Pat->getOperator()->getName() != "set") { 2297 // If this is not a set, verify that the children nodes are not void typed, 2298 // and recurse. 2299 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2300 if (Pat->getChild(i)->getNumTypes() == 0) 2301 I->error("Cannot have void nodes inside of patterns!"); 2302 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2303 InstImpResults); 2304 } 2305 2306 // If this is a non-leaf node with no children, treat it basically as if 2307 // it were a leaf. This handles nodes like (imm). 2308 bool isUse = HandleUse(I, Pat, InstInputs); 2309 2310 if (!isUse && Pat->getTransformFn()) 2311 I->error("Cannot specify a transform function for a non-input value!"); 2312 return; 2313 } 2314 2315 // Otherwise, this is a set, validate and collect instruction results. 2316 if (Pat->getNumChildren() == 0) 2317 I->error("set requires operands!"); 2318 2319 if (Pat->getTransformFn()) 2320 I->error("Cannot specify a transform function on a set node!"); 2321 2322 // Check the set destinations. 2323 unsigned NumDests = Pat->getNumChildren()-1; 2324 for (unsigned i = 0; i != NumDests; ++i) { 2325 TreePatternNode *Dest = Pat->getChild(i); 2326 if (!Dest->isLeaf()) 2327 I->error("set destination should be a register!"); 2328 2329 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2330 if (!Val) 2331 I->error("set destination should be a register!"); 2332 2333 if (Val->getDef()->isSubClassOf("RegisterClass") || 2334 Val->getDef()->isSubClassOf("RegisterOperand") || 2335 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2336 if (Dest->getName().empty()) 2337 I->error("set destination must have a name!"); 2338 if (InstResults.count(Dest->getName())) 2339 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2340 InstResults[Dest->getName()] = Dest; 2341 } else if (Val->getDef()->isSubClassOf("Register")) { 2342 InstImpResults.push_back(Val->getDef()); 2343 } else { 2344 I->error("set destination should be a register!"); 2345 } 2346 } 2347 2348 // Verify and collect info from the computation. 2349 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2350 InstInputs, InstResults, InstImpResults); 2351} 2352 2353//===----------------------------------------------------------------------===// 2354// Instruction Analysis 2355//===----------------------------------------------------------------------===// 2356 2357class InstAnalyzer { 2358 const CodeGenDAGPatterns &CDP; 2359public: 2360 bool hasSideEffects; 2361 bool mayStore; 2362 bool mayLoad; 2363 bool isBitcast; 2364 bool isVariadic; 2365 2366 InstAnalyzer(const CodeGenDAGPatterns &cdp) 2367 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 2368 isBitcast(false), isVariadic(false) {} 2369 2370 void Analyze(const TreePattern *Pat) { 2371 // Assume only the first tree is the pattern. The others are clobber nodes. 2372 AnalyzeNode(Pat->getTree(0)); 2373 } 2374 2375 void Analyze(const PatternToMatch *Pat) { 2376 AnalyzeNode(Pat->getSrcPattern()); 2377 } 2378 2379private: 2380 bool IsNodeBitcast(const TreePatternNode *N) const { 2381 if (hasSideEffects || mayLoad || mayStore || isVariadic) 2382 return false; 2383 2384 if (N->getNumChildren() != 2) 2385 return false; 2386 2387 const TreePatternNode *N0 = N->getChild(0); 2388 if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue())) 2389 return false; 2390 2391 const TreePatternNode *N1 = N->getChild(1); 2392 if (N1->isLeaf()) 2393 return false; 2394 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2395 return false; 2396 2397 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2398 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2399 return false; 2400 return OpInfo.getEnumName() == "ISD::BITCAST"; 2401 } 2402 2403public: 2404 void AnalyzeNode(const TreePatternNode *N) { 2405 if (N->isLeaf()) { 2406 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { 2407 Record *LeafRec = DI->getDef(); 2408 // Handle ComplexPattern leaves. 2409 if (LeafRec->isSubClassOf("ComplexPattern")) { 2410 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2411 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2412 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2413 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2414 } 2415 } 2416 return; 2417 } 2418 2419 // Analyze children. 2420 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2421 AnalyzeNode(N->getChild(i)); 2422 2423 // Ignore set nodes, which are not SDNodes. 2424 if (N->getOperator()->getName() == "set") { 2425 isBitcast = IsNodeBitcast(N); 2426 return; 2427 } 2428 2429 // Get information about the SDNode for the operator. 2430 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 2431 2432 // Notice properties of the node. 2433 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 2434 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 2435 if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2436 if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true; 2437 2438 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2439 // If this is an intrinsic, analyze it. 2440 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2441 mayLoad = true;// These may load memory. 2442 2443 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2444 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2445 2446 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2447 // WriteMem intrinsics can have other strange effects. 2448 hasSideEffects = true; 2449 } 2450 } 2451 2452}; 2453 2454static bool InferFromPattern(CodeGenInstruction &InstInfo, 2455 const InstAnalyzer &PatInfo, 2456 Record *PatDef) { 2457 bool Error = false; 2458 2459 // Remember where InstInfo got its flags. 2460 if (InstInfo.hasUndefFlags()) 2461 InstInfo.InferredFrom = PatDef; 2462 2463 // Check explicitly set flags for consistency. 2464 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 2465 !InstInfo.hasSideEffects_Unset) { 2466 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 2467 // the pattern has no side effects. That could be useful for div/rem 2468 // instructions that may trap. 2469 if (!InstInfo.hasSideEffects) { 2470 Error = true; 2471 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 2472 Twine(InstInfo.hasSideEffects)); 2473 } 2474 } 2475 2476 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 2477 Error = true; 2478 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 2479 Twine(InstInfo.mayStore)); 2480 } 2481 2482 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 2483 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 2484 // Some targets translate imediates to loads. 2485 if (!InstInfo.mayLoad) { 2486 Error = true; 2487 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 2488 Twine(InstInfo.mayLoad)); 2489 } 2490 } 2491 2492 // Transfer inferred flags. 2493 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 2494 InstInfo.mayStore |= PatInfo.mayStore; 2495 InstInfo.mayLoad |= PatInfo.mayLoad; 2496 2497 // These flags are silently added without any verification. 2498 InstInfo.isBitcast |= PatInfo.isBitcast; 2499 2500 // Don't infer isVariadic. This flag means something different on SDNodes and 2501 // instructions. For example, a CALL SDNode is variadic because it has the 2502 // call arguments as operands, but a CALL instruction is not variadic - it 2503 // has argument registers as implicit, not explicit uses. 2504 2505 return Error; 2506} 2507 2508/// hasNullFragReference - Return true if the DAG has any reference to the 2509/// null_frag operator. 2510static bool hasNullFragReference(DagInit *DI) { 2511 DefInit *OpDef = dynamic_cast<DefInit*>(DI->getOperator()); 2512 if (!OpDef) return false; 2513 Record *Operator = OpDef->getDef(); 2514 2515 // If this is the null fragment, return true. 2516 if (Operator->getName() == "null_frag") return true; 2517 // If any of the arguments reference the null fragment, return true. 2518 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 2519 DagInit *Arg = dynamic_cast<DagInit*>(DI->getArg(i)); 2520 if (Arg && hasNullFragReference(Arg)) 2521 return true; 2522 } 2523 2524 return false; 2525} 2526 2527/// hasNullFragReference - Return true if any DAG in the list references 2528/// the null_frag operator. 2529static bool hasNullFragReference(ListInit *LI) { 2530 for (unsigned i = 0, e = LI->getSize(); i != e; ++i) { 2531 DagInit *DI = dynamic_cast<DagInit*>(LI->getElement(i)); 2532 assert(DI && "non-dag in an instruction Pattern list?!"); 2533 if (hasNullFragReference(DI)) 2534 return true; 2535 } 2536 return false; 2537} 2538 2539/// Get all the instructions in a tree. 2540static void 2541getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 2542 if (Tree->isLeaf()) 2543 return; 2544 if (Tree->getOperator()->isSubClassOf("Instruction")) 2545 Instrs.push_back(Tree->getOperator()); 2546 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 2547 getInstructionsInTree(Tree->getChild(i), Instrs); 2548} 2549 2550/// ParseInstructions - Parse all of the instructions, inlining and resolving 2551/// any fragments involved. This populates the Instructions list with fully 2552/// resolved instructions. 2553void CodeGenDAGPatterns::ParseInstructions() { 2554 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 2555 2556 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2557 ListInit *LI = 0; 2558 2559 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) 2560 LI = Instrs[i]->getValueAsListInit("Pattern"); 2561 2562 // If there is no pattern, only collect minimal information about the 2563 // instruction for its operand list. We have to assume that there is one 2564 // result, as we have no detailed info. A pattern which references the 2565 // null_frag operator is as-if no pattern were specified. Normally this 2566 // is from a multiclass expansion w/ a SDPatternOperator passed in as 2567 // null_frag. 2568 if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) { 2569 std::vector<Record*> Results; 2570 std::vector<Record*> Operands; 2571 2572 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2573 2574 if (InstInfo.Operands.size() != 0) { 2575 if (InstInfo.Operands.NumDefs == 0) { 2576 // These produce no results 2577 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) 2578 Operands.push_back(InstInfo.Operands[j].Rec); 2579 } else { 2580 // Assume the first operand is the result. 2581 Results.push_back(InstInfo.Operands[0].Rec); 2582 2583 // The rest are inputs. 2584 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) 2585 Operands.push_back(InstInfo.Operands[j].Rec); 2586 } 2587 } 2588 2589 // Create and insert the instruction. 2590 std::vector<Record*> ImpResults; 2591 Instructions.insert(std::make_pair(Instrs[i], 2592 DAGInstruction(0, Results, Operands, ImpResults))); 2593 continue; // no pattern. 2594 } 2595 2596 // Parse the instruction. 2597 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 2598 // Inline pattern fragments into it. 2599 I->InlinePatternFragments(); 2600 2601 // Infer as many types as possible. If we cannot infer all of them, we can 2602 // never do anything with this instruction pattern: report it to the user. 2603 if (!I->InferAllTypes()) 2604 I->error("Could not infer all types in pattern!"); 2605 2606 // InstInputs - Keep track of all of the inputs of the instruction, along 2607 // with the record they are declared as. 2608 std::map<std::string, TreePatternNode*> InstInputs; 2609 2610 // InstResults - Keep track of all the virtual registers that are 'set' 2611 // in the instruction, including what reg class they are. 2612 std::map<std::string, TreePatternNode*> InstResults; 2613 2614 std::vector<Record*> InstImpResults; 2615 2616 // Verify that the top-level forms in the instruction are of void type, and 2617 // fill in the InstResults map. 2618 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2619 TreePatternNode *Pat = I->getTree(j); 2620 if (Pat->getNumTypes() != 0) 2621 I->error("Top-level forms in instruction pattern should have" 2622 " void types"); 2623 2624 // Find inputs and outputs, and verify the structure of the uses/defs. 2625 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2626 InstImpResults); 2627 } 2628 2629 // Now that we have inputs and outputs of the pattern, inspect the operands 2630 // list for the instruction. This determines the order that operands are 2631 // added to the machine instruction the node corresponds to. 2632 unsigned NumResults = InstResults.size(); 2633 2634 // Parse the operands list from the (ops) list, validating it. 2635 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2636 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); 2637 2638 // Check that all of the results occur first in the list. 2639 std::vector<Record*> Results; 2640 TreePatternNode *Res0Node = 0; 2641 for (unsigned i = 0; i != NumResults; ++i) { 2642 if (i == CGI.Operands.size()) 2643 I->error("'" + InstResults.begin()->first + 2644 "' set but does not appear in operand list!"); 2645 const std::string &OpName = CGI.Operands[i].Name; 2646 2647 // Check that it exists in InstResults. 2648 TreePatternNode *RNode = InstResults[OpName]; 2649 if (RNode == 0) 2650 I->error("Operand $" + OpName + " does not exist in operand list!"); 2651 2652 if (i == 0) 2653 Res0Node = RNode; 2654 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); 2655 if (R == 0) 2656 I->error("Operand $" + OpName + " should be a set destination: all " 2657 "outputs must occur before inputs in operand list!"); 2658 2659 if (CGI.Operands[i].Rec != R) 2660 I->error("Operand $" + OpName + " class mismatch!"); 2661 2662 // Remember the return type. 2663 Results.push_back(CGI.Operands[i].Rec); 2664 2665 // Okay, this one checks out. 2666 InstResults.erase(OpName); 2667 } 2668 2669 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2670 // the copy while we're checking the inputs. 2671 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2672 2673 std::vector<TreePatternNode*> ResultNodeOperands; 2674 std::vector<Record*> Operands; 2675 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 2676 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 2677 const std::string &OpName = Op.Name; 2678 if (OpName.empty()) 2679 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2680 2681 if (!InstInputsCheck.count(OpName)) { 2682 // If this is an operand with a DefaultOps set filled in, we can ignore 2683 // this. When we codegen it, we will do so as always executed. 2684 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 2685 // Does it have a non-empty DefaultOps field? If so, ignore this 2686 // operand. 2687 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2688 continue; 2689 } 2690 I->error("Operand $" + OpName + 2691 " does not appear in the instruction pattern"); 2692 } 2693 TreePatternNode *InVal = InstInputsCheck[OpName]; 2694 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2695 2696 if (InVal->isLeaf() && 2697 dynamic_cast<DefInit*>(InVal->getLeafValue())) { 2698 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2699 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 2700 I->error("Operand $" + OpName + "'s register class disagrees" 2701 " between the operand and pattern"); 2702 } 2703 Operands.push_back(Op.Rec); 2704 2705 // Construct the result for the dest-pattern operand list. 2706 TreePatternNode *OpNode = InVal->clone(); 2707 2708 // No predicate is useful on the result. 2709 OpNode->clearPredicateFns(); 2710 2711 // Promote the xform function to be an explicit node if set. 2712 if (Record *Xform = OpNode->getTransformFn()) { 2713 OpNode->setTransformFn(0); 2714 std::vector<TreePatternNode*> Children; 2715 Children.push_back(OpNode); 2716 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2717 } 2718 2719 ResultNodeOperands.push_back(OpNode); 2720 } 2721 2722 if (!InstInputsCheck.empty()) 2723 I->error("Input operand $" + InstInputsCheck.begin()->first + 2724 " occurs in pattern but not in operands list!"); 2725 2726 TreePatternNode *ResultPattern = 2727 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2728 GetNumNodeResults(I->getRecord(), *this)); 2729 // Copy fully inferred output node type to instruction result pattern. 2730 for (unsigned i = 0; i != NumResults; ++i) 2731 ResultPattern->setType(i, Res0Node->getExtType(i)); 2732 2733 // Create and insert the instruction. 2734 // FIXME: InstImpResults should not be part of DAGInstruction. 2735 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 2736 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 2737 2738 // Use a temporary tree pattern to infer all types and make sure that the 2739 // constructed result is correct. This depends on the instruction already 2740 // being inserted into the Instructions map. 2741 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2742 Temp.InferAllTypes(&I->getNamedNodesMap()); 2743 2744 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 2745 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2746 2747 DEBUG(I->dump()); 2748 } 2749 2750 // If we can, convert the instructions to be patterns that are matched! 2751 for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = 2752 Instructions.begin(), 2753 E = Instructions.end(); II != E; ++II) { 2754 DAGInstruction &TheInst = II->second; 2755 const TreePattern *I = TheInst.getPattern(); 2756 if (I == 0) continue; // No pattern. 2757 2758 // FIXME: Assume only the first tree is the pattern. The others are clobber 2759 // nodes. 2760 TreePatternNode *Pattern = I->getTree(0); 2761 TreePatternNode *SrcPattern; 2762 if (Pattern->getOperator()->getName() == "set") { 2763 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2764 } else{ 2765 // Not a set (store or something?) 2766 SrcPattern = Pattern; 2767 } 2768 2769 Record *Instr = II->first; 2770 AddPatternToMatch(I, 2771 PatternToMatch(Instr, 2772 Instr->getValueAsListInit("Predicates"), 2773 SrcPattern, 2774 TheInst.getResultPattern(), 2775 TheInst.getImpResults(), 2776 Instr->getValueAsInt("AddedComplexity"), 2777 Instr->getID())); 2778 } 2779} 2780 2781 2782typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 2783 2784static void FindNames(const TreePatternNode *P, 2785 std::map<std::string, NameRecord> &Names, 2786 const TreePattern *PatternTop) { 2787 if (!P->getName().empty()) { 2788 NameRecord &Rec = Names[P->getName()]; 2789 // If this is the first instance of the name, remember the node. 2790 if (Rec.second++ == 0) 2791 Rec.first = P; 2792 else if (Rec.first->getExtTypes() != P->getExtTypes()) 2793 PatternTop->error("repetition of value: $" + P->getName() + 2794 " where different uses have different types!"); 2795 } 2796 2797 if (!P->isLeaf()) { 2798 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 2799 FindNames(P->getChild(i), Names, PatternTop); 2800 } 2801} 2802 2803void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, 2804 const PatternToMatch &PTM) { 2805 // Do some sanity checking on the pattern we're about to match. 2806 std::string Reason; 2807 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) 2808 Pattern->error("Pattern can never match: " + Reason); 2809 2810 // If the source pattern's root is a complex pattern, that complex pattern 2811 // must specify the nodes it can potentially match. 2812 if (const ComplexPattern *CP = 2813 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 2814 if (CP->getRootNodes().empty()) 2815 Pattern->error("ComplexPattern at root must specify list of opcodes it" 2816 " could match"); 2817 2818 2819 // Find all of the named values in the input and output, ensure they have the 2820 // same type. 2821 std::map<std::string, NameRecord> SrcNames, DstNames; 2822 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 2823 FindNames(PTM.getDstPattern(), DstNames, Pattern); 2824 2825 // Scan all of the named values in the destination pattern, rejecting them if 2826 // they don't exist in the input pattern. 2827 for (std::map<std::string, NameRecord>::iterator 2828 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { 2829 if (SrcNames[I->first].first == 0) 2830 Pattern->error("Pattern has input without matching name in output: $" + 2831 I->first); 2832 } 2833 2834 // Scan all of the named values in the source pattern, rejecting them if the 2835 // name isn't used in the dest, and isn't used to tie two values together. 2836 for (std::map<std::string, NameRecord>::iterator 2837 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) 2838 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) 2839 Pattern->error("Pattern has dead named input: $" + I->first); 2840 2841 PatternsToMatch.push_back(PTM); 2842} 2843 2844 2845 2846void CodeGenDAGPatterns::InferInstructionFlags() { 2847 const std::vector<const CodeGenInstruction*> &Instructions = 2848 Target.getInstructionsByEnumValue(); 2849 2850 // First try to infer flags from the primary instruction pattern, if any. 2851 SmallVector<CodeGenInstruction*, 8> Revisit; 2852 unsigned Errors = 0; 2853 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 2854 CodeGenInstruction &InstInfo = 2855 const_cast<CodeGenInstruction &>(*Instructions[i]); 2856 2857 // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0. 2858 // This flag is obsolete and will be removed. 2859 if (InstInfo.neverHasSideEffects) { 2860 assert(!InstInfo.hasSideEffects); 2861 InstInfo.hasSideEffects_Unset = false; 2862 } 2863 2864 // Get the primary instruction pattern. 2865 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 2866 if (!Pattern) { 2867 if (InstInfo.hasUndefFlags()) 2868 Revisit.push_back(&InstInfo); 2869 continue; 2870 } 2871 InstAnalyzer PatInfo(*this); 2872 PatInfo.Analyze(Pattern); 2873 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 2874 } 2875 2876 // Second, look for single-instruction patterns defined outside the 2877 // instruction. 2878 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 2879 const PatternToMatch &PTM = *I; 2880 2881 // We can only infer from single-instruction patterns, otherwise we won't 2882 // know which instruction should get the flags. 2883 SmallVector<Record*, 8> PatInstrs; 2884 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 2885 if (PatInstrs.size() != 1) 2886 continue; 2887 2888 // Get the single instruction. 2889 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 2890 2891 // Only infer properties from the first pattern. We'll verify the others. 2892 if (InstInfo.InferredFrom) 2893 continue; 2894 2895 InstAnalyzer PatInfo(*this); 2896 PatInfo.Analyze(&PTM); 2897 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 2898 } 2899 2900 if (Errors) 2901 throw "pattern conflicts"; 2902 2903 // Revisit instructions with undefined flags and no pattern. 2904 if (Target.guessInstructionProperties()) { 2905 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { 2906 CodeGenInstruction &InstInfo = *Revisit[i]; 2907 if (InstInfo.InferredFrom) 2908 continue; 2909 // The mayLoad and mayStore flags default to false. 2910 // Conservatively assume hasSideEffects if it wasn't explicit. 2911 if (InstInfo.hasSideEffects_Unset) 2912 InstInfo.hasSideEffects = true; 2913 } 2914 return; 2915 } 2916 2917 // Complain about any flags that are still undefined. 2918 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { 2919 CodeGenInstruction &InstInfo = *Revisit[i]; 2920 if (InstInfo.InferredFrom) 2921 continue; 2922 if (InstInfo.hasSideEffects_Unset) 2923 PrintError(InstInfo.TheDef->getLoc(), 2924 "Can't infer hasSideEffects from patterns"); 2925 if (InstInfo.mayStore_Unset) 2926 PrintError(InstInfo.TheDef->getLoc(), 2927 "Can't infer mayStore from patterns"); 2928 if (InstInfo.mayLoad_Unset) 2929 PrintError(InstInfo.TheDef->getLoc(), 2930 "Can't infer mayLoad from patterns"); 2931 } 2932} 2933 2934 2935/// Verify instruction flags against pattern node properties. 2936void CodeGenDAGPatterns::VerifyInstructionFlags() { 2937 unsigned Errors = 0; 2938 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 2939 const PatternToMatch &PTM = *I; 2940 SmallVector<Record*, 8> Instrs; 2941 getInstructionsInTree(PTM.getDstPattern(), Instrs); 2942 if (Instrs.empty()) 2943 continue; 2944 2945 // Count the number of instructions with each flag set. 2946 unsigned NumSideEffects = 0; 2947 unsigned NumStores = 0; 2948 unsigned NumLoads = 0; 2949 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2950 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2951 NumSideEffects += InstInfo.hasSideEffects; 2952 NumStores += InstInfo.mayStore; 2953 NumLoads += InstInfo.mayLoad; 2954 } 2955 2956 // Analyze the source pattern. 2957 InstAnalyzer PatInfo(*this); 2958 PatInfo.Analyze(&PTM); 2959 2960 // Collect error messages. 2961 SmallVector<std::string, 4> Msgs; 2962 2963 // Check for missing flags in the output. 2964 // Permit extra flags for now at least. 2965 if (PatInfo.hasSideEffects && !NumSideEffects) 2966 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 2967 2968 // Don't verify store flags on instructions with side effects. At least for 2969 // intrinsics, side effects implies mayStore. 2970 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 2971 Msgs.push_back("pattern may store, but mayStore isn't set"); 2972 2973 // Similarly, mayStore implies mayLoad on intrinsics. 2974 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 2975 Msgs.push_back("pattern may load, but mayLoad isn't set"); 2976 2977 // Print error messages. 2978 if (Msgs.empty()) 2979 continue; 2980 ++Errors; 2981 2982 for (unsigned i = 0, e = Msgs.size(); i != e; ++i) 2983 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " + 2984 (Instrs.size() == 1 ? 2985 "instruction" : "output instructions")); 2986 // Provide the location of the relevant instruction definitions. 2987 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2988 if (Instrs[i] != PTM.getSrcRecord()) 2989 PrintError(Instrs[i]->getLoc(), "defined here"); 2990 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2991 if (InstInfo.InferredFrom && 2992 InstInfo.InferredFrom != InstInfo.TheDef && 2993 InstInfo.InferredFrom != PTM.getSrcRecord()) 2994 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern"); 2995 } 2996 } 2997 if (Errors) 2998 throw "Errors in DAG patterns"; 2999} 3000 3001/// Given a pattern result with an unresolved type, see if we can find one 3002/// instruction with an unresolved result type. Force this result type to an 3003/// arbitrary element if it's possible types to converge results. 3004static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3005 if (N->isLeaf()) 3006 return false; 3007 3008 // Analyze children. 3009 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3010 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3011 return true; 3012 3013 if (!N->getOperator()->isSubClassOf("Instruction")) 3014 return false; 3015 3016 // If this type is already concrete or completely unknown we can't do 3017 // anything. 3018 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3019 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 3020 continue; 3021 3022 // Otherwise, force its type to the first possibility (an arbitrary choice). 3023 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 3024 return true; 3025 } 3026 3027 return false; 3028} 3029 3030void CodeGenDAGPatterns::ParsePatterns() { 3031 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3032 3033 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 3034 Record *CurPattern = Patterns[i]; 3035 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3036 3037 // If the pattern references the null_frag, there's nothing to do. 3038 if (hasNullFragReference(Tree)) 3039 continue; 3040 3041 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3042 3043 // Inline pattern fragments into it. 3044 Pattern->InlinePatternFragments(); 3045 3046 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3047 if (LI->getSize() == 0) continue; // no pattern. 3048 3049 // Parse the instruction. 3050 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); 3051 3052 // Inline pattern fragments into it. 3053 Result->InlinePatternFragments(); 3054 3055 if (Result->getNumTrees() != 1) 3056 Result->error("Cannot handle instructions producing instructions " 3057 "with temporaries yet!"); 3058 3059 bool IterateInference; 3060 bool InferredAllPatternTypes, InferredAllResultTypes; 3061 do { 3062 // Infer as many types as possible. If we cannot infer all of them, we 3063 // can never do anything with this pattern: report it to the user. 3064 InferredAllPatternTypes = 3065 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3066 3067 // Infer as many types as possible. If we cannot infer all of them, we 3068 // can never do anything with this pattern: report it to the user. 3069 InferredAllResultTypes = 3070 Result->InferAllTypes(&Pattern->getNamedNodesMap()); 3071 3072 IterateInference = false; 3073 3074 // Apply the type of the result to the source pattern. This helps us 3075 // resolve cases where the input type is known to be a pointer type (which 3076 // is considered resolved), but the result knows it needs to be 32- or 3077 // 64-bits. Infer the other way for good measure. 3078 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), 3079 Pattern->getTree(0)->getNumTypes()); 3080 i != e; ++i) { 3081 IterateInference = Pattern->getTree(0)-> 3082 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); 3083 IterateInference |= Result->getTree(0)-> 3084 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); 3085 } 3086 3087 // If our iteration has converged and the input pattern's types are fully 3088 // resolved but the result pattern is not fully resolved, we may have a 3089 // situation where we have two instructions in the result pattern and 3090 // the instructions require a common register class, but don't care about 3091 // what actual MVT is used. This is actually a bug in our modelling: 3092 // output patterns should have register classes, not MVTs. 3093 // 3094 // In any case, to handle this, we just go through and disambiguate some 3095 // arbitrary types to the result pattern's nodes. 3096 if (!IterateInference && InferredAllPatternTypes && 3097 !InferredAllResultTypes) 3098 IterateInference = ForceArbitraryInstResultType(Result->getTree(0), 3099 *Result); 3100 } while (IterateInference); 3101 3102 // Verify that we inferred enough types that we can do something with the 3103 // pattern and result. If these fire the user has to add type casts. 3104 if (!InferredAllPatternTypes) 3105 Pattern->error("Could not infer all types in pattern!"); 3106 if (!InferredAllResultTypes) { 3107 Pattern->dump(); 3108 Result->error("Could not infer all types in pattern result!"); 3109 } 3110 3111 // Validate that the input pattern is correct. 3112 std::map<std::string, TreePatternNode*> InstInputs; 3113 std::map<std::string, TreePatternNode*> InstResults; 3114 std::vector<Record*> InstImpResults; 3115 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 3116 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 3117 InstInputs, InstResults, 3118 InstImpResults); 3119 3120 // Promote the xform function to be an explicit node if set. 3121 TreePatternNode *DstPattern = Result->getOnlyTree(); 3122 std::vector<TreePatternNode*> ResultNodeOperands; 3123 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 3124 TreePatternNode *OpNode = DstPattern->getChild(ii); 3125 if (Record *Xform = OpNode->getTransformFn()) { 3126 OpNode->setTransformFn(0); 3127 std::vector<TreePatternNode*> Children; 3128 Children.push_back(OpNode); 3129 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3130 } 3131 ResultNodeOperands.push_back(OpNode); 3132 } 3133 DstPattern = Result->getOnlyTree(); 3134 if (!DstPattern->isLeaf()) 3135 DstPattern = new TreePatternNode(DstPattern->getOperator(), 3136 ResultNodeOperands, 3137 DstPattern->getNumTypes()); 3138 3139 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) 3140 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); 3141 3142 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 3143 Temp.InferAllTypes(); 3144 3145 3146 AddPatternToMatch(Pattern, 3147 PatternToMatch(CurPattern, 3148 CurPattern->getValueAsListInit("Predicates"), 3149 Pattern->getTree(0), 3150 Temp.getOnlyTree(), InstImpResults, 3151 CurPattern->getValueAsInt("AddedComplexity"), 3152 CurPattern->getID())); 3153 } 3154} 3155 3156/// CombineChildVariants - Given a bunch of permutations of each child of the 3157/// 'operator' node, put them together in all possible ways. 3158static void CombineChildVariants(TreePatternNode *Orig, 3159 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 3160 std::vector<TreePatternNode*> &OutVariants, 3161 CodeGenDAGPatterns &CDP, 3162 const MultipleUseVarSet &DepVars) { 3163 // Make sure that each operand has at least one variant to choose from. 3164 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3165 if (ChildVariants[i].empty()) 3166 return; 3167 3168 // The end result is an all-pairs construction of the resultant pattern. 3169 std::vector<unsigned> Idxs; 3170 Idxs.resize(ChildVariants.size()); 3171 bool NotDone; 3172 do { 3173#ifndef NDEBUG 3174 DEBUG(if (!Idxs.empty()) { 3175 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 3176 for (unsigned i = 0; i < Idxs.size(); ++i) { 3177 errs() << Idxs[i] << " "; 3178 } 3179 errs() << "]\n"; 3180 }); 3181#endif 3182 // Create the variant and add it to the output list. 3183 std::vector<TreePatternNode*> NewChildren; 3184 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3185 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 3186 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, 3187 Orig->getNumTypes()); 3188 3189 // Copy over properties. 3190 R->setName(Orig->getName()); 3191 R->setPredicateFns(Orig->getPredicateFns()); 3192 R->setTransformFn(Orig->getTransformFn()); 3193 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 3194 R->setType(i, Orig->getExtType(i)); 3195 3196 // If this pattern cannot match, do not include it as a variant. 3197 std::string ErrString; 3198 if (!R->canPatternMatch(ErrString, CDP)) { 3199 delete R; 3200 } else { 3201 bool AlreadyExists = false; 3202 3203 // Scan to see if this pattern has already been emitted. We can get 3204 // duplication due to things like commuting: 3205 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3206 // which are the same pattern. Ignore the dups. 3207 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 3208 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 3209 AlreadyExists = true; 3210 break; 3211 } 3212 3213 if (AlreadyExists) 3214 delete R; 3215 else 3216 OutVariants.push_back(R); 3217 } 3218 3219 // Increment indices to the next permutation by incrementing the 3220 // indicies from last index backward, e.g., generate the sequence 3221 // [0, 0], [0, 1], [1, 0], [1, 1]. 3222 int IdxsIdx; 3223 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3224 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3225 Idxs[IdxsIdx] = 0; 3226 else 3227 break; 3228 } 3229 NotDone = (IdxsIdx >= 0); 3230 } while (NotDone); 3231} 3232 3233/// CombineChildVariants - A helper function for binary operators. 3234/// 3235static void CombineChildVariants(TreePatternNode *Orig, 3236 const std::vector<TreePatternNode*> &LHS, 3237 const std::vector<TreePatternNode*> &RHS, 3238 std::vector<TreePatternNode*> &OutVariants, 3239 CodeGenDAGPatterns &CDP, 3240 const MultipleUseVarSet &DepVars) { 3241 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3242 ChildVariants.push_back(LHS); 3243 ChildVariants.push_back(RHS); 3244 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3245} 3246 3247 3248static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3249 std::vector<TreePatternNode *> &Children) { 3250 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3251 Record *Operator = N->getOperator(); 3252 3253 // Only permit raw nodes. 3254 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3255 N->getTransformFn()) { 3256 Children.push_back(N); 3257 return; 3258 } 3259 3260 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3261 Children.push_back(N->getChild(0)); 3262 else 3263 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3264 3265 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3266 Children.push_back(N->getChild(1)); 3267 else 3268 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3269} 3270 3271/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3272/// the (potentially recursive) pattern by using algebraic laws. 3273/// 3274static void GenerateVariantsOf(TreePatternNode *N, 3275 std::vector<TreePatternNode*> &OutVariants, 3276 CodeGenDAGPatterns &CDP, 3277 const MultipleUseVarSet &DepVars) { 3278 // We cannot permute leaves. 3279 if (N->isLeaf()) { 3280 OutVariants.push_back(N); 3281 return; 3282 } 3283 3284 // Look up interesting info about the node. 3285 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3286 3287 // If this node is associative, re-associate. 3288 if (NodeInfo.hasProperty(SDNPAssociative)) { 3289 // Re-associate by pulling together all of the linked operators 3290 std::vector<TreePatternNode*> MaximalChildren; 3291 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3292 3293 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3294 // permutations. 3295 if (MaximalChildren.size() == 3) { 3296 // Find the variants of all of our maximal children. 3297 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3298 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3299 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3300 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3301 3302 // There are only two ways we can permute the tree: 3303 // (A op B) op C and A op (B op C) 3304 // Within these forms, we can also permute A/B/C. 3305 3306 // Generate legal pair permutations of A/B/C. 3307 std::vector<TreePatternNode*> ABVariants; 3308 std::vector<TreePatternNode*> BAVariants; 3309 std::vector<TreePatternNode*> ACVariants; 3310 std::vector<TreePatternNode*> CAVariants; 3311 std::vector<TreePatternNode*> BCVariants; 3312 std::vector<TreePatternNode*> CBVariants; 3313 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3314 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3315 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3316 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3317 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3318 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3319 3320 // Combine those into the result: (x op x) op x 3321 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3322 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3323 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3324 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3325 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3326 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3327 3328 // Combine those into the result: x op (x op x) 3329 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3330 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3331 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3332 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3333 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3334 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3335 return; 3336 } 3337 } 3338 3339 // Compute permutations of all children. 3340 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3341 ChildVariants.resize(N->getNumChildren()); 3342 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3343 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3344 3345 // Build all permutations based on how the children were formed. 3346 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3347 3348 // If this node is commutative, consider the commuted order. 3349 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3350 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3351 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3352 "Commutative but doesn't have 2 children!"); 3353 // Don't count children which are actually register references. 3354 unsigned NC = 0; 3355 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3356 TreePatternNode *Child = N->getChild(i); 3357 if (Child->isLeaf()) 3358 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { 3359 Record *RR = DI->getDef(); 3360 if (RR->isSubClassOf("Register")) 3361 continue; 3362 } 3363 NC++; 3364 } 3365 // Consider the commuted order. 3366 if (isCommIntrinsic) { 3367 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3368 // operands are the commutative operands, and there might be more operands 3369 // after those. 3370 assert(NC >= 3 && 3371 "Commutative intrinsic should have at least 3 childrean!"); 3372 std::vector<std::vector<TreePatternNode*> > Variants; 3373 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3374 Variants.push_back(ChildVariants[2]); 3375 Variants.push_back(ChildVariants[1]); 3376 for (unsigned i = 3; i != NC; ++i) 3377 Variants.push_back(ChildVariants[i]); 3378 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3379 } else if (NC == 2) 3380 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3381 OutVariants, CDP, DepVars); 3382 } 3383} 3384 3385 3386// GenerateVariants - Generate variants. For example, commutative patterns can 3387// match multiple ways. Add them to PatternsToMatch as well. 3388void CodeGenDAGPatterns::GenerateVariants() { 3389 DEBUG(errs() << "Generating instruction variants.\n"); 3390 3391 // Loop over all of the patterns we've collected, checking to see if we can 3392 // generate variants of the instruction, through the exploitation of 3393 // identities. This permits the target to provide aggressive matching without 3394 // the .td file having to contain tons of variants of instructions. 3395 // 3396 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3397 // intentionally do not reconsider these. Any variants of added patterns have 3398 // already been added. 3399 // 3400 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3401 MultipleUseVarSet DepVars; 3402 std::vector<TreePatternNode*> Variants; 3403 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3404 DEBUG(errs() << "Dependent/multiply used variables: "); 3405 DEBUG(DumpDepVars(DepVars)); 3406 DEBUG(errs() << "\n"); 3407 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3408 DepVars); 3409 3410 assert(!Variants.empty() && "Must create at least original variant!"); 3411 Variants.erase(Variants.begin()); // Remove the original pattern. 3412 3413 if (Variants.empty()) // No variants for this pattern. 3414 continue; 3415 3416 DEBUG(errs() << "FOUND VARIANTS OF: "; 3417 PatternsToMatch[i].getSrcPattern()->dump(); 3418 errs() << "\n"); 3419 3420 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3421 TreePatternNode *Variant = Variants[v]; 3422 3423 DEBUG(errs() << " VAR#" << v << ": "; 3424 Variant->dump(); 3425 errs() << "\n"); 3426 3427 // Scan to see if an instruction or explicit pattern already matches this. 3428 bool AlreadyExists = false; 3429 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3430 // Skip if the top level predicates do not match. 3431 if (PatternsToMatch[i].getPredicates() != 3432 PatternsToMatch[p].getPredicates()) 3433 continue; 3434 // Check to see if this variant already exists. 3435 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3436 DepVars)) { 3437 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3438 AlreadyExists = true; 3439 break; 3440 } 3441 } 3442 // If we already have it, ignore the variant. 3443 if (AlreadyExists) continue; 3444 3445 // Otherwise, add it to the list of patterns we have. 3446 PatternsToMatch. 3447 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), 3448 PatternsToMatch[i].getPredicates(), 3449 Variant, PatternsToMatch[i].getDstPattern(), 3450 PatternsToMatch[i].getDstRegs(), 3451 PatternsToMatch[i].getAddedComplexity(), 3452 Record::getNewUID())); 3453 } 3454 3455 DEBUG(errs() << "\n"); 3456 } 3457} 3458