1//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef CODEGEN_DAGPATTERNS_H
16#define CODEGEN_DAGPATTERNS_H
17
18#include "CodeGenTarget.h"
19#include "CodeGenIntrinsics.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringMap.h"
22#include "llvm/Support/ErrorHandling.h"
23#include <set>
24#include <algorithm>
25#include <vector>
26#include <map>
27
28namespace llvm {
29  class Record;
30  class Init;
31  class ListInit;
32  class DagInit;
33  class SDNodeInfo;
34  class TreePattern;
35  class TreePatternNode;
36  class CodeGenDAGPatterns;
37  class ComplexPattern;
38
39/// EEVT::DAGISelGenValueType - These are some extended forms of
40/// MVT::SimpleValueType that we use as lattice values during type inference.
41/// The existing MVT iAny, fAny and vAny types suffice to represent
42/// arbitrary integer, floating-point, and vector types, so only an unknown
43/// value is needed.
44namespace EEVT {
45  /// TypeSet - This is either empty if it's completely unknown, or holds a set
46  /// of types.  It is used during type inference because register classes can
47  /// have multiple possible types and we don't know which one they get until
48  /// type inference is complete.
49  ///
50  /// TypeSet can have three states:
51  ///    Vector is empty: The type is completely unknown, it can be any valid
52  ///       target type.
53  ///    Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one
54  ///       of those types only.
55  ///    Vector has one concrete type: The type is completely known.
56  ///
57  class TypeSet {
58    SmallVector<MVT::SimpleValueType, 4> TypeVec;
59  public:
60    TypeSet() {}
61    TypeSet(MVT::SimpleValueType VT, TreePattern &TP);
62    TypeSet(const std::vector<MVT::SimpleValueType> &VTList);
63
64    bool isCompletelyUnknown() const { return TypeVec.empty(); }
65
66    bool isConcrete() const {
67      if (TypeVec.size() != 1) return false;
68      unsigned char T = TypeVec[0]; (void)T;
69      assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny);
70      return true;
71    }
72
73    MVT::SimpleValueType getConcrete() const {
74      assert(isConcrete() && "Type isn't concrete yet");
75      return (MVT::SimpleValueType)TypeVec[0];
76    }
77
78    bool isDynamicallyResolved() const {
79      return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny;
80    }
81
82    const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const {
83      assert(!TypeVec.empty() && "Not a type list!");
84      return TypeVec;
85    }
86
87    bool isVoid() const {
88      return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid;
89    }
90
91    /// hasIntegerTypes - Return true if this TypeSet contains any integer value
92    /// types.
93    bool hasIntegerTypes() const;
94
95    /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
96    /// a floating point value type.
97    bool hasFloatingPointTypes() const;
98
99    /// hasVectorTypes - Return true if this TypeSet contains a vector value
100    /// type.
101    bool hasVectorTypes() const;
102
103    /// getName() - Return this TypeSet as a string.
104    std::string getName() const;
105
106    /// MergeInTypeInfo - This merges in type information from the specified
107    /// argument.  If 'this' changes, it returns true.  If the two types are
108    /// contradictory (e.g. merge f32 into i32) then this throws an exception.
109    bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP);
110
111    bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) {
112      return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP);
113    }
114
115    /// Force this type list to only contain integer types.
116    bool EnforceInteger(TreePattern &TP);
117
118    /// Force this type list to only contain floating point types.
119    bool EnforceFloatingPoint(TreePattern &TP);
120
121    /// EnforceScalar - Remove all vector types from this type list.
122    bool EnforceScalar(TreePattern &TP);
123
124    /// EnforceVector - Remove all non-vector types from this type list.
125    bool EnforceVector(TreePattern &TP);
126
127    /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
128    /// this an other based on this information.
129    bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP);
130
131    /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
132    /// whose element is VT.
133    bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
134
135    /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to
136    /// be a vector type VT.
137    bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
138
139    bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; }
140    bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; }
141
142  private:
143    /// FillWithPossibleTypes - Set to all legal types and return true, only
144    /// valid on completely unknown type sets.  If Pred is non-null, only MVTs
145    /// that pass the predicate are added.
146    bool FillWithPossibleTypes(TreePattern &TP,
147                               bool (*Pred)(MVT::SimpleValueType) = 0,
148                               const char *PredicateName = 0);
149  };
150}
151
152/// Set type used to track multiply used variables in patterns
153typedef std::set<std::string> MultipleUseVarSet;
154
155/// SDTypeConstraint - This is a discriminated union of constraints,
156/// corresponding to the SDTypeConstraint tablegen class in Target.td.
157struct SDTypeConstraint {
158  SDTypeConstraint(Record *R);
159
160  unsigned OperandNo;   // The operand # this constraint applies to.
161  enum {
162    SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
163    SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
164    SDTCisSubVecOfVec
165  } ConstraintType;
166
167  union {   // The discriminated union.
168    struct {
169      MVT::SimpleValueType VT;
170    } SDTCisVT_Info;
171    struct {
172      unsigned OtherOperandNum;
173    } SDTCisSameAs_Info;
174    struct {
175      unsigned OtherOperandNum;
176    } SDTCisVTSmallerThanOp_Info;
177    struct {
178      unsigned BigOperandNum;
179    } SDTCisOpSmallerThanOp_Info;
180    struct {
181      unsigned OtherOperandNum;
182    } SDTCisEltOfVec_Info;
183    struct {
184      unsigned OtherOperandNum;
185    } SDTCisSubVecOfVec_Info;
186  } x;
187
188  /// ApplyTypeConstraint - Given a node in a pattern, apply this type
189  /// constraint to the nodes operands.  This returns true if it makes a
190  /// change, false otherwise.  If a type contradiction is found, throw an
191  /// exception.
192  bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
193                           TreePattern &TP) const;
194};
195
196/// SDNodeInfo - One of these records is created for each SDNode instance in
197/// the target .td file.  This represents the various dag nodes we will be
198/// processing.
199class SDNodeInfo {
200  Record *Def;
201  std::string EnumName;
202  std::string SDClassName;
203  unsigned Properties;
204  unsigned NumResults;
205  int NumOperands;
206  std::vector<SDTypeConstraint> TypeConstraints;
207public:
208  SDNodeInfo(Record *R);  // Parse the specified record.
209
210  unsigned getNumResults() const { return NumResults; }
211
212  /// getNumOperands - This is the number of operands required or -1 if
213  /// variadic.
214  int getNumOperands() const { return NumOperands; }
215  Record *getRecord() const { return Def; }
216  const std::string &getEnumName() const { return EnumName; }
217  const std::string &getSDClassName() const { return SDClassName; }
218
219  const std::vector<SDTypeConstraint> &getTypeConstraints() const {
220    return TypeConstraints;
221  }
222
223  /// getKnownType - If the type constraints on this node imply a fixed type
224  /// (e.g. all stores return void, etc), then return it as an
225  /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
226  MVT::SimpleValueType getKnownType(unsigned ResNo) const;
227
228  /// hasProperty - Return true if this node has the specified property.
229  ///
230  bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
231
232  /// ApplyTypeConstraints - Given a node in a pattern, apply the type
233  /// constraints for this node to the operands of the node.  This returns
234  /// true if it makes a change, false otherwise.  If a type contradiction is
235  /// found, throw an exception.
236  bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
237    bool MadeChange = false;
238    for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
239      MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
240    return MadeChange;
241  }
242};
243
244/// TreePredicateFn - This is an abstraction that represents the predicates on
245/// a PatFrag node.  This is a simple one-word wrapper around a pointer to
246/// provide nice accessors.
247class TreePredicateFn {
248  /// PatFragRec - This is the TreePattern for the PatFrag that we
249  /// originally came from.
250  TreePattern *PatFragRec;
251public:
252  /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
253  TreePredicateFn(TreePattern *N);
254
255
256  TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
257
258  /// isAlwaysTrue - Return true if this is a noop predicate.
259  bool isAlwaysTrue() const;
260
261  bool isImmediatePattern() const { return !getImmCode().empty(); }
262
263  /// getImmediatePredicateCode - Return the code that evaluates this pattern if
264  /// this is an immediate predicate.  It is an error to call this on a
265  /// non-immediate pattern.
266  std::string getImmediatePredicateCode() const {
267    std::string Result = getImmCode();
268    assert(!Result.empty() && "Isn't an immediate pattern!");
269    return Result;
270  }
271
272
273  bool operator==(const TreePredicateFn &RHS) const {
274    return PatFragRec == RHS.PatFragRec;
275  }
276
277  bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
278
279  /// Return the name to use in the generated code to reference this, this is
280  /// "Predicate_foo" if from a pattern fragment "foo".
281  std::string getFnName() const;
282
283  /// getCodeToRunOnSDNode - Return the code for the function body that
284  /// evaluates this predicate.  The argument is expected to be in "Node",
285  /// not N.  This handles casting and conversion to a concrete node type as
286  /// appropriate.
287  std::string getCodeToRunOnSDNode() const;
288
289private:
290  std::string getPredCode() const;
291  std::string getImmCode() const;
292};
293
294
295/// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
296/// patterns), and as such should be ref counted.  We currently just leak all
297/// TreePatternNode objects!
298class TreePatternNode {
299  /// The type of each node result.  Before and during type inference, each
300  /// result may be a set of possible types.  After (successful) type inference,
301  /// each is a single concrete type.
302  SmallVector<EEVT::TypeSet, 1> Types;
303
304  /// Operator - The Record for the operator if this is an interior node (not
305  /// a leaf).
306  Record *Operator;
307
308  /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
309  ///
310  Init *Val;
311
312  /// Name - The name given to this node with the :$foo notation.
313  ///
314  std::string Name;
315
316  /// PredicateFns - The predicate functions to execute on this node to check
317  /// for a match.  If this list is empty, no predicate is involved.
318  std::vector<TreePredicateFn> PredicateFns;
319
320  /// TransformFn - The transformation function to execute on this node before
321  /// it can be substituted into the resulting instruction on a pattern match.
322  Record *TransformFn;
323
324  std::vector<TreePatternNode*> Children;
325public:
326  TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
327                  unsigned NumResults)
328    : Operator(Op), Val(0), TransformFn(0), Children(Ch) {
329    Types.resize(NumResults);
330  }
331  TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
332    : Operator(0), Val(val), TransformFn(0) {
333    Types.resize(NumResults);
334  }
335  ~TreePatternNode();
336
337  const std::string &getName() const { return Name; }
338  void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
339
340  bool isLeaf() const { return Val != 0; }
341
342  // Type accessors.
343  unsigned getNumTypes() const { return Types.size(); }
344  MVT::SimpleValueType getType(unsigned ResNo) const {
345    return Types[ResNo].getConcrete();
346  }
347  const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
348  const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
349  EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
350  void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }
351
352  bool hasTypeSet(unsigned ResNo) const {
353    return Types[ResNo].isConcrete();
354  }
355  bool isTypeCompletelyUnknown(unsigned ResNo) const {
356    return Types[ResNo].isCompletelyUnknown();
357  }
358  bool isTypeDynamicallyResolved(unsigned ResNo) const {
359    return Types[ResNo].isDynamicallyResolved();
360  }
361
362  Init *getLeafValue() const { assert(isLeaf()); return Val; }
363  Record *getOperator() const { assert(!isLeaf()); return Operator; }
364
365  unsigned getNumChildren() const { return Children.size(); }
366  TreePatternNode *getChild(unsigned N) const { return Children[N]; }
367  void setChild(unsigned i, TreePatternNode *N) {
368    Children[i] = N;
369  }
370
371  /// hasChild - Return true if N is any of our children.
372  bool hasChild(const TreePatternNode *N) const {
373    for (unsigned i = 0, e = Children.size(); i != e; ++i)
374      if (Children[i] == N) return true;
375    return false;
376  }
377
378  bool hasAnyPredicate() const { return !PredicateFns.empty(); }
379
380  const std::vector<TreePredicateFn> &getPredicateFns() const {
381    return PredicateFns;
382  }
383  void clearPredicateFns() { PredicateFns.clear(); }
384  void setPredicateFns(const std::vector<TreePredicateFn> &Fns) {
385    assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
386    PredicateFns = Fns;
387  }
388  void addPredicateFn(const TreePredicateFn &Fn) {
389    assert(!Fn.isAlwaysTrue() && "Empty predicate string!");
390    if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) ==
391          PredicateFns.end())
392      PredicateFns.push_back(Fn);
393  }
394
395  Record *getTransformFn() const { return TransformFn; }
396  void setTransformFn(Record *Fn) { TransformFn = Fn; }
397
398  /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
399  /// CodeGenIntrinsic information for it, otherwise return a null pointer.
400  const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
401
402  /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
403  /// return the ComplexPattern information, otherwise return null.
404  const ComplexPattern *
405  getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
406
407  /// NodeHasProperty - Return true if this node has the specified property.
408  bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
409
410  /// TreeHasProperty - Return true if any node in this tree has the specified
411  /// property.
412  bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
413
414  /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
415  /// marked isCommutative.
416  bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
417
418  void print(raw_ostream &OS) const;
419  void dump() const;
420
421public:   // Higher level manipulation routines.
422
423  /// clone - Return a new copy of this tree.
424  ///
425  TreePatternNode *clone() const;
426
427  /// RemoveAllTypes - Recursively strip all the types of this tree.
428  void RemoveAllTypes();
429
430  /// isIsomorphicTo - Return true if this node is recursively isomorphic to
431  /// the specified node.  For this comparison, all of the state of the node
432  /// is considered, except for the assigned name.  Nodes with differing names
433  /// that are otherwise identical are considered isomorphic.
434  bool isIsomorphicTo(const TreePatternNode *N,
435                      const MultipleUseVarSet &DepVars) const;
436
437  /// SubstituteFormalArguments - Replace the formal arguments in this tree
438  /// with actual values specified by ArgMap.
439  void SubstituteFormalArguments(std::map<std::string,
440                                          TreePatternNode*> &ArgMap);
441
442  /// InlinePatternFragments - If this pattern refers to any pattern
443  /// fragments, inline them into place, giving us a pattern without any
444  /// PatFrag references.
445  TreePatternNode *InlinePatternFragments(TreePattern &TP);
446
447  /// ApplyTypeConstraints - Apply all of the type constraints relevant to
448  /// this node and its children in the tree.  This returns true if it makes a
449  /// change, false otherwise.  If a type contradiction is found, throw an
450  /// exception.
451  bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
452
453  /// UpdateNodeType - Set the node type of N to VT if VT contains
454  /// information.  If N already contains a conflicting type, then throw an
455  /// exception.  This returns true if any information was updated.
456  ///
457  bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
458                      TreePattern &TP) {
459    return Types[ResNo].MergeInTypeInfo(InTy, TP);
460  }
461
462  bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
463                      TreePattern &TP) {
464    return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
465  }
466
467  /// ContainsUnresolvedType - Return true if this tree contains any
468  /// unresolved types.
469  bool ContainsUnresolvedType() const {
470    for (unsigned i = 0, e = Types.size(); i != e; ++i)
471      if (!Types[i].isConcrete()) return true;
472
473    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
474      if (getChild(i)->ContainsUnresolvedType()) return true;
475    return false;
476  }
477
478  /// canPatternMatch - If it is impossible for this pattern to match on this
479  /// target, fill in Reason and return false.  Otherwise, return true.
480  bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
481};
482
483inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
484  TPN.print(OS);
485  return OS;
486}
487
488
489/// TreePattern - Represent a pattern, used for instructions, pattern
490/// fragments, etc.
491///
492class TreePattern {
493  /// Trees - The list of pattern trees which corresponds to this pattern.
494  /// Note that PatFrag's only have a single tree.
495  ///
496  std::vector<TreePatternNode*> Trees;
497
498  /// NamedNodes - This is all of the nodes that have names in the trees in this
499  /// pattern.
500  StringMap<SmallVector<TreePatternNode*,1> > NamedNodes;
501
502  /// TheRecord - The actual TableGen record corresponding to this pattern.
503  ///
504  Record *TheRecord;
505
506  /// Args - This is a list of all of the arguments to this pattern (for
507  /// PatFrag patterns), which are the 'node' markers in this pattern.
508  std::vector<std::string> Args;
509
510  /// CDP - the top-level object coordinating this madness.
511  ///
512  CodeGenDAGPatterns &CDP;
513
514  /// isInputPattern - True if this is an input pattern, something to match.
515  /// False if this is an output pattern, something to emit.
516  bool isInputPattern;
517public:
518
519  /// TreePattern constructor - Parse the specified DagInits into the
520  /// current record.
521  TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
522              CodeGenDAGPatterns &ise);
523  TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
524              CodeGenDAGPatterns &ise);
525  TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
526              CodeGenDAGPatterns &ise);
527
528  /// getTrees - Return the tree patterns which corresponds to this pattern.
529  ///
530  const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
531  unsigned getNumTrees() const { return Trees.size(); }
532  TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
533  TreePatternNode *getOnlyTree() const {
534    assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
535    return Trees[0];
536  }
537
538  const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() {
539    if (NamedNodes.empty())
540      ComputeNamedNodes();
541    return NamedNodes;
542  }
543
544  /// getRecord - Return the actual TableGen record corresponding to this
545  /// pattern.
546  ///
547  Record *getRecord() const { return TheRecord; }
548
549  unsigned getNumArgs() const { return Args.size(); }
550  const std::string &getArgName(unsigned i) const {
551    assert(i < Args.size() && "Argument reference out of range!");
552    return Args[i];
553  }
554  std::vector<std::string> &getArgList() { return Args; }
555
556  CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
557
558  /// InlinePatternFragments - If this pattern refers to any pattern
559  /// fragments, inline them into place, giving us a pattern without any
560  /// PatFrag references.
561  void InlinePatternFragments() {
562    for (unsigned i = 0, e = Trees.size(); i != e; ++i)
563      Trees[i] = Trees[i]->InlinePatternFragments(*this);
564  }
565
566  /// InferAllTypes - Infer/propagate as many types throughout the expression
567  /// patterns as possible.  Return true if all types are inferred, false
568  /// otherwise.  Throw an exception if a type contradiction is found.
569  bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> >
570                          *NamedTypes=0);
571
572  /// error - Throw an exception, prefixing it with information about this
573  /// pattern.
574  void error(const std::string &Msg) const;
575
576  void print(raw_ostream &OS) const;
577  void dump() const;
578
579private:
580  TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName);
581  void ComputeNamedNodes();
582  void ComputeNamedNodes(TreePatternNode *N);
583};
584
585/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
586/// that has a set ExecuteAlways / DefaultOps field.
587struct DAGDefaultOperand {
588  std::vector<TreePatternNode*> DefaultOps;
589};
590
591class DAGInstruction {
592  TreePattern *Pattern;
593  std::vector<Record*> Results;
594  std::vector<Record*> Operands;
595  std::vector<Record*> ImpResults;
596  TreePatternNode *ResultPattern;
597public:
598  DAGInstruction(TreePattern *TP,
599                 const std::vector<Record*> &results,
600                 const std::vector<Record*> &operands,
601                 const std::vector<Record*> &impresults)
602    : Pattern(TP), Results(results), Operands(operands),
603      ImpResults(impresults), ResultPattern(0) {}
604
605  const TreePattern *getPattern() const { return Pattern; }
606  unsigned getNumResults() const { return Results.size(); }
607  unsigned getNumOperands() const { return Operands.size(); }
608  unsigned getNumImpResults() const { return ImpResults.size(); }
609  const std::vector<Record*>& getImpResults() const { return ImpResults; }
610
611  void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
612
613  Record *getResult(unsigned RN) const {
614    assert(RN < Results.size());
615    return Results[RN];
616  }
617
618  Record *getOperand(unsigned ON) const {
619    assert(ON < Operands.size());
620    return Operands[ON];
621  }
622
623  Record *getImpResult(unsigned RN) const {
624    assert(RN < ImpResults.size());
625    return ImpResults[RN];
626  }
627
628  TreePatternNode *getResultPattern() const { return ResultPattern; }
629};
630
631/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
632/// processed to produce isel.
633class PatternToMatch {
634public:
635  PatternToMatch(Record *srcrecord, ListInit *preds,
636                 TreePatternNode *src, TreePatternNode *dst,
637                 const std::vector<Record*> &dstregs,
638                 unsigned complexity, unsigned uid)
639    : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst),
640      Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {}
641
642  Record          *SrcRecord;   // Originating Record for the pattern.
643  ListInit        *Predicates;  // Top level predicate conditions to match.
644  TreePatternNode *SrcPattern;  // Source pattern to match.
645  TreePatternNode *DstPattern;  // Resulting pattern.
646  std::vector<Record*> Dstregs; // Physical register defs being matched.
647  unsigned         AddedComplexity; // Add to matching pattern complexity.
648  unsigned         ID;          // Unique ID for the record.
649
650  Record          *getSrcRecord()  const { return SrcRecord; }
651  ListInit        *getPredicates() const { return Predicates; }
652  TreePatternNode *getSrcPattern() const { return SrcPattern; }
653  TreePatternNode *getDstPattern() const { return DstPattern; }
654  const std::vector<Record*> &getDstRegs() const { return Dstregs; }
655  unsigned         getAddedComplexity() const { return AddedComplexity; }
656
657  std::string getPredicateCheck() const;
658
659  /// Compute the complexity metric for the input pattern.  This roughly
660  /// corresponds to the number of nodes that are covered.
661  unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
662};
663
664// Deterministic comparison of Record*.
665struct RecordPtrCmp {
666  bool operator()(const Record *LHS, const Record *RHS) const;
667};
668
669class CodeGenDAGPatterns {
670  RecordKeeper &Records;
671  CodeGenTarget Target;
672  std::vector<CodeGenIntrinsic> Intrinsics;
673  std::vector<CodeGenIntrinsic> TgtIntrinsics;
674
675  std::map<Record*, SDNodeInfo, RecordPtrCmp> SDNodes;
676  std::map<Record*, std::pair<Record*, std::string>, RecordPtrCmp> SDNodeXForms;
677  std::map<Record*, ComplexPattern, RecordPtrCmp> ComplexPatterns;
678  std::map<Record*, TreePattern*, RecordPtrCmp> PatternFragments;
679  std::map<Record*, DAGDefaultOperand, RecordPtrCmp> DefaultOperands;
680  std::map<Record*, DAGInstruction, RecordPtrCmp> Instructions;
681
682  // Specific SDNode definitions:
683  Record *intrinsic_void_sdnode;
684  Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
685
686  /// PatternsToMatch - All of the things we are matching on the DAG.  The first
687  /// value is the pattern to match, the second pattern is the result to
688  /// emit.
689  std::vector<PatternToMatch> PatternsToMatch;
690public:
691  CodeGenDAGPatterns(RecordKeeper &R);
692  ~CodeGenDAGPatterns();
693
694  CodeGenTarget &getTargetInfo() { return Target; }
695  const CodeGenTarget &getTargetInfo() const { return Target; }
696
697  Record *getSDNodeNamed(const std::string &Name) const;
698
699  const SDNodeInfo &getSDNodeInfo(Record *R) const {
700    assert(SDNodes.count(R) && "Unknown node!");
701    return SDNodes.find(R)->second;
702  }
703
704  // Node transformation lookups.
705  typedef std::pair<Record*, std::string> NodeXForm;
706  const NodeXForm &getSDNodeTransform(Record *R) const {
707    assert(SDNodeXForms.count(R) && "Invalid transform!");
708    return SDNodeXForms.find(R)->second;
709  }
710
711  typedef std::map<Record*, NodeXForm, RecordPtrCmp>::const_iterator
712          nx_iterator;
713  nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
714  nx_iterator nx_end() const { return SDNodeXForms.end(); }
715
716
717  const ComplexPattern &getComplexPattern(Record *R) const {
718    assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
719    return ComplexPatterns.find(R)->second;
720  }
721
722  const CodeGenIntrinsic &getIntrinsic(Record *R) const {
723    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
724      if (Intrinsics[i].TheDef == R) return Intrinsics[i];
725    for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
726      if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
727    llvm_unreachable("Unknown intrinsic!");
728  }
729
730  const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
731    if (IID-1 < Intrinsics.size())
732      return Intrinsics[IID-1];
733    if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
734      return TgtIntrinsics[IID-Intrinsics.size()-1];
735    llvm_unreachable("Bad intrinsic ID!");
736  }
737
738  unsigned getIntrinsicID(Record *R) const {
739    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
740      if (Intrinsics[i].TheDef == R) return i;
741    for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
742      if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
743    llvm_unreachable("Unknown intrinsic!");
744  }
745
746  const DAGDefaultOperand &getDefaultOperand(Record *R) const {
747    assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
748    return DefaultOperands.find(R)->second;
749  }
750
751  // Pattern Fragment information.
752  TreePattern *getPatternFragment(Record *R) const {
753    assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
754    return PatternFragments.find(R)->second;
755  }
756  TreePattern *getPatternFragmentIfRead(Record *R) const {
757    if (!PatternFragments.count(R)) return 0;
758    return PatternFragments.find(R)->second;
759  }
760
761  typedef std::map<Record*, TreePattern*, RecordPtrCmp>::const_iterator
762          pf_iterator;
763  pf_iterator pf_begin() const { return PatternFragments.begin(); }
764  pf_iterator pf_end() const { return PatternFragments.end(); }
765
766  // Patterns to match information.
767  typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
768  ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
769  ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
770
771
772
773  const DAGInstruction &getInstruction(Record *R) const {
774    assert(Instructions.count(R) && "Unknown instruction!");
775    return Instructions.find(R)->second;
776  }
777
778  Record *get_intrinsic_void_sdnode() const {
779    return intrinsic_void_sdnode;
780  }
781  Record *get_intrinsic_w_chain_sdnode() const {
782    return intrinsic_w_chain_sdnode;
783  }
784  Record *get_intrinsic_wo_chain_sdnode() const {
785    return intrinsic_wo_chain_sdnode;
786  }
787
788  bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
789
790private:
791  void ParseNodeInfo();
792  void ParseNodeTransforms();
793  void ParseComplexPatterns();
794  void ParsePatternFragments();
795  void ParseDefaultOperands();
796  void ParseInstructions();
797  void ParsePatterns();
798  void InferInstructionFlags();
799  void GenerateVariants();
800  void VerifyInstructionFlags();
801
802  void AddPatternToMatch(const TreePattern *Pattern, const PatternToMatch &PTM);
803  void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
804                                   std::map<std::string,
805                                   TreePatternNode*> &InstInputs,
806                                   std::map<std::string,
807                                   TreePatternNode*> &InstResults,
808                                   std::vector<Record*> &InstImpResults);
809};
810} // end namespace llvm
811
812#endif
813