1//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines structures to encapsulate information gleaned from the
11// target register and register class definitions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenRegisters.h"
16#include "CodeGenTarget.h"
17#include "llvm/TableGen/Error.h"
18#include "llvm/ADT/IntEqClasses.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/Twine.h"
23
24using namespace llvm;
25
26//===----------------------------------------------------------------------===//
27//                             CodeGenSubRegIndex
28//===----------------------------------------------------------------------===//
29
30CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
31  : TheDef(R), EnumValue(Enum) {
32  Name = R->getName();
33  if (R->getValue("Namespace"))
34    Namespace = R->getValueAsString("Namespace");
35}
36
37CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
38                                       unsigned Enum)
39  : TheDef(0), Name(N), Namespace(Nspace), EnumValue(Enum) {
40}
41
42std::string CodeGenSubRegIndex::getQualifiedName() const {
43  std::string N = getNamespace();
44  if (!N.empty())
45    N += "::";
46  N += getName();
47  return N;
48}
49
50void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
51  if (!TheDef)
52    return;
53
54  std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
55  if (!Comps.empty()) {
56    if (Comps.size() != 2)
57      throw TGError(TheDef->getLoc(), "ComposedOf must have exactly two entries");
58    CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
59    CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
60    CodeGenSubRegIndex *X = A->addComposite(B, this);
61    if (X)
62      throw TGError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
63  }
64
65  std::vector<Record*> Parts =
66    TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
67  if (!Parts.empty()) {
68    if (Parts.size() < 2)
69      throw TGError(TheDef->getLoc(),
70                    "CoveredBySubRegs must have two or more entries");
71    SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
72    for (unsigned i = 0, e = Parts.size(); i != e; ++i)
73      IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
74    RegBank.addConcatSubRegIndex(IdxParts, this);
75  }
76}
77
78void CodeGenSubRegIndex::cleanComposites() {
79  // Clean out redundant mappings of the form this+X -> X.
80  for (CompMap::iterator i = Composed.begin(), e = Composed.end(); i != e;) {
81    CompMap::iterator j = i;
82    ++i;
83    if (j->first == j->second)
84      Composed.erase(j);
85  }
86}
87
88//===----------------------------------------------------------------------===//
89//                              CodeGenRegister
90//===----------------------------------------------------------------------===//
91
92CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
93  : TheDef(R),
94    EnumValue(Enum),
95    CostPerUse(R->getValueAsInt("CostPerUse")),
96    CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
97    NumNativeRegUnits(0),
98    SubRegsComplete(false),
99    SuperRegsComplete(false),
100    TopoSig(~0u)
101{}
102
103void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
104  std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
105  std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
106
107  if (SRIs.size() != SRs.size())
108    throw TGError(TheDef->getLoc(),
109                  "SubRegs and SubRegIndices must have the same size");
110
111  for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
112    ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
113    ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
114  }
115
116  // Also compute leading super-registers. Each register has a list of
117  // covered-by-subregs super-registers where it appears as the first explicit
118  // sub-register.
119  //
120  // This is used by computeSecondarySubRegs() to find candidates.
121  if (CoveredBySubRegs && !ExplicitSubRegs.empty())
122    ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
123
124  // Add ad hoc alias links. This is a symmetric relationship between two
125  // registers, so build a symmetric graph by adding links in both ends.
126  std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
127  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
128    CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
129    ExplicitAliases.push_back(Reg);
130    Reg->ExplicitAliases.push_back(this);
131  }
132}
133
134const std::string &CodeGenRegister::getName() const {
135  return TheDef->getName();
136}
137
138namespace {
139// Iterate over all register units in a set of registers.
140class RegUnitIterator {
141  CodeGenRegister::Set::const_iterator RegI, RegE;
142  CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
143
144public:
145  RegUnitIterator(const CodeGenRegister::Set &Regs):
146    RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
147
148    if (RegI != RegE) {
149      UnitI = (*RegI)->getRegUnits().begin();
150      UnitE = (*RegI)->getRegUnits().end();
151      advance();
152    }
153  }
154
155  bool isValid() const { return UnitI != UnitE; }
156
157  unsigned operator* () const { assert(isValid()); return *UnitI; }
158
159  const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
160
161  /// Preincrement.  Move to the next unit.
162  void operator++() {
163    assert(isValid() && "Cannot advance beyond the last operand");
164    ++UnitI;
165    advance();
166  }
167
168protected:
169  void advance() {
170    while (UnitI == UnitE) {
171      if (++RegI == RegE)
172        break;
173      UnitI = (*RegI)->getRegUnits().begin();
174      UnitE = (*RegI)->getRegUnits().end();
175    }
176  }
177};
178} // namespace
179
180// Merge two RegUnitLists maintaining the order and removing duplicates.
181// Overwrites MergedRU in the process.
182static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
183                          const CodeGenRegister::RegUnitList &RRU) {
184  CodeGenRegister::RegUnitList LRU = MergedRU;
185  MergedRU.clear();
186  std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
187                 std::back_inserter(MergedRU));
188}
189
190// Return true of this unit appears in RegUnits.
191static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
192  return std::count(RegUnits.begin(), RegUnits.end(), Unit);
193}
194
195// Inherit register units from subregisters.
196// Return true if the RegUnits changed.
197bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
198  unsigned OldNumUnits = RegUnits.size();
199  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
200       I != E; ++I) {
201    CodeGenRegister *SR = I->second;
202    // Merge the subregister's units into this register's RegUnits.
203    mergeRegUnits(RegUnits, SR->RegUnits);
204  }
205  return OldNumUnits != RegUnits.size();
206}
207
208const CodeGenRegister::SubRegMap &
209CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
210  // Only compute this map once.
211  if (SubRegsComplete)
212    return SubRegs;
213  SubRegsComplete = true;
214
215  // First insert the explicit subregs and make sure they are fully indexed.
216  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
217    CodeGenRegister *SR = ExplicitSubRegs[i];
218    CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
219    if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
220      throw TGError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
221                    " appears twice in Register " + getName());
222    // Map explicit sub-registers first, so the names take precedence.
223    // The inherited sub-registers are mapped below.
224    SubReg2Idx.insert(std::make_pair(SR, Idx));
225  }
226
227  // Keep track of inherited subregs and how they can be reached.
228  SmallPtrSet<CodeGenRegister*, 8> Orphans;
229
230  // Clone inherited subregs and place duplicate entries in Orphans.
231  // Here the order is important - earlier subregs take precedence.
232  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
233    CodeGenRegister *SR = ExplicitSubRegs[i];
234    const SubRegMap &Map = SR->computeSubRegs(RegBank);
235
236    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
237         ++SI) {
238      if (!SubRegs.insert(*SI).second)
239        Orphans.insert(SI->second);
240    }
241  }
242
243  // Expand any composed subreg indices.
244  // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
245  // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
246  // expanded subreg indices recursively.
247  SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
248  for (unsigned i = 0; i != Indices.size(); ++i) {
249    CodeGenSubRegIndex *Idx = Indices[i];
250    const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
251    CodeGenRegister *SR = SubRegs[Idx];
252    const SubRegMap &Map = SR->computeSubRegs(RegBank);
253
254    // Look at the possible compositions of Idx.
255    // They may not all be supported by SR.
256    for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
257           E = Comps.end(); I != E; ++I) {
258      SubRegMap::const_iterator SRI = Map.find(I->first);
259      if (SRI == Map.end())
260        continue; // Idx + I->first doesn't exist in SR.
261      // Add I->second as a name for the subreg SRI->second, assuming it is
262      // orphaned, and the name isn't already used for something else.
263      if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
264        continue;
265      // We found a new name for the orphaned sub-register.
266      SubRegs.insert(std::make_pair(I->second, SRI->second));
267      Indices.push_back(I->second);
268    }
269  }
270
271  // Now Orphans contains the inherited subregisters without a direct index.
272  // Create inferred indexes for all missing entries.
273  // Work backwards in the Indices vector in order to compose subregs bottom-up.
274  // Consider this subreg sequence:
275  //
276  //   qsub_1 -> dsub_0 -> ssub_0
277  //
278  // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
279  // can be reached in two different ways:
280  //
281  //   qsub_1 -> ssub_0
282  //   dsub_2 -> ssub_0
283  //
284  // We pick the latter composition because another register may have [dsub_0,
285  // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
286  // dsub_2 -> ssub_0 composition can be shared.
287  while (!Indices.empty() && !Orphans.empty()) {
288    CodeGenSubRegIndex *Idx = Indices.pop_back_val();
289    CodeGenRegister *SR = SubRegs[Idx];
290    const SubRegMap &Map = SR->computeSubRegs(RegBank);
291    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
292         ++SI)
293      if (Orphans.erase(SI->second))
294        SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
295  }
296
297  // Compute the inverse SubReg -> Idx map.
298  for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
299       SI != SE; ++SI) {
300    if (SI->second == this) {
301      ArrayRef<SMLoc> Loc;
302      if (TheDef)
303        Loc = TheDef->getLoc();
304      throw TGError(Loc, "Register " + getName() +
305                    " has itself as a sub-register");
306    }
307    // Ensure that every sub-register has a unique name.
308    DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
309      SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
310    if (Ins->second == SI->first)
311      continue;
312    // Trouble: Two different names for SI->second.
313    ArrayRef<SMLoc> Loc;
314    if (TheDef)
315      Loc = TheDef->getLoc();
316    throw TGError(Loc, "Sub-register can't have two names: " +
317                  SI->second->getName() + " available as " +
318                  SI->first->getName() + " and " + Ins->second->getName());
319  }
320
321  // Derive possible names for sub-register concatenations from any explicit
322  // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
323  // that getConcatSubRegIndex() won't invent any concatenated indices that the
324  // user already specified.
325  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
326    CodeGenRegister *SR = ExplicitSubRegs[i];
327    if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
328      continue;
329
330    // SR is composed of multiple sub-regs. Find their names in this register.
331    SmallVector<CodeGenSubRegIndex*, 8> Parts;
332    for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
333      Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
334
335    // Offer this as an existing spelling for the concatenation of Parts.
336    RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
337  }
338
339  // Initialize RegUnitList. Because getSubRegs is called recursively, this
340  // processes the register hierarchy in postorder.
341  //
342  // Inherit all sub-register units. It is good enough to look at the explicit
343  // sub-registers, the other registers won't contribute any more units.
344  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
345    CodeGenRegister *SR = ExplicitSubRegs[i];
346    // Explicit sub-registers are usually disjoint, so this is a good way of
347    // computing the union. We may pick up a few duplicates that will be
348    // eliminated below.
349    unsigned N = RegUnits.size();
350    RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
351    std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
352  }
353  RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
354
355  // Absent any ad hoc aliasing, we create one register unit per leaf register.
356  // These units correspond to the maximal cliques in the register overlap
357  // graph which is optimal.
358  //
359  // When there is ad hoc aliasing, we simply create one unit per edge in the
360  // undirected ad hoc aliasing graph. Technically, we could do better by
361  // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
362  // are extremely rare anyway (I've never seen one), so we don't bother with
363  // the added complexity.
364  for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
365    CodeGenRegister *AR = ExplicitAliases[i];
366    // Only visit each edge once.
367    if (AR->SubRegsComplete)
368      continue;
369    // Create a RegUnit representing this alias edge, and add it to both
370    // registers.
371    unsigned Unit = RegBank.newRegUnit(this, AR);
372    RegUnits.push_back(Unit);
373    AR->RegUnits.push_back(Unit);
374  }
375
376  // Finally, create units for leaf registers without ad hoc aliases. Note that
377  // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
378  // necessary. This means the aliasing leaf registers can share a single unit.
379  if (RegUnits.empty())
380    RegUnits.push_back(RegBank.newRegUnit(this));
381
382  // We have now computed the native register units. More may be adopted later
383  // for balancing purposes.
384  NumNativeRegUnits = RegUnits.size();
385
386  return SubRegs;
387}
388
389// In a register that is covered by its sub-registers, try to find redundant
390// sub-registers. For example:
391//
392//   QQ0 = {Q0, Q1}
393//   Q0 = {D0, D1}
394//   Q1 = {D2, D3}
395//
396// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
397// the register definition.
398//
399// The explicitly specified registers form a tree. This function discovers
400// sub-register relationships that would force a DAG.
401//
402void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
403  // Collect new sub-registers first, add them later.
404  SmallVector<SubRegMap::value_type, 8> NewSubRegs;
405
406  // Look at the leading super-registers of each sub-register. Those are the
407  // candidates for new sub-registers, assuming they are fully contained in
408  // this register.
409  for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
410    const CodeGenRegister *SubReg = I->second;
411    const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
412    for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
413      CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
414      // Already got this sub-register?
415      if (Cand == this || getSubRegIndex(Cand))
416        continue;
417      // Check if each component of Cand is already a sub-register.
418      // We know that the first component is I->second, and is present with the
419      // name I->first.
420      SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
421      assert(!Cand->ExplicitSubRegs.empty() &&
422             "Super-register has no sub-registers");
423      for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
424        if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
425          Parts.push_back(Idx);
426        else {
427          // Sub-register doesn't exist.
428          Parts.clear();
429          break;
430        }
431      }
432      // If some Cand sub-register is not part of this register, or if Cand only
433      // has one sub-register, there is nothing to do.
434      if (Parts.size() <= 1)
435        continue;
436
437      // Each part of Cand is a sub-register of this. Make the full Cand also
438      // a sub-register with a concatenated sub-register index.
439      CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
440      NewSubRegs.push_back(std::make_pair(Concat, Cand));
441    }
442  }
443
444  // Now add all the new sub-registers.
445  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
446    // Don't add Cand if another sub-register is already using the index.
447    if (!SubRegs.insert(NewSubRegs[i]).second)
448      continue;
449
450    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
451    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
452    SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
453  }
454
455  // Create sub-register index composition maps for the synthesized indices.
456  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
457    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
458    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
459    for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
460           SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
461      CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
462      if (!SubIdx)
463        throw TGError(TheDef->getLoc(), "No SubRegIndex for " +
464                      SI->second->getName() + " in " + getName());
465      NewIdx->addComposite(SI->first, SubIdx);
466    }
467  }
468}
469
470void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
471  // Only visit each register once.
472  if (SuperRegsComplete)
473    return;
474  SuperRegsComplete = true;
475
476  // Make sure all sub-registers have been visited first, so the super-reg
477  // lists will be topologically ordered.
478  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
479       I != E; ++I)
480    I->second->computeSuperRegs(RegBank);
481
482  // Now add this as a super-register on all sub-registers.
483  // Also compute the TopoSigId in post-order.
484  TopoSigId Id;
485  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
486       I != E; ++I) {
487    // Topological signature computed from SubIdx, TopoId(SubReg).
488    // Loops and idempotent indices have TopoSig = ~0u.
489    Id.push_back(I->first->EnumValue);
490    Id.push_back(I->second->TopoSig);
491
492    // Don't add duplicate entries.
493    if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
494      continue;
495    I->second->SuperRegs.push_back(this);
496  }
497  TopoSig = RegBank.getTopoSig(Id);
498}
499
500void
501CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
502                                    CodeGenRegBank &RegBank) const {
503  assert(SubRegsComplete && "Must precompute sub-registers");
504  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
505    CodeGenRegister *SR = ExplicitSubRegs[i];
506    if (OSet.insert(SR))
507      SR->addSubRegsPreOrder(OSet, RegBank);
508  }
509  // Add any secondary sub-registers that weren't part of the explicit tree.
510  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
511       I != E; ++I)
512    OSet.insert(I->second);
513}
514
515// Compute overlapping registers.
516//
517// The standard set is all super-registers and all sub-registers, but the
518// target description can add arbitrary overlapping registers via the 'Aliases'
519// field. This complicates things, but we can compute overlapping sets using
520// the following rules:
521//
522// 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
523//
524// 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
525//
526// Alternatively:
527//
528//    overlap(A, B) iff there exists:
529//    A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
530//    A' = B' or A' in aliases(B') or B' in aliases(A').
531//
532// Here subregs(A) is the full flattened sub-register set returned by
533// A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
534// description of register A.
535//
536// This also implies that registers with a common sub-register are considered
537// overlapping. This can happen when forming register pairs:
538//
539//    P0 = (R0, R1)
540//    P1 = (R1, R2)
541//    P2 = (R2, R3)
542//
543// In this case, we will infer an overlap between P0 and P1 because of the
544// shared sub-register R1. There is no overlap between P0 and P2.
545//
546void CodeGenRegister::computeOverlaps(CodeGenRegister::Set &Overlaps,
547                                      const CodeGenRegBank &RegBank) const {
548  assert(!RegUnits.empty() && "Compute register units before overlaps.");
549
550  // Register units are assigned such that the overlapping registers are the
551  // super-registers of the root registers of the register units.
552  for (unsigned rui = 0, rue = RegUnits.size(); rui != rue; ++rui) {
553    const RegUnit &RU = RegBank.getRegUnit(RegUnits[rui]);
554    ArrayRef<const CodeGenRegister*> Roots = RU.getRoots();
555    for (unsigned ri = 0, re = Roots.size(); ri != re; ++ri) {
556      const CodeGenRegister *Root = Roots[ri];
557      Overlaps.insert(Root);
558      ArrayRef<const CodeGenRegister*> Supers = Root->getSuperRegs();
559      Overlaps.insert(Supers.begin(), Supers.end());
560    }
561  }
562}
563
564// Get the sum of this register's unit weights.
565unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
566  unsigned Weight = 0;
567  for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
568       I != E; ++I) {
569    Weight += RegBank.getRegUnit(*I).Weight;
570  }
571  return Weight;
572}
573
574//===----------------------------------------------------------------------===//
575//                               RegisterTuples
576//===----------------------------------------------------------------------===//
577
578// A RegisterTuples def is used to generate pseudo-registers from lists of
579// sub-registers. We provide a SetTheory expander class that returns the new
580// registers.
581namespace {
582struct TupleExpander : SetTheory::Expander {
583  void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
584    std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
585    unsigned Dim = Indices.size();
586    ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
587    if (Dim != SubRegs->getSize())
588      throw TGError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
589    if (Dim < 2)
590      throw TGError(Def->getLoc(), "Tuples must have at least 2 sub-registers");
591
592    // Evaluate the sub-register lists to be zipped.
593    unsigned Length = ~0u;
594    SmallVector<SetTheory::RecSet, 4> Lists(Dim);
595    for (unsigned i = 0; i != Dim; ++i) {
596      ST.evaluate(SubRegs->getElement(i), Lists[i]);
597      Length = std::min(Length, unsigned(Lists[i].size()));
598    }
599
600    if (Length == 0)
601      return;
602
603    // Precompute some types.
604    Record *RegisterCl = Def->getRecords().getClass("Register");
605    RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
606    StringInit *BlankName = StringInit::get("");
607
608    // Zip them up.
609    for (unsigned n = 0; n != Length; ++n) {
610      std::string Name;
611      Record *Proto = Lists[0][n];
612      std::vector<Init*> Tuple;
613      unsigned CostPerUse = 0;
614      for (unsigned i = 0; i != Dim; ++i) {
615        Record *Reg = Lists[i][n];
616        if (i) Name += '_';
617        Name += Reg->getName();
618        Tuple.push_back(DefInit::get(Reg));
619        CostPerUse = std::max(CostPerUse,
620                              unsigned(Reg->getValueAsInt("CostPerUse")));
621      }
622
623      // Create a new Record representing the synthesized register. This record
624      // is only for consumption by CodeGenRegister, it is not added to the
625      // RecordKeeper.
626      Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
627      Elts.insert(NewReg);
628
629      // Copy Proto super-classes.
630      for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i)
631        NewReg->addSuperClass(Proto->getSuperClasses()[i]);
632
633      // Copy Proto fields.
634      for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
635        RecordVal RV = Proto->getValues()[i];
636
637        // Skip existing fields, like NAME.
638        if (NewReg->getValue(RV.getNameInit()))
639          continue;
640
641        StringRef Field = RV.getName();
642
643        // Replace the sub-register list with Tuple.
644        if (Field == "SubRegs")
645          RV.setValue(ListInit::get(Tuple, RegisterRecTy));
646
647        // Provide a blank AsmName. MC hacks are required anyway.
648        if (Field == "AsmName")
649          RV.setValue(BlankName);
650
651        // CostPerUse is aggregated from all Tuple members.
652        if (Field == "CostPerUse")
653          RV.setValue(IntInit::get(CostPerUse));
654
655        // Composite registers are always covered by sub-registers.
656        if (Field == "CoveredBySubRegs")
657          RV.setValue(BitInit::get(true));
658
659        // Copy fields from the RegisterTuples def.
660        if (Field == "SubRegIndices" ||
661            Field == "CompositeIndices") {
662          NewReg->addValue(*Def->getValue(Field));
663          continue;
664        }
665
666        // Some fields get their default uninitialized value.
667        if (Field == "DwarfNumbers" ||
668            Field == "DwarfAlias" ||
669            Field == "Aliases") {
670          if (const RecordVal *DefRV = RegisterCl->getValue(Field))
671            NewReg->addValue(*DefRV);
672          continue;
673        }
674
675        // Everything else is copied from Proto.
676        NewReg->addValue(RV);
677      }
678    }
679  }
680};
681}
682
683//===----------------------------------------------------------------------===//
684//                            CodeGenRegisterClass
685//===----------------------------------------------------------------------===//
686
687CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
688  : TheDef(R),
689    Name(R->getName()),
690    TopoSigs(RegBank.getNumTopoSigs()),
691    EnumValue(-1) {
692  // Rename anonymous register classes.
693  if (R->getName().size() > 9 && R->getName()[9] == '.') {
694    static unsigned AnonCounter = 0;
695    R->setName("AnonRegClass_"+utostr(AnonCounter++));
696  }
697
698  std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
699  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
700    Record *Type = TypeList[i];
701    if (!Type->isSubClassOf("ValueType"))
702      throw "RegTypes list member '" + Type->getName() +
703        "' does not derive from the ValueType class!";
704    VTs.push_back(getValueType(Type));
705  }
706  assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
707
708  // Allocation order 0 is the full set. AltOrders provides others.
709  const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
710  ListInit *AltOrders = R->getValueAsListInit("AltOrders");
711  Orders.resize(1 + AltOrders->size());
712
713  // Default allocation order always contains all registers.
714  for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
715    Orders[0].push_back((*Elements)[i]);
716    const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
717    Members.insert(Reg);
718    TopoSigs.set(Reg->getTopoSig());
719  }
720
721  // Alternative allocation orders may be subsets.
722  SetTheory::RecSet Order;
723  for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
724    RegBank.getSets().evaluate(AltOrders->getElement(i), Order);
725    Orders[1 + i].append(Order.begin(), Order.end());
726    // Verify that all altorder members are regclass members.
727    while (!Order.empty()) {
728      CodeGenRegister *Reg = RegBank.getReg(Order.back());
729      Order.pop_back();
730      if (!contains(Reg))
731        throw TGError(R->getLoc(), " AltOrder register " + Reg->getName() +
732                      " is not a class member");
733    }
734  }
735
736  // Allow targets to override the size in bits of the RegisterClass.
737  unsigned Size = R->getValueAsInt("Size");
738
739  Namespace = R->getValueAsString("Namespace");
740  SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
741  SpillAlignment = R->getValueAsInt("Alignment");
742  CopyCost = R->getValueAsInt("CopyCost");
743  Allocatable = R->getValueAsBit("isAllocatable");
744  AltOrderSelect = R->getValueAsString("AltOrderSelect");
745}
746
747// Create an inferred register class that was missing from the .td files.
748// Most properties will be inherited from the closest super-class after the
749// class structure has been computed.
750CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
751                                           StringRef Name, Key Props)
752  : Members(*Props.Members),
753    TheDef(0),
754    Name(Name),
755    TopoSigs(RegBank.getNumTopoSigs()),
756    EnumValue(-1),
757    SpillSize(Props.SpillSize),
758    SpillAlignment(Props.SpillAlignment),
759    CopyCost(0),
760    Allocatable(true) {
761  for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
762       I != E; ++I)
763    TopoSigs.set((*I)->getTopoSig());
764}
765
766// Compute inherited propertied for a synthesized register class.
767void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
768  assert(!getDef() && "Only synthesized classes can inherit properties");
769  assert(!SuperClasses.empty() && "Synthesized class without super class");
770
771  // The last super-class is the smallest one.
772  CodeGenRegisterClass &Super = *SuperClasses.back();
773
774  // Most properties are copied directly.
775  // Exceptions are members, size, and alignment
776  Namespace = Super.Namespace;
777  VTs = Super.VTs;
778  CopyCost = Super.CopyCost;
779  Allocatable = Super.Allocatable;
780  AltOrderSelect = Super.AltOrderSelect;
781
782  // Copy all allocation orders, filter out foreign registers from the larger
783  // super-class.
784  Orders.resize(Super.Orders.size());
785  for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
786    for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
787      if (contains(RegBank.getReg(Super.Orders[i][j])))
788        Orders[i].push_back(Super.Orders[i][j]);
789}
790
791bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
792  return Members.count(Reg);
793}
794
795namespace llvm {
796  raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
797    OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
798    for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
799         E = K.Members->end(); I != E; ++I)
800      OS << ", " << (*I)->getName();
801    return OS << " }";
802  }
803}
804
805// This is a simple lexicographical order that can be used to search for sets.
806// It is not the same as the topological order provided by TopoOrderRC.
807bool CodeGenRegisterClass::Key::
808operator<(const CodeGenRegisterClass::Key &B) const {
809  assert(Members && B.Members);
810  if (*Members != *B.Members)
811    return *Members < *B.Members;
812  if (SpillSize != B.SpillSize)
813    return SpillSize < B.SpillSize;
814  return SpillAlignment < B.SpillAlignment;
815}
816
817// Returns true if RC is a strict subclass.
818// RC is a sub-class of this class if it is a valid replacement for any
819// instruction operand where a register of this classis required. It must
820// satisfy these conditions:
821//
822// 1. All RC registers are also in this.
823// 2. The RC spill size must not be smaller than our spill size.
824// 3. RC spill alignment must be compatible with ours.
825//
826static bool testSubClass(const CodeGenRegisterClass *A,
827                         const CodeGenRegisterClass *B) {
828  return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
829    A->SpillSize <= B->SpillSize &&
830    std::includes(A->getMembers().begin(), A->getMembers().end(),
831                  B->getMembers().begin(), B->getMembers().end(),
832                  CodeGenRegister::Less());
833}
834
835/// Sorting predicate for register classes.  This provides a topological
836/// ordering that arranges all register classes before their sub-classes.
837///
838/// Register classes with the same registers, spill size, and alignment form a
839/// clique.  They will be ordered alphabetically.
840///
841static int TopoOrderRC(const void *PA, const void *PB) {
842  const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
843  const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
844  if (A == B)
845    return 0;
846
847  // Order by ascending spill size.
848  if (A->SpillSize < B->SpillSize)
849    return -1;
850  if (A->SpillSize > B->SpillSize)
851    return 1;
852
853  // Order by ascending spill alignment.
854  if (A->SpillAlignment < B->SpillAlignment)
855    return -1;
856  if (A->SpillAlignment > B->SpillAlignment)
857    return 1;
858
859  // Order by descending set size.  Note that the classes' allocation order may
860  // not have been computed yet.  The Members set is always vaild.
861  if (A->getMembers().size() > B->getMembers().size())
862    return -1;
863  if (A->getMembers().size() < B->getMembers().size())
864    return 1;
865
866  // Finally order by name as a tie breaker.
867  return StringRef(A->getName()).compare(B->getName());
868}
869
870std::string CodeGenRegisterClass::getQualifiedName() const {
871  if (Namespace.empty())
872    return getName();
873  else
874    return Namespace + "::" + getName();
875}
876
877// Compute sub-classes of all register classes.
878// Assume the classes are ordered topologically.
879void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
880  ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
881
882  // Visit backwards so sub-classes are seen first.
883  for (unsigned rci = RegClasses.size(); rci; --rci) {
884    CodeGenRegisterClass &RC = *RegClasses[rci - 1];
885    RC.SubClasses.resize(RegClasses.size());
886    RC.SubClasses.set(RC.EnumValue);
887
888    // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
889    for (unsigned s = rci; s != RegClasses.size(); ++s) {
890      if (RC.SubClasses.test(s))
891        continue;
892      CodeGenRegisterClass *SubRC = RegClasses[s];
893      if (!testSubClass(&RC, SubRC))
894        continue;
895      // SubRC is a sub-class. Grap all its sub-classes so we won't have to
896      // check them again.
897      RC.SubClasses |= SubRC->SubClasses;
898    }
899
900    // Sweep up missed clique members.  They will be immediately preceding RC.
901    for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
902      RC.SubClasses.set(s - 1);
903  }
904
905  // Compute the SuperClasses lists from the SubClasses vectors.
906  for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
907    const BitVector &SC = RegClasses[rci]->getSubClasses();
908    for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
909      if (unsigned(s) == rci)
910        continue;
911      RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
912    }
913  }
914
915  // With the class hierarchy in place, let synthesized register classes inherit
916  // properties from their closest super-class. The iteration order here can
917  // propagate properties down multiple levels.
918  for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
919    if (!RegClasses[rci]->getDef())
920      RegClasses[rci]->inheritProperties(RegBank);
921}
922
923void
924CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
925                                         BitVector &Out) const {
926  DenseMap<CodeGenSubRegIndex*,
927           SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
928    FindI = SuperRegClasses.find(SubIdx);
929  if (FindI == SuperRegClasses.end())
930    return;
931  for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
932       FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
933    Out.set((*I)->EnumValue);
934}
935
936// Populate a unique sorted list of units from a register set.
937void CodeGenRegisterClass::buildRegUnitSet(
938  std::vector<unsigned> &RegUnits) const {
939  std::vector<unsigned> TmpUnits;
940  for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
941    TmpUnits.push_back(*UnitI);
942  std::sort(TmpUnits.begin(), TmpUnits.end());
943  std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
944                   std::back_inserter(RegUnits));
945}
946
947//===----------------------------------------------------------------------===//
948//                               CodeGenRegBank
949//===----------------------------------------------------------------------===//
950
951CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
952  // Configure register Sets to understand register classes and tuples.
953  Sets.addFieldExpander("RegisterClass", "MemberList");
954  Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
955  Sets.addExpander("RegisterTuples", new TupleExpander());
956
957  // Read in the user-defined (named) sub-register indices.
958  // More indices will be synthesized later.
959  std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
960  std::sort(SRIs.begin(), SRIs.end(), LessRecord());
961  for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
962    getSubRegIdx(SRIs[i]);
963  // Build composite maps from ComposedOf fields.
964  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
965    SubRegIndices[i]->updateComponents(*this);
966
967  // Read in the register definitions.
968  std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
969  std::sort(Regs.begin(), Regs.end(), LessRecord());
970  Registers.reserve(Regs.size());
971  // Assign the enumeration values.
972  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
973    getReg(Regs[i]);
974
975  // Expand tuples and number the new registers.
976  std::vector<Record*> Tups =
977    Records.getAllDerivedDefinitions("RegisterTuples");
978  for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
979    const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
980    for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
981      getReg((*TupRegs)[j]);
982  }
983
984  // Now all the registers are known. Build the object graph of explicit
985  // register-register references.
986  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
987    Registers[i]->buildObjectGraph(*this);
988
989  // Precompute all sub-register maps.
990  // This will create Composite entries for all inferred sub-register indices.
991  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
992    Registers[i]->computeSubRegs(*this);
993
994  // Infer even more sub-registers by combining leading super-registers.
995  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
996    if (Registers[i]->CoveredBySubRegs)
997      Registers[i]->computeSecondarySubRegs(*this);
998
999  // After the sub-register graph is complete, compute the topologically
1000  // ordered SuperRegs list.
1001  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1002    Registers[i]->computeSuperRegs(*this);
1003
1004  // Native register units are associated with a leaf register. They've all been
1005  // discovered now.
1006  NumNativeRegUnits = RegUnits.size();
1007
1008  // Read in register class definitions.
1009  std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1010  if (RCs.empty())
1011    throw std::string("No 'RegisterClass' subclasses defined!");
1012
1013  // Allocate user-defined register classes.
1014  RegClasses.reserve(RCs.size());
1015  for (unsigned i = 0, e = RCs.size(); i != e; ++i)
1016    addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
1017
1018  // Infer missing classes to create a full algebra.
1019  computeInferredRegisterClasses();
1020
1021  // Order register classes topologically and assign enum values.
1022  array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
1023  for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
1024    RegClasses[i]->EnumValue = i;
1025  CodeGenRegisterClass::computeSubClasses(*this);
1026}
1027
1028// Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1029CodeGenSubRegIndex*
1030CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1031  CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace,
1032                                                   SubRegIndices.size() + 1);
1033  SubRegIndices.push_back(Idx);
1034  return Idx;
1035}
1036
1037CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1038  CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1039  if (Idx)
1040    return Idx;
1041  Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
1042  SubRegIndices.push_back(Idx);
1043  return Idx;
1044}
1045
1046CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1047  CodeGenRegister *&Reg = Def2Reg[Def];
1048  if (Reg)
1049    return Reg;
1050  Reg = new CodeGenRegister(Def, Registers.size() + 1);
1051  Registers.push_back(Reg);
1052  return Reg;
1053}
1054
1055void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1056  RegClasses.push_back(RC);
1057
1058  if (Record *Def = RC->getDef())
1059    Def2RC.insert(std::make_pair(Def, RC));
1060
1061  // Duplicate classes are rejected by insert().
1062  // That's OK, we only care about the properties handled by CGRC::Key.
1063  CodeGenRegisterClass::Key K(*RC);
1064  Key2RC.insert(std::make_pair(K, RC));
1065}
1066
1067// Create a synthetic sub-class if it is missing.
1068CodeGenRegisterClass*
1069CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1070                                    const CodeGenRegister::Set *Members,
1071                                    StringRef Name) {
1072  // Synthetic sub-class has the same size and alignment as RC.
1073  CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1074  RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1075  if (FoundI != Key2RC.end())
1076    return FoundI->second;
1077
1078  // Sub-class doesn't exist, create a new one.
1079  CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K);
1080  addToMaps(NewRC);
1081  return NewRC;
1082}
1083
1084CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1085  if (CodeGenRegisterClass *RC = Def2RC[Def])
1086    return RC;
1087
1088  throw TGError(Def->getLoc(), "Not a known RegisterClass!");
1089}
1090
1091CodeGenSubRegIndex*
1092CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1093                                        CodeGenSubRegIndex *B) {
1094  // Look for an existing entry.
1095  CodeGenSubRegIndex *Comp = A->compose(B);
1096  if (Comp)
1097    return Comp;
1098
1099  // None exists, synthesize one.
1100  std::string Name = A->getName() + "_then_" + B->getName();
1101  Comp = createSubRegIndex(Name, A->getNamespace());
1102  A->addComposite(B, Comp);
1103  return Comp;
1104}
1105
1106CodeGenSubRegIndex *CodeGenRegBank::
1107getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex*, 8> &Parts) {
1108  assert(Parts.size() > 1 && "Need two parts to concatenate");
1109
1110  // Look for an existing entry.
1111  CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1112  if (Idx)
1113    return Idx;
1114
1115  // None exists, synthesize one.
1116  std::string Name = Parts.front()->getName();
1117  for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1118    Name += '_';
1119    Name += Parts[i]->getName();
1120  }
1121  return Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1122}
1123
1124void CodeGenRegBank::computeComposites() {
1125  // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1126  // and many registers will share TopoSigs on regular architectures.
1127  BitVector TopoSigs(getNumTopoSigs());
1128
1129  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1130    CodeGenRegister *Reg1 = Registers[i];
1131
1132    // Skip identical subreg structures already processed.
1133    if (TopoSigs.test(Reg1->getTopoSig()))
1134      continue;
1135    TopoSigs.set(Reg1->getTopoSig());
1136
1137    const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
1138    for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1139         e1 = SRM1.end(); i1 != e1; ++i1) {
1140      CodeGenSubRegIndex *Idx1 = i1->first;
1141      CodeGenRegister *Reg2 = i1->second;
1142      // Ignore identity compositions.
1143      if (Reg1 == Reg2)
1144        continue;
1145      const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1146      // Try composing Idx1 with another SubRegIndex.
1147      for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1148           e2 = SRM2.end(); i2 != e2; ++i2) {
1149        CodeGenSubRegIndex *Idx2 = i2->first;
1150        CodeGenRegister *Reg3 = i2->second;
1151        // Ignore identity compositions.
1152        if (Reg2 == Reg3)
1153          continue;
1154        // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1155        CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3);
1156        assert(Idx3 && "Sub-register doesn't have an index");
1157
1158        // Conflicting composition? Emit a warning but allow it.
1159        if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1160          PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1161                       " and " + Idx2->getQualifiedName() +
1162                       " compose ambiguously as " + Prev->getQualifiedName() +
1163                       " or " + Idx3->getQualifiedName());
1164      }
1165    }
1166  }
1167
1168  // We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid
1169  // compositions, so remove any mappings of that form.
1170  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
1171    SubRegIndices[i]->cleanComposites();
1172}
1173
1174namespace {
1175// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1176// the transitive closure of the union of overlapping register
1177// classes. Together, the UberRegSets form a partition of the registers. If we
1178// consider overlapping register classes to be connected, then each UberRegSet
1179// is a set of connected components.
1180//
1181// An UberRegSet will likely be a horizontal slice of register names of
1182// the same width. Nontrivial subregisters should then be in a separate
1183// UberRegSet. But this property isn't required for valid computation of
1184// register unit weights.
1185//
1186// A Weight field caches the max per-register unit weight in each UberRegSet.
1187//
1188// A set of SingularDeterminants flags single units of some register in this set
1189// for which the unit weight equals the set weight. These units should not have
1190// their weight increased.
1191struct UberRegSet {
1192  CodeGenRegister::Set Regs;
1193  unsigned Weight;
1194  CodeGenRegister::RegUnitList SingularDeterminants;
1195
1196  UberRegSet(): Weight(0) {}
1197};
1198} // namespace
1199
1200// Partition registers into UberRegSets, where each set is the transitive
1201// closure of the union of overlapping register classes.
1202//
1203// UberRegSets[0] is a special non-allocatable set.
1204static void computeUberSets(std::vector<UberRegSet> &UberSets,
1205                            std::vector<UberRegSet*> &RegSets,
1206                            CodeGenRegBank &RegBank) {
1207
1208  const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
1209
1210  // The Register EnumValue is one greater than its index into Registers.
1211  assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
1212         "register enum value mismatch");
1213
1214  // For simplicitly make the SetID the same as EnumValue.
1215  IntEqClasses UberSetIDs(Registers.size()+1);
1216  std::set<unsigned> AllocatableRegs;
1217  for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
1218
1219    CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
1220    if (!RegClass->Allocatable)
1221      continue;
1222
1223    const CodeGenRegister::Set &Regs = RegClass->getMembers();
1224    if (Regs.empty())
1225      continue;
1226
1227    unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1228    assert(USetID && "register number 0 is invalid");
1229
1230    AllocatableRegs.insert((*Regs.begin())->EnumValue);
1231    for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()),
1232           E = Regs.end(); I != E; ++I) {
1233      AllocatableRegs.insert((*I)->EnumValue);
1234      UberSetIDs.join(USetID, (*I)->EnumValue);
1235    }
1236  }
1237  // Combine non-allocatable regs.
1238  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1239    unsigned RegNum = Registers[i]->EnumValue;
1240    if (AllocatableRegs.count(RegNum))
1241      continue;
1242
1243    UberSetIDs.join(0, RegNum);
1244  }
1245  UberSetIDs.compress();
1246
1247  // Make the first UberSet a special unallocatable set.
1248  unsigned ZeroID = UberSetIDs[0];
1249
1250  // Insert Registers into the UberSets formed by union-find.
1251  // Do not resize after this.
1252  UberSets.resize(UberSetIDs.getNumClasses());
1253  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1254    const CodeGenRegister *Reg = Registers[i];
1255    unsigned USetID = UberSetIDs[Reg->EnumValue];
1256    if (!USetID)
1257      USetID = ZeroID;
1258    else if (USetID == ZeroID)
1259      USetID = 0;
1260
1261    UberRegSet *USet = &UberSets[USetID];
1262    USet->Regs.insert(Reg);
1263    RegSets[i] = USet;
1264  }
1265}
1266
1267// Recompute each UberSet weight after changing unit weights.
1268static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1269                               CodeGenRegBank &RegBank) {
1270  // Skip the first unallocatable set.
1271  for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()),
1272         E = UberSets.end(); I != E; ++I) {
1273
1274    // Initialize all unit weights in this set, and remember the max units/reg.
1275    const CodeGenRegister *Reg = 0;
1276    unsigned MaxWeight = 0, Weight = 0;
1277    for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1278      if (Reg != UnitI.getReg()) {
1279        if (Weight > MaxWeight)
1280          MaxWeight = Weight;
1281        Reg = UnitI.getReg();
1282        Weight = 0;
1283      }
1284      unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1285      if (!UWeight) {
1286        UWeight = 1;
1287        RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1288      }
1289      Weight += UWeight;
1290    }
1291    if (Weight > MaxWeight)
1292      MaxWeight = Weight;
1293
1294    // Update the set weight.
1295    I->Weight = MaxWeight;
1296
1297    // Find singular determinants.
1298    for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
1299           RegE = I->Regs.end(); RegI != RegE; ++RegI) {
1300      if ((*RegI)->getRegUnits().size() == 1
1301          && (*RegI)->getWeight(RegBank) == I->Weight)
1302        mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
1303    }
1304  }
1305}
1306
1307// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1308// a register and its subregisters so that they have the same weight as their
1309// UberSet. Self-recursion processes the subregister tree in postorder so
1310// subregisters are normalized first.
1311//
1312// Side effects:
1313// - creates new adopted register units
1314// - causes superregisters to inherit adopted units
1315// - increases the weight of "singular" units
1316// - induces recomputation of UberWeights.
1317static bool normalizeWeight(CodeGenRegister *Reg,
1318                            std::vector<UberRegSet> &UberSets,
1319                            std::vector<UberRegSet*> &RegSets,
1320                            std::set<unsigned> &NormalRegs,
1321                            CodeGenRegister::RegUnitList &NormalUnits,
1322                            CodeGenRegBank &RegBank) {
1323  bool Changed = false;
1324  if (!NormalRegs.insert(Reg->EnumValue).second)
1325    return Changed;
1326
1327  const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1328  for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1329         SRE = SRM.end(); SRI != SRE; ++SRI) {
1330    if (SRI->second == Reg)
1331      continue; // self-cycles happen
1332
1333    Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1334                               NormalRegs, NormalUnits, RegBank);
1335  }
1336  // Postorder register normalization.
1337
1338  // Inherit register units newly adopted by subregisters.
1339  if (Reg->inheritRegUnits(RegBank))
1340    computeUberWeights(UberSets, RegBank);
1341
1342  // Check if this register is too skinny for its UberRegSet.
1343  UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1344
1345  unsigned RegWeight = Reg->getWeight(RegBank);
1346  if (UberSet->Weight > RegWeight) {
1347    // A register unit's weight can be adjusted only if it is the singular unit
1348    // for this register, has not been used to normalize a subregister's set,
1349    // and has not already been used to singularly determine this UberRegSet.
1350    unsigned AdjustUnit = Reg->getRegUnits().front();
1351    if (Reg->getRegUnits().size() != 1
1352        || hasRegUnit(NormalUnits, AdjustUnit)
1353        || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1354      // We don't have an adjustable unit, so adopt a new one.
1355      AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1356      Reg->adoptRegUnit(AdjustUnit);
1357      // Adopting a unit does not immediately require recomputing set weights.
1358    }
1359    else {
1360      // Adjust the existing single unit.
1361      RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1362      // The unit may be shared among sets and registers within this set.
1363      computeUberWeights(UberSets, RegBank);
1364    }
1365    Changed = true;
1366  }
1367
1368  // Mark these units normalized so superregisters can't change their weights.
1369  mergeRegUnits(NormalUnits, Reg->getRegUnits());
1370
1371  return Changed;
1372}
1373
1374// Compute a weight for each register unit created during getSubRegs.
1375//
1376// The goal is that two registers in the same class will have the same weight,
1377// where each register's weight is defined as sum of its units' weights.
1378void CodeGenRegBank::computeRegUnitWeights() {
1379  std::vector<UberRegSet> UberSets;
1380  std::vector<UberRegSet*> RegSets(Registers.size());
1381  computeUberSets(UberSets, RegSets, *this);
1382  // UberSets and RegSets are now immutable.
1383
1384  computeUberWeights(UberSets, *this);
1385
1386  // Iterate over each Register, normalizing the unit weights until reaching
1387  // a fix point.
1388  unsigned NumIters = 0;
1389  for (bool Changed = true; Changed; ++NumIters) {
1390    assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1391    Changed = false;
1392    for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1393      CodeGenRegister::RegUnitList NormalUnits;
1394      std::set<unsigned> NormalRegs;
1395      Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
1396                                 NormalRegs, NormalUnits, *this);
1397    }
1398  }
1399}
1400
1401// Find a set in UniqueSets with the same elements as Set.
1402// Return an iterator into UniqueSets.
1403static std::vector<RegUnitSet>::const_iterator
1404findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1405               const RegUnitSet &Set) {
1406  std::vector<RegUnitSet>::const_iterator
1407    I = UniqueSets.begin(), E = UniqueSets.end();
1408  for(;I != E; ++I) {
1409    if (I->Units == Set.Units)
1410      break;
1411  }
1412  return I;
1413}
1414
1415// Return true if the RUSubSet is a subset of RUSuperSet.
1416static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1417                            const std::vector<unsigned> &RUSuperSet) {
1418  return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1419                       RUSubSet.begin(), RUSubSet.end());
1420}
1421
1422// Iteratively prune unit sets.
1423void CodeGenRegBank::pruneUnitSets() {
1424  assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1425
1426  // Form an equivalence class of UnitSets with no significant difference.
1427  std::vector<unsigned> SuperSetIDs;
1428  for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1429       SubIdx != EndIdx; ++SubIdx) {
1430    const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1431    unsigned SuperIdx = 0;
1432    for (; SuperIdx != EndIdx; ++SuperIdx) {
1433      if (SuperIdx == SubIdx)
1434        continue;
1435
1436      const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1437      if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1438          && (SubSet.Units.size() + 3 > SuperSet.Units.size())) {
1439        break;
1440      }
1441    }
1442    if (SuperIdx == EndIdx)
1443      SuperSetIDs.push_back(SubIdx);
1444  }
1445  // Populate PrunedUnitSets with each equivalence class's superset.
1446  std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1447  for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1448    unsigned SuperIdx = SuperSetIDs[i];
1449    PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1450    PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1451  }
1452  RegUnitSets.swap(PrunedUnitSets);
1453}
1454
1455// Create a RegUnitSet for each RegClass that contains all units in the class
1456// including adopted units that are necessary to model register pressure. Then
1457// iteratively compute RegUnitSets such that the union of any two overlapping
1458// RegUnitSets is repreresented.
1459//
1460// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1461// RegUnitSet that is a superset of that RegUnitClass.
1462void CodeGenRegBank::computeRegUnitSets() {
1463
1464  // Compute a unique RegUnitSet for each RegClass.
1465  const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
1466  unsigned NumRegClasses = RegClasses.size();
1467  for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1468    if (!RegClasses[RCIdx]->Allocatable)
1469      continue;
1470
1471    // Speculatively grow the RegUnitSets to hold the new set.
1472    RegUnitSets.resize(RegUnitSets.size() + 1);
1473    RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
1474
1475    // Compute a sorted list of units in this class.
1476    RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
1477
1478    // Find an existing RegUnitSet.
1479    std::vector<RegUnitSet>::const_iterator SetI =
1480      findRegUnitSet(RegUnitSets, RegUnitSets.back());
1481    if (SetI != llvm::prior(RegUnitSets.end()))
1482      RegUnitSets.pop_back();
1483  }
1484
1485  // Iteratively prune unit sets.
1486  pruneUnitSets();
1487
1488  // Iterate over all unit sets, including new ones added by this loop.
1489  unsigned NumRegUnitSubSets = RegUnitSets.size();
1490  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1491    // In theory, this is combinatorial. In practice, it needs to be bounded
1492    // by a small number of sets for regpressure to be efficient.
1493    // If the assert is hit, we need to implement pruning.
1494    assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1495
1496    // Compare new sets with all original classes.
1497    for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1498         SearchIdx != EndIdx; ++SearchIdx) {
1499      std::set<unsigned> Intersection;
1500      std::set_intersection(RegUnitSets[Idx].Units.begin(),
1501                            RegUnitSets[Idx].Units.end(),
1502                            RegUnitSets[SearchIdx].Units.begin(),
1503                            RegUnitSets[SearchIdx].Units.end(),
1504                            std::inserter(Intersection, Intersection.begin()));
1505      if (Intersection.empty())
1506        continue;
1507
1508      // Speculatively grow the RegUnitSets to hold the new set.
1509      RegUnitSets.resize(RegUnitSets.size() + 1);
1510      RegUnitSets.back().Name =
1511        RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1512
1513      std::set_union(RegUnitSets[Idx].Units.begin(),
1514                     RegUnitSets[Idx].Units.end(),
1515                     RegUnitSets[SearchIdx].Units.begin(),
1516                     RegUnitSets[SearchIdx].Units.end(),
1517                     std::inserter(RegUnitSets.back().Units,
1518                                   RegUnitSets.back().Units.begin()));
1519
1520      // Find an existing RegUnitSet, or add the union to the unique sets.
1521      std::vector<RegUnitSet>::const_iterator SetI =
1522        findRegUnitSet(RegUnitSets, RegUnitSets.back());
1523      if (SetI != llvm::prior(RegUnitSets.end()))
1524        RegUnitSets.pop_back();
1525    }
1526  }
1527
1528  // Iteratively prune unit sets after inferring supersets.
1529  pruneUnitSets();
1530
1531  // For each register class, list the UnitSets that are supersets.
1532  RegClassUnitSets.resize(NumRegClasses);
1533  for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1534    if (!RegClasses[RCIdx]->Allocatable)
1535      continue;
1536
1537    // Recompute the sorted list of units in this class.
1538    std::vector<unsigned> RegUnits;
1539    RegClasses[RCIdx]->buildRegUnitSet(RegUnits);
1540
1541    // Don't increase pressure for unallocatable regclasses.
1542    if (RegUnits.empty())
1543      continue;
1544
1545    // Find all supersets.
1546    for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1547         USIdx != USEnd; ++USIdx) {
1548      if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units))
1549        RegClassUnitSets[RCIdx].push_back(USIdx);
1550    }
1551    assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1552  }
1553}
1554
1555void CodeGenRegBank::computeDerivedInfo() {
1556  computeComposites();
1557
1558  // Compute a weight for each register unit created during getSubRegs.
1559  // This may create adopted register units (with unit # >= NumNativeRegUnits).
1560  computeRegUnitWeights();
1561
1562  // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1563  // supersets for the union of overlapping sets.
1564  computeRegUnitSets();
1565}
1566
1567//
1568// Synthesize missing register class intersections.
1569//
1570// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1571// returns a maximal register class for all X.
1572//
1573void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1574  for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
1575    CodeGenRegisterClass *RC1 = RC;
1576    CodeGenRegisterClass *RC2 = RegClasses[rci];
1577    if (RC1 == RC2)
1578      continue;
1579
1580    // Compute the set intersection of RC1 and RC2.
1581    const CodeGenRegister::Set &Memb1 = RC1->getMembers();
1582    const CodeGenRegister::Set &Memb2 = RC2->getMembers();
1583    CodeGenRegister::Set Intersection;
1584    std::set_intersection(Memb1.begin(), Memb1.end(),
1585                          Memb2.begin(), Memb2.end(),
1586                          std::inserter(Intersection, Intersection.begin()),
1587                          CodeGenRegister::Less());
1588
1589    // Skip disjoint class pairs.
1590    if (Intersection.empty())
1591      continue;
1592
1593    // If RC1 and RC2 have different spill sizes or alignments, use the
1594    // larger size for sub-classing.  If they are equal, prefer RC1.
1595    if (RC2->SpillSize > RC1->SpillSize ||
1596        (RC2->SpillSize == RC1->SpillSize &&
1597         RC2->SpillAlignment > RC1->SpillAlignment))
1598      std::swap(RC1, RC2);
1599
1600    getOrCreateSubClass(RC1, &Intersection,
1601                        RC1->getName() + "_and_" + RC2->getName());
1602  }
1603}
1604
1605//
1606// Synthesize missing sub-classes for getSubClassWithSubReg().
1607//
1608// Make sure that the set of registers in RC with a given SubIdx sub-register
1609// form a register class.  Update RC->SubClassWithSubReg.
1610//
1611void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1612  // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1613  typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
1614                   CodeGenSubRegIndex::Less> SubReg2SetMap;
1615
1616  // Compute the set of registers supporting each SubRegIndex.
1617  SubReg2SetMap SRSets;
1618  for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1619       RE = RC->getMembers().end(); RI != RE; ++RI) {
1620    const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
1621    for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1622         E = SRM.end(); I != E; ++I)
1623      SRSets[I->first].insert(*RI);
1624  }
1625
1626  // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
1627  // numerical order to visit synthetic indices last.
1628  for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1629    CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1630    SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
1631    // Unsupported SubRegIndex. Skip it.
1632    if (I == SRSets.end())
1633      continue;
1634    // In most cases, all RC registers support the SubRegIndex.
1635    if (I->second.size() == RC->getMembers().size()) {
1636      RC->setSubClassWithSubReg(SubIdx, RC);
1637      continue;
1638    }
1639    // This is a real subset.  See if we have a matching class.
1640    CodeGenRegisterClass *SubRC =
1641      getOrCreateSubClass(RC, &I->second,
1642                          RC->getName() + "_with_" + I->first->getName());
1643    RC->setSubClassWithSubReg(SubIdx, SubRC);
1644  }
1645}
1646
1647//
1648// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1649//
1650// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1651// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1652//
1653
1654void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1655                                                unsigned FirstSubRegRC) {
1656  SmallVector<std::pair<const CodeGenRegister*,
1657                        const CodeGenRegister*>, 16> SSPairs;
1658  BitVector TopoSigs(getNumTopoSigs());
1659
1660  // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1661  for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1662    CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1663    // Skip indexes that aren't fully supported by RC's registers. This was
1664    // computed by inferSubClassWithSubReg() above which should have been
1665    // called first.
1666    if (RC->getSubClassWithSubReg(SubIdx) != RC)
1667      continue;
1668
1669    // Build list of (Super, Sub) pairs for this SubIdx.
1670    SSPairs.clear();
1671    TopoSigs.reset();
1672    for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1673         RE = RC->getMembers().end(); RI != RE; ++RI) {
1674      const CodeGenRegister *Super = *RI;
1675      const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
1676      assert(Sub && "Missing sub-register");
1677      SSPairs.push_back(std::make_pair(Super, Sub));
1678      TopoSigs.set(Sub->getTopoSig());
1679    }
1680
1681    // Iterate over sub-register class candidates.  Ignore classes created by
1682    // this loop. They will never be useful.
1683    for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
1684         ++rci) {
1685      CodeGenRegisterClass *SubRC = RegClasses[rci];
1686      // Topological shortcut: SubRC members have the wrong shape.
1687      if (!TopoSigs.anyCommon(SubRC->getTopoSigs()))
1688        continue;
1689      // Compute the subset of RC that maps into SubRC.
1690      CodeGenRegister::Set SubSet;
1691      for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1692        if (SubRC->contains(SSPairs[i].second))
1693          SubSet.insert(SSPairs[i].first);
1694      if (SubSet.empty())
1695        continue;
1696      // RC injects completely into SubRC.
1697      if (SubSet.size() == SSPairs.size()) {
1698        SubRC->addSuperRegClass(SubIdx, RC);
1699        continue;
1700      }
1701      // Only a subset of RC maps into SubRC. Make sure it is represented by a
1702      // class.
1703      getOrCreateSubClass(RC, &SubSet, RC->getName() +
1704                          "_with_" + SubIdx->getName() +
1705                          "_in_" + SubRC->getName());
1706    }
1707  }
1708}
1709
1710
1711//
1712// Infer missing register classes.
1713//
1714void CodeGenRegBank::computeInferredRegisterClasses() {
1715  // When this function is called, the register classes have not been sorted
1716  // and assigned EnumValues yet.  That means getSubClasses(),
1717  // getSuperClasses(), and hasSubClass() functions are defunct.
1718  unsigned FirstNewRC = RegClasses.size();
1719
1720  // Visit all register classes, including the ones being added by the loop.
1721  for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
1722    CodeGenRegisterClass *RC = RegClasses[rci];
1723
1724    // Synthesize answers for getSubClassWithSubReg().
1725    inferSubClassWithSubReg(RC);
1726
1727    // Synthesize answers for getCommonSubClass().
1728    inferCommonSubClass(RC);
1729
1730    // Synthesize answers for getMatchingSuperRegClass().
1731    inferMatchingSuperRegClass(RC);
1732
1733    // New register classes are created while this loop is running, and we need
1734    // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
1735    // to match old super-register classes with sub-register classes created
1736    // after inferMatchingSuperRegClass was called.  At this point,
1737    // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
1738    // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
1739    if (rci + 1 == FirstNewRC) {
1740      unsigned NextNewRC = RegClasses.size();
1741      for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
1742        inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
1743      FirstNewRC = NextNewRC;
1744    }
1745  }
1746}
1747
1748/// getRegisterClassForRegister - Find the register class that contains the
1749/// specified physical register.  If the register is not in a register class,
1750/// return null. If the register is in multiple classes, and the classes have a
1751/// superset-subset relationship and the same set of types, return the
1752/// superclass.  Otherwise return null.
1753const CodeGenRegisterClass*
1754CodeGenRegBank::getRegClassForRegister(Record *R) {
1755  const CodeGenRegister *Reg = getReg(R);
1756  ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
1757  const CodeGenRegisterClass *FoundRC = 0;
1758  for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
1759    const CodeGenRegisterClass &RC = *RCs[i];
1760    if (!RC.contains(Reg))
1761      continue;
1762
1763    // If this is the first class that contains the register,
1764    // make a note of it and go on to the next class.
1765    if (!FoundRC) {
1766      FoundRC = &RC;
1767      continue;
1768    }
1769
1770    // If a register's classes have different types, return null.
1771    if (RC.getValueTypes() != FoundRC->getValueTypes())
1772      return 0;
1773
1774    // Check to see if the previously found class that contains
1775    // the register is a subclass of the current class. If so,
1776    // prefer the superclass.
1777    if (RC.hasSubClass(FoundRC)) {
1778      FoundRC = &RC;
1779      continue;
1780    }
1781
1782    // Check to see if the previously found class that contains
1783    // the register is a superclass of the current class. If so,
1784    // prefer the superclass.
1785    if (FoundRC->hasSubClass(&RC))
1786      continue;
1787
1788    // Multiple classes, and neither is a superclass of the other.
1789    // Return null.
1790    return 0;
1791  }
1792  return FoundRC;
1793}
1794
1795BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
1796  SetVector<const CodeGenRegister*> Set;
1797
1798  // First add Regs with all sub-registers.
1799  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
1800    CodeGenRegister *Reg = getReg(Regs[i]);
1801    if (Set.insert(Reg))
1802      // Reg is new, add all sub-registers.
1803      // The pre-ordering is not important here.
1804      Reg->addSubRegsPreOrder(Set, *this);
1805  }
1806
1807  // Second, find all super-registers that are completely covered by the set.
1808  for (unsigned i = 0; i != Set.size(); ++i) {
1809    const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
1810    for (unsigned j = 0, e = SR.size(); j != e; ++j) {
1811      const CodeGenRegister *Super = SR[j];
1812      if (!Super->CoveredBySubRegs || Set.count(Super))
1813        continue;
1814      // This new super-register is covered by its sub-registers.
1815      bool AllSubsInSet = true;
1816      const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
1817      for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1818             E = SRM.end(); I != E; ++I)
1819        if (!Set.count(I->second)) {
1820          AllSubsInSet = false;
1821          break;
1822        }
1823      // All sub-registers in Set, add Super as well.
1824      // We will visit Super later to recheck its super-registers.
1825      if (AllSubsInSet)
1826        Set.insert(Super);
1827    }
1828  }
1829
1830  // Convert to BitVector.
1831  BitVector BV(Registers.size() + 1);
1832  for (unsigned i = 0, e = Set.size(); i != e; ++i)
1833    BV.set(Set[i]->EnumValue);
1834  return BV;
1835}
1836