1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2013 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/covariance_impl.h"
32
33#ifdef CERES_USE_OPENMP
34#include <omp.h>
35#endif
36
37#include <algorithm>
38#include <cstdlib>
39#include <utility>
40#include <vector>
41#include "Eigen/SparseCore"
42
43// Suppress unused local variable warning from Eigen Ordering.h #included by
44// SparseQR in Eigen 3.2.0. This was fixed in Eigen 3.2.1, but 3.2.0 is still
45// widely used (Ubuntu 14.04), and Ceres won't compile otherwise due to -Werror.
46#if defined(_MSC_VER)
47#pragma warning( push )
48#pragma warning( disable : 4189 )
49#else
50#pragma GCC diagnostic push
51#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
52#endif
53#include "Eigen/SparseQR"
54#if defined(_MSC_VER)
55#pragma warning( pop )
56#else
57#pragma GCC diagnostic pop
58#endif
59
60#include "Eigen/SVD"
61#include "ceres/compressed_col_sparse_matrix_utils.h"
62#include "ceres/compressed_row_sparse_matrix.h"
63#include "ceres/covariance.h"
64#include "ceres/crs_matrix.h"
65#include "ceres/internal/eigen.h"
66#include "ceres/map_util.h"
67#include "ceres/parameter_block.h"
68#include "ceres/problem_impl.h"
69#include "ceres/suitesparse.h"
70#include "ceres/wall_time.h"
71#include "glog/logging.h"
72
73namespace ceres {
74namespace internal {
75
76typedef vector<pair<const double*, const double*> > CovarianceBlocks;
77
78CovarianceImpl::CovarianceImpl(const Covariance::Options& options)
79    : options_(options),
80      is_computed_(false),
81      is_valid_(false) {
82  evaluate_options_.num_threads = options.num_threads;
83  evaluate_options_.apply_loss_function = options.apply_loss_function;
84}
85
86CovarianceImpl::~CovarianceImpl() {
87}
88
89bool CovarianceImpl::Compute(const CovarianceBlocks& covariance_blocks,
90                             ProblemImpl* problem) {
91  problem_ = problem;
92  parameter_block_to_row_index_.clear();
93  covariance_matrix_.reset(NULL);
94  is_valid_ = (ComputeCovarianceSparsity(covariance_blocks, problem) &&
95               ComputeCovarianceValues());
96  is_computed_ = true;
97  return is_valid_;
98}
99
100bool CovarianceImpl::GetCovarianceBlock(const double* original_parameter_block1,
101                                        const double* original_parameter_block2,
102                                        double* covariance_block) const {
103  CHECK(is_computed_)
104      << "Covariance::GetCovarianceBlock called before Covariance::Compute";
105  CHECK(is_valid_)
106      << "Covariance::GetCovarianceBlock called when Covariance::Compute "
107      << "returned false.";
108
109  // If either of the two parameter blocks is constant, then the
110  // covariance block is also zero.
111  if (constant_parameter_blocks_.count(original_parameter_block1) > 0 ||
112      constant_parameter_blocks_.count(original_parameter_block2) > 0) {
113    const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map();
114    ParameterBlock* block1 =
115        FindOrDie(parameter_map,
116                  const_cast<double*>(original_parameter_block1));
117
118    ParameterBlock* block2 =
119        FindOrDie(parameter_map,
120                  const_cast<double*>(original_parameter_block2));
121    const int block1_size = block1->Size();
122    const int block2_size = block2->Size();
123    MatrixRef(covariance_block, block1_size, block2_size).setZero();
124    return true;
125  }
126
127  const double* parameter_block1 = original_parameter_block1;
128  const double* parameter_block2 = original_parameter_block2;
129  const bool transpose = parameter_block1 > parameter_block2;
130  if (transpose) {
131    std::swap(parameter_block1, parameter_block2);
132  }
133
134  // Find where in the covariance matrix the block is located.
135  const int row_begin =
136      FindOrDie(parameter_block_to_row_index_, parameter_block1);
137  const int col_begin =
138      FindOrDie(parameter_block_to_row_index_, parameter_block2);
139  const int* rows = covariance_matrix_->rows();
140  const int* cols = covariance_matrix_->cols();
141  const int row_size = rows[row_begin + 1] - rows[row_begin];
142  const int* cols_begin = cols + rows[row_begin];
143
144  // The only part that requires work is walking the compressed column
145  // vector to determine where the set of columns correspnding to the
146  // covariance block begin.
147  int offset = 0;
148  while (cols_begin[offset] != col_begin && offset < row_size) {
149    ++offset;
150  }
151
152  if (offset == row_size) {
153    LOG(ERROR) << "Unable to find covariance block for "
154               << original_parameter_block1 << " "
155               << original_parameter_block2;
156    return false;
157  }
158
159  const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map();
160  ParameterBlock* block1 =
161      FindOrDie(parameter_map, const_cast<double*>(parameter_block1));
162  ParameterBlock* block2 =
163      FindOrDie(parameter_map, const_cast<double*>(parameter_block2));
164  const LocalParameterization* local_param1 = block1->local_parameterization();
165  const LocalParameterization* local_param2 = block2->local_parameterization();
166  const int block1_size = block1->Size();
167  const int block1_local_size = block1->LocalSize();
168  const int block2_size = block2->Size();
169  const int block2_local_size = block2->LocalSize();
170
171  ConstMatrixRef cov(covariance_matrix_->values() + rows[row_begin],
172                     block1_size,
173                     row_size);
174
175  // Fast path when there are no local parameterizations.
176  if (local_param1 == NULL && local_param2 == NULL) {
177    if (transpose) {
178      MatrixRef(covariance_block, block2_size, block1_size) =
179          cov.block(0, offset, block1_size, block2_size).transpose();
180    } else {
181      MatrixRef(covariance_block, block1_size, block2_size) =
182          cov.block(0, offset, block1_size, block2_size);
183    }
184    return true;
185  }
186
187  // If local parameterizations are used then the covariance that has
188  // been computed is in the tangent space and it needs to be lifted
189  // back to the ambient space.
190  //
191  // This is given by the formula
192  //
193  //  C'_12 = J_1 C_12 J_2'
194  //
195  // Where C_12 is the local tangent space covariance for parameter
196  // blocks 1 and 2. J_1 and J_2 are respectively the local to global
197  // jacobians for parameter blocks 1 and 2.
198  //
199  // See Result 5.11 on page 142 of Hartley & Zisserman (2nd Edition)
200  // for a proof.
201  //
202  // TODO(sameeragarwal): Add caching of local parameterization, so
203  // that they are computed just once per parameter block.
204  Matrix block1_jacobian(block1_size, block1_local_size);
205  if (local_param1 == NULL) {
206    block1_jacobian.setIdentity();
207  } else {
208    local_param1->ComputeJacobian(parameter_block1, block1_jacobian.data());
209  }
210
211  Matrix block2_jacobian(block2_size, block2_local_size);
212  // Fast path if the user is requesting a diagonal block.
213  if (parameter_block1 == parameter_block2) {
214    block2_jacobian = block1_jacobian;
215  } else {
216    if (local_param2 == NULL) {
217      block2_jacobian.setIdentity();
218    } else {
219      local_param2->ComputeJacobian(parameter_block2, block2_jacobian.data());
220    }
221  }
222
223  if (transpose) {
224    MatrixRef(covariance_block, block2_size, block1_size) =
225        block2_jacobian *
226        cov.block(0, offset, block1_local_size, block2_local_size).transpose() *
227        block1_jacobian.transpose();
228  } else {
229    MatrixRef(covariance_block, block1_size, block2_size) =
230        block1_jacobian *
231        cov.block(0, offset, block1_local_size, block2_local_size) *
232        block2_jacobian.transpose();
233  }
234
235  return true;
236}
237
238// Determine the sparsity pattern of the covariance matrix based on
239// the block pairs requested by the user.
240bool CovarianceImpl::ComputeCovarianceSparsity(
241    const CovarianceBlocks&  original_covariance_blocks,
242    ProblemImpl* problem) {
243  EventLogger event_logger("CovarianceImpl::ComputeCovarianceSparsity");
244
245  // Determine an ordering for the parameter block, by sorting the
246  // parameter blocks by their pointers.
247  vector<double*> all_parameter_blocks;
248  problem->GetParameterBlocks(&all_parameter_blocks);
249  const ProblemImpl::ParameterMap& parameter_map = problem->parameter_map();
250  constant_parameter_blocks_.clear();
251  vector<double*>& active_parameter_blocks = evaluate_options_.parameter_blocks;
252  active_parameter_blocks.clear();
253  for (int i = 0; i < all_parameter_blocks.size(); ++i) {
254    double* parameter_block = all_parameter_blocks[i];
255
256    ParameterBlock* block = FindOrDie(parameter_map, parameter_block);
257    if (block->IsConstant()) {
258      constant_parameter_blocks_.insert(parameter_block);
259    } else {
260      active_parameter_blocks.push_back(parameter_block);
261    }
262  }
263
264  sort(active_parameter_blocks.begin(), active_parameter_blocks.end());
265
266  // Compute the number of rows.  Map each parameter block to the
267  // first row corresponding to it in the covariance matrix using the
268  // ordering of parameter blocks just constructed.
269  int num_rows = 0;
270  parameter_block_to_row_index_.clear();
271  for (int i = 0; i < active_parameter_blocks.size(); ++i) {
272    double* parameter_block = active_parameter_blocks[i];
273    const int parameter_block_size =
274        problem->ParameterBlockLocalSize(parameter_block);
275    parameter_block_to_row_index_[parameter_block] = num_rows;
276    num_rows += parameter_block_size;
277  }
278
279  // Compute the number of non-zeros in the covariance matrix.  Along
280  // the way flip any covariance blocks which are in the lower
281  // triangular part of the matrix.
282  int num_nonzeros = 0;
283  CovarianceBlocks covariance_blocks;
284  for (int i = 0; i <  original_covariance_blocks.size(); ++i) {
285    const pair<const double*, const double*>& block_pair =
286        original_covariance_blocks[i];
287    if (constant_parameter_blocks_.count(block_pair.first) > 0 ||
288        constant_parameter_blocks_.count(block_pair.second) > 0) {
289      continue;
290    }
291
292    int index1 = FindOrDie(parameter_block_to_row_index_, block_pair.first);
293    int index2 = FindOrDie(parameter_block_to_row_index_, block_pair.second);
294    const int size1 = problem->ParameterBlockLocalSize(block_pair.first);
295    const int size2 = problem->ParameterBlockLocalSize(block_pair.second);
296    num_nonzeros += size1 * size2;
297
298    // Make sure we are constructing a block upper triangular matrix.
299    if (index1 > index2) {
300      covariance_blocks.push_back(make_pair(block_pair.second,
301                                            block_pair.first));
302    } else {
303      covariance_blocks.push_back(block_pair);
304    }
305  }
306
307  if (covariance_blocks.size() == 0) {
308    VLOG(2) << "No non-zero covariance blocks found";
309    covariance_matrix_.reset(NULL);
310    return true;
311  }
312
313  // Sort the block pairs. As a consequence we get the covariance
314  // blocks as they will occur in the CompressedRowSparseMatrix that
315  // will store the covariance.
316  sort(covariance_blocks.begin(), covariance_blocks.end());
317
318  // Fill the sparsity pattern of the covariance matrix.
319  covariance_matrix_.reset(
320      new CompressedRowSparseMatrix(num_rows, num_rows, num_nonzeros));
321
322  int* rows = covariance_matrix_->mutable_rows();
323  int* cols = covariance_matrix_->mutable_cols();
324
325  // Iterate over parameter blocks and in turn over the rows of the
326  // covariance matrix. For each parameter block, look in the upper
327  // triangular part of the covariance matrix to see if there are any
328  // blocks requested by the user. If this is the case then fill out a
329  // set of compressed rows corresponding to this parameter block.
330  //
331  // The key thing that makes this loop work is the fact that the
332  // row/columns of the covariance matrix are ordered by the pointer
333  // values of the parameter blocks. Thus iterating over the keys of
334  // parameter_block_to_row_index_ corresponds to iterating over the
335  // rows of the covariance matrix in order.
336  int i = 0;  // index into covariance_blocks.
337  int cursor = 0;  // index into the covariance matrix.
338  for (map<const double*, int>::const_iterator it =
339           parameter_block_to_row_index_.begin();
340       it != parameter_block_to_row_index_.end();
341       ++it) {
342    const double* row_block =  it->first;
343    const int row_block_size = problem->ParameterBlockLocalSize(row_block);
344    int row_begin = it->second;
345
346    // Iterate over the covariance blocks contained in this row block
347    // and count the number of columns in this row block.
348    int num_col_blocks = 0;
349    int num_columns = 0;
350    for (int j = i; j < covariance_blocks.size(); ++j, ++num_col_blocks) {
351      const pair<const double*, const double*>& block_pair =
352          covariance_blocks[j];
353      if (block_pair.first != row_block) {
354        break;
355      }
356      num_columns += problem->ParameterBlockLocalSize(block_pair.second);
357    }
358
359    // Fill out all the compressed rows for this parameter block.
360    for (int r = 0; r < row_block_size; ++r) {
361      rows[row_begin + r] = cursor;
362      for (int c = 0; c < num_col_blocks; ++c) {
363        const double* col_block = covariance_blocks[i + c].second;
364        const int col_block_size = problem->ParameterBlockLocalSize(col_block);
365        int col_begin = FindOrDie(parameter_block_to_row_index_, col_block);
366        for (int k = 0; k < col_block_size; ++k) {
367          cols[cursor++] = col_begin++;
368        }
369      }
370    }
371
372    i+= num_col_blocks;
373  }
374
375  rows[num_rows] = cursor;
376  return true;
377}
378
379bool CovarianceImpl::ComputeCovarianceValues() {
380  switch (options_.algorithm_type) {
381    case DENSE_SVD:
382      return ComputeCovarianceValuesUsingDenseSVD();
383#ifndef CERES_NO_SUITESPARSE
384    case SUITE_SPARSE_QR:
385      return ComputeCovarianceValuesUsingSuiteSparseQR();
386#else
387      LOG(ERROR) << "SuiteSparse is required to use the "
388                 << "SUITE_SPARSE_QR algorithm.";
389      return false;
390#endif
391    case EIGEN_SPARSE_QR:
392      return ComputeCovarianceValuesUsingEigenSparseQR();
393    default:
394      LOG(ERROR) << "Unsupported covariance estimation algorithm type: "
395                 << CovarianceAlgorithmTypeToString(options_.algorithm_type);
396      return false;
397  }
398  return false;
399}
400
401bool CovarianceImpl::ComputeCovarianceValuesUsingSuiteSparseQR() {
402  EventLogger event_logger(
403      "CovarianceImpl::ComputeCovarianceValuesUsingSparseQR");
404
405#ifndef CERES_NO_SUITESPARSE
406  if (covariance_matrix_.get() == NULL) {
407    // Nothing to do, all zeros covariance matrix.
408    return true;
409  }
410
411  CRSMatrix jacobian;
412  problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian);
413  event_logger.AddEvent("Evaluate");
414
415  // Construct a compressed column form of the Jacobian.
416  const int num_rows = jacobian.num_rows;
417  const int num_cols = jacobian.num_cols;
418  const int num_nonzeros = jacobian.values.size();
419
420  vector<SuiteSparse_long> transpose_rows(num_cols + 1, 0);
421  vector<SuiteSparse_long> transpose_cols(num_nonzeros, 0);
422  vector<double> transpose_values(num_nonzeros, 0);
423
424  for (int idx = 0; idx < num_nonzeros; ++idx) {
425    transpose_rows[jacobian.cols[idx] + 1] += 1;
426  }
427
428  for (int i = 1; i < transpose_rows.size(); ++i) {
429    transpose_rows[i] += transpose_rows[i - 1];
430  }
431
432  for (int r = 0; r < num_rows; ++r) {
433    for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) {
434      const int c = jacobian.cols[idx];
435      const int transpose_idx = transpose_rows[c];
436      transpose_cols[transpose_idx] = r;
437      transpose_values[transpose_idx] = jacobian.values[idx];
438      ++transpose_rows[c];
439    }
440  }
441
442  for (int i = transpose_rows.size() - 1; i > 0 ; --i) {
443    transpose_rows[i] = transpose_rows[i - 1];
444  }
445  transpose_rows[0] = 0;
446
447  cholmod_sparse cholmod_jacobian;
448  cholmod_jacobian.nrow = num_rows;
449  cholmod_jacobian.ncol = num_cols;
450  cholmod_jacobian.nzmax = num_nonzeros;
451  cholmod_jacobian.nz = NULL;
452  cholmod_jacobian.p = reinterpret_cast<void*>(&transpose_rows[0]);
453  cholmod_jacobian.i = reinterpret_cast<void*>(&transpose_cols[0]);
454  cholmod_jacobian.x = reinterpret_cast<void*>(&transpose_values[0]);
455  cholmod_jacobian.z = NULL;
456  cholmod_jacobian.stype = 0;  // Matrix is not symmetric.
457  cholmod_jacobian.itype = CHOLMOD_LONG;
458  cholmod_jacobian.xtype = CHOLMOD_REAL;
459  cholmod_jacobian.dtype = CHOLMOD_DOUBLE;
460  cholmod_jacobian.sorted = 1;
461  cholmod_jacobian.packed = 1;
462
463  cholmod_common cc;
464  cholmod_l_start(&cc);
465
466  cholmod_sparse* R = NULL;
467  SuiteSparse_long* permutation = NULL;
468
469  // Compute a Q-less QR factorization of the Jacobian. Since we are
470  // only interested in inverting J'J = R'R, we do not need Q. This
471  // saves memory and gives us R as a permuted compressed column
472  // sparse matrix.
473  //
474  // TODO(sameeragarwal): Currently the symbolic factorization and the
475  // numeric factorization is done at the same time, and this does not
476  // explicitly account for the block column and row structure in the
477  // matrix. When using AMD, we have observed in the past that
478  // computing the ordering with the block matrix is significantly
479  // more efficient, both in runtime as well as the quality of
480  // ordering computed. So, it maybe worth doing that analysis
481  // separately.
482  const SuiteSparse_long rank =
483      SuiteSparseQR<double>(SPQR_ORDERING_BESTAMD,
484                            SPQR_DEFAULT_TOL,
485                            cholmod_jacobian.ncol,
486                            &cholmod_jacobian,
487                            &R,
488                            &permutation,
489                            &cc);
490  event_logger.AddEvent("Numeric Factorization");
491  CHECK_NOTNULL(permutation);
492  CHECK_NOTNULL(R);
493
494  if (rank < cholmod_jacobian.ncol) {
495    LOG(ERROR) << "Jacobian matrix is rank deficient. "
496               << "Number of columns: " << cholmod_jacobian.ncol
497               << " rank: " << rank;
498    free(permutation);
499    cholmod_l_free_sparse(&R, &cc);
500    cholmod_l_finish(&cc);
501    return false;
502  }
503
504  vector<int> inverse_permutation(num_cols);
505  for (SuiteSparse_long i = 0; i < num_cols; ++i) {
506    inverse_permutation[permutation[i]] = i;
507  }
508
509  const int* rows = covariance_matrix_->rows();
510  const int* cols = covariance_matrix_->cols();
511  double* values = covariance_matrix_->mutable_values();
512
513  // The following loop exploits the fact that the i^th column of A^{-1}
514  // is given by the solution to the linear system
515  //
516  //  A x = e_i
517  //
518  // where e_i is a vector with e(i) = 1 and all other entries zero.
519  //
520  // Since the covariance matrix is symmetric, the i^th row and column
521  // are equal.
522  const int num_threads = options_.num_threads;
523  scoped_array<double> workspace(new double[num_threads * num_cols]);
524
525#pragma omp parallel for num_threads(num_threads) schedule(dynamic)
526  for (int r = 0; r < num_cols; ++r) {
527    const int row_begin = rows[r];
528    const int row_end = rows[r + 1];
529    if (row_end == row_begin) {
530      continue;
531    }
532
533#  ifdef CERES_USE_OPENMP
534    int thread_id = omp_get_thread_num();
535#  else
536    int thread_id = 0;
537#  endif
538
539    double* solution = workspace.get() + thread_id * num_cols;
540    SolveRTRWithSparseRHS<SuiteSparse_long>(
541        num_cols,
542        static_cast<SuiteSparse_long*>(R->i),
543        static_cast<SuiteSparse_long*>(R->p),
544        static_cast<double*>(R->x),
545        inverse_permutation[r],
546        solution);
547    for (int idx = row_begin; idx < row_end; ++idx) {
548     const int c = cols[idx];
549     values[idx] = solution[inverse_permutation[c]];
550    }
551  }
552
553  free(permutation);
554  cholmod_l_free_sparse(&R, &cc);
555  cholmod_l_finish(&cc);
556  event_logger.AddEvent("Inversion");
557  return true;
558
559#else  // CERES_NO_SUITESPARSE
560
561  return false;
562
563#endif  // CERES_NO_SUITESPARSE
564}
565
566bool CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD() {
567  EventLogger event_logger(
568      "CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD");
569  if (covariance_matrix_.get() == NULL) {
570    // Nothing to do, all zeros covariance matrix.
571    return true;
572  }
573
574  CRSMatrix jacobian;
575  problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian);
576  event_logger.AddEvent("Evaluate");
577
578  Matrix dense_jacobian(jacobian.num_rows, jacobian.num_cols);
579  dense_jacobian.setZero();
580  for (int r = 0; r < jacobian.num_rows; ++r) {
581    for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) {
582      const int c = jacobian.cols[idx];
583      dense_jacobian(r, c) = jacobian.values[idx];
584    }
585  }
586  event_logger.AddEvent("ConvertToDenseMatrix");
587
588  Eigen::JacobiSVD<Matrix> svd(dense_jacobian,
589                               Eigen::ComputeThinU | Eigen::ComputeThinV);
590
591  event_logger.AddEvent("SingularValueDecomposition");
592
593  const Vector singular_values = svd.singularValues();
594  const int num_singular_values = singular_values.rows();
595  Vector inverse_squared_singular_values(num_singular_values);
596  inverse_squared_singular_values.setZero();
597
598  const double max_singular_value = singular_values[0];
599  const double min_singular_value_ratio =
600      sqrt(options_.min_reciprocal_condition_number);
601
602  const bool automatic_truncation = (options_.null_space_rank < 0);
603  const int max_rank = min(num_singular_values,
604                           num_singular_values - options_.null_space_rank);
605
606  // Compute the squared inverse of the singular values. Truncate the
607  // computation based on min_singular_value_ratio and
608  // null_space_rank. When either of these two quantities are active,
609  // the resulting covariance matrix is a Moore-Penrose inverse
610  // instead of a regular inverse.
611  for (int i = 0; i < max_rank; ++i) {
612    const double singular_value_ratio = singular_values[i] / max_singular_value;
613    if (singular_value_ratio < min_singular_value_ratio) {
614      // Since the singular values are in decreasing order, if
615      // automatic truncation is enabled, then from this point on
616      // all values will fail the ratio test and there is nothing to
617      // do in this loop.
618      if (automatic_truncation) {
619        break;
620      } else {
621        LOG(ERROR) << "Cholesky factorization of J'J is not reliable. "
622                   << "Reciprocal condition number: "
623                   << singular_value_ratio * singular_value_ratio << " "
624                   << "min_reciprocal_condition_number: "
625                   << options_.min_reciprocal_condition_number;
626        return false;
627      }
628    }
629
630    inverse_squared_singular_values[i] =
631        1.0 / (singular_values[i] * singular_values[i]);
632  }
633
634  Matrix dense_covariance =
635      svd.matrixV() *
636      inverse_squared_singular_values.asDiagonal() *
637      svd.matrixV().transpose();
638  event_logger.AddEvent("PseudoInverse");
639
640  const int num_rows = covariance_matrix_->num_rows();
641  const int* rows = covariance_matrix_->rows();
642  const int* cols = covariance_matrix_->cols();
643  double* values = covariance_matrix_->mutable_values();
644
645  for (int r = 0; r < num_rows; ++r) {
646    for (int idx = rows[r]; idx < rows[r + 1]; ++idx) {
647      const int c = cols[idx];
648      values[idx] = dense_covariance(r, c);
649    }
650  }
651  event_logger.AddEvent("CopyToCovarianceMatrix");
652  return true;
653}
654
655bool CovarianceImpl::ComputeCovarianceValuesUsingEigenSparseQR() {
656  EventLogger event_logger(
657      "CovarianceImpl::ComputeCovarianceValuesUsingEigenSparseQR");
658  if (covariance_matrix_.get() == NULL) {
659    // Nothing to do, all zeros covariance matrix.
660    return true;
661  }
662
663  CRSMatrix jacobian;
664  problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian);
665  event_logger.AddEvent("Evaluate");
666
667  typedef Eigen::SparseMatrix<double, Eigen::ColMajor> EigenSparseMatrix;
668
669  // Convert the matrix to column major order as required by SparseQR.
670  EigenSparseMatrix sparse_jacobian =
671      Eigen::MappedSparseMatrix<double, Eigen::RowMajor>(
672          jacobian.num_rows, jacobian.num_cols,
673          static_cast<int>(jacobian.values.size()),
674          jacobian.rows.data(), jacobian.cols.data(), jacobian.values.data());
675  event_logger.AddEvent("ConvertToSparseMatrix");
676
677  Eigen::SparseQR<EigenSparseMatrix, Eigen::COLAMDOrdering<int> >
678      qr_solver(sparse_jacobian);
679  event_logger.AddEvent("QRDecomposition");
680
681  if(qr_solver.info() != Eigen::Success) {
682    LOG(ERROR) << "Eigen::SparseQR decomposition failed.";
683    return false;
684  }
685
686  if (qr_solver.rank() < jacobian.num_cols) {
687    LOG(ERROR) << "Jacobian matrix is rank deficient. "
688               << "Number of columns: " << jacobian.num_cols
689               << " rank: " << qr_solver.rank();
690    return false;
691  }
692
693  const int* rows = covariance_matrix_->rows();
694  const int* cols = covariance_matrix_->cols();
695  double* values = covariance_matrix_->mutable_values();
696
697  // Compute the inverse column permutation used by QR factorization.
698  Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic> inverse_permutation =
699      qr_solver.colsPermutation().inverse();
700
701  // The following loop exploits the fact that the i^th column of A^{-1}
702  // is given by the solution to the linear system
703  //
704  //  A x = e_i
705  //
706  // where e_i is a vector with e(i) = 1 and all other entries zero.
707  //
708  // Since the covariance matrix is symmetric, the i^th row and column
709  // are equal.
710  const int num_cols = jacobian.num_cols;
711  const int num_threads = options_.num_threads;
712  scoped_array<double> workspace(new double[num_threads * num_cols]);
713
714#pragma omp parallel for num_threads(num_threads) schedule(dynamic)
715  for (int r = 0; r < num_cols; ++r) {
716    const int row_begin = rows[r];
717    const int row_end = rows[r + 1];
718    if (row_end == row_begin) {
719      continue;
720    }
721
722#  ifdef CERES_USE_OPENMP
723    int thread_id = omp_get_thread_num();
724#  else
725    int thread_id = 0;
726#  endif
727
728    double* solution = workspace.get() + thread_id * num_cols;
729    SolveRTRWithSparseRHS<int>(
730        num_cols,
731        qr_solver.matrixR().innerIndexPtr(),
732        qr_solver.matrixR().outerIndexPtr(),
733        &qr_solver.matrixR().data().value(0),
734        inverse_permutation.indices().coeff(r),
735        solution);
736
737    // Assign the values of the computed covariance using the
738    // inverse permutation used in the QR factorization.
739    for (int idx = row_begin; idx < row_end; ++idx) {
740     const int c = cols[idx];
741     values[idx] = solution[inverse_permutation.indices().coeff(c)];
742    }
743  }
744
745  event_logger.AddEvent("Inverse");
746
747  return true;
748}
749
750}  // namespace internal
751}  // namespace ceres
752