1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Interface for and implementation of various Line search algorithms.
32
33#ifndef CERES_INTERNAL_LINE_SEARCH_H_
34#define CERES_INTERNAL_LINE_SEARCH_H_
35
36#include <string>
37#include <vector>
38#include "ceres/internal/eigen.h"
39#include "ceres/internal/port.h"
40#include "ceres/types.h"
41
42namespace ceres {
43namespace internal {
44
45class Evaluator;
46struct FunctionSample;
47
48// Line search is another name for a one dimensional optimization
49// algorithm. The name "line search" comes from the fact one
50// dimensional optimization problems that arise as subproblems of
51// general multidimensional optimization problems.
52//
53// While finding the exact minimum of a one dimensionl function is
54// hard, instances of LineSearch find a point that satisfies a
55// sufficient decrease condition. Depending on the particular
56// condition used, we get a variety of different line search
57// algorithms, e.g., Armijo, Wolfe etc.
58class LineSearch {
59 public:
60  class Function;
61
62  struct Options {
63    Options()
64        : interpolation_type(CUBIC),
65          sufficient_decrease(1e-4),
66          max_step_contraction(1e-3),
67          min_step_contraction(0.9),
68          min_step_size(1e-9),
69          max_num_iterations(20),
70          sufficient_curvature_decrease(0.9),
71          max_step_expansion(10.0),
72          is_silent(false),
73          function(NULL) {}
74
75    // Degree of the polynomial used to approximate the objective
76    // function.
77    LineSearchInterpolationType interpolation_type;
78
79    // Armijo and Wolfe line search parameters.
80
81    // Solving the line search problem exactly is computationally
82    // prohibitive. Fortunately, line search based optimization
83    // algorithms can still guarantee convergence if instead of an
84    // exact solution, the line search algorithm returns a solution
85    // which decreases the value of the objective function
86    // sufficiently. More precisely, we are looking for a step_size
87    // s.t.
88    //
89    //  f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size
90    double sufficient_decrease;
91
92    // In each iteration of the Armijo / Wolfe line search,
93    //
94    // new_step_size >= max_step_contraction * step_size
95    //
96    // Note that by definition, for contraction:
97    //
98    //  0 < max_step_contraction < min_step_contraction < 1
99    //
100    double max_step_contraction;
101
102    // In each iteration of the Armijo / Wolfe line search,
103    //
104    // new_step_size <= min_step_contraction * step_size
105    // Note that by definition, for contraction:
106    //
107    //  0 < max_step_contraction < min_step_contraction < 1
108    //
109    double min_step_contraction;
110
111    // If during the line search, the step_size falls below this
112    // value, it is truncated to zero.
113    double min_step_size;
114
115    // Maximum number of trial step size iterations during each line search,
116    // if a step size satisfying the search conditions cannot be found within
117    // this number of trials, the line search will terminate.
118    int max_num_iterations;
119
120    // Wolfe-specific line search parameters.
121
122    // The strong Wolfe conditions consist of the Armijo sufficient
123    // decrease condition, and an additional requirement that the
124    // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe
125    // conditions) of the gradient along the search direction
126    // decreases sufficiently. Precisely, this second condition
127    // is that we seek a step_size s.t.
128    //
129    //   |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|
130    //
131    // Where f() is the line search objective and f'() is the derivative
132    // of f w.r.t step_size (d f / d step_size).
133    double sufficient_curvature_decrease;
134
135    // During the bracketing phase of the Wolfe search, the step size is
136    // increased until either a point satisfying the Wolfe conditions is
137    // found, or an upper bound for a bracket containing a point satisfying
138    // the conditions is found.  Precisely, at each iteration of the
139    // expansion:
140    //
141    //   new_step_size <= max_step_expansion * step_size.
142    //
143    // By definition for expansion, max_step_expansion > 1.0.
144    double max_step_expansion;
145
146    bool is_silent;
147
148    // The one dimensional function that the line search algorithm
149    // minimizes.
150    Function* function;
151  };
152
153  // An object used by the line search to access the function values
154  // and gradient of the one dimensional function being optimized.
155  //
156  // In practice, this object will provide access to the objective
157  // function value and the directional derivative of the underlying
158  // optimization problem along a specific search direction.
159  //
160  // See LineSearchFunction for an example implementation.
161  class Function {
162   public:
163    virtual ~Function() {}
164    // Evaluate the line search objective
165    //
166    //   f(x) = p(position + x * direction)
167    //
168    // Where, p is the objective function of the general optimization
169    // problem.
170    //
171    // g is the gradient f'(x) at x.
172    //
173    // f must not be null. The gradient is computed only if g is not null.
174    virtual bool Evaluate(double x, double* f, double* g) = 0;
175  };
176
177  // Result of the line search.
178  struct Summary {
179    Summary()
180        : success(false),
181          optimal_step_size(0.0),
182          num_function_evaluations(0),
183          num_gradient_evaluations(0),
184          num_iterations(0) {}
185
186    bool success;
187    double optimal_step_size;
188    int num_function_evaluations;
189    int num_gradient_evaluations;
190    int num_iterations;
191    string error;
192  };
193
194  explicit LineSearch(const LineSearch::Options& options);
195  virtual ~LineSearch() {}
196
197  static LineSearch* Create(const LineSearchType line_search_type,
198                            const LineSearch::Options& options,
199                            string* error);
200
201  // Perform the line search.
202  //
203  // step_size_estimate must be a positive number.
204  //
205  // initial_cost and initial_gradient are the values and gradient of
206  // the function at zero.
207  // summary must not be null and will contain the result of the line
208  // search.
209  //
210  // Summary::success is true if a non-zero step size is found.
211  virtual void Search(double step_size_estimate,
212                      double initial_cost,
213                      double initial_gradient,
214                      Summary* summary) = 0;
215  double InterpolatingPolynomialMinimizingStepSize(
216      const LineSearchInterpolationType& interpolation_type,
217      const FunctionSample& lowerbound_sample,
218      const FunctionSample& previous_sample,
219      const FunctionSample& current_sample,
220      const double min_step_size,
221      const double max_step_size) const;
222
223 protected:
224  const LineSearch::Options& options() const { return options_; }
225
226 private:
227  LineSearch::Options options_;
228};
229
230class LineSearchFunction : public LineSearch::Function {
231 public:
232  explicit LineSearchFunction(Evaluator* evaluator);
233  virtual ~LineSearchFunction() {}
234  void Init(const Vector& position, const Vector& direction);
235  virtual bool Evaluate(double x, double* f, double* g);
236  double DirectionInfinityNorm() const;
237
238 private:
239  Evaluator* evaluator_;
240  Vector position_;
241  Vector direction_;
242
243  // evaluation_point = Evaluator::Plus(position_,  x * direction_);
244  Vector evaluation_point_;
245
246  // scaled_direction = x * direction_;
247  Vector scaled_direction_;
248  Vector gradient_;
249};
250
251// Backtracking and interpolation based Armijo line search. This
252// implementation is based on the Armijo line search that ships in the
253// minFunc package by Mark Schmidt.
254//
255// For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html
256class ArmijoLineSearch : public LineSearch {
257 public:
258  explicit ArmijoLineSearch(const LineSearch::Options& options);
259  virtual ~ArmijoLineSearch() {}
260  virtual void Search(double step_size_estimate,
261                      double initial_cost,
262                      double initial_gradient,
263                      Summary* summary);
264};
265
266// Bracketing / Zoom Strong Wolfe condition line search.  This implementation
267// is based on the pseudo-code algorithm presented in Nocedal & Wright [1]
268// (p60-61) with inspiration from the WolfeLineSearch which ships with the
269// minFunc package by Mark Schmidt [2].
270//
271// [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed., Springer, 1999.
272// [2] http://www.di.ens.fr/~mschmidt/Software/minFunc.html.
273class WolfeLineSearch : public LineSearch {
274 public:
275  explicit WolfeLineSearch(const LineSearch::Options& options);
276  virtual ~WolfeLineSearch() {}
277  virtual void Search(double step_size_estimate,
278                      double initial_cost,
279                      double initial_gradient,
280                      Summary* summary);
281  // Returns true iff either a valid point, or valid bracket are found.
282  bool BracketingPhase(const FunctionSample& initial_position,
283                       const double step_size_estimate,
284                       FunctionSample* bracket_low,
285                       FunctionSample* bracket_high,
286                       bool* perform_zoom_search,
287                       Summary* summary);
288  // Returns true iff final_line_sample satisfies strong Wolfe conditions.
289  bool ZoomPhase(const FunctionSample& initial_position,
290                 FunctionSample bracket_low,
291                 FunctionSample bracket_high,
292                 FunctionSample* solution,
293                 Summary* summary);
294};
295
296}  // namespace internal
297}  // namespace ceres
298
299#endif  // CERES_INTERNAL_LINE_SEARCH_H_
300