linear_solver.h revision 0ae28bd5885b5daa526898fcf7c323dc2c3e1963
1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Abstract interface for objects solving linear systems of various
32// kinds.
33
34#ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
35#define CERES_INTERNAL_LINEAR_SOLVER_H_
36
37#include <cstddef>
38#include <vector>
39
40#include <glog/logging.h>
41#include "ceres/block_sparse_matrix.h"
42#include "ceres/casts.h"
43#include "ceres/compressed_row_sparse_matrix.h"
44#include "ceres/dense_sparse_matrix.h"
45#include "ceres/triplet_sparse_matrix.h"
46#include "ceres/types.h"
47
48namespace ceres {
49namespace internal {
50
51class LinearOperator;
52
53// Abstract base class for objects that implement algorithms for
54// solving linear systems
55//
56//   Ax = b
57//
58// It is expected that a single instance of a LinearSolver object
59// maybe used multiple times for solving multiple linear systems with
60// the same sparsity structure. This allows them to cache and reuse
61// information across solves. This means that calling Solve on the
62// same LinearSolver instance with two different linear systems will
63// result in undefined behaviour.
64//
65// Subclasses of LinearSolver use two structs to configure themselves.
66// The Options struct configures the LinearSolver object for its
67// lifetime. The PerSolveOptions struct is used to specify options for
68// a particular Solve call.
69class LinearSolver {
70 public:
71  struct Options {
72    Options()
73        : type(SPARSE_NORMAL_CHOLESKY),
74          preconditioner_type(JACOBI),
75          sparse_linear_algebra_library(SUITE_SPARSE),
76          use_block_amd(true),
77          min_num_iterations(1),
78          max_num_iterations(1),
79          num_threads(1),
80          residual_reset_period(10),
81          row_block_size(Dynamic),
82          e_block_size(Dynamic),
83          f_block_size(Dynamic) {
84    }
85
86    LinearSolverType type;
87
88    PreconditionerType preconditioner_type;
89
90    SparseLinearAlgebraLibraryType sparse_linear_algebra_library;
91
92    // See solver.h for explanation of this option.
93    bool use_block_amd;
94
95    // Number of internal iterations that the solver uses. This
96    // parameter only makes sense for iterative solvers like CG.
97    int min_num_iterations;
98    int max_num_iterations;
99
100    // If possible, how many threads can the solver use.
101    int num_threads;
102
103    // Hints about the order in which the parameter blocks should be
104    // eliminated by the linear solver.
105    //
106    // For example if elimination_groups is a vector of size k, then
107    // the linear solver is informed that it should eliminate the
108    // parameter blocks 0 - elimination_groups[0] - 1 first, and then
109    // elimination_groups[0] - elimination_groups[1] and so on. Within
110    // each elimination group, the linear solver is free to choose how
111    // the parameter blocks are ordered. Different linear solvers have
112    // differing requirements on elimination_groups.
113    //
114    // The most common use is for Schur type solvers, where there
115    // should be at least two elimination groups and the first
116    // elimination group must form an independent set in the normal
117    // equations. The first elimination group corresponds to the
118    // num_eliminate_blocks in the Schur type solvers.
119    vector<int> elimination_groups;
120
121    // Iterative solvers, e.g. Preconditioned Conjugate Gradients
122    // maintain a cheap estimate of the residual which may become
123    // inaccurate over time. Thus for non-zero values of this
124    // parameter, the solver can be told to recalculate the value of
125    // the residual using a |b - Ax| evaluation.
126    int residual_reset_period;
127
128    // If the block sizes in a BlockSparseMatrix are fixed, then in
129    // some cases the Schur complement based solvers can detect and
130    // specialize on them.
131    //
132    // It is expected that these parameters are set programmatically
133    // rather than manually.
134    //
135    // Please see schur_complement_solver.h and schur_eliminator.h for
136    // more details.
137    int row_block_size;
138    int e_block_size;
139    int f_block_size;
140  };
141
142  // Options for the Solve method.
143  struct PerSolveOptions {
144    PerSolveOptions()
145        : D(NULL),
146          preconditioner(NULL),
147          r_tolerance(0.0),
148          q_tolerance(0.0) {
149    }
150
151    // This option only makes sense for unsymmetric linear solvers
152    // that can solve rectangular linear systems.
153    //
154    // Given a matrix A, an optional diagonal matrix D as a vector,
155    // and a vector b, the linear solver will solve for
156    //
157    //   | A | x = | b |
158    //   | D |     | 0 |
159    //
160    // If D is null, then it is treated as zero, and the solver returns
161    // the solution to
162    //
163    //   A x = b
164    //
165    // In either case, x is the vector that solves the following
166    // optimization problem.
167    //
168    //   arg min_x ||Ax - b||^2 + ||Dx||^2
169    //
170    // Here A is a matrix of size m x n, with full column rank. If A
171    // does not have full column rank, the results returned by the
172    // solver cannot be relied on. D, if it is not null is an array of
173    // size n.  b is an array of size m and x is an array of size n.
174    double * D;
175
176    // This option only makes sense for iterative solvers.
177    //
178    // In general the performance of an iterative linear solver
179    // depends on the condition number of the matrix A. For example
180    // the convergence rate of the conjugate gradients algorithm
181    // is proportional to the square root of the condition number.
182    //
183    // One particularly useful technique for improving the
184    // conditioning of a linear system is to precondition it. In its
185    // simplest form a preconditioner is a matrix M such that instead
186    // of solving Ax = b, we solve the linear system AM^{-1} y = b
187    // instead, where M is such that the condition number k(AM^{-1})
188    // is smaller than the conditioner k(A). Given the solution to
189    // this system, x = M^{-1} y. The iterative solver takes care of
190    // the mechanics of solving the preconditioned system and
191    // returning the corrected solution x. The user only needs to
192    // supply a linear operator.
193    //
194    // A null preconditioner is equivalent to an identity matrix being
195    // used a preconditioner.
196    LinearOperator* preconditioner;
197
198
199    // The following tolerance related options only makes sense for
200    // iterative solvers. Direct solvers ignore them.
201
202    // Solver terminates when
203    //
204    //   |Ax - b| <= r_tolerance * |b|.
205    //
206    // This is the most commonly used termination criterion for
207    // iterative solvers.
208    double r_tolerance;
209
210    // For PSD matrices A, let
211    //
212    //   Q(x) = x'Ax - 2b'x
213    //
214    // be the cost of the quadratic function defined by A and b. Then,
215    // the solver terminates at iteration i if
216    //
217    //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
218    //
219    // This termination criterion is more useful when using CG to
220    // solve the Newton step. This particular convergence test comes
221    // from Stephen Nash's work on truncated Newton
222    // methods. References:
223    //
224    //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search
225    //      Direction Within A Truncated Newton Method, Operation
226    //      Research Letters 9(1990) 219-221.
227    //
228    //   2. Stephen G. Nash, A Survey of Truncated Newton Methods,
229    //      Journal of Computational and Applied Mathematics,
230    //      124(1-2), 45-59, 2000.
231    //
232    double q_tolerance;
233  };
234
235  // Summary of a call to the Solve method. We should move away from
236  // the true/false method for determining solver success. We should
237  // let the summary object do the talking.
238  struct Summary {
239    Summary()
240        : residual_norm(0.0),
241          num_iterations(-1),
242          termination_type(FAILURE) {
243    }
244
245    double residual_norm;
246    int num_iterations;
247    LinearSolverTerminationType termination_type;
248  };
249
250  virtual ~LinearSolver();
251
252  // Solve Ax = b.
253  virtual Summary Solve(LinearOperator* A,
254                        const double* b,
255                        const PerSolveOptions& per_solve_options,
256                        double* x) = 0;
257
258  // Factory
259  static LinearSolver* Create(const Options& options);
260};
261
262// This templated subclass of LinearSolver serves as a base class for
263// other linear solvers that depend on the particular matrix layout of
264// the underlying linear operator. For example some linear solvers
265// need low level access to the TripletSparseMatrix implementing the
266// LinearOperator interface. This class hides those implementation
267// details behind a private virtual method, and has the Solve method
268// perform the necessary upcasting.
269template <typename MatrixType>
270class TypedLinearSolver : public LinearSolver {
271 public:
272  virtual ~TypedLinearSolver() {}
273  virtual LinearSolver::Summary Solve(
274      LinearOperator* A,
275      const double* b,
276      const LinearSolver::PerSolveOptions& per_solve_options,
277      double* x) {
278    CHECK_NOTNULL(A);
279    CHECK_NOTNULL(b);
280    CHECK_NOTNULL(x);
281    return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
282  }
283
284 private:
285  virtual LinearSolver::Summary SolveImpl(
286      MatrixType* A,
287      const double* b,
288      const LinearSolver::PerSolveOptions& per_solve_options,
289      double* x) = 0;
290};
291
292// Linear solvers that depend on acccess to the low level structure of
293// a SparseMatrix.
294typedef TypedLinearSolver<BlockSparseMatrix>         BlockSparseMatrixSolver;          // NOLINT
295typedef TypedLinearSolver<BlockSparseMatrixBase>     BlockSparseMatrixBaseSolver;      // NOLINT
296typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver;  // NOLINT
297typedef TypedLinearSolver<DenseSparseMatrix>         DenseSparseMatrixSolver;          // NOLINT
298typedef TypedLinearSolver<TripletSparseMatrix>       TripletSparseMatrixSolver;        // NOLINT
299
300}  // namespace internal
301}  // namespace ceres
302
303#endif  // CERES_INTERNAL_LINEAR_SOLVER_H_
304