1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "config.h"
29
30#include <stdarg.h>
31#include <limits.h>
32
33#include "strtod.h"
34#include "bignum.h"
35#include "cached-powers.h"
36#include "double.h"
37
38namespace WTF {
39
40namespace double_conversion {
41
42    // 2^53 = 9007199254740992.
43    // Any integer with at most 15 decimal digits will hence fit into a double
44    // (which has a 53bit significand) without loss of precision.
45    static const int kMaxExactDoubleIntegerDecimalDigits = 15;
46    // 2^64 = 18446744073709551616 > 10^19
47    static const int kMaxUint64DecimalDigits = 19;
48
49    // Max double: 1.7976931348623157 x 10^308
50    // Min non-zero double: 4.9406564584124654 x 10^-324
51    // Any x >= 10^309 is interpreted as +infinity.
52    // Any x <= 10^-324 is interpreted as 0.
53    // Note that 2.5e-324 (despite being smaller than the min double) will be read
54    // as non-zero (equal to the min non-zero double).
55    static const int kMaxDecimalPower = 309;
56    static const int kMinDecimalPower = -324;
57
58    // 2^64 = 18446744073709551616
59    static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
60
61
62    static const double exact_powers_of_ten[] = {
63        1.0,  // 10^0
64        10.0,
65        100.0,
66        1000.0,
67        10000.0,
68        100000.0,
69        1000000.0,
70        10000000.0,
71        100000000.0,
72        1000000000.0,
73        10000000000.0,  // 10^10
74        100000000000.0,
75        1000000000000.0,
76        10000000000000.0,
77        100000000000000.0,
78        1000000000000000.0,
79        10000000000000000.0,
80        100000000000000000.0,
81        1000000000000000000.0,
82        10000000000000000000.0,
83        100000000000000000000.0,  // 10^20
84        1000000000000000000000.0,
85        // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
86        10000000000000000000000.0
87    };
88    static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
89
90    // Maximum number of significant digits in the decimal representation.
91    // In fact the value is 772 (see conversions.cc), but to give us some margin
92    // we round up to 780.
93    static const int kMaxSignificantDecimalDigits = 780;
94
95    static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
96        for (int i = 0; i < buffer.length(); i++) {
97            if (buffer[i] != '0') {
98                return buffer.SubVector(i, buffer.length());
99            }
100        }
101        return Vector<const char>(buffer.start(), 0);
102    }
103
104
105    static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
106        for (int i = buffer.length() - 1; i >= 0; --i) {
107            if (buffer[i] != '0') {
108                return buffer.SubVector(0, i + 1);
109            }
110        }
111        return Vector<const char>(buffer.start(), 0);
112    }
113
114
115    static void TrimToMaxSignificantDigits(Vector<const char> buffer,
116                                           int exponent,
117                                           char* significant_buffer,
118                                           int* significant_exponent) {
119        for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
120            significant_buffer[i] = buffer[i];
121        }
122        // The input buffer has been trimmed. Therefore the last digit must be
123        // different from '0'.
124        ASSERT(buffer[buffer.length() - 1] != '0');
125        // Set the last digit to be non-zero. This is sufficient to guarantee
126        // correct rounding.
127        significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
128        *significant_exponent =
129        exponent + (buffer.length() - kMaxSignificantDecimalDigits);
130    }
131
132    // Reads digits from the buffer and converts them to a uint64.
133    // Reads in as many digits as fit into a uint64.
134    // When the string starts with "1844674407370955161" no further digit is read.
135    // Since 2^64 = 18446744073709551616 it would still be possible read another
136    // digit if it was less or equal than 6, but this would complicate the code.
137    static uint64_t ReadUint64(Vector<const char> buffer,
138                               int* number_of_read_digits) {
139        uint64_t result = 0;
140        int i = 0;
141        while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
142            int digit = buffer[i++] - '0';
143            ASSERT(0 <= digit && digit <= 9);
144            result = 10 * result + digit;
145        }
146        *number_of_read_digits = i;
147        return result;
148    }
149
150
151    // Reads a DiyFp from the buffer.
152    // The returned DiyFp is not necessarily normalized.
153    // If remaining_decimals is zero then the returned DiyFp is accurate.
154    // Otherwise it has been rounded and has error of at most 1/2 ulp.
155    static void ReadDiyFp(Vector<const char> buffer,
156                          DiyFp* result,
157                          int* remaining_decimals) {
158        int read_digits;
159        uint64_t significand = ReadUint64(buffer, &read_digits);
160        if (buffer.length() == read_digits) {
161            *result = DiyFp(significand, 0);
162            *remaining_decimals = 0;
163        } else {
164            // Round the significand.
165            if (buffer[read_digits] >= '5') {
166                significand++;
167            }
168            // Compute the binary exponent.
169            int exponent = 0;
170            *result = DiyFp(significand, exponent);
171            *remaining_decimals = buffer.length() - read_digits;
172        }
173    }
174
175
176    static bool DoubleStrtod(Vector<const char> trimmed,
177                             int exponent,
178                             double* result) {
179#if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
180        // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
181        // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
182        // result is not accurate.
183        // We know that Windows32 uses 64 bits and is therefore accurate.
184        // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
185        // the same problem.
186        return false;
187#endif
188        if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
189            int read_digits;
190            // The trimmed input fits into a double.
191            // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
192            // can compute the result-double simply by multiplying (resp. dividing) the
193            // two numbers.
194            // This is possible because IEEE guarantees that floating-point operations
195            // return the best possible approximation.
196            if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
197                // 10^-exponent fits into a double.
198                *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
199                ASSERT(read_digits == trimmed.length());
200                *result /= exact_powers_of_ten[-exponent];
201                return true;
202            }
203            if (0 <= exponent && exponent < kExactPowersOfTenSize) {
204                // 10^exponent fits into a double.
205                *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
206                ASSERT(read_digits == trimmed.length());
207                *result *= exact_powers_of_ten[exponent];
208                return true;
209            }
210            int remaining_digits =
211            kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
212            if ((0 <= exponent) &&
213                (exponent - remaining_digits < kExactPowersOfTenSize)) {
214                // The trimmed string was short and we can multiply it with
215                // 10^remaining_digits. As a result the remaining exponent now fits
216                // into a double too.
217                *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
218                ASSERT(read_digits == trimmed.length());
219                *result *= exact_powers_of_ten[remaining_digits];
220                *result *= exact_powers_of_ten[exponent - remaining_digits];
221                return true;
222            }
223        }
224        return false;
225    }
226
227
228    // Returns 10^exponent as an exact DiyFp.
229    // The given exponent must be in the range [1; kDecimalExponentDistance[.
230    static DiyFp AdjustmentPowerOfTen(int exponent) {
231        ASSERT(0 < exponent);
232        ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
233        // Simply hardcode the remaining powers for the given decimal exponent
234        // distance.
235        ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
236        switch (exponent) {
237            case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
238            case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
239            case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
240            case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
241            case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
242            case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
243            case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
244            default:
245                UNREACHABLE();
246                return DiyFp(0, 0);
247        }
248    }
249
250
251    // If the function returns true then the result is the correct double.
252    // Otherwise it is either the correct double or the double that is just below
253    // the correct double.
254    static bool DiyFpStrtod(Vector<const char> buffer,
255                            int exponent,
256                            double* result) {
257        DiyFp input;
258        int remaining_decimals;
259        ReadDiyFp(buffer, &input, &remaining_decimals);
260        // Since we may have dropped some digits the input is not accurate.
261        // If remaining_decimals is different than 0 than the error is at most
262        // .5 ulp (unit in the last place).
263        // We don't want to deal with fractions and therefore keep a common
264        // denominator.
265        const int kDenominatorLog = 3;
266        const int kDenominator = 1 << kDenominatorLog;
267        // Move the remaining decimals into the exponent.
268        exponent += remaining_decimals;
269        int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
270
271        int old_e = input.e();
272        input.Normalize();
273        error <<= old_e - input.e();
274
275        ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
276        if (exponent < PowersOfTenCache::kMinDecimalExponent) {
277            *result = 0.0;
278            return true;
279        }
280        DiyFp cached_power;
281        int cached_decimal_exponent;
282        PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
283                                                           &cached_power,
284                                                           &cached_decimal_exponent);
285
286        if (cached_decimal_exponent != exponent) {
287            int adjustment_exponent = exponent - cached_decimal_exponent;
288            DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
289            input.Multiply(adjustment_power);
290            if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
291                // The product of input with the adjustment power fits into a 64 bit
292                // integer.
293                ASSERT(DiyFp::kSignificandSize == 64);
294            } else {
295                // The adjustment power is exact. There is hence only an error of 0.5.
296                error += kDenominator / 2;
297            }
298        }
299
300        input.Multiply(cached_power);
301        // The error introduced by a multiplication of a*b equals
302        //   error_a + error_b + error_a*error_b/2^64 + 0.5
303        // Substituting a with 'input' and b with 'cached_power' we have
304        //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
305        //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
306        int error_b = kDenominator / 2;
307        int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
308        int fixed_error = kDenominator / 2;
309        error += error_b + error_ab + fixed_error;
310
311        old_e = input.e();
312        input.Normalize();
313        error <<= old_e - input.e();
314
315        // See if the double's significand changes if we add/subtract the error.
316        int order_of_magnitude = DiyFp::kSignificandSize + input.e();
317        int effective_significand_size =
318        Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
319        int precision_digits_count =
320        DiyFp::kSignificandSize - effective_significand_size;
321        if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
322            // This can only happen for very small denormals. In this case the
323            // half-way multiplied by the denominator exceeds the range of an uint64.
324            // Simply shift everything to the right.
325            int shift_amount = (precision_digits_count + kDenominatorLog) -
326            DiyFp::kSignificandSize + 1;
327            input.set_f(input.f() >> shift_amount);
328            input.set_e(input.e() + shift_amount);
329            // We add 1 for the lost precision of error, and kDenominator for
330            // the lost precision of input.f().
331            error = (error >> shift_amount) + 1 + kDenominator;
332            precision_digits_count -= shift_amount;
333        }
334        // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
335        ASSERT(DiyFp::kSignificandSize == 64);
336        ASSERT(precision_digits_count < 64);
337        uint64_t one64 = 1;
338        uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
339        uint64_t precision_bits = input.f() & precision_bits_mask;
340        uint64_t half_way = one64 << (precision_digits_count - 1);
341        precision_bits *= kDenominator;
342        half_way *= kDenominator;
343        DiyFp rounded_input(input.f() >> precision_digits_count,
344                            input.e() + precision_digits_count);
345        if (precision_bits >= half_way + error) {
346            rounded_input.set_f(rounded_input.f() + 1);
347        }
348        // If the last_bits are too close to the half-way case than we are too
349        // inaccurate and round down. In this case we return false so that we can
350        // fall back to a more precise algorithm.
351
352        *result = Double(rounded_input).value();
353        if (half_way - error < precision_bits && precision_bits < half_way + error) {
354            // Too imprecise. The caller will have to fall back to a slower version.
355            // However the returned number is guaranteed to be either the correct
356            // double, or the next-lower double.
357            return false;
358        } else {
359            return true;
360        }
361    }
362
363
364    // Returns the correct double for the buffer*10^exponent.
365    // The variable guess should be a close guess that is either the correct double
366    // or its lower neighbor (the nearest double less than the correct one).
367    // Preconditions:
368    //   buffer.length() + exponent <= kMaxDecimalPower + 1
369    //   buffer.length() + exponent > kMinDecimalPower
370    //   buffer.length() <= kMaxDecimalSignificantDigits
371    static double BignumStrtod(Vector<const char> buffer,
372                               int exponent,
373                               double guess) {
374        if (guess == Double::Infinity()) {
375            return guess;
376        }
377
378        DiyFp upper_boundary = Double(guess).UpperBoundary();
379
380        ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
381        ASSERT(buffer.length() + exponent > kMinDecimalPower);
382        ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
383        // Make sure that the Bignum will be able to hold all our numbers.
384        // Our Bignum implementation has a separate field for exponents. Shifts will
385        // consume at most one bigit (< 64 bits).
386        // ln(10) == 3.3219...
387        ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
388        Bignum input;
389        Bignum boundary;
390        input.AssignDecimalString(buffer);
391        boundary.AssignUInt64(upper_boundary.f());
392        if (exponent >= 0) {
393            input.MultiplyByPowerOfTen(exponent);
394        } else {
395            boundary.MultiplyByPowerOfTen(-exponent);
396        }
397        if (upper_boundary.e() > 0) {
398            boundary.ShiftLeft(upper_boundary.e());
399        } else {
400            input.ShiftLeft(-upper_boundary.e());
401        }
402        int comparison = Bignum::Compare(input, boundary);
403        if (comparison < 0) {
404            return guess;
405        } else if (comparison > 0) {
406            return Double(guess).NextDouble();
407        } else if ((Double(guess).Significand() & 1) == 0) {
408            // Round towards even.
409            return guess;
410        } else {
411            return Double(guess).NextDouble();
412        }
413    }
414
415
416    double Strtod(Vector<const char> buffer, int exponent) {
417        Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
418        Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
419        exponent += left_trimmed.length() - trimmed.length();
420        if (trimmed.length() == 0) return 0.0;
421        if (trimmed.length() > kMaxSignificantDecimalDigits) {
422            char significant_buffer[kMaxSignificantDecimalDigits];
423            int significant_exponent;
424            TrimToMaxSignificantDigits(trimmed, exponent,
425                                       significant_buffer, &significant_exponent);
426            return Strtod(Vector<const char>(significant_buffer,
427                                             kMaxSignificantDecimalDigits),
428                          significant_exponent);
429        }
430        if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
431            return Double::Infinity();
432        }
433        if (exponent + trimmed.length() <= kMinDecimalPower) {
434            return 0.0;
435        }
436
437        double guess;
438        if (DoubleStrtod(trimmed, exponent, &guess) ||
439            DiyFpStrtod(trimmed, exponent, &guess)) {
440            return guess;
441        }
442        return BignumStrtod(trimmed, exponent, guess);
443    }
444
445}  // namespace double_conversion
446
447} // namespace WTF
448